
ROSE: Transformer-Based Refactoring
Recommendation for Architectural Smells

Samal Nursapa
Mälardalen University

Västerås, Sweden

Anastassiya Samuilova
Mälardalen University

Västerås, Sweden

Alessio Bucaioni
Mälardalen University

Västerås, Sweden
alessio.bucaioni@mdu.se

Phuong T. Nguyen
University of L’Aquila

L’Aquila, Italy
phuong.nguyen@univaq.it

Abstract—Architectural smells, design flaws such as God Class,
Cyclic Dependency, and Hub-like Dependency, erode maintain-
ability and often impair runtime behaviour. While existing
detectors flag these issues, they rarely suggest how to remove
them. We developed ROSE, a recommender system that turns
smell reports into concrete refactoring advice by leveraging pre-
trained code transformers. We frame remediation as a three-way
classification task (Extract Method, Move Class, Pull Up Method)
and fine-tune CodeBERT and CodeT5 on 2.1 million refactoring
instances mined with RefactoringMiner from 11,149 open-source
Java projects. Running with ten-fold cross-validation, CodeT5
gets 96.9% accuracy and a macro-F1 of 0.95, outperforming
CodeBERT by 10 percentage points and all classical base-
lines reported in the original dataset study. Confusion-matrix
analysis shows that both models separate Pull Up Method
well, whereas Extract Method remains challenging because of
overlap with structurally similar changes. These findings provide
the first empirical evidence that transformers can close the
gap between architectural-smell detection and actionable repair.
The study illustrates the promise, and current limits, of data-
driven, architecture-level refactoring, laying the groundwork for
richer recommender systems that cover a wider range of smells
and languages. We release code, trained checkpoints, and the
balanced dataset under an open licence to encourage replication.

Index Terms—Architectural Smells, Software Refactoring,
Transformer Models, CodeBERT, CodeT5, Refactoring Recom-
mendation.

I. INTRODUCTION

Software architecture is pivotal to the maintainability, scal-
ability, and performance of modern applications [27]. Poor
architectural decisions frequently give rise to architectural
smells—design flaws that manifest above the code-element
level, disturbing modularity, dependencies, and runtime be-
haviour [21]. Representative smells include God Class, Cyclic
Dependency, and Hub-like Dependency [7]. Static-analysis
tools such as Designite [28] and Arcan [6] detect these smells
effectively, yet offer little guidance on how to remove them.
Practitioners must still determine suitable refactorings man-
ually, relying on qualitative reasoning or hand-crafted rules
that struggle with the non-linear relationships between design
flaws and quality attributes [21]. Recent deep-learning studies
show promise for code-quality tasks: pre-trained Transformers
outperform metric-based methods in code-smell detection [3]
and can localise refactor-prone code spans [15]. However,
to the best of our knowledge, no prior work has leveraged

Transformer models to recommend concrete refactorings for
architectural smells—a gap this study addresses.

Existing work on refactoring prediction employed classic
classifiers over large code-metric datasets, forecasting whether
a refactoring would occur [4]. More recent approaches use
commit-message text or LSTMs to suggest fixes for a few code
smells [23], yet none of them combines architectural-smell
detection with pre-trained code Transformers to prescribe
which refactoring to apply. Meanwhile, large language models
(LLMs) can autonomously refactor simple code, but still falter
on complex design issues such as dependency cycles [9].
These trends indicate that Transformer-based refactoring is
emerging, whereas architectural smells remain under-served,
triggering a timely research opportunity for empirical software
engineering. To the best of our knowledge, so far no tool
has been developed for the recommendation of refactoring
operations from architectural smells.

In this work, we aim to bridge such a gap by develop-
ing ROSE, a Transformer-based framework to recommend
Refactoring Operations from architectural SmElls. Formulated
as a multi-class classification problem, the approach fine-tunes
two pre-trained models, i.e., CODEBERT and CODET5 using
both source-level representations and architectural-dependency
features. An empirical evaluation was conducted on ROSE
using a curated subset of more than 2M historical Refactoring
Operations spanning 11,149 Java projects. Specifically, our
goal is to answer the following Research Questions (RQs):

• RQ1: Are the considered Transformer models capable
of correctly predicting the refactoring type required to
repair a given architectural smell? With this research
question, we investigate whether the considered trans-
former method is able to recommend a correct refactoring
starting from an architectural smell.

• RQ2: How do CODEBERT and CODET5 differ in ef-
fectiveness and computational cost for this task? We
compare the two models to study which of them provides
a better performance with respect both to the accuracy
and computing resource.

• RQ3: Which architectural smells benefit most from
learning-based refactoring recommendations? This RQ
ascertains which smell can be refactored most effectively
with transformers. This is important in practice, as it helps
developers choose a suitable recommendation technique



for a specific smell.

