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Abstract—Automatically generating concise, informative com-
ments for source code can lighten documentation effort and
accelerate program comprehension. Retrieval-augmented ap-
proaches first fetch code snippets with existing comments and
then synthesize a new comment, yet retrieval and generation are
typically optimized in isolation, allowing irrelevant neighbors to
propagate noise downstream. To tackle the issue, we propose a
novel approach named RAGSum with the aim of both effectiveness
and efficiency in recommendations. RAGSum is built on top of
fuse retrieval and generation using a single CodeT5 backbone.
We report preliminary results on a unified retrieval-generation
framework built on CodeT5. A contrastive pre-training phase
shapes code embeddings for nearest-neighbor search; these
weights then seed end-to-end training with a composite loss that
(i) rewards accurate top-k retrieval; and (ii) minimizes comment-
generation error. More importantly, a lightweight self-refinement
loop is deployed to polish the final output. We evaluated the
framework on three cross-language benchmarks (Java, Python,
C), and compared it with three well-established baselines. The
results show that our approach substantially outperforms the
baselines with respect to the BLEU, METEOR, and ROUTE-L
scores. These early findings indicate that tightly coupling retrieval
and generation can raise the ceiling for comment automation
and motivate forthcoming industrial replications and qualitative
developer studies.

Index Terms—code comment generation, retrieval augmented
generation, pre-trained language model

I. INTRODUCTION

Up-to-date, readable comments accelerate program compre-
hension, reduce onboarding time and maintenance cost [1]. Yet
surveys show that 60–70% of developers routinely encounter
missing or obsolete comments [2], and such mismatches raise
the likelihood of defect-inducing changes by roughly 1.5x. Au-
tomating comment generation has therefore become an active
line of inquiry at the intersection of software engineering and
natural-language processing.

Early work tackled the problem with template rules and
information-retrieval (IR) heuristics. Template systems extract
salient tokens and stitch them into fixed linguistic patterns [3],
[4]; IR systems locate code fragments similar to a query and
reuse their comments [5], [6]. Although lightweight, these
methods often misalign with the precise semantics of the target
snippet. The advent of neural sequence-to-sequence models re-
framed comment generation as a machine-translation task from
source code to natural language [7], [8]. Such models learned
richer representations, but even the best variants struggled to

bridge the modality gap between programming languages and
English, leading to generic or inaccurate summaries [9]. To
mitigate these weaknesses, recent studies blended IR with
neural generation. The model first retrieves code–comment ex-
emplars and then conditions the decoder on that context [10]–
[12]. Although this paradigm has shown promise, existing
systems typically train retrieval and generation components
separately, which can lead to irrelevant neighbors introducing
noise into the generated comments and hinder overall perfor-
mance. To address this issue, Li et al. [12] proposed EditSum
that refines retrieved comments to better align with the seman-
tics of the input code query. While EditSum captures essen-
tial keywords from the input code snippet during comment
generation through its self-editing pipeline, the presence of
irrelevant retrieved code can still degrade performance. A joint
training approach for simultaneously optimizing the retriever
and generator has been employed in JOINTCOM [13] and later,
CMR-Sum [14], to enhance the retrieval of relevant comments.
These approaches aim to achieve a balance between the two
tasks’ performance by employing a shared learning framework.
While JOINTCOM treated retrieval and generation as two
separate models, sharing weights between them during train-
ing; CMR-Sum proposed an extractor that integrates generated
and retrieved comments within a unified framework, aiming
to align them using an attention mechanism. We argue that
though these approaches outperform earlier methods based
on separate training paradigms, treating the retriever and
generator as distinct tasks may still hinder the overall per-
formance of comment generation. As a motivating example,
in Figure 1 we show the results of using JOINTCOM and
CMR-Sum to generate comments for a given input code query.
It is evident that compared to the ground-truth comment and
the input code, the results generated by both JOINTCOM and
CMR-Sum exhibit significant semantic inaccuracies.

