Abstract

Testing safety-critical systems, particularly those controlled by Programmable
Logic Controllers (PLC), is crucial for ensuring the safe and reliable opera-
tion of industrial processes. This thesis addresses the critical need for auto-
mated testing of safety-critical PLC systems used in various industrial settings.
Despite the significance of testing, current practices rely heavily on manual
methods, leading to challenges in scalability and reliability. This work inves-
tigates enabling test automation for PLCs to facilitate and assist the current
manual testing procedures in the industry. The thesis proposes and evaluates
test automation techniques and tools tailored to PLCs, focusing on Function
Block Diagram and Structured Text languages commonly used in industry. We
systematically compare test automation tools for PLC programs, after which
we propose a PLC to Python translation framework called PyLC to facilitate
automated test generation. The experiment employing the EARS requirement
engineering pattern reveals that while engineers use semi-formal notations in
varied ways to create requirements, leading to completeness issues, it con-
firms the viability of employing EARS requirements for PLC system testing.
Subsequently, the proposed automation approaches are fully implemented and
evaluated using real-world PLC case studies, comparing their efficiency against
manual testing procedures. The findings highlight the feasibility and benefits of
automating PLC testing, offering insights into improving development and test-
ing processes through carefully selected automation tools for the CODESYS
IDE, a well-known PLC development environment. Additionally, we show that
leveraging Python-based automated testing techniques and mutation analysis
enhances testing effectiveness. Furthermore, incorporating best practices in re-
quirement engineering, as demonstrated by the EARS approach, contributes to
further enhancing testing efficiency and effectiveness in PLC development.






Sammanfattning

Att testa sikerhetskritiska system, sirskilt de som styrs av PLC (Programmable
Logic Controllers), dr avgorande for att sikerstilla siker och palitlig drift av in-
dustriella processer. Denna avhandling tar upp det kritiska behovet av automa-
tiserad testning av sidkerhetskritiska PLC-system som anvinds i olika indus-
triella miljoer. Trots betydelsen av testning dr nuvarande praxis starkt beroende
av manuella metoder, vilket leder till utmaningar i skalbarhet och tillforlit-
lighet. Detta arbete undersoker att mojliggora testautomatisering for PLC:er
for att underlitta och hjidlpa de nuvarande manuella testprocedurerna i bran-
schen. Avhandlingen foreslar och utvérderar testautomatiseringstekniker och
verktyg skraddarsydda for PLC:er, med fokus pa funktionsblockdiagram och
strukturerade textsprak som vanligtvis anvinds inom industrin. Vi jamfor sys-
tematiskt testautomatiseringsverktyg for PLC-program, varefter vi foreslar ett
PLC till Python-6versittningsramverk kallat PyLC for att underlitta automa-
tiserad testgenerering. Experimentet som anvinder det tekniska monstret for
EARS-kraven visar att dven om ingenjorer anvinder semiformella notationer
pa olika sitt for att skapa krav, vilket leder till fullstindighetsproblem, bekréftar
det att det dr 16nsamt att anvinda EARS-krav for PLC-systemtestning. Dérefter
implementeras och utvérderas de foreslagna automatiseringsmetoderna helt och
héllet med PLC-fallstudier i verkliga vérlden, dér deras effektivitet jaimfors
med manuella testprocedurer. Resultaten belyser genomforbarheten och forde-
larna med att automatisera PLC-testning, och erbjuder insikter i att forbittra
utvecklings- och testprocesser genom noggrant utvalda automationsverktyg for
CODESYS IDE, en vilkind PLC-utvecklingsmiljo. Dessutom visar vi att ut-
nyttjande av Python-baserade automatiserade testtekniker och mutationsanalys
forbattrar testningseffektiviteten. Dessutom bidrar inférandet av bésta praxis
inom kravteknik, vilket demonstreras av EARS-metoden, till att ytterligare for-

iii



iv

bittra testningseffektiviteten och effektiviteten i PLC-utveckling.



To my parents



Acknowledgments

I am grateful to my supervisors Eduard Paul Enoiu, Cristina Seceleanu, and
Wasif Afzal for their priceless guidance and ideas in designing the research ac-
tivities, and for providing constructive feedback, and encouragement through-
out the thesis. I would also like to thank them for providing me with their
kindest support to resolve all challenges encountered in my studies. I'm still
on a journey filled with opportunities to learn and grow, with many exciting
new experiences ahead of me. I would also like to thank all my co-authors and
collaborators for their contributions and support.

I have been lucky to work on real industrial problems at ABB Marine and
Ports AB, Sweden. This was made possible by the support of Filip Sebek. 1
would also like to thank all my colleagues in the VeriDevOps EU project who
allowed me to share my ideas with them and establish international collabo-
rations with different European industrial companies and universities such as
Ikerlan, Fagor, Montimage, Softeam, and Abo Akademi.

I would like to pay infinite and endless gratitude to my family and my
kind girlfriend Sahar for always believing in me and providing me with the
confidence, support, and strength that carried me through so many tough times.

I’'m also grateful to all my dear colleagues and fellow PhD students for
their support and encouragement, especially Damir Bilic, Aldin Berisa, Edin
Jelacic, Muhammad Nouman Zafar, and Iliar Rabet.

The work presented in this thesis has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program under the project
‘VeriDevOps’.

Mikael Ebrahimi Salari, Visteras, May, 2024

vi



List of Publications

Papers included in this thesis!

Paper A: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina
Seceleanu. “Choosing a Test Automation Framework for Programmable
Logic Controllers in CODESYS Development Environment". Published in the
15th IEEE International Conference on IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2022), The
Next Level of Test Automation (NEXTA 2022) [1].

Paper B: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina
Seceleanu. “PyLC: A Framework for Transforming and Validating PLC
Software using Python and Pynguin Test Generator". Published in The 38th
ACM/SIGAPP Symposium On Applied Computing (SAC 2023) [2].

Paper C: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina
Seceleanu “An Empirical Investigation of Requirements Engineering and
Testing Utilizing EARS Notation in PLC Programs". Submitted to the
Springer Nature Journal’s Special issue on Topical Issue on Advances in
Combinatorial and Model-based Testing 2023 [3].

Paper D: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Cristina Seceleanu,
Wasif Afzal, Filip Sebek. “Automating Test Generation of Industrial Control
Software through a PLC-to-Python Translation Framework and Pynguin".

The included papers have been reformatted to comply with the thesis layout.

vii



viii

Published in the 30th Asia-Pacific Software Engineering Conference (APSEC
2023), Software Engineering In Practice (SEIP) Track [4].

Publications, not included in this thesis

Paper E: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina
Seceleanu "An Experiment in Requirements Engineering and Testing using
EARS Notation for PLC Systems". Published in IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW 2023), The Advances in Model Based Testing (A-MOST 2023) [5].



Contents

I Thesis 1
1 Introduction 3
2 Background & Related Work 11
2.1 Development and Testing of Safety-Critical Software in Industry 11
2.1.1 IEC 61131-3 Standard and PLC Programming . . .. 12
Structured Text (ST) . . . . . ... ... ... .... 12
Function Block Diagram (FBD) . . ... ... .. .. 12
2.1.2  Testing of PLC Safety-Critical Software in Industry . . 13
2.2 Unit Testing Techniques . . . . . ... ... .. ....... 15
22.1 Manual Testing . . . . . ... ... ... ....... 15
2.2.2  Search-based Testing . . . . .. ... ......... 16
2.2.3 Requirement-based Testing . . . . . .. ... ..... 16
23 TestCoverage . . . . . . v v v v it e e e 17
2.3.1 Requirement Coverage . . . .. ... .. ....... 18
2.3.2 BranchCoverage . . . .. ... ... ......... 18
24 Mutation Analysis . . . . ... ... oL 19
25 RelatedWork . . ... ... ... oL 19
2.5.1 Developing or Choosing The Right Test Automation
Frameworks . . . . . ... ... ... ... ... .. 20
2.5.2 Transforming a PLC Program to Other Programming
Languages . . .. ... ... ... .. ... ..., 21
2.5.3 Application and Efficiency of Using Different Require-
ment Notations in Testing . . . . . ... ... .. .. 22
2.5.4 Testing Embedded Industrial Systems . . . . ... .. 24



X Contents
3 Research Overview 27
3.1 Motivation & Research Goal . . . . ... ... ........ 27
32 ResearchMethod . . ... ... ... ... ... ....... 34
321 ResearchProcess . . ... ... ............ 35
4 Contributions 41
4.1 Thesis Contributions . . . . . ... ... ... ........ 41
4.1.1 Individual Contribution . . . . . . .. ... ... ... 48
42 IncludedPapers . . . ... ... ... .. ... . ... 49
421 PaperA . .. ... 51
422 PaperB . ... ..o 52
423 PaperC . ... ... ... 53
424 PaperD . ... ... 53
5 Results 55

5.1 Choosing the Right Test Automation Tool for CODESYS IDE 55
5.1.1 Discovered Test Automation Frameworks of CODESYS

IDE . .. .. .. 56

5.1.2  Test Automation Frameworks Features . . . . .. .. 56

5.1.3  Test Automation Frameworks . . . . ... ... ... 58

5.1.4 Applicability in an Industrial Case Study . . . . . . . 61

5.2 Translation of ST/FBD Programs to Python . . ... ... .. 62
52.1 PyLCTranslation . . . . ... ... .. ........ 62

5.22 PyLCValidation . ... ................ 63

Unit Testing Validation based on Requirements . . . . 63

Checking PyLC TranslationRules . . . . .. ... .. 66

Validation using Pynguin Test Generation . . . . . . . 67

5.3 Application of EARS Notation in Testing PLCs . . . . . . .. 68
5.3.1 Requirement Engineering Results . . . . . ... ... 69
TestResultsof PRGI . . . . . . .. ... ... .... 71
TestResultsof PRG2 . . . . . . .. ... ... .... 73
TestResultsof PRG3 . . . . . . .. ... ... .... 74

5.3.2 EARS-based Testing vs Manual PLC Testing . . . . . 75

5.4 Automated Translation of FBD Programs to Python . . . . . . 77

5.4.1 Automated Translation from PLC to Python . . . . . . 77



Contents xi

5.4.2 Evaluation and Validation of Translation in an Indus-

trial Context . . . . . ... ... .. ... ..., 78

6 Discussion and Limitations 81

6.1 Discussion. . . . .. ... ... 81

6.2 Limitations . . . . . . . . . ... 82

7 Conclusion and Future Work 85

Bibliography 89

II Included Papers 103

8 Paper A:

Choosing a Test Automation Framework for Programmable Logic

Controllers in CODESYS Development Environment 105

8.1 Abstract . . . . . . . ... 106

8.2 Introduction . . . . .. .. ... ... ... 106

8.3 BACKGROUND AND RELATED WORK . ... ...... 108

8.3.1 PLC Programming, IEC 61131-3 and CODESYS . . . 108

832 RelatedWork . . . ... ... ... ... ..., 109

84 METHOD . ... ... ... ... . ... ... . ... ... 110

8.4.1 Grey Literature Review . . . . . . . ... ... .... 110

8.4.2 Search Process and Framework Selection . . . . . .. 111

843 PoolofObjects . . . . ... ... ... ... ..... 112

8.4.4 Data Extraction Method . . . ... .......... 112

8.4.5 SelectionCriteria . . . . . .. ... .......... 112

8.4.6 Discovery and Validation of Features . . . . ... .. 113

847 IndustrialCaseStudy . . . . ... ... ... ..... 113

85 Results. . . . ... . .. 114

8.5.1 RQI - Discovered Test Automation Frameworks . . . 114

8.5.2 RQ2 - Test Automation Frameworks Features . . . . . 114

Company Constraints . . . . . . . . ... ....... 116

Maturity . . . . . ... 116

Testing Functionalities . . . . . .. ... .. ... .. 117

Framework Flexibility . . ... ... ... ...... 117



xii Contents
Usability . . .. ... ... ... ... . ..., 118
8.5.3 RQ3 - Test Automation Frameworks . . . . . .. . .. 119
8.5.4 RQ4 - Applicability in an Industrial Case Study . . . . 120
8.5.5 Threatsto Validity . ... ............... 125
8.6 CONCLUSIONS and FUTUREWORK . . . ... ... ... 125
8.7 Acknowledgment . . . ... ... ... ... 126
Bibliography . . . . . . ... 126
9 Paper B:

PyLC A Framework for Transforming and Validating PLC Soft-
ware using Python and Pynguin Test Generator 131
9.1 Abstract . . . . . ... 132
9.2 Introduction . . . . . . . . ... ... 132
9.3 BACKGROUND . ... ... ... ... .. ... ..... 134
9.3.1 PLC Programming, IEC 61131-3, and CODESYS .. 134
Function Block Diagram (FBD) . . . . ... ... .. 134
Structured Text (ST) . . . . . .. .. ... .. .... 136
PLC Development Environment . . . . . .. ... .. 137
9.3.2 Pythonand Pynguin . ... .............. 137
Python . ... ... .. ... ... . .. 137
Pynguin Test Automation Framework . . . . . .. .. 137
9.4 PyLC: From PLC to Python and Pynguin . . . . .. ... .. 138
9.4.1 TranslationProcess . . . . .. ... .. ... ... .. 138
FBD/ST Structure . . . . . ... ... ... ..... 139
Cyclic Execution and Triggering . . . . . .. ... .. 142
Basic Blocks Translation . . . . . ... ... ..... 142
Timer Function Blocks Translation . . ... ... .. 142
Translation Example . . . . ... ... ... ..... 143
9.4.2 Validation of the Translated Code . . . . ... .. .. 144
95 Results. . . . ... ... 150
9.5.1 RQI-PyLC Translation . . . ... .......... 150
9.52 RQ2-PyLCValidation . . . . ... .......... 150
Unit Testing Validation based on Requirements . . . . 152
Checking PyLC TranslationRules . . . . .. ... .. 153
Validation using Pynguin Test Generation . . . . . . . 154

9.53 Threatsto Validity . . . ... ... .......... 156



Contents xiii

10

9.6 RelatedWork . . ... ... .. ... ... . ... .. ... 156
9.7 CONCLUSIONS and FUTUREWORK . ... ... ... .. 158
9.8 Acknowledgements . . . ... ... ... L 158
Bibliography . . . . ... ... 159
Paper C:
An Empirical Investigation of Requirements Engineering and Test-
ing Utilizing EARS Notation in PLC Programs 161
10.1 Abstract . . . . . . ... 162
10.2 Introduction . . . . . . . ... Lo 162
10.3 PRELIMINARIES . . ... ... ... ... ... .... 163
10.3.1 Programmable Logic Controllers . . . . . . ... ... 163
10.3.2 CODESYS Development Environment . . . . . . .. 164
10.3.3 EARS Semi-Structured Requirement Engineering Syntax 165
10.4 EXPERIMENTAL DESIGN . . . .. ... ... ....... 165
10.4.1 Research Questions . . . . .. ... ... ....... 165
10.4.2 Experimental Setup Overview . . . .. ... .. ... 166
10.4.3 Object Selection . . . . .. ... ... ... ..... 166
10.4.4 Operationalization of Constructs . . . . . . ... ... 167
Ubiquitous requirements (U) . . . . . . ... ... .. 168
Event-driven requirements (ED) . . . . ... ... .. 168
Unwanted behaviours (UB) . . . ... ... ... .. 168
State-driven requirements (SD) . . . . . . ... ... 168
Optional features (OF) . . . . . ... ... ... ... 169
10.4.5 Instrumentation . . . . . . . . . . ... ... ... .. 169
10.4.6 Data Collection Procedure . . . . . . ... ... ... 169
10.5 EXPERIMENT CONDUCT . . ... ... ... ....... 170
10.6 EXPERIMENT ANALYSIS . . ... ... ... ....... 171
10.6.1 Requirement Engineering Results . . . . . .. .. .. 171
10.6.2 PLC TestingResults . . . .. ... ... ....... 175
TestResultsof PRGI . . . . . . .. ... ... .... 175
TestResultsof PRG2 . . . . . . .. ... ... .... 178
TestResultsof PRG3 . . . . . . .. ... ... .... 179
10.7 EARS-based Testing in Real-world Industrial Settings . . . . . 180

10.7.1 Methodology for EARS-based testing in real-world in-
dustrial settings . . . . . . ... ... 181



xiv Contents
10.7.2 Real-world Industrial PLC Program . . . . .. .. .. 182
10.7.3 Industrial Testing of the Real-world Industrial PLC Pro-
SAM . . . e e e e e e e 182
10.7.4 Results of EARS-based Testing of a Real-world Indus-
trial PLC Program . . . . .. ... ... ....... 183
10.7.5 EARS-based Testing vs Manual PLC Testing in Industry 186
10.7.6 Limitations of the Study and Threats to Validity . . . . 188
10.8 Related Work . . . . .. ... ... ... oo oL 190
10.9 CONCLUSIONS AND FUTUREWORK . . . ... ... .. 191
Bibliography . . . . .. ... .. 193
11 Paper D:
Automating Test Generation of Industrial Control Software through
a PLC-to-Python Translation Framework and Pynguin 197
11.1 Abstract . . . . . . . . ... 198
11.2 Introduction . . . . . . . . ... . 198
11.3 Preliminaries . . . . . . . .. ... .. ... ... ... 200
11.3.1 Programmable Logic Controllers, IEC61131-3, and CODESYS
IDE . . . . . 200
11.3.2 Python and Pynguin Test Automation Tool . . . . .. 200
11.3.3 Logical Operators in IEC61131-3 . . . . .. ... .. 201
1134 PLCopen XML Tree . . ... .. ... ........ 202
11.3.5 CyclicExecution . . . ... ... ... ........ 202
11.3.6 Data Types in IEC61131-3 and Python . . . . .. .. 202
11.4 PyLC: An Automated PLC to Python Translation Framework . 203
11.4.1 PyLC Translation Workflow . . . ... ... ... .. 204
Step 1 - XML Analyzer. . . . ... ... ... .... 205
Step 2 - Python Code Generator . . . . .. ... ... 207
Step 3 - Meta-heuristic Test Generation . . . . . . .. 211
Step 4 - Test Execution . . . . . . . ... .... ... 212
Step 5 - Translation Validation . . . . . .. ... ... 212
11.4.2 PyLC Translation Example . . . . . .. ... ... .. 212
11.5 Automated Validation of The Translated Code using Meta-heuristic
Algorithms . . . . . ... ... 215
DYNAMOSA Algorithm . . . . ... ... ... ... 215

Translation Validation Procedure in PyLC . . . . . . . 216



Contents XV

116 Results . . . . .. ... ... . . e 216

11.6.1 Experimental Setup . . . . . ... ... ... ..... 216

11.6.2 RQI-Automated Translation from PLC to Python . . . 217
11.6.3 RQ2-Evaluation and Validation of Translation in an In-

dustrial Context . . . . . . . ... .. ... ...... 218

11.6.4 Limitations, Threats to Validity, and Discussion . . . . 220

11.7 Related Work . . . . . ... ... ... ... .. ....... 222
11.7.1 Program Transformation to Python for Enhanced Fea-

turesand Tools . . . . .. ... ... ... ...... 222

11.7.2 Automated Testing of ICS Control Applications . . . . 222

11.8 Conclusions and Future Work . . . . . .. ... ... ..... 223

Bibliography . . . . . . ... . 225






Thesis






Chapter 1

Introduction

Industrial Control Systems (ICS) play a pivotal role in the automation of var-
ious industrial processes, enabling efficient and reliable operation in sectors
such as manufacturing, energy, transportation, and more [6]. Within the realm
of ICS, Programmable Logic Controllers (PLC) have emerged as a vital tech-
nology, providing the foundation for controlling and monitoring complex in-
dustrial systems. PLC programs, written in specialized languages, define the
logic that governs the behaviour of these systems, making them integral to the
latter’s safe and efficient functioning [7]. PLCs offer numerous advantages that
make them indispensable in industrial settings. They provide real-time control
capabilities, robustness, and flexibility, allowing for the precise coordination of
equipment, monitoring of sensors, and execution of critical operations [8].