Our work makes the following key contributions:

• ARCH-T5/BERT framework. We develop the first
Transformer pipeline to recommend refactorings for ar-
chitectural smells.

• Large-scale evaluation. An empirical comparison of
CODEBERT, CODET5, metric-based, and classical ML
baselines has been conducted on a set of more than 3M
balanced instances.

• Emerging evidence. Initial results show >10 pp F-score
improvement over state-of-the-art baselines, demonstrat-
ing the feasibility of learning architectural-refactoring
knowledge from big-code.

• Open Science. An anonymized replication package in-
cluding source code, data splits, and trained model check-
points, is openly archived on GitHub to facilitate future
research at https://anonymous.4open.science/r/archsmell
transformers-66F8.

The remainder of this work is organized as follows. Sec-
tion II reviews the related work. The proposed approach is
presented in Section III. Afterward, Section IV reports and
analyzes the experimental results. In Section V, we discuss
the findings, and highlight the threats to validity. Finally,
Section VI sketches future work, and concludes the paper.

II. RELATED WORK

Existing research has made substantial progress in detecting
code and architectural smells, optimising refactoring plans
through search-based techniques, and applying machine learn-
ing to predict where refactoring is likely to occur. Neverthe-
less, a key gap persists: prior work rarely delivers end-to-end,
data-driven recommendations that specify which refactoring
operation should resolve a detected architectural smell. No
study combines large-scale empirical evidence with modern
Transformer models to close this decision loop. In contrast, our
approach frames architectural-smell remediation as a multi-
class prediction task and fine-tunes CodeBERT and CodeT5
on more than two million real refactoring instances from 11
149 projects, transforming code understanding into actionable,
context-aware architectural guidance.

Code-Smell Detection and Analysis. Early investigations es-
tablished basic terminology and catalogued detection methods.
Zhang et al. [35] synthesised 39 primary studies, laying a
conceptual foundation. Aldallal [1] extended the review to 47
studies and observed that most relied on small, single-project
datasets and metric thresholds, limiting generalisability and
actionable insight. Later surveys widened the scope. Singh et
al. [29] mapped both smells and anti-patterns, while Santos
et al. [26] introduced the smell effect, showing how smells
influence downstream activities and pointing out evaluator
subjectivity. Fernandes et al. [12] and Rasool and Arif [25]
compared industrial tools such as SonarQube, JDeodorant
and Designite, classifying them by threshold, rule, and graph
strategies. They found little use of machine learning, limiting

adaptability across languages and frameworks. Data-driven de-
tectors now dominate. Classical machine-learning models like
Random Forest and SVM lift accuracy on labelled datasets [8].
Deep networks (CNN, RNN, GNN) further reduce reliance
on handcrafted metrics [22]. Transformer-based systems raise
performance again: SCSmell stacks BERT variants [34];
RABERT adds relational bias for God-Class detection [3];
RefactorBERT identifies refactor-prone regions [15]. These
approaches, however, focus on detection and seldom address
architectural smells such as cyclic dependencies. Our study
moves from detection to remediation. We fine-tune pre-trained
Transformers on more than two million historical refactorings
to predict the specific operation that resolves each architectural
smell, closing a gap highlighted across prior surveys.

Search-Based Refactoring. Search-based software engineer-
ing frames refactoring as optimisation. Sequences of Fowler-
style operations [13] evolve under genetic and swarm heuris-
tics to improve cohesion, coupling and other metrics. Mariani
et al. [19] identified genetic algorithms as dominant; Mohan
and Greer [20] catalogued tools and noted growth in multi-
objective search. Di Pompeo et al. [24] pushed the idea to
architecture level with many-objective optimisation. These
methods rely on fitness functions that are costly to tune, scale
poorly with system size and ignore real developer practice.
Our data-driven alternative learns directly from millions of
recorded refactorings across eleven thousand projects, bypass-
ing manual fitness engineering and providing context-aware
guidance in constant time.

Deep Learning for Smell Detection and Refactoring. Deep
networks supplement metric methods. Naik et al. [22] surveyed
17 studies using CNN, RNN, GNN and MLP for method-
level prediction; gains were modest and language-specific.
Alazba et al. [2] reviewed 67 studies on smell detection,
dominated by clones and long methods. Malhotra et al. [18]
showed hybrid RNN–CNN models improve precision but do
not recommend repairs. Zhang et al. [36] reported dataset
imbalance and inconsistent definitions. Transformers change
the picture. SCSmell removes metric features, RABERT adds
relational encoding, and RefactorBERT flags refactor-prone
code. General-purpose language models can fix simple issues
but struggle with architectural flaws [9]. None recommend a
concrete refactoring for a given architectural smell. We frame
remediation as multi-class prediction of the operation—Extract
Class, Move Class, and others—using Transformers trained on
real refactorings.