To bridge such a gap, we report preliminary results on a
novel model to fuse retrieval and generation within a single
CodeT5 [15] backbone, with the aim of both effectiveness
and efficiency in the final recommendations. First, an initial
contrastive phase shapes the encoder for nearest-neighbour
search. Second, a composite objective tunes both encoder
and decoder end-to-end, rewarding accurate top-k retrieval
and fluent, context-aware comments. Third, a lightweight
self-refinement loop further polishes the output. To study



Fig. 1. Example of retrieved comments by CMR-Sum and JOINTCOM.

RAGSum, we evaluated it on three cross-language bench-
marks, i.e., Java, Python, C and compared it with three
well-established baselines, i.e., CMR-Sum [14], JOINTCOM
[13], and LLama-3.1-8B [16]. The experimental results
showed that RAGSum gains significant improvements with
respect to the baselines. These early findings indicate that
tightly coupling retrieval and generation can raise the ceiling
for comment automation and motivate forthcoming industrial
replications and qualitative developer studies.

The main contributions of our work are as follows.
• We developed RAGSum, a practical approach to code

comment generation on top of contrastive pre-training
phase shapes code embeddings for nearest-neighbor
search.

• We conducted an empirical evaluation using three
real-world datasets to study RAGSum’s performance and
compare it with three well-established baselines.

• We published online a replication package including
the data curated and tool developed through this work to
foster future research [17].

The paper is organized as follows. In Section II, we review
the related work. Section III explains in detail the proposed
approach. The empirical evaluation to study the performance
of RAGSum is presented in Section IV. Afterward, in Sec-
tion V, we report and analyze the experimental results. Finally,
Section VI sketches future work, and concludes the paper.

II. RELATED WORK

Deep learning can automatically learn pattern features
from large-scale datasets, several studies have explored deep
learning-based methods for code summarization [18]. With
the advantage of transformer, sequence-to-sequence (Seq2Seq)
architectures bring significant improvements for generating
summaries of code. Transformer-based models [19], [20] have
enhanced the semantic understanding of comment genera-
tion. Several approach focused on leveraging AST as input
of encoder-decoder model [21]. However, generation models
often struggle with issues such as hallucination and limited
access to external knowledge, which can hinder the accuracy
and completeness of the generated summaries To address this
limitations, Zhang et al. [22] introduced Rencos, a retrieval-
based neural approach for source code summarization but lack

dynamic integration during generation. Another framework for
comment generation – DECOM [23] with the multistage delib-
eration process which use the keywords from source code and
the comment of retrieved sample to enhance the performance.
However, these approaches treated the retriever and generator
as separate components, training them in isolation and thereby
limiting their potential synergy. Recent studies [13], [14] have
proposed combining retrievers and generators to leverage their
complementary strengths. Many research focus on the ability
of LLMs in code comment generation. Recent research has
concentrated on exploring various prompting techniques to
better harness the potential of LLMs in this task [24] but
the summaries produced by LLMs often differ significantly in
expression from reference and tend to include more detailed
information than those generated by traditional models [25].

III. PROPOSED APPROACH

In this paper, we introduce RAGSum–our proposed approach
for Automated Code Comment Generation using Retrieval
Augmented Generation, which can enhance the traditional
RAG. The overall architecture of RAGSum is shown in Fig-
ure 2. RAGSum employs a Encoder-Decoder CodeT5 [15]
model with joint fine-tuning to concurrently leverage the per-
formance of Retriever and Generator for code comment gen-
eration. Our proposed approach consists of three key compo-
nents: (i) Self-Supervised Training of Retriever; (ii) Retriever-
Generator Joint Fine-tuning; and (iii) Self-Refinement Process.

A. Self-Supervised Training of Retriever

Recent research in code retrieval has underscored the value
of self-supervised contrastive learning for effective code rep-
resentation [11], [26]. Following this paradigm, we employ
a contrastive learning approach to pre-train the encoder of
the backbone CodeT5 that captures representations of both
code snippets and comments. In particular, we introduce a
multi-modal contrastive learning approach to jointly learn
representations across the two modalities. Given a code query
qi and its corresponding comment ci, the CodeT5 encoder
first produces two representation vectors, which, for simplicity,
are also denoted as qi and ci, respectively. We fine-tune
the encoder to simultaneously enhance both code-to-code
and code-to-comment retrieval performance, using in-batch
negatives technique [27]. As such, for each training instance
(qi, ci) in a training batch B, two contrastive loss functions
will be computed as follows.