PLC’s ability to interface with various sensors, actuators, and other devices
facilitates seamless integration into existing infrastructure, empowering indus-
tries to achieve enhanced productivity, reduced downtime, improved quality
control, and increased operational safety [9].

Despite the widespread adoption of PLC and its critical role in industrial
processes, the proper testing of PLC programs remains a significant challenge.
Traditional testing approaches for software applications are often inadequate
for PLC programs due to their unique characteristics, which include real-time
operation, deterministic behaviour, close interaction with hardware, safety-
critical applications, limited debugging capabilities, and long life cycles. PLC
programs interact with physical equipment and are subject to real-time con-



4 Chapter 1. Introduction

straints, making the consequences of errors or malfunctions potentially severe
[10]. However, the complexity of PLC programs, combined with the lack of
standardized testing methodologies and tools, has led to a significant gap in the
automated testing of PLC programs [11].

The consequences of faulty PLC programs can be devastating, resulting
in operational disruptions, financial losses, and even threats to human safety.
Ensuring the correctness and reliability of PLC programs is crucial to prevent
accidents, minimize downtime, and protect critical infrastructure [12]. There-
fore, developing and adopting robust automated testing techniques for PLC
programs are essential to identify and rectify potential issues early in the de-
velopment life cycle, reducing risks and enhancing the overall performance of
industrial control systems [13].

The lack of automation in generating test cases for PLCs and their unique
characteristics, as well as the wide range of different functional and safety/se-
curity requirements for them, plus the necessity of aligning PLC programming
with different standards, make PLC testing a super challenging task. To tackle
this challenge, this thesis investigates the following using several different real-
world industrial case studies: enabling automated testing for PLC programs by
identifying a proper test automation tool for PLCs in CODESYS IDE via a sys-
tematic approach, proposing a fully automated method for translating a PLC
program to Python, and performing a deep examination of using a well-known
semi-structured requirement syntax such a EARS in terms of PLC testing.

Programming PLC programs using the IEC 61131-3 standard languages
[14] has gained significant popularity in the industrial control systems domain.
The IEC 61131-3 standard provides a set of programming languages, includ-
ing Ladder Diagram (LD), Function Block Diagram (FBD), Structured Text
(ST), Instruction List (IL), and Sequential Function Chart (SFC), which offer
different approaches for developing control logic. These languages provide a
standardized and structured approach to PLC programming, facilitating code
reusability, modularity, and maintainability. In this work, we focus on FBD
and ST languages because of their popularity in the current industry.

Among the various Integrated Development Environments (IDEs) avail-
able for IEC 61131-3 programming, we focus on CODESYS IDE in this work
since it has emerged as a widely adopted and powerful platform in industry
[15]. CODESYS IDE offers a comprehensive development environment that
supports all standard languages, enabling engineers to efficiently design, test,



and debug PLC programs [16]. The popularity of CODESYS can be attributed
to its user-friendly interface, extensive library of pre-built function blocks, and
compatibility with a wide range of hardware platforms.

The related work of this thesis overviews different state-of-the-art stud-
ies that investigate the test automation of safety-critical software, especially
PLC programs. The reviewed works span three relevant categories including
the efforts conducted towards developing or choosing the right test automation
frameworks (e.g., [17], [18], [19], [20], [21]), the contributions towards trans-
forming a PLC program to other programming languages (e.g., [22], [23], [24],
[25]), and last but not least, the studies that investigate the application and ef-
ficiency of using different requirement notations in testing software artefacts
(e.g., [26], [27], [28], [29], [30]).

This thesis studies and contributes to the automation of PLC software test-
ing by including a collection of papers. We start by addressing the non-trivial
problem of choosing the right test automation tool for CODESYS IDE [1].
Next, we propose PyLC, a PLC to Python translation framework that introduces
the required mechanisms, rules, and workflows during the translation process
[2]. Moreover, PyLC introduces a three-layered translation validation mecha-
nism that ensures the validity of the translated code in Python. As the next con-
tribution, we investigate the applicability of using EARS [31] semi-structured
requirement notation for PLC testing by experimenting [3]. Automating PyLC
translation framework, is the next contribution of this thesis towards enabling
and facilitating the PLC testing process.

Motivation: Several cutting-edge methodologies for automated testing of
safety-critical embedded systems have been documented in the literature, in-
cluding those proposed by Li et al. [32], Enoiu et al. [33], Malekzadeh et
al. [34], and Prati et al. [35]. Nonetheless, the implementation of these
solutions within industrial settings has been sluggish, primarily attributed to
platform-specific and domain-focused methodologies that target specific as-
pects of system functionality [36]. The scarcity of success stories in industrial
settings, along with the absence of practical guidelines and a dearth of empir-
ical, evidence-based studies, further hinder the widespread adoption of auto-
mated testing techniques [37]. Analyzing the limitations of the current manual
PLC testing process in the industry has led us to identify several remarkable
research gaps including (i) the lack of test automation and evaluation tools for
PLC IDEs, (ii) the necessity of evaluating the effectiveness of test automation



6 Chapter 1. Introduction

versus manual testing in fault detection for PLCs, (iii) the limited application
of state-of-the-art automated test generation tools to PLCs, (iv) the absence
of assessing the impact of human modelling of Natural Language (NL) re-
quirements on PLC system certification, and (v) the existence of the non-trivial
problem of choosing the right test automation tool among practitioners [18].
All previously mentioned research gaps motivate us to empirically investigate
the use of automated testing techniques in practice to test safety-critical em-
bedded systems.

Summary of the Contributions: The lack of automation for testing PLC
programs comes with challenges both on the scientific front and the industrial
one. In this thesis, we start our work by investigating how to assist researchers
and practitioners in choosing the right Test Automation Framework for one
of the most popular IDEs in the PLC industry, CODESYS. This work is an
attempt to tackle the non-trivial problem of choosing the right test automation
tool among practitioners [18]. Addressing this problem systematically encoun-
ters several challenges, including (i) identifying the practitioners’ point of view
regarding both the most discussed test automation tools for CODESYS IDE,
and important features of test automation tools while excluding the academia’s
point of view. (ii) Detecting the academia’s point of view regarding the re-
ported most important features of test automation tools. (iii) Industrial evalu-
ation of the identified most important features from both academic and prac-
tical points of view. (iv) Detecting the most powerful test automation tools of
CODESYS IDE through a systematic comparison of the identified tools based
on the detected industry-validated features. (v) Evaluating the applicability and
efficiency of the identified tools in real-world circumstances by applying them
to different industrial case studies. Overcoming the aforementioned challenges
has been done in our work [1] by designing a hybrid methodology that utilises
several different techniques chained to each other, including Grey Literature
Review (GLR) [18], literature review, industrial validation, Test Automation
Frameworks (TAF) selection, and TAFs evaluation via a real-world case study.

Furthermore, as the next step towards enabling automated testing for PLC
programs considering the existence of a powerful meta-heuristic testing tool in
Python called Pynguin [38] and motivated by addressing the necessity of proper
test automation implementation and the limited application of state-of-the-art
automated test generation tools to PLCs, we further propose PyLC [2]. PyLC
is a PLC to Python framework that proposes the required translation rules,



translation mechanism, workflow, and a hybrid translation validation mecha-
nism for transforming ST and FBD programs to executable equivalent Python
code and validating their translation. The proposed hybrid translation valida-
tion mechanism of the PyLC tool leverages three different validation mecha-
nisms including Requirement-based testing, Translation Rules-based testing,
and automated search-based testing via Pynguin tool [38]. Implementation of
PyLC faced several academic and industrial challenges, such as (vi) seman-
tic mapping between the PLC program and its translated code in Python, (vii)
implementing and simulating the non-existing data types and modules of PLC
such as TIME data type and TON block in Python, (viii) implementation of
the FBD network in Python and preserving the call order of the functions and
blocks, (ix) implementation of cyclic execution feature of the PLC programs
in Python, (x) validating the correctness of the translation, and (xi) evaluating
the applicability and efficiency of the proposed translation framework in real-
world circumstances. All the mentioned concrete challenges were addressed in
our work which is a proof-of-concept for PyLC translation framework [2].

Motivated by addressing the absence of assessing the impact of human
modelling of NL requirements on PLC system certification, the necessity of
evaluating the effectiveness of test automation versus manual testing in fault
detection for PLCs, as the next step towards facilitating automated testing of
PLC programs and, to the best of our knowledge, a first academic endeavour,
we investigate the applicability and efficiency of using a popular semi-formal
requirement syntax called EARS (Easy Approach to Requirements Syntax)
[31] that has been proposed by researchers at Rolls-Royce. This investigation
[3] is carried out by experimenting with transforming a selected set of security
requirements originally expressed in NL into EARS requirements. This work
continues with proposing an EARS-based PLC testing method for generating
test cases for PLC programs based on EARS requirements and evaluating the
applicability and efficiency of EARS syntax in the context of PLC programs by
applying it to several real-world case studies. This work also briefly compares
the efficiency of the proposed semi-automated EARS-based testing mechanism
versus the current manual PLC testing state in the industry. This work encoun-
tered several challenges, which were all addressed, such as (xii) identifying
the recurring EARS patterns when transforming the NL requirements to EARS
requirements, (xiii) ambiguity of NL requirements, and (xiv) catching the func-
tional requirements of the PLC program for requirement-based testing.



8 Chapter 1. Introduction

Attempting to enable test automation for PLC programs and motivated by
filling the gap of the lack of test automation and evaluation tools for PLC IDEs,
as well as the limited application of state-of-the- art automated test generation
tools to PLCs, we next automate our proposed PyLC (PLC to Python) frame-
work [4] by equipping it with the following automated modules: XML Analyzer
module, which extracts the required information from the PLC program under
translation, Python Code Generator module which generates the executable
translated code in Python, and finally, the Meta-heuristic Test Generator mod-
ule which validates the correctness of the translation using search-based algo-
rithms. The automated version of the PyLC tool follows the proposed transla-
tion rules and translation procedures of the previous manual version [2], but it
is capable of importing a PLC program in FBD language (as a PLCopen XML/
file) and translating it into an executable Python code automatically. The au-
tomated PyLC is also capable of validating the translation, by employing the
search-based testing algorithms of the Pynguin tool [38]. The automation of
PyLC encountered several technical challenges, which were all addressed, such
as (xv) proper automated data extraction from the PLC program, (xvi) preserv-
ing the FBD network as well as the order of the block execution in the PLC
program under automated translation, (xvii) automated careful conversion of
data types to equivalent or similar data types in Python, (xviii) simulating the
behaviour of the non-existing blocks of PLC (e.g., TON, TOF) in Python auto-
matically.

Results: The comprehensive investigation and evaluation of the proposed
PLC testing and requirement engineering methods used in this thesis show that:

* The most prevalent test automation frameworks targeting CODESYS
IDE for PLC testing are the CODESYS Test Manager and CoUnit [1].

» Several features that we have identified should be considered when
choosing a test automation framework for PLC testing: cost, supported
platforms, industrial use, stage of development, documentation and re-
port generation, record playback, test suite support, test suite extension,
team support, DevOps/ALM support, continuous integration support,
scripting language, import support, availability of customer support,
quality of documentation, and maintenance support [1].

Thttps://plcopen.org/technical-activities/xml-exchange



Based on our initial comparison between CODESYS Test Manager and
CoUnit, based on the 15 industry-validated identified features, it follows
that CODESYS Test Manager is more mature and has several advantages
over CoUnit, including user support, record and playback features, and
easy test suite extension. Nevertheless, CoUnit, as an open-source coun-
terpart, also provides testers with many key features used during PLC
testing [1].

Our proposed PyLC framework is capable of translating a PLC program
into an executable Python code, and its applicability and efficiency seem
promising, based on our evaluation by applying it to different industrial
real-world PLC programs [2].

The hybrid unit testing mechanism of PyLC validates the correct-
ness of the obtained Python code, by achieving 100% coverage for
requirements-based testing and translation-rules-based testing methods,
and an average branch coverage of 88.44% for the search-based testing
method [2].

The results of the conducted experiment in requirements engineering and
testing using the EARS notation for PLC systems imply that different in-
dividuals use different EARS patterns for transforming the same require-
ment, based on their interpretation, which shows an acceptable level of
flexibility in the EARS syntax [3].

The results from the testing part of the conducted EARS notation exper-
iment and the subsequent comparison with traditional PLC testing meth-
ods indicate that EARS-generated requirements-based test cases for PLC
programs are effective and offer an accessible means for PLC testers to
express test specifications [3].

The automated PyLC framework demonstrates the capability for trans-
lating efficiently an array of industrial FBD programs, characterized by
diverse block types, into Python code [4].

The automated PyLC translation framework, aided by Pynguin, gener-
ates test cases efficiently, attaining an average branch coverage of 98%
across ten distinct real-world industrial PLC programs [4].



10 Chapter 1. Introduction

QOutline of the Thesis: The thesis consists of two parts. Part I provides
an overview of the conducted research and is organized as follows: Chapter 2
provides a brief overview of the background along with related work, Chapter
3 presents the research goals, methodology, and research process, Chapter 4
summarizes the included papers and contributions, Chapter 5 briefly overview
the results of this thesis, Chapter 6 deals with discussion and limitations of our
proposed approaches, followed by conclusions and future work in Chapter 7.
Part IT includes the published papers, which have been adapted to comply with
the format of the thesis.



Chapter 2

Background & Related Work

This chapter overviews the fundamentals of the development of safety-critical
embedded software, the purpose of its testing in the industry, unit testing tech-
niques, requirement-based testing, test coverage, and mutation analysis, fol-
lowed by related work that has been carried out in similar domains.

2.1 Development and Testing of Safety-Critical
Software in Industry

Embedded systems, as outlined by [39], encompass both hardware and soft-
ware elements interfacing with the physical world via sensors and actuators to
influence the environment. These systems are purposefully crafted to stream-
line the execution of intricate tasks, thereby reducing human effort and time
consumption. Their widespread adoption across various sectors, including avi-
ation, transportation, and nuclear power plants, underscores their significance.
Failures within these systems, as noted by [40], can result in detrimental im-
pacts on human life, the environment, and economic stability. The initiation of
safety-critical software development within the industry commences with re-
quirement analysis, employing qualitative and quantitative techniques such as
fault tree analysis, expert analysis, etc. [41]. Following the requirements anal-
ysis phase, the implementation of safety-critical software typically occurs on
specialized computers referred to as Programmable Logic Controllers (PLCs).

11



12 Chapter 2. Background & Related Work

These PLCs are tasked with executing the safety-critical functions of a sys-
tem. They receive input signals from sensors, execute computational logic,
and transmit instructions via a computer network to various modules and sub-
systems for executing safety-specific tasks.

2.1.1 IEC 61131-3 Standard and PLC Programming

The International Electrotechnical Commission (IEC) has established multiple
programming languages for implementing safety-critical software applications
on PLCs, including Instruction List (IL), Structured Text (ST), Function Block
Diagram (FBD), among others [42]. Within this framework, FBD and ST stand
out as two of the most popular PLC graphical and text-based programming
languages in the industry, respectively. Consequently, this thesis is focused on
PLC programs developed in FBD and ST languages.

Structured Text (ST)

ST offers a structured and intuitive approach to developing control algorithms
for industrial automation systems. ST enables engineers to express complex
logic and algorithms using familiar constructs such as sequential, selection,
and iteration statements, akin to high-level programming languages. This fa-
cilitates the design and implementation of sophisticated control strategies for
various industrial processes. Additionally, the readability and maintainability
of code are enhanced through the use of structured programming techniques,
promoting better understanding and easier troubleshooting by technicians and
programmers alike. Moreover, ST’s standardized syntax and semantics across
different PLC platforms contribute to the interoperability and portability of
control software, allowing for seamless integration and scalability in diverse in-
dustrial environments. As such, structured text programming language serves
as a cornerstone in the development of reliable, efficient, and flexible control
systems for industrial automation applications.

Function Block Diagram (FBD)

FBD employs a graphical modelling notation to depict various functions and
function blocks, such as arithmetic operations, selection processes, compar-
isons, and more. These function blocks are interconnected via input and output



2.1 Development and Testing of Safety-Critical Software in Industry
13

IN1—
IN2—

IN3 —
INg —— — — OUT1

S5=
INS — |

IN6 —

o

Figure 2.1: An example of FBD program with six inputs and one output

variables, delineating the functional properties and interrelationships among
different components of the software application, as defined by the functional
and non-functional requirements, respectively. Figure 2.1 illustrates an in-
stance of an FBD program comprising arithmetic operators (AND, OR, NOT,
XOR), a latch (SR), and a timer (TON) function block. This program takes
six parameters/signals as inputs and yields a single output based on the logic
depicted by functional blocks, with a delay of five seconds. Subsequently,
the FBD programs are compiled using specialized industrial compiling tools,
thereby converting them into source and machine code.

2.1.2 Testing of PLC Safety-Critical Software in Industry

Verification and validation of safety-critical software constitute an iterative pro-
cess conducted throughout the development lifecycle to ensure its behavioural
functionality aligns with system requirements. In industrial settings, the test-
ing process commences concurrently with software development, adhering to
the V-model, which enjoys widespread acceptance among practitioners in em-
bedded software development [43], [44], [45]. However, various iterations of
V-models [46] are employed across different industries based on their specific
business requirements. In this section, we offer a simplified depiction of the
V-model, as illustrated in Figure 2.2, to elucidate the foundational concepts
utilized in this thesis.

The V-Model comprises four distinct phases: the development phase, the
test design phase, the testing phase, and the implementation phase. Figure 2.2



14 Chapter 2. Background & Related Work

Test Design Phase
Level 0:Requirement Aualysds Acceptance Test Design / Acceptance Testing

@ . .