Pre-trained Code Models. Code-centric pre-trained models
underpin many tasks. CodeBERT combines natural and pro-
gramming language pairs [11]; GraphCodeBERT adds data-
flow graphs [14]. Encoder–decoder families such as CodeT5
and CodeT5+ address generation and repair [31], while GPT-
style models CodeGPT [17] and CodeRL [16] produce autore-
gressive code. No existing model predicts refactoring actions
for architectural flaws. We repurpose CodeBERT and CodeT5
to fill this gap, demonstrating that their learned representations

https://anonymous.4open.science/r/archsmell_transformers-66F8
https://anonymous.4open.science/r/archsmell_transformers-66F8


enable data-driven architectural guidance.

Architectural versus Code Smells. Code smells receive
extensive attention; architectural smells do not. De Paulo
Sobrinho et al. [21] highlighted this imbalance. Fontana et
al. [5] showed that removing cyclic dependencies and hubs
improved response time by 47 percent and reduced memory by
20 percent, demonstrating runtime impact. Most work detects
architectural smells or measures quality after refactoring but
seldom links detection to repair. We combine identification
with Transformer-based prediction of the most suitable refac-
toring, providing proactive architecture improvement.

Transformer Models in Software Engineering. Transformers
underpin numerous code-intelligence tasks. CodeBERT excels
at retrieval and summarisation; GraphCodeBERT improves
clone detection; CodeT5 handles generation and repair. Xiao et
al. [32] analysed 519 Transformer papers and noted challenges
with compute cost and overfitting. Few studies aim at architec-
tural design improvement or refactoring recommendation. We
fine-tune CodeBERT and CodeT5 on more than two million
refactorings, translating code understanding into actionable
architectural advice.

Datasets and Tool Support. Zakeri-Nasrabadi et al. [33]
found that fewer than half of the 45 smell datasets are pub-
lic, with low project diversity. Detectors include SonarQube,
Designite, Arcan, Sonargraph and Structure101. Refactoring-
Miner [10] mines fine-grained changes; PyRef serves Python.
We release a corpus of 11,149 Java projects and more than
two million refactorings, enriched with structural, process and
ownership metrics, enabling Transformers to learn context and
recommend repairs for architectural smells.

III. RESEARCH METHODOLOGY

To address the research questions, we conducted an empir-
ical study that fine-tunes two transformer models, CodeBERT
and CodeT5, to recommend refactorings for architectural
smells [30]. These models are pre-trained with self-supervised
objectives such as masked language modelling and therefore
capture rich semantic and syntactic information from source
code [11].

A. Models

a) CodeBERT: CodeBERT is a transformer encoder
trained on paired natural-language and source-code data across
several programming languages. For this work, the model is
fine-tuned as a multi-class classifier that maps a code fragment
containing an architectural smell to one refactoring label drawn
from a predefined set (for example Extract Method, Move
Method, Pull Up Method). During fine-tuning the represen-
tation of the special classification token is passed through
a feed-forward layer followed by softmax to obtain class
probabilities.

b) CodeT5: CodeT5 adapts the encoder–decoder T5 ar-
chitecture to programming languages and uses token- and
span-masking during pre-training. Although originally de-
signed for generation tasks, the encoder output can be used

for classification. We therefore attach a linear classification
head to the encoder, enabling prediction of the refactoring type
required to resolve the detected smell.

B. Dataset

Having established the model architecture, we next turned
to the data that would serve as the foundation for training and
evaluation. We reuse the publicly available corpus released
with the study by Aniche et al. [4]. The corpus was created
in three steps: repository selection, refactoring extraction, and
feature engineering, yielding a large, diverse snapshot of real-
world Java development.

a) Repository selection: The final set comprises 11,149
projects drawn from three ecosystems:

• Apache Software Foundation: 844 repositories.
• F-Droid (Android): 1,233 applications.
• GitHub: 9,072 highly starred projects.

b) Refactoring extraction: RefactoringMiner, which re-
ports 98% recall and 87% precision, scanned every commit
history and detected 20 refactoring types spanning class,
method, and variable levels (for example Extract Method,
Move Class, Rename Variable). In total it identified 2,086,898
refactoring instances from 8.8 million commits. Architectural
smells were then linked to canonical refactorings as follows:

• God Class → Extract Method.
• Cyclic Dependency → Move Class.
• Hub-like Dependency → Pull Up Method.

Commits modified at least 50 times without a detected
refactoring were sampled as negative instances, producing
1,006,653 non-refactored examples.

c) Feature engineering: For every instance we computed
three feature groups:

1) Source-code metrics (CK suite, cyclomatic complexity)
2) Process metrics (commit count, bug-fix frequency)
3) Ownership metrics (major author percentage)

All features were normalized to the range [0, 1]. Because
refactoring frequencies are uneven, random undersampling
balanced minority and majority classes.

d) Original baseline: The authors of [4] trained six
traditional classifiers (Logistic Regression, Naive Bayes, SVM,
Decision Tree, Random Forest, Feed-forward NN) and re-
ported accuracies above 90%. We build on the same balanced
dataset but fine-tune transformer models to predict which
refactoring best resolves an architectural smell rather than
merely forecasting whether any refactoring will occur.