Lq2q = − log
esim(qi,q

+
i )/τ

esim(qi,q
+
i )/τ +

∑
B
esim(qi,q

−
i )/τ

(1)

Lq2c = − log
esim(qi,ci)/τ

esim(qi,ci)/τ +
∑

j∈B,j ̸=i

esim(qi,cj)/τ
(2)

In Equation 1, q+i denotes the representation vector of the
positive code query of qi. In the self-supervised learning
setting, the input code query qi is passed through the encoder
twice to produce two representation vectors, qi and q+i . The
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Fig. 2. The overall architecture of RAGSum.

model is trained to minimize the distance between these two
representations while maximizing the distance to other code
queries in the batch B, which serve as negative samples
(q−i ). sim(·) denotes the cosine similarity of two vectors.
τ is the temperature from contrastive learning [11]. The
second loss function, Lq2c, aims to minimize the similarity
between the input code qi and its corresponding comment
ci, while maximizing the similarity gap with comments from
negative samples in the batch. By pulling semantically aligned
code–comment pairs closer and pushing apart misaligned ones,
this objective helps the model more effectively distinguish
between relevant and irrelevant pairs, thereby enhancing its
understanding of the semantic relationship between code and
comments. This self-supervised training phase aims to enhance
the encoder’s performance on the retrieval task and strengthens
the ability of the proposed approach to capture semantic
representations, enabling it to generate comments that more
accurately reflect the underlying logic of the code.

B. Retriever-Generator Joint Finetuning

We employ the Encoder-Decoder architecture of the CodeT5
backbone to generate summaries for a given code query.
The pre-trained encoder from the previous phase is used
to embed code snippets and comments from the training
dataset. Subsequently, we jointly fine-tune both this encoder
(for Retriever) and the decoder (for Generator) in a unified
training process. For each code–comment pair (qi, ci) in the
training set T , the Retriever selects the top-k most relevant
code–comment pairs by ranking the cosine similarity between
qi and all other code snippets qj ∈ T , j ̸= i, resulting in a
retrieval set Ri = {(qr1, cr1), . . . , (qrk, crk)}. The input query qi
is then concatenated with each retrieval exemplar to form k
augmented input sequence: xi

j = qi ⊕ crj ⊕ qrj . {xi
j}kj=1 are

then fed into the Decoder to estimate p(ci|xi
j) using the Cross

Entropy loss function:

Lj = −
|ci|∑
t=0

log(p(cti|ci,<t, x
i
j))

In the joint finetuning process, the Retriever will be updated
based on the feedback from Generator by taking into account
the contribution of each retrieved result. The joint loss func-
tion Li of the input code query qi is then computed as in
Equation 3.

Li =
1

k

k∑
j=1

Lj · νj (3)

where νj = sim(qi, q
r
j ) represents the contribution of the

retrieved exemplar qrj to the generation of the comment ci
of qi.

C. Self-Refinement Process

Auto-regressive sequence generation models commonly suf-
fer from exposure bias problem and hallucination between
training and inference phase [28]. To tackle this, we introduce
a lightweight post-generation refinement module that improves
the faithfulness and fluency of generated comments. For each
training example, given an input qi and its corresponding
ground-truth comment ci, we generate K candidate comments
using the joint fine-tuned model M resulting from the second
phase.

Ĉi = {ĉ(1)i , ĉ
(2)
i , . . . , ĉ

(K)
i } where ĉ

(j)
i = M(qi)

We compute the ROUGE–L score between each candidate
comment and the reference comment ci. The candidate with
the highest score is selected to build the augmented dataset
Daug = {(qi, ĉbesti )},which is then used to further fine-tune
the joint retrieval–generation model. This allows the model to



leverage self-generated, high-quality comments that are most
semantically aligned with the ground truth.

D. Inference

During inference phase, an input code query qt is only
concatenated with the highest retrieval score exemplar qtr, c

t
r

to generate the comment.

ct = Mrefined(qt ⊕ crt ⊕ qrt )

IV. EVALUATION

We evaluate RAGSum through a series of experiments on
established code summarization benchmarks.