é Level 1: System Design System Test Design System Testing °
= 2
E N :
g Level 2: Architecture Demgn tegranon Test De:ﬂg Integration Testing 4
& Level 3: Module Design! \q_lt Test DBS?J {Unit Testing

V

Coding
Implementation Phase

Figure 2.2: A simplified version of a V-model

depicts the development phase on the left side, detailing each activity of the
development life cycle at an abstract level as described by Shuping et al. [45].
The functional specification’s depth increases at each level: Level 0 focuses on
the customer perspective, Level 1 delineates the functional design of the en-
tire system, Level 2 specifies data transfer and communication details between
modules and the external environment, and Level 3 provides detailed func-
tional specifications at the unit level for each module. The test design phase
runs concurrently with the development phase, generating test specifications
for each level. The implementation phase involves the actual development of
system modules to fulfil requirements. Subsequently, during the testing phase
depicted on the right side of the figure, test designs are executed iteratively and
incrementally following the development of each module.

The test execution phase within the embedded system industry typically
unfolds across three tiers, namely Model-in-the-Loop (MiL), Software-in-the-
Loop (SiL), and Hardware-in-the-Loop (HiL) [39]. During the MiL phase,
tests are conducted on a model that represents the system requirements, aim-
ing to validate both the model’s compliance with requirements and its com-
putational logic. In contrast, the SiLL phase involves running tests on the real
software alongside experimental hardware, simulating the behaviour of actual
hardware. Conversely, the HiL phase entails conducting tests on both real soft-
ware and hardware within a simulated or virtual test environment.



2.2 Unit Testing Techniques 15

The testing complexity and effort required for individual activities within
the testing phase escalate incrementally [44]. Each distinct activity encom-
passes varied test objectives, input/output parameters, and communication for-
mats. At the unit and integration levels, the test objectives and input/output
parameters are confined to the functionality of smaller system components.
Conversely, complexity at the system level surges alongside the expansion of
the input/output parameters and the integration of additional modules, thereby
augmenting the testing effort at the system level.

2.2 Unit Testing Techniques

The fundamental objective of unit-testing techniques is to produce precise and
robust test artefacts, including test cases and scripts, to verify system require-
ments and ensure their reliability. Various automated testing methodologies
are available, such as mutation testing [47], boundary testing [48], equivalence
partitioning [49], and code coverage analysis [50], which can be employed to
automatically generate test artefacts for systematically validating a System Un-
der Test (SUT), thereby minimizing costs in terms of time and effort. Nonethe-
less, manual testing remains a widely utilized approach in the industry, often
complementing automated software testing [51]. These techniques are adapt-
able across different testing levels, including component and integration test-
ing. However, in this study, search-based testing, mutation testing, and code
coverage analysis are executed at the unit level to assess the system’s adher-
ence to its prescribed requirements empirically. Several studies, such as those
by Hametner et al [52], Jamro et al. [19], Winkler et al. [53], Li et al. [54],
Dhadyalla et al. [55], and Rengarajan et al. [56], have demonstrated the effi-
cacy and efficiency of these techniques in validating safety-critical software at
the unit level. This thesis is focused on the automated testing of PLC programs
at the unit level.

2.2.1 Manual Testing

During manual testing of a safety-critical system, test cases are manually
crafted in accordance with established safety standards outlined by various
organizations (e.g., ISO [57], IEC [58]). This process involves leveraging
requirements and test specifications to formulate test cases aligned with



16 Chapter 2. Background & Related Work

specific test objectives and various structural or behavioural coverage criteria,
such as statement coverage and input space partitioning, respectively. The
test cases are articulated in natural language, delineating test steps compris-
ing input, expected output, and constraints based on system requirements.
Subsequently, these test cases are transformed into tangible test cases or test
scripts, which can be executed either manually or automatically on the System
Under Test (SUT) to generate test verdicts. This thesis attempts to assist
the current manual PLC testing process by enabling the scientifically proven
state-of-the-art testing mechanisms for PLC programs [2], [4].

2.2.2 Search-based Testing

Search-Based Testing (SBT) is a systematic approach that utilizes search al-
gorithms to automatically generate test cases to achieve specific testing objec-
tives. This method has earned significant attention in the testing community
due to its effectiveness in exploring complex search spaces and identifying di-
verse test scenarios [59]. In the context of safety-critical systems, where thor-
ough testing is paramount, SBT offers several advantages. By leveraging vari-
ous search strategies, such as genetic algorithms or simulated annealing, SBT
can efficiently navigate through the extensive input space of safety-critical sys-
tems, thereby increasing the likelihood of uncovering critical faults or vulnera-
bilities. Furthermore, SBT can be tailored to target specific safety properties or
requirements, enabling testers to focus their efforts on areas of particular con-
cern. Research by Querejeta et al. [60] and Doganay et al. [61] highlight the
successful application of SBT in testing safety-critical systems, demonstrating
its potential to enhance testing practices and contribute to the overall reliability
and robustness of such systems. This thesis allows PLCs to benefit from dif-
ferent supported search-based testing algorithms of the integrated testing tool
inside the proposed PLC to Python translation framework [2], [4].

2.2.3 Requirement-based Testing

Requirement-based testing is a cornerstone in the development and verification
of safety-critical systems, ensuring that every aspect of the system’s function-
ality is thoroughly examined against its specified requirements [62]. By ad-
hering closely to the requirements documentation, testers can systematically



2.3 Test Coverage 17

derive test cases that cover various scenarios and use cases, including normal
operations, edge cases, and failure modes. This meticulous approach not only
validates the system’s compliance with safety standards but also helps uncover
potential design flaws, implementation errors, and operational risks that could
compromise safety. Moreover, requirement-based testing facilitates traceabil-
ity, enabling stakeholders to trace test cases back to specific requirements,
thereby fostering transparency and accountability throughout the development
process. In the realm of safety-critical systems, where even minor errors can
have catastrophic consequences, the rigorous application of requirement-based
testing methodologies, guided by established standards like IEC 61508 [58] for
safety-related systems, and IEC 61131-3 [14] for PLCs, plays a pivotal role in
mitigating risks and ensuring the utmost safety and reliability of the system.
Inspire by the popularity of requirement-based testing in the current testing
procedure of PLCs in industry, this thesis investigates automated PLC testing
using both functional and safety-related requirements of different real-world
use cases [1], [2], [3], [4].

2.3 Test Coverage

The metric used to assess the comprehensiveness of a test suite in software
testing is known as test coverage, which measures the extent to which ele-
ments such as code and requirements are covered by the suite at either the
design or implementation level [63]. Various criteria, including branch cov-
erage, statement coverage, and requirement coverage, are employed to assess
and produce test suites. However, this thesis conducts an empirical compara-
tive assessment of test suites generated using requirement coverage and branch
coverage. Requirement coverage and branch coverage are chosen due to their
status as the de facto standard in test suite creation for many industrial control
system manufacturers, including our industrial partner (e.g., ABB Marine and
Ports). Furthermore, various investigations (e.g., [64], [65], [66], [67]) have
provided evidence of the efficacy of requirement-based test suites and branch
coverage in validating safety-critical systems.



18 Chapter 2. Background & Related Work

2.3.1 Requirement Coverage

In the context of a safety-critical system, evaluating whether every safety and
domain requirement outlined in the requirement specification is addressed by
a test suite at minimum once [68] is crucial. Specifying the requirements in
natural language by a pattern-based syntax such as EARS [31] can facilitate
the test generation from the requirements by structuring the NL requirements
via different provided patterns.

Requirement coverage stands as a fundamental black-box coverage crite-
rion utilized to evaluate the behavioural coverage of a test suite. The require-
ment coverage is an easy-to-understand criterion which is popular in current
existing testing procedures in the industry. This criterion quantifies the over-
all number of implemented requirements and identifies any undocumented re-
quirements in the implementation, alongside determining the total count of test
cases necessary to cover each requirement.

2.3.2 Branch Coverage

Branch coverage, a metric in software testing, measures the proportion of
branches executed during test execution compared to all possible branches in
the code. It is a critical aspect of assessing the thoroughness of test suites,
ensuring that various execution paths within the code are exercised. Differ-
ent studies highlight the importance of branch coverage in identifying poten-
tial defects and enhancing the reliability of software systems [69], [70], [71].
For instance, achieving high branch coverage in safety-critical domains like
aerospace and medical devices is imperative to mitigate risks associated with
undetected faults [72]. Moreover, other studies emphasize the correlation be-
tween branch coverage and fault detection effectiveness, indicating that higher
branch coverage often leads to improved fault detection rates [73]. Therefore,
by focusing on branch coverage during testing, developers can enhance soft-
ware quality, reduce the likelihood of system failures, and ultimately deliver
more reliable software products. In different parts of this thesis, we employ
branch coverage in evaluating the quality of the conducted PLC testing under
the IEC61131-3 standard [1], [2], [3], [4].



2.4 Mutation Analysis 19

2.4 Mutation Analysis

Test coverage criteria quantify the extent of code exercised by a test suite, offer-
ing insights into potential enhancements for test adequacy. However, despite
achieving high coverage, studies [74], [75] indicate that various factors can
impede the fault detection efficacy of a test suite.

In this thesis, we carry out a comprehensive evaluation approach that
includes assessing the fault detection effectiveness of generated test suites
through mutation analysis [76]. Mutation analysis is known as one of the most
valid test evaluation techniques in academia and involves creating mutated
versions of the original program and introducing small faults representing
common programming errors or logical flaws. Mutants are classified as
equivalent or non-equivalent; the former maintains behaviour akin to the
original program, while the latter exhibits divergent behaviour. Test suites,
designed using specific techniques, are then executed on both the original and
mutated versions. A mutant is considered killed if test results differ between
the original and mutant versions, indicating effective fault detection. The
mutation score, computed based on strong and weak mutation criteria, reflects
the number of killed mutants, providing a robust evaluation of test suite
effectiveness. This thesis enables automated mutation analysis for PLC testing
via translating them to executable Python code and reporting the mutant
coverage in different publications [2], [4].

2.5 Related Work

This section deals with state-of-the-art studies that have explored and investi-
gated the use of test automation in PLC testing. The related work to this thesis
can be divided into three main categories:

* Studies that assess the effort of researchers towards developing or choos-
ing the right test automation frameworks (e.g., [17], [18], [19], [20],

[21D).

* Contributions towards transforming a PLC program to other program-
ming languages (e.g., [22], [23], [24], [25], [77]).



20 Chapter 2. Background & Related Work

* Studies that review the application and efficiency of using different re-
quirement notations in testing (e.g., [26], [27], [28], [29], [30]).

* Studies related to testing embedded industrial systems (e.g., [78], [79],
[801, [81D).

2.5.1 Developing or Choosing The Right Test Automation
Frameworks

In recent years, researchers have made efforts to develop test automation frame-
works for PLC software. Jamro introduces a method for POU-oriented unit
testing for IEC 61131-3 languages [19]. In this approach, test cases are de-
fined in CPTest+, a dedicated test definition language. The proposed approach
is introduced in the CPDev engineering environment. Recently, Hofer and
Russo [20] presented a unit-testing framework named APTest (Advanced Pro-
gram Organization Unit Testing) for CODESYS IDE. The framework is devel-
oped based on the IEC61131-3 standard and CPTest+. APTest is a POU-based
framework equipped with a test library supporting different types of assertions
and is compatible with CODESYS (version 2.3).

Even if these academic tools have a wide range of capabilities, such as test
parallelization, simulating analogue signals, and supporting time-dependent
behaviours, there is limited evidence of how industrially useful these frame-
works are. In addition, these tools are only compatible with older versions of
CODESYS. Selecting a test automation framework is an essential part of soft-
ware testing, and recent studies have looked at different challenges to imple-
menting automation support. Raulamo-Jurvane et al. [18] performed a GLR to
identify the practitioners’ criteria for choosing the right test automation tools.
The study showed that practitioners select and embrace the widely known and
utilized tools.

Garousi et al. [17] compared visual GUI testing frameworks (i.e., Sikuli
and JAutomate) using several relevant features and performed an industrial case
study. In 2019, Raulamo-Jurvane et al. investigated the practitioners’ opinions
on evaluating testing tools by conducting an online survey [21]. They found
that evaluations in which one uses a tool seem to be more favourable than those
based on opinions, and considering the opinions of seven experts provides a
reasonable level of reliability.



2.5 Related Work 21

These results kindled our interest in studying how to tackle the problem
of choosing a test automation framework for PLCs in CODESYS, especially
when these tools are used to test safety-critical industrial control systems. Mo-
tivated by this, this thesis extends the previous efforts of assisting the selection
of a proper testing tool by addressing the non-trivial problem of choosing the
right automation testing tool for one of the most popular PLC IDEs using a
hybrid methodology consisting of GLR, literature review, case study, and a
systematic comparative study [1].

2.5.2 Transforming a PLC Program to Other Programming
Languages

Marcel et al. [82] proposed two different translation mechanisms for trans-
lating the FBDs under the IEC61131-3 standard to Sequentially Constructive
States (SCs). The generated synchronous graphical SCs are equipped with
textual descriptions, and their impact on readability is evaluated inside the pro-
posed translation mechanisms. The first translation method of their work is
more straightforward and consists of a backward translation strategy of an FBD
to an equivalent textual ST model. The second proposed method is translating
the resulting ST models into a synchronous programming language [24]. The
idea is to benefit from intuitive functional reuse for a model-based design. This
study suggests that the translation mechanism can increase the readability of
the FBD code using code refactoring inside the synchronous paradigm.

Enoiu et al. [23] proposed a toolbox that can formalize logic coverage cri-
teria and use it inside a model-checker to generate test cases [23]. The authors
defined a translation mechanism that exports a model from an FBD program
to a UPPAAL timed automata to achieve this. In their translation procedure,
they used UPPAAL operators and comparison blocks to transform the FBD
elements into a UPPAAL model. The performance of their proposed toolbox
is evaluated by applying this transformation to 157 industrial real-world PLC
programs for test generation using model checking. Compared to our work,
this work does not focus on validating the transformation.

Junbeom et al. [77] investigated the possibility of translating the nuclear
Reactor Protection System (RPS) software from FBD to C. Their proposed
translation mechanism consists of two sets of translation algorithms and rules.
First, the authors use backward and forward translation based on tracking the



22 Chapter 2. Background & Related Work

execution and data-flow patterns in an FBD. To translate each FB in an FBD to
C, the authors defined an equivalent C function. Finally, the authors validated
each translation algorithm by showing that their example FBD program has the
same I/O behaviour for all existing inputs as the translated C code.

Previous contributions in transforming PLC programs to other languages
range from SCs-based approaches (e.g., [82]) and the ones using the C lan-
guage (e.g., [77]) to model-based approaches of transforming the actual FBD
program code (e.g., [23]). The technique in [58] is based on the IEC 6150 mod-
els and supports other parts of the development process. However, compared
to our work, these works do not cope with the internal structure of the PLC
language aspects for FBD and ST as we do. In addition, the transformation
validation can be complemented by using a systematic unit testing approach
using both requirement-based and structural test case generation while taking
advantage of the test automation frameworks available, as presented in this
paper.

In the context of IEC 61508 standard [58], Mirko Conrad [22] proposed
a framework that verifies and validates the models and their generated code.
The framework consists of numeric equivalence testing between the generated
code and its corresponding mode and some extra measurements to ensure no
unintended functionality has transformed. The author claims that Simulink
users can benefit from using this framework. Technically speaking, this work
utilises manual numerical model-based equivalence testing to identify the ab-
sence of unintended functionality in the context of the IEC 61508 standard,
whereas the PLC to Python translation contribution of this thesis is automated
and is focused on requirement-based testing of PLC programs at both unit and
system levels in the context of the IEC61131-3 standard.

2.5.3 Application and Efficiency of Using Different Require-
ment Notations in Testing

Mavin and Wilkinson [26] reflected on the ten years of EARS [31] and shared
some lessons learned in their review paper. For example, they discovered that
EARS users manage to author more useful draft requirements as they incre-
mentally work to find the appropriate EARS pattern. They recommend that
new engineers write several requirements and seek expert review with the ap-
plication of EARS being more useful if one can apply the following activities:



2.5 Related Work 23

training, thinking, semantics, syntax, and review. In our study, we confirm
some of these results even if we do not cover all of the activities stated.

Mavin et al. [27] report on the understanding of four experienced EARS
practitioners and their reflections on their experiences of applying EARS in dif-
ferent projects and domains over six years. They report the following EARS-
specific lessons learned: training should be short, use EARS with or without a
tool, use coaching to embed learning, challenge the EARS Patterns, and ques-
tion if the EARS clauses are necessary and sufficient.

Mintyla et al. [28] performed a controlled experiment on test case devel-
opment and requirement review and the effects of time pressure. They saw no
statistically significant evidence that time pressure would lower effectiveness
or provoke negative influences on motivation, frustration, or performance.

Dalpiaz et al. [29] investigated the adequateness, completeness, and cor-
rectness of use cases and user stories for the manual creation of a static con-
ceptual model. They performed a controlled experiment with 118 subjects,
and their results show that user stories work better than use cases when cre-
ating conceptual models. Furthermore, user story repetitions and conciseness
contribute to these results. However, as we aim with our study, more evidence
needs to be provided regarding the aspects that must be considered when se-
lecting and using a modelling and requirement notation.

Weninger et al. [30] report the results of a controlled experiment in which
they compared two approaches for defining restricted use case requirements
from multiple perspectives, including misuse, understandability, and restric-
tiveness. Their results indicate the usefulness of the restricted use case mod-
elling approach.

To the best of our knowledge, at the time of writing this thesis, the applica-
bility and efficiency of using a scientifically proven semi-formal requirement
notation such as EARS for testing PLC programs has not been investigated by
other researchers. This identified research gap leads us to investigate the appli-
cability of EARS requirement notation for PLC programs under the IEC61131-
3 standard and propose an NL requirement to PLC testing mechanism which is
applied to different several real-world case studies [3].



24 Chapter 2. Background & Related Work

2.54 Testing Embedded Industrial Systems

Jee et al. [78] presented an automated test case generation approach for FBD
programs, utilizing chosen test coverage criteria to generate test requirements.
By employing an SMT solver, the method effectively generates test cases that
meet the desired coverage goals. A case study on reactor protection systems
demonstrates the effectiveness of the approach in detecting real errors and mu-
tants, outperforming manual test suites prepared by domain experts. The study
suggests that automated test case generation for complex FBD programs is both
feasible and highly efficient, with the FBDTester tool offering assurance to test
engineers working on safety-critical software. This work differs from our re-
lated efforts in the context of automated testing for PLC programs [2], [4] in
terms of modelling the functional requirements and the type of test generation
algorithms used. Moreover, this work is focused on only FBD programs while
the initial version of our proposed translation framework enables automated
testing for PLC programs in both ST and FBD languages [2].

In a similar effort, He et al. [79] introduced STAutoTester, a framework for
automatically generating test cases for ST programs used in PLCs. Leveraging
Dynamic Symbol Execution (DSE) and redundant path pruning, STAutoTester
efficiently generates test data under various coverage criteria. Evaluation of 21
programs demonstrates its effectiveness, achieving comparable statement cov-
erage with fewer test cases than previous symbolic execution-based tools. The
framework supports both structural and logical coverage criteria and shows
potential for enhancing automated testing efficiency for PLC software. Evalu-
ation of performance under different path search strategies and extending the
coverage to data flow testing are not covered in their work. This work differs
from our work in terms of both the supported IEC 61131-3 languages and the
test case generation algorithms.