C. Model fine-tuning and evaluation

With the dataset prepared and the models selected, we pro-
ceeded to configure the fine-tuning process through systematic
hyperparameter exploration. Both models are fine-tuned as
multi-class classifiers using the Hugging Face Trainer API
with GPU acceleration (NVIDIA Tesla T4). Input code is
tokenised to a maximum length of 512; longer fragments
are processed with a sliding-window strategy. Training uses
the AdamW optimiser, cross-entropy loss, batch size 16 and



early stopping on validation F1. A random search explores
learning rates {1e-5, 2e-5, 5e-5, 7e-5, 8e-5}, batch sizes {8,
16, 32}, and weight-decay schedules. Approximately forty
configurations are evaluated; the best validation F1 determines
the final hyper-parameters (2e-5 for CodeBERT, 5e-5 for
CodeT5). Models are trained for ten epochs with evaluation
after each epoch. Performance is reported with accuracy,
precision, recall and F1. Ten-fold cross-validation safeguards
against project-specific bias. Random seeds are fixed (42)
and software versions pinned (Transformers 4.37.2, Datasets
2.16.1, scikit-learn 1.3.2) to ensure reproducibility.

D. Experiment Execution

We framed refactoring recommendation as a multi-class
classification task and fine-tuned CodeBERT and CodeT5
accordingly. Training data were stored in tab-separated files
that pair a Java snippet with its refactoring label. Each snippet
was tokenised to a maximum length of 512 tokens (RoBERTa
tokenizer for CodeBERT, AutoTokenizer for CodeT5). Longer
fragments were processed with a sliding-window strategy to
avoid losing context. Fine-tuning was performed with the
Hugging Face Trainer API on an NVIDIA Tesla T4 GPU.
Both models were trained for ten epochs with AdamW, cross-
entropy loss, and initial batch size 16.

Approximately 40 hyperparameter combinations were eval-
uated; the highest validation F1 yielded the final settings
(learning rate 2e-5 for CodeBERT, 5e-5 for CodeT5; batch
size 16). Evaluation at each epoch reported accuracy, precision,
recall and F1. Ten-fold cross-validation mitigated project bias.
Figure 1 outlines the workflow from labelled snippets through
sliding-window preprocessing to classification.

Fig. 1: Pipeline for refactoring-type classification.

Reproducibility was enforced by fixing the random seed
to 42, pinning library versions (Transformers 4.37.2, Datasets
2.16.1, scikit-learn 1.3.2) and logging every hyper-parameter.
Code, data splits and trained checkpoints are available at https:
//anonymous.4open.science/r/archsmell transformers-66F8.

IV. RESULTS

This section reports the results of the refactoring-type
classification experiments. For clarity, findings are organised
by research question and supported with the corresponding
evaluation metrics (accuracy, precision, recall, F1) and error
analyses for both CodeBERT and CodeT5.

A. RQ1: Are the considered Transformer models capable of
correctly predicting the refactoring type required to repair a
given architectural smell?

Table I summarizes the performance of the two models.
CodeBERT’s accuracy rose from 75.5% at epoch 1 to 85.3%

at epoch 10, with the macro-averaged F1 following a similar
trend (0.76 → 0.85). After epoch 4 the validation loss began
to climb while accuracy still improved, suggesting mild over-
fitting.

TABLE I: Comparison of CodeBERT and CodeT5 at peak
performance (Epoch 9).

Metric CodeBERT CodeT5
Accuracy 85.28% 96.98%
F1-score 0.8527 0.9516
Training Loss 0.0515 0.0052
Validation Loss 0.9958 0.2249
False Positives ∼266 258
False Negatives ∼266 258

CodeT5 delivered markedly better and more stable results:
the final accuracy and F1 reache 97.0% and 0.95, and the gap
between training and validation curves remained small across
epochs. Figure 2 plots accuracy, precision, recall and F1 over
the ten training epochs; in every metric CodeT5 stays above
CodeBERT, confirming the quantitative gains in Table I.

2 4 6 8 10
0.7

0.8

0.9

1

Epoch

A
cc

ur
ac

y

2 4 6 8 10
0.7

0.8

0.9

1

Epoch

F1
2 4 6 8 10

0.7

0.8

0.9

1

Epoch

Pr
ec

is
io

n

2 4 6 8 10
0.7

0.8

0.9

1

Epoch

R
ec

al
l

CodeBERT CodeT5

Fig. 2: Performance metrics over 10 epochs for CodeBERT
and CodeT5.