A. Research Questions

RQ1: How effective is the Retriever component of RAGSum
in retrieving relevant results compared to the baselines? This
research question examines the effectiveness of the retriever
component in comparison to baseline approaches. We evaluate
the relevance of the comments retrieved by three different
retrievers–RAGSum, JOINTCOM, and CMR-Sum–by compar-
ing them to the reference comment of the input code.

RQ2: How effective is RAGSum compared to the base-
lines? We compare the efficiency of our approach to baselines.
For a fair comparison and consistency in evaluation, we repro-
duce JOINTCOM and CMR-Sum with the same experimental
setting as provided in the original studies [13], [14].

• CMR-Sum [14] introduced a joint retriever-generator
framework for code summarization, where the retriever
and generator are finetuned independently. An extractor
is then used to align the retrieved code with the generated
comment, refining the final output.

• JOINTCOM [13] also employed a joint retriever-generator
paradigm for comment generation, but treated the re-
triever and generator as separate models, sharing weights
between them during training.

• LLama-3.1-8B [16] is a Large Language Model
(LLM) developed by Meta AI. Due to resource con-
straints, we use the 8B-parameter version for inference. In
our experiments, the LLM serves as the generator in the
RAG framework, with one-shot and few-shot exemplars
retrieved using CodeT5 embeddings.

RQ3: How does each component of RAGSum contribute to
its overall performance? We propose strategies to increase
model performance, including training of encoder, retriever-
generator integration, and a self-refinement mechanism. This
RQ ascertains how each individual component contributes to
the overall performance.

B. Benchmark Datasets

We evaluate our approach on JCSD, PCSD and CCSD–
the most popular benchmark datasets for code summarization.
Specifically, the Java dataset [8] comprises pairs of source
code and corresponding comments from well-known GitHub
repositories, the Python dataset initially gathered by Baron et

TABLE I
STATISTIC OF THE DATASETS.

Dataset JCSD PCSD CCSD
Training set 69,708 55,538 84,315
Validation set 8,714 18,505 4,432
Testing set 6,489 18,142 4,203

al. [29], the dataset JCSD and PCSD was preprocessed by Lu
et al. [13] to remove duplication. The C Code dataset (CCSD)
was crawled by Liu et al. [27] with 95k function-summary
pairs. The statistics of datasets are shown in Table I.

C. Evaluation metrics

Following prior work [13], [14], [30], we evaluate RAGSum
using BLEU [31], ROUGE-L [32], METEOR [33], and
CIDER [34]. Corpus-level BLEU captures overall performance
while Sentence-level BLEU evaluates individual predictions.
ROUGE-L evaluates the similarity between generated and
reference texts using the longest common subsequence. ME-
TEOR offers improvements over traditional metrics by consid-
ering linguistic aspects such as synonymy, stemming, and word
order. CIDEr computes the relevance of key information.1

D. Implementation Details

RAGSum is implemented using the pre-trained CodeT5-base
model 2, which has 12 encoder and decoder layers with a
hidden size of 768. The batch size is set to 24 with a default
learning rate 5× 10−5 for fine-tuning and 1× 10−5 for self-
improvement stage, temperature τ is set to 0.2. The model
is pretrained for 1 epoch on the retrieval task, followed by
10 fine-tuning epochs and 5 self-refinement epochs. We use a
beam size of 10 and generate 10 candidate comments during
the self-refinement process.

V. RESULTS AND DISCUSSION

A. RQ1: How effective is the Retriever component of RAGSum
in retrieving relevant results compared to the baselines?

We employed the retriever components of RAGSum,
JOINTCOM, and CMR-Sum to retrieve the most relevant code
corresponding to each input code in the test set, and then
calculated the ROUGE-L score between the retrieved comment
and the ground truth comment. Figure 3 shows the ROUGE-
L score distributions across three datasets. Overall, RAGSum
consistently attains a higher median score compared to both
JOINTCOM and CMR-Sum.

1Due to space limitations, we omit the details of these metrics.
2Salesforce/codet5-base

Salesforce/codet5-base


TABLE II
COMPARISON OF RAGSUM WITH THE BASELINES.