Dobslaw et al. [80] proposed the MC-TOA framework, which offers ef-
ficient test set selection for large-scale industrial systems, accommodating di-
verse search criteria. Compared to state-of-the-art methods like Borg and ran-
dom search, MC-TOA demonstrates superior performance and versatility in
real-world applications. It enables fast multi-objective optimization, providing
valuable insights into industry-relevant metrics and bridging the gap between
research and industry needs. Despite the valuable contributions of the work
towards test set selection for large-scale systems in the industry, exploring dy-



2.5 Related Work 25

namic search, formulation complexity, scalability, and reinforcement learning
techniques to further enhance test set optimization are not discussed in this pa-
per. This work differs from our work in terms of the level of testing. Moreover,
the goal of this work is to assist in the efficient test set selection, whereas the
goal of our similar work is to enable and facilitate the test automation process
for PLCs.

Gargantini et al. [81] present a model-driven environment for hardware/-
software co-design and analysis of embedded systems, leveraging UML pro-
files for SystemC/multithread C and the Abstract State Machine (ASM) formal
method. It introduces a methodology based on UML 2, SystemC, and ASM,
facilitating graphical representation, code generation, and system validation.
The work aims to address the lack of formal analysis techniques in system-
level design, proposing a solution that integrates UML-based modelling and
ASM formalism. Key components include the ASMETA toolset for ASM mod-
elling and analysis. The paper also discusses the environment’s architecture,
highlighting its support for high-level functional validation and conformance
testing. This effort differs from our work in terms of the layer of testing and
the type of embedded systems.

To the best of our knowledge, to the moment of writing this thesis, in the
context of automated PLC testing, there has been no deep investigation towards
enabling automatic search-based testing via different meta-heuristic algorithms
of a powerful Python test generator called Pynguin [38]. This has been done
through different included publications of this thesis [2], [4].






Chapter 3

Research Overview

This chapter provides a brief description of the research goals along with the
methodology used to conduct the research activities to achieve the defined re-
search goals.

3.1 Motivation & Research Goal

Testing PLC programs in today’s industrial control systems has always been a
crucial task for industrial automation companies all around the world. Consid-
ering the wide application range of PLC programs in the world of embedded
systems such as nuclear plants and cranes, proper testing of PLC programs can
save human lives as well as the time and energy of automation companies. The
current test generation for PLCs is done manually in industry [83], which de-
mands experienced testers. Despite its benefits, this manual testing procedure
is time and energy-consuming for companies and is exposed to human errors.
Moreover, due to the Industry 4.0 revolution [84], today’s PLC programs are
getting larger and more complex than before, which makes them even harder to
test. The current context and the future landscape of PLC testing in the industry
demand increased attention from both academics and practitioners. Motivated
by finding a proper and efficient solution to this problem, in this section, we
analyze the current limitations of manual PLC testing to identify the existing
Research Gaps (RGp) in this context. We identify the following as some of

27



28 Chapter 3. Research Overview

the most important existing RGp in the current manual unit testing of PLC
programs:

* RGp;: The current Integrated Development Environments (IDEs) for
PLC lack automation of test generation and test evaluation (e.g., by mu-
tation testing). This can lead to multiple technical and scientific chal-
lenges such as:

— Limited Test Suitability: Without automated test generation and
evaluation features, developers may struggle to create comprehen-
sive test suites that adequately cover all aspects of PLC functional-
ity, increasing the risk of undetected faults.

— Increased Development Time: Manual creation and evaluation of
tests can significantly lengthen the development cycle for PLC-
based projects, delaying time-to-market and hindering project
deadlines.

— Difficulty in Test Maintenance: Manual testing processes are prone
to errors and inconsistencies, making it challenging to maintain and
update test suites as PLC systems evolve or requirements change.

— Lack of Traceability: Without automated test generation and eval-
uation tools, it can be difficult to trace test results back to specific
requirements or code changes, impeding the debugging and trou-
bleshooting process.

— Reduced Confidence in Testing: Manual testing methods may lack
the rigour and repeatability of automated approaches, leading to
uncertainty about the reliability and effectiveness of test results.

— Risk of Human Error: Manual test generation and evaluation are
susceptible to human error, potentially overlooking critical test sce-
narios or introducing biases that skew the testing outcomes.

* RGpa: If not implemented properly, test automation applied to test cre-
ation will be less effective than manual testing in detecting faults [85],
[86], [87]. This can lead to several scientific challenges, such as com-
promising the reliability of test results, inhibiting comprehensive fault
coverage, and impeding accurate assessment of system performance and
robustness. Additionally, it may hinder the identification and resolution



3.1 Motivation & Research Goal 29

of potential issues early in the development process, ultimately prolong-
ing the time-to-market for critical systems.

* RGps: The limited application of state-of-the-art automated test gen-
eration tools to PLC and corresponding development environments can
impact the use of test automation for test creation in industrial practice.
This can lead to serious challenges such as:

Limited Test Coverage: Insufficient automation may result in in-
complete test coverage, leaving potential faults undetected, thereby
compromising the reliability of PLC-based systems.

— Difficulty in Scalability: Manual testing approaches often strug-
gle to scale effectively with complex PLC systems, hindering the
ability to adequately assess large-scale industrial setups.

— Resource Intensiveness: Manual testing consumes substantial hu-
man resources and time, which could otherwise be allocated to
more strategic tasks, affecting overall productivity and efficiency.

— Maintainability Issues: Manual testing procedures may become in-
creasingly difficult to maintain and update as PLC systems evolve
or undergo modifications, leading to inconsistencies in testing prac-
tices.

— Reduced Agility: Manual testing can impede the agility of devel-
opment cycles, slowing down the pace of innovation and adaptation
to changing industrial requirements.

— Validation Challenges: Inadequate automation may pose chal-
lenges in validating PLC systems against stringent industrial
standards and regulations, potentially leading to compliance issues
and safety concerns.

* RGp4: Engineering PLC systems commonly demand certification ac-
cording to safety standards that impose specific constraints on require-
ments engineering and specification-based testing. Since requirements
are often expressed in natural language, there is little evidence of the ex-
tent to which humans can effectively model requirements and how the
modelling impacts the development and testing of PLC systems. This
gap can generate several technical and scientific challenges, such as:



30

Chapter 3. Research Overview

Ambiguity in Requirements Interpretation: Natural language re-
quirements can be prone to ambiguity, resulting in misinterpreta-
tions during the modelling process, which may lead to inconsisten-
cies and errors in PLC system development and testing.

Lack of Formalization: The absence of formalized requirements
modelling techniques can hinder the systematic translation of re-
quirements into testable specifications, complicating the verifica-
tion and validation processes for PLC systems.

Difficulty in Requirement Traceability: Without structured require-
ments models, tracing individual requirements throughout the de-
velopment lifecycle becomes challenging, impeding the ability to
ensure that all functional and safety-critical aspects are adequately
addressed.

Complexity in Verification: Human-modeled requirements may in-
troduce complexity in the verification of PLC systems, making it
difficult to ascertain whether the implemented system accurately
reflects the intended functionality outlined in the requirements.

Risk of Incomplete Coverage: Incomplete or inaccurately mod-
elled requirements may result in gaps in test coverage, leaving
potential hazards and faults undetected, thereby jeopardizing the
safety and reliability of PLC-based systems.

Compliance and Certification Hurdles: Insufficiently modelled re-
quirements may lead to difficulties in satisfying regulatory com-
pliance and certification requirements, delaying the deployment of
PLC systems in safety-critical industrial environments.

* RGps5: Selecting the right test automation tool is a non-trivial task for
many practitioners [18]. This could stem from at least two reasons: (i)
not knowing what criteria are important to use for choosing the right tool,
and (ii) the lack of knowledge of the pros and cons of using particular test
automation frameworks in practice. This can lead to multiple challenges,
such as:

Suboptimal Tool Selection: Without a clear understanding of selec-
tion criteria and the strengths and weaknesses of various automa-
tion frameworks, practitioners may inadvertently choose tools that



3.1 Motivation & Research Goal 31

are ill-suited for their specific testing needs, resulting in suboptimal
outcomes.

— Ineffective Test Automation: Inadequate knowledge of test
automation frameworks may lead to their improper utilization,
resulting in ineffective test automation strategies that fail to
achieve desired levels of efficiency and fault detection.

— Limited Innovation: The absence of informed decision-making
in selecting automation tools may hinder innovation in test
automation practices, preventing practitioners from leveraging
cutting-edge technologies and methodologies to improve testing
processes.

— Wasted Resources: Misguided tool selection may result in wasted
resources, as practitioners invest time and effort into implementing
automation solutions that ultimately prove unsuitable or inefficient
for their requirements.

— Reduced Competitiveness: Inability to select appropriate test au-
tomation tools may lead to decreased competitiveness in the mar-
ket, as competitors who employ more effective automation strate-
gies gain an advantage in terms of product quality, time-to-market,
and cost-effectiveness.

To provide a clearer picture of how test automation can be applied for dif-
ferent parts of the testing process in PLC, we include an overview of automa-
tion across the software testing process in Figure 3.1, which is proposed by
Garousi et al. in [88]. As observed in the figure, a software testing process
consists of five main stages (marked with green boxes) including Test-case De-
sign, Test Scripting, Test Execution, Test Evaluation, and finally, Test-result
Reporting respectively. Each of these main steps can be done either manually
(M), using automated tools (A), or by mixing the two (A/M).

Enabling test automation for PLC, as the main goal of this thesis, can
benefit all these five stages of software testing as follows: (i) Enabling semi-
structured requirement notation and automated test case generation for PLC
programs can assist "Test-case Design" and "Test-scripting" phases, (ii) En-
abling powerful test evaluation mechanisms such as mutation analysis for PLC
can assist the "Test Evaluation" step in the PLC testing process, (iii) Guiding



32 Chapter 3. Research Overview

$0E 408 48 .
® ® ©® 06 0 —
Test-case Test Test Test Test Tost
Design Scripting Execution Evaluation Results Resutts
Data/
| Entity
“Exercise” FAIL]
Test Suites Soripted Test) —_
(Setof Test ple —>Qi
Cases) Test Suites
System Under Test Test Bug
I I (suT) Results (Defect)
Reporting Reports
Criteria-based mere‘:;‘:lne " Manual hutomated
(Systematic) - Testsuites | | To% Sues gi

' F R | [z ﬁ
@ —

Human  Computer =
(Manual) (Automated)

Test Management (planning, ...) and other test engineering activities % :gJ

Figure 3.1: An overview of automation across the software testing process proposed by
Garousi et al. in [88]

practitioners to choose the right test automation tools for PLC programs can
assist the remaining testing stages, that is, "Test Execution" and "Test-result
Reporting". It is worth mentioning that all research gaps above are addressed
in this thesis via different publications [1], [2], [3], [4].

Overall Research Goal. This subsection presents the main goal of the thesis,
which is divided into smaller sub-goals, to address the problem thoroughly and
analyze it in more detail. Given the previously described problem, the overall
Research Goal (RG) of this thesis is:

* RG: To facilitate and evaluate test automation throughout the unit and
integration testing processes of industrial PLC programs.

Aiming to achieve the overall research goal of this thesis, we formulate the
following research sub-goals (R-SG), which act as the main ingredients of the
main goal:

* R-SG;: Facilitate the use of test automation for the generation and exe-
cution of test cases for PLC programs.

Achieving R-SGj is an essential step towards acquiring the main goal of
this study because meeting "test automation" for PLC programs written



3.1 Motivation & Research Goal 33

in two popular languages including FBD and ST, starts with generat-
ing test cases and executing them automatically. This can be preferably
done by using an already existing Python-based automated test case gen-
eration tool that uses testing algorithms deemed efficient. A challenge
to achieve this is bridging the possible gaps between the two worlds of
PLC and Python.

This R-SG investigates two main directions, including the systematic se-
lection of a test automation tool for PLC programs and the development
of a PLC to Python transformation that facilitates the use of search-based
unit tests in the context of PLC testing.

* R-SGj: Investigate the use of semi-formal requirements for engineering
and test automation of industrial PLC programs.

Meeting R-SGs is a crucial step towards achieving the main goal of this
thesis since using an already existing scientifically-proven requirement
engineering notation can facilitate the requirement-based testing, there-
fore unambiguous requirements could serve test generation automation.

This R-SG relates to research on the applicability and efficiency of us-
ing semi-formal requirement patterns in terms of engineering and testing
PLC programs.

* R-SG3: Evaluate the applicability, efficiency and effectiveness of the
proposed PLC test automation approaches in an industrial context.

A practical evaluation of the applicability and efficiency of the proposed
PLC testing approaches using real-world industrial use cases is a re-
markable step towards achieving the main goal of this thesis since it
investigates the usefulness of the academically developed tool in terms
of real-world industrial circumstances.

In the following section, we describe the leveraged research method of this
thesis by briefly reviewing the research process and mapping the identified
research gaps to the contributions of this thesis.



34 Chapter 3. Research Overview

3.2 Research Method

In the field of software engineering, various methods, such as case studies,
experiments, and surveys, are employed to conduct empirical research. The
choice of method depends on the research objectives and the type of analysis
and data interpretation, including qualitative and quantitative approaches [89]
[90]. This thesis emphasises the utilization of both qualitative and quantitative
data to bring a comprehensive interpretation of research findings for the ben-
efit of the research community and industrial practitioners. To align with our
research goals, as outlined in Section 3.1, and data analysis, we have employed
the case study, experimentation, and literature review as research methods, as
elaborated in the following.

Case studies and experimentation are the chosen research methods for as-
sessing the effectiveness of the proposed solutions through real-world indus-
trial examples. Case studies and experimentation research methods are highly
suitable for the task, particularly in the context of PLC software testing [91].
These research methods provide valuable insights into the practical applicabil-
ity and performance of our proposed solution in real-world settings, allowing
for a comprehensive evaluation of its benefits and limitations.

Case studies enable researchers to investigate and analyze specific real-
world scenarios, allowing for an in-depth examination of the proposed so-
lution’s effectiveness within a specific context [92]. By utilizing real-world
industrial examples, researchers can gather rich and detailed data, including
user experiences, challenges faced, and outcomes achieved [91]. This qualita-
tive approach enhances the understanding of the proposed solution’s practical
implications and provides valuable insights into its feasibility, usability, and
impact in industrial environments.

Experimentation research methods, on the other hand, allow for a more
controlled evaluation of the proposed solution’s performance and effectiveness
[93]. By designing and conducting controlled experiments, researchers can
systematically measure and compare the solution’s performance metrics, such
as testing efficiency, coverage, reliability, and overall effectiveness [94]. This
quantitative approach enables researchers to gather empirical evidence and sta-
tistically analyze the results, providing objective insights into the solution’s
performance and its potential benefits over alternative approaches.

The utilization of real-world industrial examples in both case studies and



3.2 Research Method 35

experimentation research methods adds significant value to the assessment of
the proposed solution. It provides researchers with the opportunity to evaluate
the solution’s performance under realistic conditions, considering the complex-
ities and constraints typically encountered in industrial PLC software testing
scenarios [92]. The use of real-world examples enhances the external valid-
ity of the research findings and ensures the relevance and generalizability of
the results to real industrial settings. The mapping of research methods with
research goals is shown in Table 3.1.

Table 3.1: Research method mapping with the type of data and research goals

Research Goal Type of Data Literature Review Case Study Experiment  Solution
Subgoal 1 Qualitative & Quantitative v v v v
Subgoal 2 Qualitative v v v
Subgoal 3 Qualitative & Quantitative v

3.2.1 Research Process

In our research, we have defined the research process in six iterative steps:
(1) Review of industrial systems and processes, (2) Problem identification and
formulation, (3) Proposal of a solution, (4) Solution/tool implementation, (5)
Validation, (6) Publication of research results and producing the software in
Github repository. Figure 3.2 depicts an overview of the research process that
we have used in this thesis. This research process aligns with the one com-
monly followed in academic research. It encompasses key stages such as lit-
erature review, problem identification, proposing a solution, implementing the
solution, validating the results, and publishing the research outcomes. Even
though one cannot find a particular publication that presents various research
studies and textbooks discuss these steps individually as part of the overall
research process [95], [94].

1. Review of Industrial Safety-critical Systems and Processes: To gain
an understanding of PLC systems, a widely used industrial controller, we
undertake a thorough investigation. Specifically, we scrutinize the practices
and processes employed by industrial practitioners at the ABB ports and
Marine automation company in Sweden as one of our industrial partners in the



36 Chapter 3. Research Overview

1- Review of

Industrial Safety [  Process
Critical Systems and 1 Artefact
Processes Input

2- Problem
Identification and SOP |«
Formulation r\
L 3- Propose Solutions 4- Implement Solution j
; 5- Validation
L 6- Research Results

[ Software ] [ Research ]
Papers

Figure 3.2: Overview of the research process applied in the thesis

VeriDevOps EU project'. Additionally, this close collaboration examines the
described practices and processes, aiming to identify their requirements and
challenges.

2. Problem Identification and Formulation: This step targets the identi-
fication of industrial problems based on the analysis carried out in the previous
step. We have also formulated the overall research goal (RG) based on the
detected research gaps and challenges that exist in the test automation of PLC
programs from both State-of-the-Art (SOA) and State-of-the-Practice (SOP)
points of view. To gain a clearer understanding of the industrial problem and
iteratively address specific aspects, we subdivide the overall goal into several
sub-goals. This approach allows us to focus on distinct areas of the problem
and investigate them systematically.

Motivated by addressing research gaps RGpl, RGp3, and RGp5, we for-
mulate R-SG1 and R-SG3. In other words, we identify the industrial needs
in terms of choosing the right test automation tool and also using automated
test generation techniques for PLC programs. Our observations reveal that the
current PLC testing procedures in the industry do not incorporate automated

Uhttps://cordis.europa.eu/project/id/957212



3.2 Research Method 37

Table 3.2: Mapping of research sub-goals (R-SG) w.r.t. their respective connection to
identified Research Gaps (RGp)

5
RGpl RGp2 RGp3 RGp4 p %]]:Sl?’o“ of
(Lack of test (Improper | (Limited application (Ambiguity of etect
Lo o the right test
automation in automated of SoA test test specifications automation
PLCIDEs) | test creation) generation tools) | and requirements) tool)
RSG1
. v v v
(PLC Test Automation)
RSG2 v
(Semi-formal requirements for PLCs)
RSG3
. . . v v v
(Evaluation of Proposed Test Automation Approaches)

test generation and mutation analysis. Moreover, we noticed that improper im-
plementation of test automation for test creation can result in additional costs
and effort, and may even be less effective than manual testing in identifying
faults, which leads us to formulate R-SG3 for evaluation of the applicability
and efficiency of the possible proposed test automation approaches.

Additionally, motivated by filling the research gap RGp4 using R-SG2,
we have identified issues in the use of automation, when processing natural
language requirements during the development of PLC systems. A mapping of
identified research gaps and their connection to formulated research sub-goals
of this thesis can be observed in Table 3.2.