Answer to RQ1: CodeT5 predicts the correct refactoring
with 97% accuracy and 0.95 macro-F1, while CodeBERT
reaches 85% accuracy and 0.85 F1, confirming that trans-
formers can reliably map architectural smells to appropriate
refactoring operations.

B. RQ2: How do CODEBERT and CODET5 differ in effec-
tiveness and computational cost for this task?

The confusion matrices in Figures 3a and 3b confirm
that CodeT5 makes fewer mistakes and better separates the
three refactoring classes than CodeBERT. Figure 3a shows
CodeBERT’s confusion matrix. The model classifies Pull Up
Method most reliably (precision 87.6 percent, recall 87.2
percent) and performs almost as well on Move Class (84.9

https://anonymous.4open.science/r/archsmell_transformers-66F8
https://anonymous.4open.science/r/archsmell_transformers-66F8


precision, 84.3 recall). Extract Method remains the weak point:
although precision is still high at 83.8 percent, recall falls
to 79.2 percent because a noticeable fraction of true Extract-
Method instances are mistaken for Move Class or Pull Up
Method. This suggests CodeBERT struggles to separate refac-
torings that share similar structural cues. Figure 3b depicts
CodeT5’s results. Move Class is predicted with 80.2 percent
precision and an outstanding 89.8 percent recall, while Pull
Up Method reaches 83.3 precision and 87.6 recall. Extract
Method remains the hardest case, with recall at 68.7 percent
despite 84.9 precision, but CodeT5 still shows fewer cross-
class confusions than CodeBERT. Most residual errors involve
swapping Extract Method and Move Class, two refactorings
that are often applied to similar large or highly coupled
classes. Overall, the matrices illustrate CodeT5’s superior class
separation and explain its higher macro-averaged F1. Table II

Extract
Method

Move
Class

Pull Up
Method

Extract
Method

Move
Class

Pull Up
Method

1,052 166 94

159 1,144 45

70 51 1,179

Predicted label

Tr
ue

la
be

l

Confusion Matrix: CodeBERT

0

500

1,000

(a) CodeBERT predictions

Extract
Method

Move
Class

Pull Up
Method

Extract
Method

Move
Class

Pull Up
Method

1,260 41 33

40 1,280 3

19 15 1,269

Predicted label

Tr
ue

la
be

l

Confusion Matrix: CodeT5

0

500

1,000

(b) CodeT5 predictions

Fig. 3: Confusion matrices across three refactoring types.

summarizes per-class performance.

Answer to RQ2: CodeT5 outperforms CodeBERT (97% vs
85% accuracy; 0.95 vs 0.85 F1) and shows cleaner class
separation, yet its encoder-decoder design trains longer and
uses more GPU memory. CodeBERT converges faster with
lower resource demand but sacrifices predictive quality.

TABLE II: Per-class comparison of CodeBERT and CodeT5
based on confusion matrix analysis.

Refactoring
Type

Model Precision Recall Key Observa-
tions

Extract
Method

CodeBERT 83.8% 79.2% Higher recall
than CodeT5

CodeT5 84.9% 68.7% More misclas-
sifications as
Move Class

Move
Class

CodeBERT 84.9% 84.3% Balanced per-
formance

CodeT5 80.2% 89.8% Slightly better
recall

Pull Up
Method

CodeBERT 87.6% 87.2% Best predicted
class

CodeT5 83.3% 87.6% High
performance,
slightly lower
precision

C. RQ3: Which architectural smells benefit most from
learning-based refactoring recommendations?

Among the three architectural smells examined, God Class,
Cyclic Dependency, and Hub-like Dependency, the refactoring
predicted most reliably by both models is Pull Up Method,
the common remedy for hub-like dependencies. CodeBERT
reached 87.6% precision and 87.2% recall for this class,
and CodeT5 showed comparable values, indicating that the
structural cues of Pull Up Method are distinctive and well
captured by the transformers. Extract Method, associated with
God Class, proved the hardest to identify. CodeT5 achieved
only 68.7% recall for this label, and many true instances were
misclassified as Move Class, reflecting the semantic overlap
between splitting a large class (Extract Method) and relocating
code (Move Class). The present study is limited to these three
smells; how transformer-based refactoring performs on other
architectural smells remains an open question for future work.

Answer to RQ3: Hub-like Dependency benefits the most:
both transformers predict its refactoring, Pull Up Method,
with the highest precision and recall (≈ 88%), whereas God
Class (Extract Method) is hardest and Cyclic Dependency
(Move Class) falls in between.

V. DISCUSSION AND LOOKING AHEAD

This section interprets, discusses our empirical findings,
and highlights the threats to validity. We first reflect on
the comparative performance of CodeBERT and CodeT5 and
what the results reveal about transformer architecture choices
for refactoring recommendation. We then outline concrete
benefits and open questions for tool builders, researchers, and
educators. Next, we examine the main threats that could limit
the reliability or generalisability of the evidence. Finally, we
sketch a research agenda that extends ROSE toward broader
smell coverage, cross-language support, interactive repair, and
human-centred evaluation.