Approach
JCSD PCSD CCSD

C-B S-B RL M C C-B S-B RL M C C-B S-B RL M C

Llama3.1RAG 1-shot [16] 15.08 14.61 35.26 18.33 1.69 11.66 7.08 21.28 14.09 0.96 16.46 12.09 34.01 19.27 1.76

Llama3.1RAG n-shot [16] 15.15 14.51 36.3 18.97 1.74 20.89 13.28 35.96 24.13 1.85 19.65 13.38 37.57 20.55 2.04

CMR-Sum [14] 23.53 23.24 46.59 20.5 2.7 28.89 22.41 52.42 23.94 2.9 21.72 15.85 40.96 19.8 2.45

JOINTCOM [13] 26.09 26.53 50.22 22.02 2.99 27.89 21.05 52.6 23.84 2.82 26.32 19.99 46.15 22.82 2.91

RAGSum 27.16 27.94 51.54 22.71 3.13 33.0 26.11 56.15 26.53 3.28 27.95 21.36 47.35 23.76 3.03

TABLE III
ABLATION STUDY.

Approach
JCSD PCSD CCSD

C-B S-B RL M C C-B S-B RL M C C-B S-B RL M C

Only Generator 13.33 14.16 41.3 15.63 1.88 21.42 15.36 48.64 21.3 2.28 18.28 12.71 39.13 18.83 2.16

RAGSum w/o combined 24.02 24.03 48.37 20.92 2.77 28.69 22.07 52.64 24.24 2.88 23.1 17.23 42.89 21.13 2.59

RAGSum w/o pretrained + SR 27.12 27.25 50.59 22.47 3.05 31.69 24.8 55.04 25.73 3.16 27.19 20.84 46.75 23.27 2.96

RAGSum w/o SR 27.06 27.8 51.24 22.62 3.1 32.57 25.66 55.65 26.22 3.23 27.76 21.26 47.18 23.54 3.02

RAGSum 27.16 27.94 51.54 22.71 3.13 33.0 26.11 56.15 26.53 3.28 27.95 21.36 47.35 23.76 3.03

Fig. 3. Distribution of Retrieved Comments and Targets Across Methods

The upper quartile of RAGSum extends beyond 0.75,
while JOINTCOM and CMR-Sum are remain below this
level on JCSD dataset. The PCSD reveals a clearly
distinction, where RAGSum achieves the highest median
approximately 0.37, followed by CMR-Sum with around
0.3 and JOINTCOM with 0.25. The distribution scores of
RAGSum generally shifts upward, indicating that the top-
1 returned comments are more relevant to the target comments.

Answer to RQ1: The retriever of RAGSum is more effective
and robust than the baseline methods in fetching relevant
information.

B. RQ2: How effective is RAGSum compared to the baselines?

We compare our approach to the baselines on three datasets,
with results summarized in Table II. The metrics include C-B
(Corpus-BLEU), S-B (Sentence-BLEU), RL (ROUGE-L), M
(METEOR), and C (CIDEr). In Java dataset, compared to the
best baselines JOINTCOM, RAGSum increases 4.1%, 5.31%,
2.63%, 3.13% and 4.68% in terms of C-BLEU, S-BLEU,
ROUGE-L, METEOR, and CIDEr, respectively. With PCSD,
our approach significantly outperforms, RAGSum achieves
33.0, 26.11, 56.15, 26.53 and 3.28 points with improvements
of 14.23%, 16.51%, 7.12%, 10.82%, and 13.1%, respectively,
compared to CMR-Sum. These gains reflect the enhanced

alignment between the retriever and generator, which enables
more accurate and semantically relevant summary generation
For the C dataset, the performance of RAGSum remains
competitive. While the margins over JOINTCOM are narrower
due to the inherently lower redundancy and more complex
structure of C programs, RAGSum still achieves a gain of 2.6%
in ROUGE-L and a 6.19% boost in C-BLEU, suggesting its
strong generalization even under challenging conditions.

Moreover, across three benchmarks, RAGSum consistently
outperforms LLama-3.1-8B in both 1-shot and n-shot con-
figurations. Notably, RAGSum leverages relevant knowledge
to generate more context-aware comments. Overall, the re-
sults in Table II demonstrate the superior performance and
strong generalization capabilities of RAGSum across diverse
programming languages. The combination of joint fine-tuning,
encoder pretraining, and self-improvement enables RAGSum
to effectively model the structural and semantic complexity of
code, setting a new state-of-the-art in comment generation.