3. Propose Solution: The investigation into automating PLC testing in the
industry has prompted us to initially tackle the issue of selecting an appropriate
test automation tool for practitioners who employ CODESYS IDE for PLC
software testing (Paper A). To have a better understanding of the practitioners’
needs and preferences in choosing a test automation tool, we have based our
research on the Gray Literature Review (GLR) method, introduced by Garousi
et al. in [96]. The results of this study have helped us to identify two of the
most-discussed test automation tools for CODESYS IDE among practitioners
on the web. Subsequently, we have carried out a systematic comparison of
these identified test automation tools, utilizing the most crucial test automation
features that we extract through a comprehensive literature review. To keep the
results of this study in alignment with industrial needs, we have validated these
test automation tool features with PLC test engineers of a large automation
company in Sweden. As the final step of this study, we have applied both
identified test automation tools of CODESYS in a real-world industrial case
study.



38 Chapter 3. Research Overview

The existing manual PLC testing process in industry, coupled with the ab-
sence of an automated search-based testing tool for PLC programs, has moti-
vated us to introduce an automated PLC to Python translation framework. This
framework aims to facilitate PLC programs by enabling automated test case
generation. The main goal is to enable automated search-based testing and
mutation analysis for PLC programs by leveraging an already existing Python-
based testing tool. Rather than developing a new test automation tool for PLC
programs from scratch, our approach involves transforming PLC programs into
Python scripts using a validated mechanism. To achieve this goal, in this the-
sis, we propose PyLC, a PLC to Python translation framework that defines
the required translation rules, definitions, translation workflow, and transla-
tion validation mechanisms required to translate a PLC program in ST/FBD
languages into Python based on the IEC 61131-3 standard (Paper B). Next,
we facilitate the process of translating a PLC program in FBD language into
Python by automating the PyLC fully (Paper D). We evaluated the applicability
and efficiency of PyLC by applying it to several different industrial case stud-
ies. For automated testing of PLC programs, PyLC leverages Pynguin [38],
a well-known Python-based search-based testing tool that supports five differ-
ent search-based techniques, including MOSA [69], DYNAMOSA [97], MIO
[98], RANDOM [99], and WHOLE-SUIT [100] as well as mutation analysis
[76].

Further exploration into industrial requirements for effective PLC program
testing prompted us to delve into research focused on addressing the issue of
using natural language requirement formalization and test creation for PLC
programs. To this end, we experiment with transforming three relevant secu-
rity requirements in industrial libraries into EARS patterns (Paper C). In this
experiment, we use three PLC programs corresponding to the selected three re-
quirements. Finally, we develop test cases using the semi-formal requirements
of this experiment and evaluate the applicability and efficiency of using this
semi-formal notation in PLC requirements engineering and testing.

4. Implement Solution: Driven by the aim to automate PLC testing in an
industrial context, we automate the proposed manual PLC to Python transfor-
mation called PyLC (Paper D). This involves importing PLC programs writ-
ten in FBD language, automatically transforming them into Python code while
preserving the original program behaviour, validating the accuracy of the trans-
formation, and automating test case generation and execution in both PLC and



3.2 Research Method 39

Python environments. Moreover, we conduct further evaluations of PyLC’s
effectiveness by applying it to real-world industrial case studies. These contri-
butions constitute the primary focus of our work. After introducing PyLC as
a proof-of-concept solution for transforming PLC programs into Python code
to enable automated testing at the unit level, we proceed to develop the initial
version of PyLC using Python. This enhanced version of PyLC can parse a
PLC program and automatically convert it into equivalent Python code. Fur-
thermore, PyLC incorporates a three-layered unit testing validation mechanism
to ensure the accuracy of the translation.

5. Validation: We evaluate the applicability and efficiency of this thesis’s
contributions by performing testing on real-world industrial case studies after
applying the thesis contributions to them. The validity of the gathered results
regarding choosing the right test automation tools of CODESYS (Paper A) has
been evaluated by conducting a systematic comparison between the identified
most-used test automation tools of CODESYS and applying them to a real-
world case study and performing unit testing on them. The evaluation of PyLC
(Papers B, D) has been done by applying it to several industrial real-world
case studies that were completely different in size and complexity. All these
case studies are being used on the supervision system of cranes and the volume
control system of a large automation company in Sweden, and are all developed
in two well-known PLC programming languages of IEC61131-3 standard (i.e.,
FBD and ST). To validate the accuracy of the PyLC translation, we conduct a
series of tests by generating and executing unit-level test cases manually and
automatically, using both the Python and PLC versions of the translated PLC
programs. The results obtained from the test executions serve as evidence to
verify the PyLC PLC in FBD to Python translation framework using testing.
This validation is carried out based on the functional requirements of the PLC
programs under examination.

The validity of the EARS semi-structured syntax-related contributions in
this thesis (Paper C) is evaluated using a controlled experiment and through
the generation and execution of unit test cases on three distinct PLC programs.
It is important to note that all validation procedures for the contributions of this
thesis are carried out at the unit and integration levels, within the CODESYS
integrated environment.

6. Research Results: All the results of investigations and evaluations have
been published/generated or planned to be published/generated in the form of



40 Chapter 3. Research Overview

research papers and software as shown in Section 4.2.



Chapter 4

Contributions

In this chapter, we present a summary of the contributions towards achieving
the overall research goal of this thesis, along with a mapping of each contribu-
tion towards the sub-goals.

4.1 Thesis Contributions

The following subsection briefly overviews how the included papers in this
thesis contribute towards achieving the formulated research sub-goals.

(D To meet research sub-goal R-SG1, in paper A [1], we address the prac-
tical problem of choosing the right test automation tool for PLC programs
in CODESYS IDE. In this work, we explore the most popular test automation
frameworks of CODESYS IDE by performing a Grey Literature Review (GLR)
[96] on available test automation frameworks of CODESYS, followed by a
qualitative analysis based on several selection criteria. Moreover, we conduct
an effective comparison between the identified most discussed test automation
frameworks of CODESYS based on 15 important industry-validated test au-
tomation features. Finally, we investigate the applicability of the detected test
automation frameworks in a real-world case study of an industrial system for
crane supervision, by performing its automatic test execution based on two dif-
ferent scenarios. A brief overview of the methodology that is used in this paper
can be observed in Figure 4.1.

41



42 Chapter 4. Contributions

Literature
Review

TAF
Features

Test Automation
Frameworks (TAFs)

CODESYS IDE
Ecosystem

Evaluation 15

r TAFs
Selection

Industrial Case Study [«——— TAFs Comparison

( 0

Industrial e
e TS Validation

Figure 4.1: An Overview of The Methodology used for Choosing Test Automation
Frameworks (TAFs) for PLCs in Paper A.

(IT) Next, to achieve research sub-goals R-SG1 and R-SG3, in paper B [2],
we propose a PLC to Python translation framework called PyLC, which can
transform a PLC program written in both Function Block Diagram (FBD) and
Structured Text (ST) languages into a Python script, based on different transla-
tion rules and unit-testing translation validation mechanisms. A brief overview
of the PyLC framework is shown in Figure 4.2. As can be observed in the
figure, PyLC proposes the required translation rules based on the IEC 61131-3
standard (step 1 in Figure 4.2), which can be used in the next step to generate
the Python code (step 2 in Figure 4.2). Then the generated Python code en-
gages in a three-layered unit-testing translation validation mechanism (step 3
in Figure 4.2) to investigate the correction of the code under translation. Fi-
nally, if the translation passes the unit-testing validation mechanism of PyLC,
the PLC code is successfully translated into Python (Step 4 in Figure 4.2).
The proposed translation rules of the PyLC framework are divided into eight
main categories including Input(s), Output(s), Data Type, Data Range, Func-
tion Block (FB) behaviour, FB network, Execution Order, and finally, Cyclic
Execution. An overview of the translation rules that PyLC adheres to, during
the PLC to Python translation process, is shown in Table 4.1.

Moreover, PyLC validates the correctness of the translation based on three
validation mechanisms, including:

* Unit testing validation based on requirements.



4.1 Thesis Contributions 43

ables Range

Category PLC Python

Input(s) Scanning PLC Pro- | Declaring the inputs as the main
gram Inputs Python function arguments *

Output(s) Scanning PLC Pro- | Declaring the outputs as global
gram Outputs variables in Python ?

Data Type Identifying the data | Binding the data type of each PLC
type of each I/0 I/O to the corresponding data type

in Python ¢
Data Range Detecting I/O Vari- | The accepted range of values for

each PLC data type is declared us-
ing <, >, and = operators

FB Behavior

Analyzing the behav-
ior of the FB based on
the requirements

Implementing the FB behavior in
Python as a sub-function with a
dynamic range of inputs based
on standardized ST and FBD im-
plementation and specification in
IEC-611313/CODESYS. ¢

FB Network

Analyzing the exist-
ing network between
different FBs, Inputs,
Outputs

Connecting the related Sub-
function of each FB to other FBs,
Inputs, and Outputs by a Python
function call

Execution Order

Extracting the execu-
tion order of the pro-
gram

Simulating the execution order by
calling the main and sub Python
functions in the correct order

Cyclic Execution

Identifying the cyclic
execution delay time

Implementing the cyclic execu-
tion using a Python timer mod-
ule equipped with a specific itera-
tion(s) number

“We use one main python function for the whole translated POU.

’Nested Python sub-functions are used inside the main function.

“When a direct data type mapping does not exist, a similar type is used.

4For complex FBs (e.g., Timers) the standardized specification is implemented.

Table 4.1: Translation Rules (TR) of the Proposed PLC Program to Python Code Con-
sidering IEC-61131-3 Standard




44 Chapter 4. Contributions

/ PLC o Translation @ " Python \

n
»

Program |iece1131-3 Rules N Code

9 FAILED
\ 4

9 Unit Testing

Validated PLC Program in Python Translation
PASSED | validation

o J

y

Figure 4.2: An Overview of the PyLC Framework, the Proposed Translation Mecha-
nism for Translating a PLC Program into Python Code and Validating the Translation
in Paper B.

* Checking PyLC translation rules.

* Validation using an automatic search-based test generator named Pyn-
guin [38].

We evaluate the applicability and efficiency of our developed translation frame-
work by applying it to 10 different industrial PLC programs. The ultimate goal
of conducting this work is to use PyLC to generate search-based test cases
for PLC programs during the regression testing phase of the development of
industrial control systems.

(IIT) To achieve the third sub-goal of this thesis, R-SG3, in paper C, we
experiment with requirements engineering and testing using EARS [31] semi-
structured notation for PLC systems. In the requirements engineering part of
our experiment, we observe that different individuals prefer different EARS
patterns for transforming the same requirement based on their personal inter-
pretations. In the testing part of our experiment, we investigate the applicability
of using EARS in the context of PLC testing in two phases. Initially, we exe-
cute EARS-based test cases on three PLC programs written in the ST language,
developed based on the requirements included in our study. Subsequently, we
introduce an EARS-based testing methodology to real-world industrial PLC
programs. An overview of the EARS-based requirement specification and PLC



4.1 Thesis Contributions 45

testing methodology used in this experiment is shown in Figure 4.3. As seen,
first, We transform the natural language requirements into EARS requirements
(step 1 in Figure 4.3), then we concretize the EARS requirements to increase
their readability and generate the required test cases for PLC programs un-
der test (step 2 in Figure 4.3). Next, we automatically execute the generated
test cases on the PLC programs using the CODESYS Test Manager (step 3
in Figure 4.3). Finally, we check the test results with the expected output to
evaluate the efficiency of using EARS in PLC testing (step 4 in Figure 4.3).
Moreover, in this work, we propose a semi-automated EARS-based testing
methodology for testing real-world industrial PLC programs which starts by
extracting the functional requirements of the PLC program via reversed engi-
neering and continues with transforming the extracted requirements into EARS
requirements. The procedure follows by transforming the EARS requirements
into concertized test cases which are executed automatically in the PLC envi-
ronment. This process finishes with automated test specification generation via
the CODESYS Profiler! tool and checking the test execution results. Then we
applied the described EARS-based PLC testing methodology to a real-world
industrial PLC program and compared it from different testing aspects with its
real-world industrial manual testing procedure. The results of this study im-
ply that using the EARS notation in creating requirement-based test cases for
PLC programs is promising and can help the PLC testers by establishing an
easy-to-understand way of expressing the test specifications.

(IV) To achieve R-SG1 and R-SG3, in paper D, we automate the trans-
formation and evaluation of our recently proposed PLC to Python translation
framework called PyLC. In this work, we equip the transformation with an
incorporated automated XML parser that imports the PLC program in FBD
language in the form of a PLCopen XML file. This parser extracts all the nec-
essary information from the file for translation. Additionally, a Python script
is employed to automatically write the generated search-based test case values
into another PLCopen XML file for test generation. Furthermore, we assess
the effectiveness of PyLC by using it in various real-world industrial case stud-
ies. The overall automated translation methodology of the PyLC framework is
shown in Figure 4.4.

As seen, initially, the PLC program in PLCopen XML format is imported
to the Automated XML Analysis module of the PyLC framework which takes

Thttps://store.codesys.com/en/codesys-profiler.htm]



46 Chapter 4. Contributions

EARS
NL Syntax EARS
Requirement 1 Requirement
Test
L2 Generation
Test
CODESYS Test _ Execution PLCPRG in
Manager (3 CODESYS
Expected
0 Output
Checking The
Results

Figure 4.3: An overview of the EARS-based requirement specification and PLC testing
methodology.

responsibility for extracting all the required information from the PLC pro-
gram for translation (Step 1 in Figure 4.4). As the next step, the extracted
information from the PLC program is fed into the Automated Python Code
Generation module which automatically generates an executable Python code
based on both gathered information and the behaviour of the PLC program un-
der translation (Step 2 in Figure 4.4). After having the translated PLC program
in Python, the next step is to validate the translated PLC program in Python us-
ing the Automated Meta-heuristic Validation module of the PyLC framework
which leverages the Pynguin [38] test automation tool (Step 3 in Figure 4.4).
The final step is to validate the PLC to Python translation via comparing the
results of automated test execution in both Python and PLC environments for
the same test cases (Step 4 in Figure 4.4).

To provide a more detailed technical picture of the automated PyLC transla-
tion framework, we depicted the detailed methodology of the automated PyL.C
in Figure 4.5. As seen the first step, is to automatically extract all the required
information for translation from the PLC program in the shape of an Open-



4.1 Thesis Contributions 47

e
Automated

Python Code 3]
Generation

P
A~

Figure 4.4: An Overview of the Automated PyLC Framework, the Proposed Transla-
tion Mechanism for Translating a PLC Program into Python Code and Validating the
Translation Automatically.

PLC XML file using the XML analyzer module of PyLC (Step 1 in Figure
4.5). This information is categorised into two main classifications including
the Block and POU. The former includes the Type, Position, Local ID, Net-
work ID, Connection, Inputs, Outputs, and related POU of each existing block
in the PLC program under translation whereas, the latter includes several dif-
ferent lists of the Name, Inputs, Outputs, and Local Variables of each existing
POU in the PLC program under translation.

The next translation step of PyLC is to automatically generate the Python
code based on the extracted information in the previous stage using the Python
Code Generator module of PyLC (step 2 in Figure 4.5). This includes the
automatic generation of Python main and sub-functions, Inputs, Outputs, the
FBD network, and doing the Data Type Conversions from PLC to Python. The
next step of translation is the first stage of an attempt to validate the translation
of the translated code in Python using meta-heuristic algorithms and mutation



48 Chapter 4. Contributions

analysis. To this end, the generated code in Python needs to be imported into
the meta-heuristic test generation module of PyLC which is assisted by the
Pynguin tool [38] (step 3 in Figure 4.5). After gathering the results of the
automated search-based testing of the translated PLC program in Python us-
ing the Pynguin tool, the test results are recorded and the same test cases are
transferred into the CODESYS IDE via CODESYS Test Manager tool to be ex-
ecuted on the original PLC program in PLC environment (step 4 in Figure 4.5).
The final step of the PyLC translation mechanism is to compare the results of
executing the search-based generated test cases in both PLC and Python ver-
sions of the PLC program to observe whether they produce the same results
or not (step 5 in Figure 4.5). If the execution of the same test cases in both
PLC and Python variations of the PLC program generates the same results, the
translation of the PLC program to Python is considered valid, otherwise it’s
not. In the future, We aim to delve deeper into evaluating the efficiency and
effectiveness of different search-based algorithms for PLC testing. More tech-
nical details about the automated PyLC translation framework are illustrated in
Section 11.

4.1.1 Individual Contribution

I am the primary researcher, driver and author of all the included papers. How-
ever, all the other co-authors have contributed with their valuable ideas, dis-
cussions and reviews. The supervision team has also contributed to refining
the text.



4.2 Included Papers 49

FBD
Program CODESYS
\/ e Test
8 \EET-{]¢
a. Translation
Validation / \_
XML o Test Execution| |
Analyzerv
Pynguin
Type Position
POU Local ID
: Inputs Net ID
-g Outputs Connection
+ Meta-heuristic
9 Test G i
o est Generation
Name
Inputs
Outputs e
Local Vars Python /o Type
Code Conversion
Generator

Figure 4.5: A Detailed Overview of the Automated PyLC Framework for Translating a
PLC Program into Python Code and Validating the Translation Automatically.

4.2 Included Papers

All the included papers in this thesis have a contribution towards meeting the
overall research goal, and the mapping of these contributions to research sub-
goals is shown in Table 4.2.

(R-SG1) is achieved using three included papers, that is, Papers A, B, and
D. In particular, Paper A contributes towards realizing the R-SG1 by identify-
ing the most popular test automation tools of one of the well-known PLC IDEs,
called CODESYS. This work addresses the non-trivial problem of choosing the



50 Chapter 4. Contributions

right test automation tool for PLC programs, by conducting a systematic Grey
Literature Review (GLR)? followed by a comparison between the identified
popular test automation tools of CODESYS based on the industry-validated
features. Next, Paper B addresses R-SG2 by proposing a PLC to Python trans-
lation framework called PyLC, with the ultimate goal of bringing the benefits
of a Python-based automated search-based test generator to PLC testing. PyLC
proposes the required translation rules, workflows, and unit-testing translation
validation mechanisms for translating a PLC program into an executable equiv-
alent Python code. The final contributions towards achieving R-SG1 are pro-
vided by Paper D, which is an effort to fully automate PyLC, by enabling it
to automatically import a PLC program described in FBD language, and trans-
form it into the equivalent executable Python code followed by validating the
translation correction via an automated meta-heuristic testing approach and
mutation analysis. Moreover, Paper D addresses R-SG1 by evaluating the ap-
plicability and efficiency of PyLC using several real-world industrial PLC case
studies.