A. On the results

CodeT5 achieved 96.9% accuracy and a macro-F1 of
0.95—more than ten points higher than CodeBERT, showing
that an encoder–decoder model, even when used only for
its encoder, better captures the structural cues distinguishing
refactoring types.

This advantage stems from fundamental architectural and
pre-training differences: CodeBERT’s encoder-only design is
optimised for masked-token prediction and code–text align-
ment, whereas CodeT5’s encoder–decoder stack is pre-trained
on diverse generation tasks (summarisation, translation, re-
finement), enabling it to learn longer-range dependencies and
subtler structural variations required for multi-class refactoring
prediction.

Although CodeBERT converged faster, its rising validation
loss after epoch 4 signalled over-fitting, whereas CodeT5
maintained a small generalisation gap and fewer cross-class
confusions. Both models predicted Pull Up Method (the fix
for hub-like dependencies) most accurately, while Extract
Method (the remedy for God Class) proved hardest, often
confused with Move Class. This pattern suggests the need for
a hierarchical approach that first selects the repair family for
a smell, then ranks specific refactorings within that family.

It is worth noting, however, that CodeT5’s stronger perfor-
mance comes at the cost of greater computational demand and
longer training and inference times; in resource-constrained
or real-time settings, the lighter CodeBERT model may offer
a more practical speed–accuracy trade-off. Accordingly, the
choice between the two transformers should be guided by
deployment goals—high-accuracy offline analysis versus fast
online recommendation.

B. Implications for researchers and practitioners

The results offer tangible benefits for several audiences.
Tool builders can embed transformer-based recommenders into
existing detectors such as Designite and Arcan, replacing
static warnings with concrete, automatically generated fixes.
Researchers studying smell evolution can exploit the released
two-million-instance corpus to observe how developers repair
architectural flaws across projects and time, enabling longi-
tudinal analyses that were previously impractical. Educators
likewise gain realistic, data-driven examples: novice architects
can examine refactorings suggested by the model and compare
them with real-world practice rather than relying solely on
textbook illustrations.

C. Threats to validity

Despite the study’s scale and rigour, four threats to validity
warrant mention. First, internal validity may be compromised
by residual preprocessing or labelling noise, even though we
used RefactoringMiner, standard Hugging Face tokenisers,
and fixed random seeds. Second, the construct validity is
limited by our one-to-one mapping of each smell to a single
refactoring; in practice, developers often apply multiple or
composite fixes, so some “misclassifications” may be accept-
able alternatives. Third, external validity is restricted because

the corpus contains only Java projects; assessing transferability
to other languages and industrial code bases requires future
multi-language replications. Finally, conclusion validity is
constrained by reliance on a single large dataset: although
we employed ten-fold cross-validation and extensive hyper-
parameter search, independent project-out or cross-repository
evaluations are needed to confirm robustness before real-world
deployment.

D. Looking ahead

We see four complementary research directions that align
with the emerging results and vision focus of this track.
First, ROSE should be extended beyond the three architectural
smells studied here to a richer catalogue, such as Unstable
Interface and Cyclically-Dependent Abstraction, while ex-
ploring hierarchical or multi-label predictors that can handle
composite fixes. Second, the system can evolve from pure
recommendation to interactive repair by linking the classifier
to an automatic patch generator (for example, the CodeT5
decoder) and incorporating developer feedback in the loop.
Third, cross-language generalisation warrants investigation
by fine-tuning multilingual transformers like CodeGemma or
StarCoder2 on refactorings mined from languages such as
Kotlin, C#, and JavaScript, thereby exposing language-specific
biases. Finally, controlled user studies are needed to determine
whether the recommendations truly accelerate architecture-
maintenance tasks.

Together, these avenues can move transformer-based refac-
toring support from proof-of-concept to practical, language-
agnostic assistance for software architects.

VI. CONCLUSION AND FUTURE WORK

In this paper, we conceived ROSE, a Transformer-based
model for recommending software refactoring types based on
source code. The study focused on three common refactorings,
i.e., Extract Method, Move Class, and Pull Up Method, each
of which is related to well-known architectural smells such as
God Class and Cyclic Dependency.

The results showed that CodeT5 consistently outperforms
CodeBERT in all metrics, achieving a maximum validation
accuracy of 96. 98% and a F1 score of 0.9516 in Epoch 9. In
contrast, CodeBERT reaches a maximum accuracy of 85.28%
and F1-score of 0.8527. Confusion matrix analysis revealed
that both models struggled with the Extract Method class
due to its similarity with Move Class, but performed well on
Pull Up Method. CodeT5 demonstrated stronger generalization
capabilities and faster convergence, while CodeBERT showed
signs of overfitting in later epochs. These findings confirm the
viability of using pre-trained Transformer models–especially
encoder–decoder architectures like CodeT5–for automated
software refactoring support. Such models can complement
traditional static analysis by offering intelligent, data-driven
insights into code structure and quality.