Answer to RQ2: On the three given datasets, RAGSum sub-
stantially outperforms the considered baselines with respect
to all the evaluation metrics.

C. RQ3: How does each component of RAGSum contribute to
its overall performance?

We conduct an ablation study to assess the contribution
of key components through four settings: (1) Only Gen-
erator fine-tuning CodeT5 without relevant code-comment
pairs; (2) RAGSumw/o combined using retriever and gener-
ator independently; (3) RAGSumw/o pretrained + SR removing
both pre-trained encoder and self-refinement process; (4)
RAGSumw/o SR excluding self-refinement. Results are shown
in Table III. Notably, RAGSumw/o combined exhibits a significant
decrease of 13.07% for Java, 15.02% for Python, and 20.99%



Fig. 4. Top-k Impact Scores

for C in the Corpus-BLEU metric, primarily due to the
absence of the joint fine-tuning strategy, which is essential for
effectively aligning the retriever and generator components.
It can be observed that excluding both encoder pretraining
and the self-improvement mechanism consistently degrades
the model’s performance across all metrics and programming
languages. Further analysis shows that removing the self-
refinement mechanism results in a performance degradation
across all metrics. For instance, in PCSD, Corpus-BLEU falls
from 33.0 to 32.57, and in CCSD, it drops from 27.95 to 27.76.

For a more in-depth analysis of the effectiveness of
top k relevant code comment pairs during fine-tuning,
Fig. 4 presents a comparative analysis of k values,
ranging from 2 to 5 based on two metrics C-BLEU
and ROUGE-L. The optimal performance is achieved
with a top-k value of 4 for JCSD, while a value of
3 is the preferred choice for both PCSD and CCSD.

Answer to RQ3: Each component of RAGSum contributes
significantly to its overall performance, enhancing different
aspects of the model.

D. Qualitative analysis

We present two examples demonstrating the superior effi-
ciency of our retrieval method compared to existing baselines.
This highlights the impact of relevant code comment on the
quality of generated comment. Figure 5 shows the example
in Java code, RAGSum retrieves comment which is the most
relevant to target, provide meaningful context for generation.
In this case, the comments are generated by CMR-Sum and
JOINTCOM lack the information contained in the code snip-
pet. In Fig 6, CMR-Sum retrieves the same comment with
RAGSum, but the generated comment by CMR-Sum fails to
align closely with target, because our approach employs a
joint modeling mechanism that better integrated retrieval and
generation. JOINTCOM’s retriever performance is limited in
Fig 6, leading to a generated comment that lacks sufficient
information from the given code. In both cases, the output
generated by LLama-3.1-8B leverages the relevant code
and comments, but the result remains misaligned with the
reference. Compared to LLM, the comments produced by
LLM often deviate from reference and lack alignment with
ground truth. However, the strength of LLMs should not
be underestimated. LLMs play an important role in code
summarization task. It is necessary to fine-tune LLMs and

Fig. 5. Example of Java code.

Fig. 6. Example of Python code.

combine them with external tools to better adapt to domain-
specific task.

E. Threats to Validity

a) Internal validity: We used the most popular metrics
for evaluating code summarization but it may have some
limitations. These metrics may not fully capture semantic
equivalence, potentially underestimating the quality. There-
fore, it is necessary to evaluate generated summaries from
additional perspectives, such as human evaluation [35].

b) External validity: Potential threat to validity lies in
the variation of results and performance of our approach with
different coding styles, programming languages and levels
of complexity. To mitigate this, we selected three widely



used datasets with different programming languages, aiming
to capture a broad range of code characteristics.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed RAGSum for automated code
comment generation that effectively leverages the existing
joint fine-tuning retriever and generator. Empirical evaluation
of benchmark datasets showed that RAGSum significantly
improved baselines in code summarization. For future work,
we plan to explore more dynamic retrieval mechanisms, in-
vestigate the scalability of RAGSum to large-scale codebases,
and extend our approach to support multilingual codebases
and more diverse programming paradigms.
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