Achieving (R-SG2) of this thesis has been realized using the contributions
proposed in Paper C. This paper investigates the applicability and efficiency
of using a well-known semi-formal requirement notation called EARS [31] in
the context of PLC engineering and testing. This paper consists of two exper-
iments that investigate both engineers’ and testers’ ways of using EARS no-
tation for transforming the requirements and testing the PLC programs. This
paper also proposes a semi-automated EARS-based PLC testing mechanism
for real-world industrial PLC programs and investigates the efficiency and ap-
plicability of this mechanism by applying it to a real-world PLC program and
comparing it with the current manual testing procedure in industry.

(R-SG3) which focuses on the evaluation of the proposed test automation
approaches, is met using the provided contributions of all included papers of
this thesis (Papers A to D). Paper A addresses this sub-goal by applying both
identified test automation tools of CODESYS on two real-world PLC pro-
grams. Paper B and Paper D contribute towards this sub-goal by applying the
proposed test automation tool, PyLC, to 20 different real-world case studies in
the context of industrial control systems of the port cranes and nuclear plants.
Finally, Paper C helps to achieve R-SG3 by using the EARS notation for testing

2GLR is a method for reviewing the literature while excluding the academic results to identify
the practitioners’ point of view regarding a specific subject.



4.2 Included Papers 51

four different PLC programs and comparing it with the current existing manual
testing procedures in the industry from different testing perspectives.

A summarized mapping of included research papers concerning their con-
tribution to each R-SG, respectively, is shown in Table 4.2.

Table 4.2: Mapping of research papers w.r.t. their respective contribution to Research
Sub-goals (R-SG)

R-SG1 (PLC Test Automation) | R-SG2 (Semi-formal requirements for PLCs) | R-SG3 (Evaluation of Proposed Test Automation Approaches)

Paper A v v
Paper B v v
Paper C 7 v
Paper D v v

4.2.1 Paper A

Title: Choosing a Test Automation Framework for Programmable Logic Con-
trollers in CODESYS Development Environment.

Authors: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal,
Cristina Seceleanu.

Status: Proceedings of the 15th IEEE International Conference on IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2022), The Next Level of Test Automation (NEXTA
2022), 2022. Publisher: IEEE.

Abstract: Programmable Logic Controllers are computer devices often
used in industrial control systems as primary components that provide opera-
tional control and monitoring. The software running on these controllers is usu-
ally programmed in an Integrated Development Environment using a graphical
or textual language defined in the IEC 61131-3 standard. Although tradition-
ally, engineers have tested programmable logic controllers’ software manu-
ally, test automation is being adopted during development in various compliant
development environments. However, recent studies indicate that choosing a
suitable test automation framework is not trivial and hinders industrial applica-
bility. In this paper, we tackle the problem of choosing a test automation frame-
work for testing programmable logic controllers, by focusing on the COntroller
Development System (CODESYS) development environment. CODESYS is
deemed popular for device-independent programming according to IEC 61131-
3. We explore the CODESY S-supported test automation frameworks through a



52 Chapter 4. Contributions

grey literature review and identify the essential criteria for choosing such a test
automation framework. We validate these criteria with an industry practitioner
and compare the resulting test automation frameworks in an industrial case
study. Next, we summarize the steps for selecting a test automation framework
and the identification of 29 different criteria for test automation framework
evaluation. This study shows that CODESYS Test Manager and CoUnit are
mentioned the most in the grey literature review results. The industrial case
study aims to increase the know-how in automated testing of programmable
logic controllers and help other researchers and practitioners identify the right
framework for test automation in an industrial context.

4.2.2 Paper B

Title: PyLC: A Framework for Transforming and Validating PLC Software
using Python and Pynguin Test Generator.

Authors: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal,
Cristina Seceleanu.

Status: Proceedings of the 38th ACM/SIGAPP Symposium On Applied
Computing (SAC 2023), 2023. Publisher: ACM.

Abstract: Many industrial application domains utilize safety-critical sys-
tems to implement Programmable Logic Controllers (PLCs) software. These
systems typically require a high degree of testing and stringent coverage mea-
surements that can be supported by state-of-the-art automated test generation
techniques. However, their limited application to PLCs and corresponding
development environments can impact the use of automated test generation.
Thus, it is necessary to tailor and validate automated test generation tech-
niques against relevant PLC tools and industrial systems to efficiently under-
stand how to use them in practice. In this paper, we present a framework
called PyLC, which handles PLC programs written in the Function Block Di-
agram and Structured Text languages such that programs can be transformed
into Python. To this end, we use PyLC to transform industrial safety-critical
programs, showing how our approach can be applied to manually and auto-
matically create tests in the CODESYS development environment. We use
behaviour-based, translation rules-based, and coverage-generated tests to val-
idate the PyLC process. Our work shows that the transformation into Python
can help bridge the gap between the PLC development tools, Python-based unit



4.2 Included Papers 53

testing, and test generation.

4.2.3 Paper C

Title: An Empirical Investigation of Requirements Engineering and Testing
Utilizing EARS Notation in PLC Programs.

Authors: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal,
Cristina Seceleanu.

Status: Submitted to the Springer Nature Journal’s Special Issue on Topi-
cal Issue on Advances in Combinatorial and Model-based Testing 2023, under
review.

Abstract: Regulatory standards for engineering safety-critical systems of-
ten demand both traceable requirements and specification-based testing, dur-
ing development. Requirements are often written in natural language, yet for
specification purposes, this may be supplemented by formal or semi-formal de-
scriptions, to increase clarity. However, the choice of notation of the latter is
often constrained by the training, skills, and preferences of the designers.

The Easy Approach to Requirements Syntax (EARS) addresses the inher-
ent imprecision of natural language requirements with respect to potential am-
biguity and lack of accuracy. This paper investigates requirements specifica-
tion using EARS, and specification-based testing of embedded software writ-
ten in the IEC 61131-3 language, a programming standard used for developing
Programmable Logic Controllers (PLC). Further, we study, by means of an
experiment, how human participants translate natural language requirements
into EARS and how they use the latter to test PLC software. We report our
observations during the experiments, including the type of EARS patterns par-
ticipants use to structure natural language requirements and challenges during
the specification phase, as well as present the results of testing based on EARS-
formalized requirements in real-world industrial settings.

4.2.4 Paper D

Title: PyLC 2.0: An Automated Framework for Transforming and Validating
PLC Software using Python and Pynguin Test Generator.

Authors: Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal,
Cristina Seceleanu.



54 Chapter 4. Contributions

Status: Proceedings of the 30th Asia-Pacific Software Engineering Con-
ference (APSEC 2023). Publisher: IEEE.

Abstract: Numerous industrial sectors employ Programmable Logic Con-
trollers (PLC) software to control safety-critical systems. These systems ne-
cessitate extensive testing and stringent coverage measurements, which can be
facilitated by automated test-generation techniques. Existing such techniques
have not been applied to PLC programs, and therefore do not directly support
the latter regarding automated test-case generation. To address this deficit, in
this work, we introduce PyL.C, a tool designed to automate the conversion of
PLC programs to Python code, assisted by an existing test generator called
Pynguin. Our framework is capable of handling PLC programs written in the
Function Block Diagram language. To demonstrate its capabilities, we employ
PyLC to transform safety-critical programs from industry and illustrate how
our approach can facilitate the manual and automatic creation of tests. Our
study highlights the efficacy of leveraging Python as an intermediary language
to bridge the gap between PLC development tools, Python-based unit testing,
and automated test generation.



Chapter 5

Results

This section briefly overviews the gathered results of the included papers in
this thesis including Papers A to D. We start by summarizing the results of
choosing the right test automation tool for one of the most common IDEs for
PLCs in the industry, CODESYS. Then we discuss the results of applying the
PyLC translation framework to ten different industrial PLC programs followed
by representing the results of using EARS notation for PLC testing. Finally,
we summarise the gathered results of the automated translation of FBD pro-
grams to Python using the fully automated variation of the PyLC translation
framework applied to 10 different real-world industrial PLC programs. More
detailed results of each included papers in this thesis can be observed in Sec-
tions 8, 9, 10, and 11.

5.1 Choosing the Right Test Automation Tool for
CODESYS IDE

Paper A [1] of this thesis is an effort to assist practitioners in choosing the right
test automation tools for CODESYS PLC IDE through a hybrid methodology
as described in Figure 4.1.

55



56 Chapter 5. Results

5.1.1 Discovered Test Automation Frameworks of CODESYS
IDE

As a result of the GLR, we obtained 120000 search results, all written in En-
glish. We only stored the first 100 results locally to build the pool of contents
since we discovered that these contain relevant sources to our topic. Most of
the objects in the final version in the pool of objects have been published by
industry individuals, including IDE developers and PLC vendors. Aiming to
establish a trade-off between the preferences of companies and independent
framework developers in our results, we included valid third-party developers
and GitHub topics in the final pool. After reviewing the content of the pool,
we ended up with a pool consisting of 13 sources. After analyzing the final ob-
jects based on the defined criteria, we discovered three test automation frame-
works as the most prevalent automation frameworks targeting CODESYS. Out
of all the collected results, 62% of the objects in the pool are pointing towards
CODESYS Test Manager' (the largest share of the discovered objects). Two
other frameworks, CoUnit? and TcUnit are revealed in 15% of the objects each.
Other frameworks were mentioned in 8% of the objects. Our results suggest
that most of the discovered objects of our GLR after screening and applying
the selection criteria point towards CODESYS Test Manager, CoUnit (formerly
known as CfUnit), and TcUnit as the predominant test automation frameworks
targeting CODESYS. We note here that CoUnit is developed based on TcUnit
and both frameworks have similar functionality. Since CODESYS IDE offi-
cially supports only the former, we include CoUnit in the final list of discovered
automation frameworks.

Our results suggest that the most prevalent test automation frameworks
targeting CODESYS IDE for PLC testing are the CODESYS Test Manager
and CoUnit.

5.1.2 Test Automation Frameworks Features

First, we need to identify the essential features of these test automation frame-
works before conducting a comparison between the discovered test automa-
tion frameworks of CODESYS. To this end, we followed a hybrid approach

lhttps://store.cod com/codesys—test—-manager.html?

com/lib/counit/home/Home/


https://store.codesys.com/codesys-test-manager.html?
https://forge.codesys.com/lib/counit/home/Home/

5.1 Choosing the Right Test Automation Tool for CODESYS IDE

57

Table 5.1: Extracted and Validated Framework Features.

Industry-validated Features

Category

Feature

Extraction Source

Company Constraints

Cost

[1017, [102], [103], [104], [105]

Supported Platforms

(1017, [102],[103]

Maturity

Industrial Usage

[1o1]

Stage of Development

[1o1]

Documentation and Report Generation

[1o1]

Testing Functionalities Playback Record [103]
Test Suite Support [105]
Test Suite Extension Industry
Tool Flexibility Teamwork Support [101]
DevOps/ALM Integration Support [102]
Continuous Integration (CI) Support [102]
Usability Script Language [102], [103], [105]

Availability of Customer Support

(1017, [102]

Quality of Documentation

[1o1]

Maintenance Support

Industry

which consisted of a literature review of related works followed by an in-
dustrial feature validation. Based on three sources of information used (aca-
demic works, industrial input, and official documentation), we discovered 29
industry-reported essential features that should be considered when choosing a
test automation framework for PLCs. We acknowledge that many of these fea-
tures are generic. Still, the instantiation of these features is specific to PLCs.
We divided the discovered features into five categories based on their focus,
including Company Constraints, Maturity, Testing Functionalities, Framework
Flexibility, and Usability. Since our aim in conducting this work is to address
the needs of industrial practitioners, we evaluated the validity of the discovered
features by checking them with a group of engineers working with CODESYS
and PLC testing in an industrial automation company in Sweden. These engi-
neers validated these features of a test automation framework by marking the
ones a tester would use to choose such a framework (i.e., 15 out of 29 features
were considered important by these engineers). The list of the discovered and
validated test automation framework features and non-validated ones as well
as their category and source of extraction, are shown in Table 5.1 and 5.2 re-
spectively. It should be noted that the gathered data does not need any further
processing (e.g., open coding).



58 Chapter 5. Results

Table 5.2: Other Extracted Framework Features.

Other Features

Category Feature Extraction Source
Company Constraints Ease of Installation [101], [102]
License Type Tool Documentation
Test Script Specification [101]
Supported Testable Objects Tool Documentation
Testing Functionalities Requirements Traceability [101]
Script Creation Time [102]
Import Support [105]
Backward Compatibility [101], [105]
o Standard Input Format [101]
Tool Flexibility Modularity of The Tool [101]
Framework Development Language [105]
Programming skills [102], [103]
Usability Report Format [103]
Graphical User Interface (GUI) [101]

We have discovered several features that should be considered when
choosing a test automation framework for PLC testing: cost, supported
platforms, industrial use, stage of development, documentation and re-
port generation, record playback, test suite support, test suite extension,
team support, DevOps/ALM support, continuous integration Support,
scripting language, import support, availability of customer support,
quality of documentation, and maintenance support.

5.1.3 Test Automation Frameworks

We conducted an initial comparative examination given the features identified
in the previous section. We focus on Test Manager and CoUnit as our chosen
test automation frameworks in CODESYS IDE. The results of this compara-
tive examination are shown in Table 5.3. Even if both frameworks support only
Windows platforms and have continuous integration support, we can observe
significant differences. In terms of cost, CODESYS Test Manager is a com-
mercial product but available for academics to use in their research. CoUnit
is an open-source software freely available. Industrial usage of Test Manager



5.1 Choosing the Right Test Automation Tool for CODESYS IDE 59

is considered HIGH since its use has been reported in several industry-related
reports [106], [107], [108], [109], [110].

Regarding the framework’s maturity, CODESYS Test Manager seems to be
more mature and has evolved through eight different versions so far, compared
to CoUnit (i.e., in 3 versions). One of the main advantages of CODESYS
Test Manager is the ability to record and playback that is not supported by
the counterpart framework. Both frameworks support test suites in .xml file
format. In addition, CODESYS Test Manager has the advantage of supporting
.tsd (Tamino Schema) extension (used as a container of elements that a Tamino
XML Server document contains).

CODESYS Test Manager supports test suites to be extended by using spe-
cific predefined test commands, but the extension of test suites in CoUnit de-
mands ST programming knowledge, and the user needs to instantiate the code
for each single test case. CODESY'S Test Manager supports Python and all IEC
61131-3 programming languages for developing the test scripts, while CoUnit
only supports the ST programming language. Availability of customer support
is another essential factor from an industry point of view in this comparison,
and the CODESYS Test Manager seems to be superior in this respect. The
quality of the documentation provided by the CODESYS Test Manager is ex-
cellent since comprehensive educational material and good video tutorials are
available. On the other hand, CoUnit provides less documentation and tutori-
als. Maintenance support is another important feature proposed. CODESYS
Test Manager supports direct main PLC program testing and one instantiation
of the code under test can be used in all related test suites but these features are
not available in CoUnit.

Based on our initial comparison between CODESYS Test Manager and
CoUnit based on the 15 industry-validated features, the results show that
CODESYS Test Manager is more mature and has several advantages over
CoUnit, including user support, record and playback features, and easy
test suite extension. Nevertheless, CoUnit, as an open-source counter-
part, also provides testers with many key features used during PLC test-

ing.




Chapter S. Results

60

Table 5.3: An Overview of the Comparison between CODESYS Test Manager and CoUnit based on the Validated Features.

Feature Test CoUnit
Cost MIX FREE
*Commercial license, but free to use for academic purposes *Open Source license
Supported Platforms Microsoft Windows Microsoft Windows
Industrial Use HIGH LOW
Stage of Development ._<_>._.C%m ‘1>x._._>_1 .
*8 versions released so far *3 versions released so far
Documentation and Report Generation COMPLETE SUMMARIZED
YES
Playback Record *Can be realized via the Test Progress feature BY
Test Suite Support <ﬂm <_uﬁ
*.tsd, .xml extensions are supported *.xml extension is supported
EASY HARD

Test Suite Extension

*New test cases can easily be developed using the available graphical test commands.
*One instantiation of the POU under test can be used in all new test suites and test cases
*The number of test cases inside a test suite is not limited

*New test cases need to be developed in ST language
*For every new test case a new distinct instantiation of the POU under test is required
*Every test suite can only contain 100 test cases

Teamwork Support NO NO
DevOps/ALM Integration Support No Information Provided No Information Provided
Continuous Integration (CI) Support Yes Yes
Script Language Python, All IEC 61131-3 Supported Programming Languages Structured Text (ST)

Availability of Customer Support: YES(Official CODESYS customer support is available) NO

Quality of Documentation <mmw,<. OOOU. p Goop

*Both tool and official tutorial videos are available online *Tool documentation and textual tutorial are available online
EASY HARD
Maintenance Support *Direct testing of the PLC main program is supported *Direct testing of the main PLC program is not supported
*GUI and gra  test s are availabl *GUI and graphical test commands are not available




5.1 Choosing the Right Test Automation Tool for CODESYS IDE 61

5.1.4 Applicability in an Industrial Case Study

Aiming to answer this research question, we applied the two test automation
frameworks we found through our GLR to an industrial case study by consid-
ering several possible test scenarios. Our case is a control system provided by a
large automation company in Sweden consisting of several POUs. This system
is developed in the FBD programming language.

The Function Block (FB) in this POU consists of several computational
blocks executed cyclically. The program executes in a cyclic loop where ev-
ery cycle contains three phases: read (reading all inputs and storing the input
values), execute (computation without interruption), and write (update the out-
puts). The FBD program is created as a composition of interconnected blocks
with data flow communication. When activated, a program consumes one set
of input data and then executes it to completion. We considered functional
scenarios for testing the POU.

We evaluate this functionality and the applicability of Test Manager and
CoUnit by automating the test execution for the provided case and all POUs.
To this end, we generated several test suites consisting of manually created test
cases.

We report our overall experiences in using both test automation frame-
works. The following results and features are PLC-specific. Regarding instal-
lation and configuration, we found out that setting up CODESYS Test Man-
ager seems to be more straightforward since it can be installed as a standard
add-on package. On the other hand, CoUnit needs to be installed as a package
and imported as a library in every project under test. Regarding the ease of use,
CODESYS Test Manager is more user-friendly and provides features for devel-
oping test scenarios using available test commands in the GUI integrated into
CODESYS IDE. Moreover, developing test cases with this framework does
not require the use of any of the IEC61131-3 programming languages. On the
other hand, creating the same test cases in CoUnit is more time-consuming due
to the use of ST scripts and instantiations. When comparing the frameworks’
capabilities related to testable objects, we found out that the Test Manager
can create harnesses for PLC applications, IEC libraries, and communications.
In contrast, CoUnit can only be used at the application level. Regarding test
assertion timeouts we note here that PLC programs are executed cyclically in
a loop, and one needs to set a test assertion timeout to make sure that the result



62 Chapter 5. Results

comparison process ends after a certain amount of time. Only CODESYS Test
Manager can be used to set a custom timeout, a useful feature when testing
complex PLC programs. After executing test scripts on both frameworks, we
discovered that test reports generated by CODESYS Test Manager provide the
user with detailed information. On the other hand, CoUnit only reports scarce
information.