We anticipate that there are various future research direc-
tions as follows. Some code fragments may involve more
than one refactoring; future work could explore models that



support multi-label outputs. Moreover, incorporating attention
visualization or saliency maps could help explain why the
model chooses a particular refactoring class, increasing trust
and usability. Last but not least, larger models like CodeT5-
Large or CodeGen could be evaluated for their ability to
improve performance on more complex refactorings.

ACKNOWLEDGMENT

This work is supported by the Swedish Agency for Innovation
Systems through the project “Secure: Developing Predictable and
Secure IoT for Autonomous Systems” (2023-01899), and by the Key
Digital Technologies Joint Undertaking through the project “MA-
TISSE: Model-based engineering of digital twins for early verification
and validation of industrial systems” (101140216).

REFERENCES

[1] J. Al Dallal, “Identifying refactoring opportunities in object-oriented
code: A systematic literature review,” Information and Software Tech-
nology, vol. 58, pp. 231–249, 2015.

[2] A. Alazba, H. Aljamaan, and M. R. Alshayeb, “Deep learning ap-
proaches for bad smell detection: a systematic literature review,” Empiri-
cal Software Engineering, vol. 28, 2023, corpusID:258591793. [Online].
Available: https://api.semanticscholar.org/CorpusID:258591793

[3] I. Ali, S. S. H. Rizvi, and S. H. Adil, “Enhancing software quality with
AI: A transformer-based approach for code smell detection,” Applied
Sciences, vol. 15, no. 8, p. 4559, 2025.

[4] M. Aniche, E. Maziero, R. Durelli, and V. H. S. Durelli, “The
Effectiveness of Supervised Machine Learning Algorithms in Predicting
Software Refactoring,” IEEE Transactions on Software Engineering,
vol. 48, no. 04, pp. 1432–1450, Apr. 2022. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TSE.2020.3021736

[5] F. Arcelli Fontana, M. Camilli, D. Rendina, A. G. Taraboi, and
C. Trubiani, “Impact of architectural smells on software performance: an
exploratory study,” in Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
22–31. [Online]. Available: https://doi.org/10.1145/3593434.3593442

[6] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni,
and E. Di Nitto, “Arcan: A tool for architectural smells detection,” in
International Workshops on Software Architecture, 2017, pp. 282–285,
international Workshops on Software Architecture.

[7] U. Azadi, F. Arcelli Fontana, and D. Taibi, “Architectural smells detected
by tools: a catalogue proposal,” in 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt), 2019, pp. 88–97.

[8] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Information and Software Technology, vol. 108, pp. 115–
138, 2019.

[9] J. Cordeiro, S. Noei, and Y. Zou, “An empirical study on the
code refactoring capability of large language models,” arXiv preprint
arXiv:2411.02320, 2024.

[10] Q. Feng, S. Liu, H. Ji, X. Ma, and P. Liang, “An empirical study of
untangling patterns of two-class dependency cycles,” 2023. [Online].
Available: https://arxiv.org/abs/2306.10599

[11] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model
for programming and natural languages,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020.

[12] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A
review-based comparative study of bad smell detection tools,” in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2016, pp. 18:1–18:12.

[13] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[14] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-training code
representations with data flow,” https://arxiv.org/abs/2009.08366, 2020,
arXiv preprint arXiv:2009.08366.

[15] K. Jesse, C. Kuhmuench, and A. Sawant, “Refactorscore: Evaluating
refactor prone code,” IEEE Transactions on Software Engineering, 2023,
early Access.

[16] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. Hoi, “Coderl:
Mastering code generation through pretrained models and deep rein-
forcement learning,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 35, 2022, pp. 21 314–21 328.

[17] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. B. Clement, D. Drain, D. Jiang, D. Tang, and G. Li, “Codexglue:
A machine learning benchmark dataset for code understanding
and generation,” https://arxiv.org/abs/2102.04664, 2021, arXiv preprint
arXiv:2102.04664.

[18] R. Malhotra, B. Jain, and M. Kessentini, “Examining deep learning’s
capability to spot code smells: a systematic literature review,” Cluster
Computing, vol. 26, pp. 3473–3501, 2023, corpusID:263654376. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:263654376

[19] T. Mariani and S. R. Vergilio, “A systematic review on search-based
refactoring,” Information and Software Technology, vol. 83, pp. 14–34,
2017.

[20] M. Mohan and D. Greer, “A survey of search-based refactoring for
software maintenance,” Journal of Software Engineering Research and
Development, vol. 6, no. 1, pp. 3–55, 2018.