Using the discovered features as a basis, the application on an indus-
trial PLC program revealed that both frameworks provide proper automa-
tion functionality. However, CODESYS Test Manager seems to be more
mature, provides more helpful test execution features, and is more user-
friendly. In contrast, CoUnit seems limited in its usefulness, and working
with it requires ST programming.

5.2 Translation of ST/FBD Programs to Python

Paper B [2], as the second included paper in this thesis is our first step towards
enabling the Python-based automated search-based testing for PLC programs
by translating them into executable Python code. This translation framework is
called PyLC. PyLC follows the mechanism depicted in Figure 4.2 and adheres
to the translation rules in Table 4.1.

5.2.1 PyLC Translation

We consider ten different PLC programs to evaluate our proposed translation
framework in real-world circumstances, including six ST and four FBD pro-
grams. Detailed information on the translated PLC programs is shown in Table
5.4. The considered PLC programs are of different sizes (between 21 and 338
Lines of Code (LOC)). Nine of the ten selected PLC programs are being used
in the industry by a large automation company in Sweden. These programs are
part of a software system that supervises the control system operations. Six
programs perform supervision duties by checking the control system’s real-
time signals. In contrast, the other four PLC programs produce decisions based
on the inputs received from the connected positioning system based on cam-
eras.



5.2 Translation of ST/FBD Programs to Python 63

PRG PRG LOC | LOCin | No of No of
Name | Language Type in PLC | Python | FBS | Branches
PRG1 ST FUN 82 54 - 16
PRG2 ST FB 74 50 - 16
PRG3 ST FUN 137 86 - 34
PRG4 ST FB 338 261 - 134
PRG5 ST FB 21 17 - 8
PRG6 ST FB 38 14 - 0
PRG7 FBD FB - 30 3 14
PRGS8 FBD FB - 57 5 28
PRG9 FBD FB - 46 4 22
PRG10 FBD FB - 40 4 16

Table 5.4: Information Regarding Translated PLC Programs (PRG) from PLC into
Python Using the PyLC Framework

We note here that, according to the data in Table 5.4, the translation reduces
the number of LOC for the considered ST programs by an average of 65.20%.
This can be explained by the fact that in ST and FBD programming languages,
one needs to include a variable declaration. In addition, unlike Python, the
syntax of ST programming requires the user to declare the ending point of the
conditional loops.

5.2.2 PyLC Validation

To evaluate the proposed method, we use the translation results of the trans-
lated PLC programs in Table 5.4 by three different unit testing mechanisms
described in Figure 9.6. In the following subsections, we describe and demon-
strate the results regarding each unit testing validation step, respectively.

Unit Testing Validation based on Requirements

Behaviour validation of the translated PLC programs into Python is done via
requirements-based testing. It means that for each PLC program transformed
into Python, the actual behaviour of the translated PLC program in Python is
compared with the expected behaviour in the original PLC program based on
test cases covering all stated requirements.

Based on the proposed technique for this type of validation (as shown in



64 Chapter 5. Results

Test | PRG Type Number Verdict Execution
Suite | Unit of TCs Time (s)

1 AND | FUN 5 5/5 0.03

2 XOR | FUN 7 717 0.04

3 OR | FUN 5 5/5 0.02

4 SEL | FUN 6 6/6 0.03

5 TON | FB 10 10/10 0.08

6 TOF FB 10 10/10 0.09

Table 5.5: Results of executing the test cases for each common Program (PRG) unit as
well as their type: Function (FUN)/Function Block(FB)

Test Program Number Verdict Execution
Suite of TCs Time (s)
1 PRG1 6 6/6 0.04
2 PRG2 9 9/9 0.07
3 PRG3 5 5/5 0.03
4 PRG4 9 9/9 0.03
5 PRGS5 7 711 0.04
6 PRG6 8 8/8 0.04
7 PRG7 10 10/10 0.03
8 PRGS8 5 5/5 0.02
9 PRG9Y 8 8/8 0.06
10 PRGI10 7 717 0.04

Table 5.6: Results of executing requirement-based test cases on the translated PLC
programs



5.2 Translation of ST/FBD Programs to Python 65

Figure 9.6), we analyze the behaviour of the translated code from two differ-
ent aspects, which are test execution scenarios and individual program units
(consisting of functions and FBs). This means we design two sets of unit test
cases. The first set of test cases covers the overall behaviour of the program
based on the stated scenarios. In contrast, the second set of test cases examines
the expected behaviour of each FB in the translated PLC program in Python
according to the IEC 61131-3 standard.

Regarding the execution scenario-based testing, we design a test suite for
each PLC program that includes test cases based on the existing requirements.
Therefore, each test suite’s number of designed test cases is connected to the
number of requirements. All the designed unit test cases are executed automat-
ically in Python using unittest®>. Table 5.6 shows the test execution results for
each translated program. The results suggest that requirement-based test cases
have passed successfully on the resulting Python programs. The execution time
is between 0.02s and 0.07s.

Regarding the design of test cases for the standard functions and FBs (pro-
gram units) that are used in different PLC programs, we design different test
cases that are bound to check the correct functionality of each block based on
their expected behaviour.

We consider commonly-used PLC Functions (e.g., AND, XOR, OR and
SEL) and FBs (e.g., TON and TOF (Timers)). We have developed all test cases
manually based on the definition of each Function and FB in the IEC 61131-3
standard. The developed test cases have been executed automatically on the
translated programs in Python using the Python unittest tool. Table 5.5 shows
more details and results of testing these blocks. As it can be observed in Table
9.4, we have considered seven unit test cases for each function and ten test
cases for each function block. All test cases have been executed successfully
on the Function/FBs at the Python level, with the execution time not exceeding
0.09s.

Finally, for six out of ten translated PLC programs (PRGS5 to PRG10), both
categories of the aforementioned requirement-based test cases are executed on
the original PLC program in CODESYS IDE using CODESYS Test Manager.
The result of executing these test cases on both Python and PLC environments
is then compared. We find that the same test case execution status is obtained
in CODESYS IDE, indicating the program’s accurate translation using PyLC

3https://docs.python.org/3/library/unittest.html



66 Chapter 5. Results

Test Program Number Verdict Execution
Suite of TCs Time (s)
1 PRG1 5 5/5 0.03
2 PRG2 8 8/8 0.04
3 PRG3 10 10/10 0.05
4 PRG4 15 15/15 0.07
5 PRG5 5 5/5 0.03
6 PRG6 6 6/6 0.02
7 PRG7 8 8/8 0.04
8 PRGS 9 9/9 0.05
9 PRG9 11 11/11 0.04

10 PRGI10 10 10/10 0.07

Table 5.7: An overview of the results of Test Case (TC) execution on 10 cases based on
the proposed PyLC Translation Rules

Framework according to the specific tested requirements. The reason behind
excluding four PLC programs from this process is that these programs are de-
signed to analyze some data directly from specific hardware cameras, and alter-
ing these inputs manually in CODESYS Test Manager is not feasible directly
using unit testing.

Checking PyL.C Translation Rules

We have also investigated the use of checks related to our translation rules. For
each PLC program, we have designed several unit test cases that investigate the
alignment of the translated programs to the proposed translation rules in PyLC.
These test cases check if the transformation of certain PLC elements(i.e., in-
put(s), output(s), data type, data range, FB behaviour, FB network, execution
order, and cyclic execution) produces valid elements in the translated PLC pro-
grams. We have developed test cases manually using the Python unittest tool.
The results of executing the translation rules on the ten considered PLC pro-
grams are shown in Table 5.7.



5.2 Translation of ST/FBD Programs to Python 67

Validation using Pynguin Test Generation

In this subsection, we show how we leverage Pynguin, an automated search-
based testing framework for Python, within our framework. Among all of
the supported search-based algorithms of Pynguin, we use DYNAMOSA [97]
(Pynguin’s default algorithm) as our algorithm of choice for generating test
cases due to its dynamic nature, multi-objective optimization capabilities, ef-
ficient search space exploration, adaptability, scalability, and efficient resource
utilization.

We have followed Pynguin’s default configuration using DYNAMOSA, a
test generation time budget of 10 minutes, and mutation analysis enabled. The
results of automated test generation and execution on ten considered PLC pro-
grams of this study using Pynguin are shown in Table 5.8.

As seen in Table 5.8, we find that the number of generated test cases ranges
from 1 to 27 test cases per program. Pynguin test cases obtain a branch cover-
age of 88.44% on average. Moreover, Pynguin achieves 100% branch coverage
for three transformed PLC programs. The size of the program influences the
test case generation time, and it ranges from 1s for PRG6 to 653s for a larger
program such as PRG4; however, letting the time budget exceed 10 min could
improve the coverage obtained for Pynguin test cases. Regarding mutation
analysis, Pynguin leverages assertion generation mechanisms during the test
generation phase. Pynguin will automatically switch to mutation analysis that
works based on MutPy*. We observe that Pynguin starts mutation analysis for
9 out of 10 PLC programs, and in all except one case, it can kill all the mutants.
The results seem to be influenced by the 10-minute time limit used for test gen-
eration, the specific mutant generation used by Pynguin, and the possibility of
having mutants that are not generated for a specific region of the code.

The number of generated mutants varies for each translated PLC program,
from 5 to 170 injected faults. Our intuition of the lack of generating any mu-
tants for PRG6 by Pynguin is the high simplicity of the program. The test exe-
cution time is 0.16 seconds on average. Regarding passed/failed test cases, we
observe that most of the generated test cases have successfully passed, given
the generated assertions.

The results of generating and executing test cases for the translated PLC
programs into Python using PyLC show that this method is feasible for vali-

“https://github.com/se2p/mutpy-pynguin



68 Chapter 5. Results

Test Test Branch Killed/
Test Number . . . Covered .
. Program Verdict | Generation | Execution | Coverage Survived
Suite of TCs . . Branches
Time(s) Time (%) Mutants
1 PRGI 7 517 5 0.16 100 16/16 72/0
2 PRG2 7 417 4 0.14 100 16/16 67/0
3 PRG3 6 4/6 609 0.13 80 27/34 164/0
4 PRG4 27 20/27 653 0.5 88.89 119/134 170/0
5 PRG5 2 2/2 601 0.03 77.78 6/8 5/4
6 PRG6 1 1/1 1 0.02 100 0/0 0/0
7 PRG7 4 2/4 601 0.13 86.67 12/14 18/0
8 PRG8 7 3/7 601 0.14 75.86 21/28 26/0
9 PRG9 7 517 610 0.23 86.96 19/22 40/0
10 PRGI10 6 5/6 606 0.12 88.24 14/16 18/0

Table 5.8: Results of Automatic Test Generation/Execution for Translated PLC Pro-
grams using Pynguin TAF

dating the transformation and test generation during the development of PLC
programs. However, using other search-based algorithms and increasing the
test generation budget, especially for large programs such as PRG4, might in-
crease the obtained code coverage and improve the mutation analysis results.

In the end, we execute the generated test cases on the original PLC pro-
grams in CODESYS IDE to investigate whether their execution in the origi-
nal PLC environment produces the same results. Executing the test cases in
CODESYS IDE has been done via CODESYS Test Manager.

5.3 Application of EARS Notation in Testing
PLCs

The applicability and efficiency of using a popular and scientifically proven
notation such as EARS in the context of PLC testing are investigated by us
in Paper C [3]. The overall methodology of this work is depicted in Figure
4.3. This work consists of two main parts including requirement engineering
experiment and PLC testing. We briefly overview the gathered results for both
sections in the following.



5.3 Application of EARS Notation in Testing PL.Cs 69

Table 5.9: The natural language requirements used during the experiment.

Requirement ID | Requirement Text

RI1 User account should be uniquely iden-
tified to a user.

RI2 The software shall warn the user of
malware detection.

RI3 Only authorised devices are allowed to
connect into the ICS network

5.3.1 Requirement Engineering Results

We investigated the industrial libraries provided by a large-scale company fo-
cusing on the development and manufacturing of control systems. We iden-
tified three candidate requirements matching our criteria, shown in Table 5.9.
The requirements should not be trivial, yet fully manageable to use within 60
minutes and no domain-specific knowledge should be needed to understand the
requirements. We then assessed the relative difficulty of the identified require-
ments by manually writing and creating tests. For each requirement, we have
collected data about the type of EARS template used by each participant, the
approaches, and the challenges participants experienced during requirement
representation using the EARS notation. The results are shown in Table 5.10,
Table 5.11, and Table 5.12.

Participants strictly adhered to one or multiple EARS templates. It seems
that the ubiquitous template has been used by all participants to model require-
ment RI1 and just in one case when representing requirements RI2 and RI3
(as shown in Table 5.10). Participants explained that the “’shall” statement is
clearly indicated and should be used to describe the required behaviour. Nev-
ertheless, one participant decided to use the unwanted behaviour template for
RII to indicate the prohibited behaviour in such a form that can be used for
testing.

The event-driven and unwanted behaviour templates have been used by
participants to represent requirement RI2, while some participants used the
state-driven pattern (as shown in Table 5.11). Participants chose to do this
since they drafted requirements in several increments. Firstly, they considered
how the system behaves typically (also called sunny-day behaviour). For some



70 Chapter 5. Results

Table 5.10: Results of the templates used for each requirement used in the experiment.

RI1 | RI2 | RI3 | Requirement ID/EARS Template
10 1 1 Ubiquitous (U)
0 5 4 Event-Driven (ED)
1 5 6 Unwanted Behaviours (UB)
0 0 3 State-Driven (SD)
0 0 0 Optional Features (OF)

participants using EARS, this results in requirements in the state-driven and
event-driven patterns. Secondly, some participants decided to specify what
the system must do in response to the unwanted behaviour, which produced
requirements in the unwanted behaviour pattern.

In addition, the thematic analysis of the notes taken by participants when
performing these steps in requirement representation resulted in several main
themes related to approaches and challenges experienced during the transla-
tion process. Several participants mentioned that the initial NL requirements
are not complete and clear such that these can be used directly for testing. One
participant mentioned the following: “What happens if the device is not au-
thorized, missing failure models, startup/default/safe state...?”. This resulted
in issues when starting with the translation process, especially when deciding
which templates to use. Several participants had issues in deciding when to
use single or multiple EARS templates to cover both positive and negative be-
haviours that need to be tested. One participant stated the following: “We could
possibly use event-driven type requirement. At the same time, it is unwanted
we could use, this one is quite complicated”. Some participants preferred the
use of the “shall not” form, which has been observed by some participants as
having an impact on the test case created since only a set of test cases involving
the unwanted behaviour would need to be created to show satisfaction with the
requirement. Another observation relates to the use of an optional feature tem-
plate, which for the given requirements was not used by any of the participants
since there was no need to specify any product variation or specific features.



5.3 Application of EARS Notation in Testing PL.Cs 71

Table 5.11: Results of the requirements writing in terms of the templates used by each
participant for each requirement. EARS template types are shown using their specific
acronyms as stated in Table 5.10.

RI1 RI2 RI3 Requirement ID/Participants
U,UB | U,UB,ED | U,SD,ED P1
U ED UB P2
U ED UB P3
U UB SD P4
U ED UB P5
U ED UB P6
U SD UB P7
U UB ED, UB, SD P8
U UB ED P9
U UB ED P10
Test Results of PRG1

PRG1 is the PLC program we considered for testing the RI1 requirement (refer
to Table 5.9) in the PLC environment. This program is using the values of the
user account and user lists. Then it checks for unique IDs and returns an
indication of whether each user account is uniquely identified to a user or not.
A snippet of the PRG1 PLC program is shown in Figure 10.2.

To design and execute the required test cases to test the RI1 Requirement
in PRGI, we use the transformed requirement from the NL requirement shown
in Table 5.13.

Based on the EARS requirement we use two test cases to cover the identi-
fication of the user and the case when the user is not identified. Each test case
includes the following three test actions: two WriteVariable test actions to al-
ter the user and user account inputs and one CompareVariable test action that
compares the actual output with the expected one. The generated test cases for
PRG1 used to test the adherence of the program to RI1 requirements are shown
in Figure 10.3.

After designing the required test cases, we execute them automatically on
PRG1 to investigate the adherence of the mentioned PLC program to the RI1
requirement. As can be observed in Figure 10.4, all test cases have been exe-



72

Chapter S. Results

Table 5.12: Results showing the main themes identified related to approaches and chal-

lenges encountered during the translation process.

Main Themes

Theme Descriptions

Requirements are not

complete and clear
enough for EARS
translation.

When starting with the translation,
requirements in NL are not com-
plete enough to decide precisely which
EARS template to use.

Using single or multi-
ple EARS templates is
not clear enough, espe-
cially when using these
for testing.

There is a need, when using these pat-
terns for testing, to use multiple and
separate templates for each require-
ment to cover both positive and nega-
tive cases arising.

The system perspective
is not easily identifiable
from the requirements.

It is difficult to decide which perspec-
tive to use when translating the EARS
requirement (e.g., system, subsystem
level).

The optional feature
template is not applica-
ble for the selected re-
quirements

Even if the Option requirement is used
for systems that include a particular
element and variants, this modelling
form was not used during requirement
transformation using the EARS nota-
tion since the participants did not need
to handle system or product variation.




5.3 Application of EARS Notation in Testing PL.Cs

73

Table 5.13: EARS Requirements examples obtained from the experiment and the re-
sulting concretized EARS requirements.

Requirements | EARS Requirements Concretized EARS Require-
ments
RI1 The <user account system> if <uniqueID=FALSE> then
shall <identify the user> If <UniqueUserAccount> shall
<the user is not identified> <Result_Unique=FALSE>
then <user account system>
shall <alert>
RI2 When <malware is detected> | When <NormalActivity
the <system> shall <warnthe | # MaliciousActivity> the
user> <MalwareDetection>  shall
<MalwareDetected=TRUE>
RI3 When <the device is When <found=TRUE>
authorised> the <system> the <SearchID> shall
shall <grant access to the <ConnectionAllowed=TRUE>
device>

cuted in 0.3 seconds. All executed test cases have successfully passed on the
PRG1 program.

Test Results of PRG2

The PLC program we use for executing the generated test cases for RI2 in
Table 5.9 is named PRG2. This program is shown as a black-box malware
detection system in the PLC environment that can be used for investigating
the context of RI2. PRG2 consists of the following interfaces: two input sig-
nals named MaliciousActivity and NormalActivity as well as one output signal
named MalwareDetected. When MaliciousActivity and NormalActivity signals
have divergent information, the Malware Detection system is triggered, and
the value of the MalwareDetected signal becomes True. An interface snippet
of PRG2 is shown in Figure 10.5.

Considering the results of the experiment we use the resulting EARS Event-
driven requirement pattern as the most suited type of template for transforming
the requirement from NL to EARS in the form shown in Table 5.13.

Based on the developed EARS requirement for RI2 requirement, we gen-
erate two test cases for PRG2. Each test case consists of two test actions (Ma-



74 Chapter 5. Results

liciousActivity and NormalActivity) that alter the value of the inputs, as well
as one test action (Expected Output) that compares the actual behaviour with
the expected one. The first test case checks if a (Malware is Detected) while
the second test case checks if a (Malware is Not Detected). The generated test
cases for PRG2 based on the RI2 requirement are then automatically executed
using CODESYS Test Manager in 1.71 seconds. All developed test cases have
successfully passed.