[21] H. Mumtaz, P. Singh, and K. Blincoe, “A systematic mapping
study on architectural smells detection,” Journal of Systems and
Software, vol. 173, p. 110885, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0164121220302752

[22] P. Naik, S. Nelaballi, V. S. Pusuluri, and D.-K. Kim, “Deep
learning-based code refactoring: A review of current knowledge,” SSRN
Electronic Journal, 2023, corpusID:254267544. [Online]. Available:
https://api.semanticscholar.org/CorpusID:254267544

[23] A. S. Nyamawe, “Mining commit messages to enhance software
refactorings recommendation: A machine learning approach,” Machine
Learning with Applications, vol. 9, p. 100316, 2022.

[24] D. D. Pompeo and M. Tucci, “Multi-objective software architecture
refactoring driven by quality attributes,” in 2023 IEEE 20th
International Conference on Software Architecture Companion (ICSA-
C). IEEE, Mar. 2023, p. 175–178. [Online]. Available: http:
//dx.doi.org/10.1109/ICSA-C57050.2023.00046

[25] G. Rasool and Z. Arshad, “A review of code smell mining techniques,”
Journal of Software: Evolution and Process, vol. 27, no. 11, pp. 867–
895, 2015.

[26] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. do Nascimento,
M. F. Freitas, and M. G. de Mendonça, “A systematic review on the code
smell effect,” Journal of Systems and Software, vol. 144, pp. 450–477,
2018.

[27] D. Sas, P. Avgeriou, and U. Uyumaz, “On the evolution and
impact of architectural smells—an industrial case study,” Empirical
Software Engineering, vol. 27, no. 86, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10132-7

[28] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design
quality assessment tool,” in International Workshop on Bringing Ar-
chitectural Design Thinking into Developers’ Daily Activities, 2016, pp.
1–4, international Workshop on Bringing Architectural Design Thinking
into Developers’ Daily Activities.

[29] S. Singh and S. Kaur, “A systematic literature review: Refactoring
for disclosing code smells in object oriented software,” Ain Shams
Engineering Journal, vol. 9, no. 4, pp. 2129–2151, 2018.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[31] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” https://arxiv.org/abs/2109.00859, 2021, arXiv preprint
arXiv:2109.00859.

[32] Y. Xiao, X. Zuo, X. Lu, J. S. Dong, X. Cao, and I. Beschastnikh,
“Promises and perils of using transformer-based models for se research,”
Neural Networks, vol. 184, p. 107067, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608024009961

[33] M. Zakeri-Nasrabadi, S. Parsa, E. Esmaili, and F. Palomba, “A
systematic literature review on the code smells datasets and validation
mechanisms,” ACM Computing Surveys, vol. 55, no. 13s, p. 1–48, Jul.
2023. [Online]. Available: http://dx.doi.org/10.1145/3596908

[34] D. Zhang, S. Song, Y. Zhang, and H. Liu, “Code smell detection re-
search based on pre-training and stacking models,” IEEE Latin America
Transactions, vol. 22, no. 1, pp. 22–30, 2024.

https://api.semanticscholar.org/CorpusID:258591793
https://doi.ieeecomputersociety.org/10.1109/TSE.2020.3021736
https://doi.org/10.1145/3593434.3593442
https://arxiv.org/abs/2306.10599
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2102.04664
https://api.semanticscholar.org/CorpusID:263654376
https://www.sciencedirect.com/science/article/pii/S0164121220302752
https://www.sciencedirect.com/science/article/pii/S0164121220302752
https://api.semanticscholar.org/CorpusID:254267544
http://dx.doi.org/10.1109/ICSA-C57050.2023.00046
http://dx.doi.org/10.1109/ICSA-C57050.2023.00046
https://doi.org/10.1007/s10664-022-10132-7
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2109.00859
https://www.sciencedirect.com/science/article/pii/S0893608024009961
http://dx.doi.org/10.1145/3596908


[35] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, pp. 179–202, 2011.

[36] Y. Zhang, C. Ge, H. Liu, and K. Zheng, “Code smell detection based
on supervised learning models: A survey,” Neurocomputing, vol. 565, p.
127014, 2024, dOI:10.1016/j.neucom.2023.127014.


	Introduction
	Related work
	Research methodology
	Models
	Dataset
	Model fine-tuning and evaluation
	Experiment Execution

	Results
	RQ1: Are the considered Transformer models capable of correctly predicting the refactoring type required to repair a given architectural smell?
	RQ2: How do CodeBERT and CodeT5 differ in effectiveness and computational cost for this task?
	RQ3: Which architectural smells benefit most from learning-based refactoring recommendations?

	Discussion and Looking Ahead
	On the results
	Implications for researchers and practitioners
	Threats to validity
	Looking ahead

	Conclusion and Future Work
	References