Test Results of PRG3

PRG3 is the PLC program used to execute the generated test cases for RI3
in Table 5.9 ("Only authorised devices are allowed to connect into the ICS
network". This program consists of the following units: /) a database of autho-
rised device IDs, which is implemented using an array of IDs, 2) an input signal
corresponding to the device ID that needs to be authorised, and 3) a boolean
output signal (i.e., found) which returns True in the case of the authorised de-
vice being allowed to connect given the ID is known. We show a snapshot of
this PLC program in Figure 10.6.

As discussed in Section 5.3.1, different individuals transformed the NL re-
quirement into the EARS requirement in different forms. We use the most
common form developed by the participants to transform RI3 to an EARS
Event-Driven syntax pattern in the following form shown in Table 5.13.

Based on the aforementioned EARS requirement for RI3, we developed 2
test cases for Successful Authorization and Unsuccessful Authorization. Each
developed test case consists of two actions, including the provision of a new
Input ID and Comparing the actual output with the expected output. The gen-
erated test cases have been automatically executed on PRG3 using CODESYS
Test Manager in 1.14 seconds. Both test cases have successfully passed after
being executed on the PRG3 PLC program.

Aiming at evaluating the applicability of using EARS semi-structured syn-
tax when creating test cases for PLC programs, we used three programs that
implement the behaviour stated in the three provided natural language require-
ments used in this experiment. All these three PLC programs are developed in
CODESYS IDE using the ST programming language. In this work, we refer
to these programs as PRG1, PRG2, and PRG3. After generating the EARS-
based test cases for each program, we execute these automatically using the



5.3 Application of EARS Notation in Testing PL.Cs 75

CODESYS test automation framework named CODESYS Test Manager’. The
final step in this methodology is to compare the actual output with the expected
output to observe whether the program works as expected.

We used the concretization steps of the EARS expressions as stated by
Flemstrom et al. [111]. This happens by mapping the system response, con-
dition, and events to the actual implementation in PLC. This contains infor-
mation about the implementation elements of a system and its interfaces. An
engineer needs to consider this information and identify the given signals and
their characteristics. In this way, we define a set of signals related to the feature
under test. In these cases, the next step for the selected requirements would be
to design test cases to show that the requirement has been met. In our experi-
ment, we could directly use a subset of positive and negative cases by randomly
choosing values from an equivalence class. Nevertheless, in a general case, the
translation and concretization steps are not easy and one would need to decide
how to automate such steps and if we are to use exhaustive testing, equivalence
class testing, combinatorial testing, or any other test selection technique for
designing test cases.

5.3.2 EARS-based Testing vs Manual PLC Testing

Comparing the overall current industrial manual testing process of a real-world
PLC program (shown in Figure 10.8) versus the proposed semi-automated in-
dustrial EARS-based testing mechanism of this thesis as depicted in Figure
10.7, reveals several facts including:

1. Need of domain-specific knowledge. One needs to have a good under-
standing of one of the IEC61131-3 programming languages to be able
to develop test cases for the PLC program in the current industrial ap-
proach. Moreover, the manual tester needs a testing background and
engineering experience to implement and connect all testing units prop-
erly. On the other hand, testing the PLC programs with the proposed
mechanism using CODESYS Test Manager does not demand any deep
knowledge of specific programming language and can be handled easily
using Test Actions.

Shttps://store.codesys.com/en/codesys-test-manager.html



76

Chapter S. Results

. Efficiency. In the case of a simple PLC program such as CraneNum-

berCheck which consists of 25 Lines of Code (LOC), the test script con-
sists of 119 LOC which shows a difference in efficiency. On the other
hand, the proposed EARS-based testing approach only consists of 26 test
actions, which use all the powerful features of CODESYS IDE.

. Manual overhead and complexity. The current testing process for PLC

programs in the industry is highly complex, with significant manual in-
tervention. Specifically, many features already present in the CODESYS
IDE, such as cyclic execution, delay, test control process, and test start
trigger, are being recreated manually. This redundancy exacerbates the
complexity, especially with more intricate PLC programs. Conversely,
the proposed EARS-based testing approach simplifies this by requir-
ing a manual definition of only the inputs and expected outputs. All
other features are readily accessible through the user-friendly GUI of
the CODESYS Test Manager tool. Additionally, the availability of pre-
defined test actions within the Test Manager tool enhances the use of
CODESYS’s features and automation capabilities for PLC testers.

. Test specifications.The existing manual testing process in the industry

offers testers limited information, providing only the outcomes of passed
or failed test cases. In contrast, the proposed EARS-based testing ap-
proach utilizes both CODESYS Test Manager and CODESYS Profiler
to provide a comprehensive set of test specifications. These include ad-
ditional details like test execution time, coverage reports, outcomes of
individual test actions, test verdicts, and more.

. Ambiguity and clarity of functional requirements. After reviewing

a limited set of requirements gathered from the industry, it became ap-
parent that the current functional requirements are predominantly at the
system level, lacking specificity for individual code branches. Addi-
tionally, the complexity of industrial testing processes relies heavily on
the tester’s expertise. In contrast, the proposed EARS-based approach
reduces the vagueness of requirements and encompasses both unit and
system-level testing, potentially leading to a more thorough testing pro-
cedure. Furthermore, this approach yields requirements and test cases
that are straightforward and comprehensible, facilitating understanding
among all stakeholders, including testers, managers, and clients.



5.4 Automated Translation of FBD Programs to Python 77

5.4 Automated Translation of FBD Programs to
Python

In the final step of this thesis towards enabling and facilitating automated PLC
testing for PLC programs, we fully automated the PyLC translation framework
using the depicted methodology in Figure 4.5 in Paper D [4]. The results of
applying automated PyLC to 10 different real-world industrial FBD programs
are briefly explained in the following.

5.4.1 Automated Translation from PLC to Python

To demonstrate the applicability and efficiency of the proposed translation
framework, we translate ten different real-world PLC programs using the PyLC
framework. The detailed list of the included FBD programs in this study is
shown in Table 5.14. Most of these PLC programs are used in the context of
supervising industrial control systems developed by an automation company in
Sweden. In contrast, the remaining ones are implemented in a nuclear plant.
As depicted in Table 5.14, all the considered PLC programs are developed in
the FBD language and vary in size and complexity.

After applying the PyLC framework to these PLC programs and examin-
ing the information provided in Table 5.14, we can draw several conclusions.
First, the FBD programs selected for translation encompass a variety of FBD
block types, as detailed in Section 5.14. This diversity highlights the extensive
block support offered by PyLC. Second, the PyLC translation process is swift,
with an average translation time of just 0.74 seconds. We conclude that the
size of the FBD program being translated, specifically the number of blocks,
can influence the translation efficiency. Larger PLC programs, like PRG4 and
PRG7, tend to have marginally longer translation times.

The PyLC framework demonstrates the capability for translating effi-
ciently an array of industrial FBD programs, characterized by diverse
block types, into Python code.

Overall, the collected results underline the potential and effectiveness of the
PyLC translation framework in converting FBD-based PLC programs into ex-
ecutable Python code. This not only opens avenues for utilizing Python’s ca-
pabilities within industrial automation but also offers a systematic approach



78 Chapter 5. Results

PRG No. of No. of Included LOC in | Translation
Name | Branches | Blocks Block Types Python Time (s)
PRG1 12 4 LOG/TIM 80 0.7
PRG2 14 5 LOG/TIM/FB/SPEC 91 0.8
PRG3 6 3 LOG 50 0.5
PRG4 16 13 LOG/COMP 132 1.1
PRGS5 3 1 MATH 22 0.4
PRG6 3 1 MATH 20 0.5
PRG7 16 13 LOG/COMP 100 1
PRGS8 2 COMP 80 0.7
PRG9 8 7 LOG/COMP 77 0.6
PRGI10 10 1 LOG 51 0.5

Table 5.14: Information Regarding the Translated PLC Programs (PRG) in FBD lan-
guage into Python using PyLC

to bridge the gap between PLC programming languages and general-purpose
languages like Python.

5.4.2 Evaluation and Validation of Translation in an Indus-
trial Context

To assess the correctness and validity of the PyLC translation framework within
an industrial setting, we translate ten real-world industrial PLC programs into
Python, as detailed in the previous section. Subsequently, we utilize the Pyn-
guin meta-heuristic test generator [38] to generate search-based test cases for
the PLC programs translated using the PyLC framework. After collecting the
test generation and execution results from Pynguin, we introduce the same test
cases into the PLC environment for execution on the original PLC program
within the CODESYS IDE. We then compare the test execution outcomes in
both environments to determine the validity of the code translation from PLC
to Python. The results of the automated meta-heuristic testing for the included
PLC programs using Pynguin are presented in Table 5.15. The evaluation of
the translated Python code involved the instantiation of fitness functions, iter-
ation counts, search time, mutant generation, and mutant survival rates. These
metrics collectively provide insights into the efficiency, effectiveness, and cov-
erage of the translation and testing processes.



5.4 Automated Translation of FBD Programs to Python 79

Based on the results of the automated meta-heuristic testing of PLC pro-
grams translated into Python using the PyLC framework, as detailed in Table
5.15, several conclusions can be drawn. First, PLC programs that incorporate
Timer blocks, such as PRG1 and PRG2, require more mutants, iterations, and
increased search time due to the complexity that they introduce. Second, Pyn-
guin managed to achieve complete branch coverage for eight out of ten eval-
uated PLC programs. The average branch coverage for all the PLC programs
assessed in this study is 98.84%, suggesting strong compatibility between the
Pynguin test generator and the proposed PyLC translation framework. Third,
when examining PLC programs without Timer blocks, like PRG3 to PRG10,
Pynguin’s performance is notably swift, with an average search time of 1.6
seconds. In contrast, with PLC programs containing Timer blocks, there is a
significant surge in search time, causing the test generator to reach its prede-
fined search time limit of 1200 seconds.

The results indicate a diverse spectrum of outcomes across the different
PLC programs. Notably, the number of instantiated fitness functions varies,
suggesting the complexity of each program’s behaviour. Iteration counts vary
as well, implying differing degrees of convergence in the optimization process.
Search time, representing the duration of test generation shows a consistent
time allocation of 1200 seconds per program, which facilitates a controlled
evaluation environment.

Mutant generation and survival rates reveal intriguing patterns. While the
number of generated mutants varies, indicating the diversity of test scenar-
ios explored, the count of surviving mutants sheds light on the robustness of
the translated Python code. The variations in the surviving mutants might be
attributed to the specifics of each program’s logic and the efficacy of the trans-
lation framework.

The assessment of test cases and verdicts provides insights into the quality
of the translated Python code’s behaviour. Verdicts, ranging from 1 to 6, denote
the number of tests that have passed, highlighting the correctness of the trans-
lated code. Coverage metrics, including overall coverage, covered branches,
and covered branchless code objects, showcase the comprehensiveness of the
test suite in exercising different aspects of the translated code.

The experimental results demonstrate the viability and effectiveness of the
PyLC translation framework in transforming FBD programs into executable
Python code. The subsequent testing using the Pynguin test generator enables



80 Chapter 5. Results

PLC Insu'mtlated . Search | Generated | Surviving | Test . Covered Branch'less
Fitness Iterations . Verdict | Coverage code objects
Program . Time (s) | Mutants Mutants | cases Branches
functions covered
PRG1 16 6042 1200 58 25 4 3/4 93.75 12 4/4
PRG2 19 5080 1200 43 25 4 414 94.74 13/14 5/5
PRG3 8 1 1 7 4 2 12 100 6/6 272
PRG4 24 1 4 23 15 9 59 100 16/16 8/8
PRGS5 3 1 1 5 2 1 1/1 100 3/3 0/0
PRG6 3 1 1 5 5 1 /1 100 3/3 0/0
PRG7 24 1 3 23 17 4 414 100 16/16 8/8
PRG8 6 1 1 6 3 2 212 100 4/4 2/2
PRG9 13 1 2 12 7 4 3/4 100 8/8 5/5
PRGI10 12 1 1 5 2 6 6/6 100 10/10 212

Table 5.15: Information Regarding Automated Testing of The Translated Real-world
PLC Programs to Python using the Pynguin Tool

the generation of diverse test scenarios and the evaluation of the translated
code’s behaviour. The varying outcomes across different PLC programs un-
derscore the significance of program-specific characteristics in the translation
and testing processes. The insights garnered from this study contribute to the
advancement of automated PLC testing methodologies, via the PLC-to-Python
translation.

In our goal to ascertain the accuracy of the translation, we test the generated
Python code, by utilizing meta-heuristic testing, and record the test execution
outcomes for each translated program using the Pynguin tool. Subsequently,
we import these test cases into the PLC environment to execute them on the
original PLC programs, aiming to discern congruence in their results. Upon
automated execution of the acquired test cases on the original PLC programs
(ranging from PRG1 to PRG10) via the CODESYS Test Manager, we observe
that the test cases generated in the Python environment yield identical results
when executed on the original PLC programs within the CODESYS IDE. This
consistency shows the efficacy and correctness of the PLC-to-Python transla-
tions facilitated by our proposed PyLC framework.

The automated PyLC translation framework, aided by Pynguin, generates
test cases efficiently, attaining an average branch coverage of 98% across
ten distinct real-world industrial PLC programs.




Chapter 6

Discussion and Limitations

In this chapter, we present and justify the chosen techniques and coverage cri-
teria, PLC to Python code translation, selection of Python as translation desti-
nation language, and limitations of our study such as focusing on a specific IDE
(CODESYS) and testing the Timer blocks which are planned to be addressed
in future work of this thesis.

6.1 Discussion

In this section, we discuss topics of relevance to the thesis. These are as fol-
lows: the choice of testing techniques and coverage criteria, code translation,
and selection of the Python programming language.

Choice of techniques and coverage criteria: Unit testing, in both manual
and automated manners, is used in this thesis because of its popularity in the
industry and its capability to enable a detailed view of the possible bugs in
the code under test. Automated search-based testing equipped with a mutation
analysis is a modern scientifically-proven testing technique used in this thesis.
Requirement and branch coverage, as two of the de facto coverage criteria
in the industry currently have also been used in this thesis wherever testing
is applied. Thus, for coverage criteria measurement, this thesis attempts to
research the merits and demerits of the selected test techniques, respectively,

81



82 Chapter 6. Discussion and Limitations

in terms of requirement coverage.

Code Translation: A major contribution of this thesis is tied to the trans-
lation of described PLC programs in FBD/ST languages into Python code, to
enable automated testing for PLCs. We acknowledge that translating a visual
description of a PLC program, such as the one provided by FBD, into a dy-
namic text-based programming language such as Python, can be challenging
since it demands considering several different aspects such as cyclic execution
and non-existing data types, yet it is much less expensive than developing a
whole new test generation tool for PLCs, from scratch. Hence, enabling mu-
tation analysis and automated search-based testing via different meta-heuristic
algorithms using an already available powerful tool such as Pynguin [38] is
worth investigating.

Selection of the Python Programming Language: Choosing Python as the
destination programming language in translating a PLC program in this thesis
is justified by the following reasons. Firstly, Python is the only non-IEC61131-
3 programming language that is supported by the IDE under focus in this study,
that is, by CODESYS. Secondly, Python is equipped with several powerful test-
ing and verification tools such as Pynguin [38] and Nagini [112], respectively,
which enables a high level of flexibility and provides the basis for an increased
level of assurance, when investigating the efficiency of the proposed translation
framework in the context of PLC testing.

6.2 Limitations

One of the main limitations of this thesis concerns the generalizability of the
results. We have successfully applied our proposed methods to a variety of
different real-world PLC programs in the context of supervising port cranes and
nuclear plant systems, however, the applicability and efficiency of the proposed
methods in more sophisticated PLC programs need to be investigated to a larger
extent.

Another limitation is the narrow field of investigation for choosing proper
test automation tools for PLC programs. We have limited the scope of this in-
vestigation to the available test automation tools for CODESYS IDE because



6.2 Limitations 83

of its popularity among industrial practitioners, yet these results cannot be gen-
eralized to other PLC IDEs. The other limitation of our work is connected to
using a testing time budget when using the search-based algorithms in testing
the PLC programs inside the PyLC translation framework in Papers B and D.
We considered a 10 minutes upper bound time limit for testing the real-world
PLC programs in paper B, while we increased it to 20 minutes in Paper D. in-
creasing this time budget might affect the efficiency of Pynguin test automation
tool in terms of automated search-based testing of PLC programs.

The final limitation is related to testing Timer blocks in the FBD programs
under translation, using the proposed automated PLC to Python translation
framework in this thesis. Automated PyLC is capable of simulating the be-
haviour of the timer function blocks in PLC programs, but when it comes to
testing the translated program in Python using the Pynguin test generator, the
testing tool is stuck in an infinite loop. This problem limits the testing capabil-
ity of the PyLC tool in the context of Timer blocks in the proposed translation
framework, however, a fix to this problem is under investigation and constitutes
one of the directions of future work.






Chapter 7

Conclusion and Future Work

Motivated by the lack of automated techniques for testing PLC programs, this
thesis provides methods and tools that enable test automation for described
PLC programs in industrial settings. It proposes PyLC, an automated PLC to
Python translation framework, and assesses the applicability of EARS semi-
structured requirement engineering syntax [31] in PLC testing. This thesis
evaluates the proposed methods of all included publications using real-world
industrial control programs. The results of investigating the most-discussed
test automation tools of CODESYS IDE among practitioners highlight that the
CODESYS Test Manager and CoUnit as the prevalent test automation frame-
works. This investigation implies key considerations for choosing a framework
that includes cost, platform support, industrial applicability, and feature set. A
comparison between the identified test automation tools of CODESYS IDE
favours CODESYS Test Manager for its maturity, user support, and features
such as record playback and test suite extension, although CoUnit, an open-
source alternative, also offers significant functionality for PLC testing.

We introduce a proof of concept for the PyLC framework that translates
a PLC program into Python code, and validates the correctness of the trans-
lated code through a hybrid 3-layered unit-testing validation mechanism. This
thesis evaluates the applicability and efficiency of PyLC across various real-
world industrial PLC programs. The results of this study imply that the manual
version of PyLC is capable of translating a PLC program, described in FBD
or ST languages, into executable Python code. The hybrid translation valida-

85



86 Chapter 7. Conclusion and Future Work

tion module of the PyLC framework has validated the translation correctness
by achieving full coverage for requirement-based and translation-rules-based
testing, followed by an average of 88.44% branch coverage for search-based
testing.

As a continuation of the investigation of facilitating PLC testing for prac-
titioners, we conduct an experiment on requirements engineering and testing
for PLC systems, using the so-called EARS notation, which reveals that in-
dividuals employ various EARS patterns to transform identical requirements,
indicating the flexibility of EARS syntax in formulating natural language re-
quirements. This experiment is followed by a PLC testing investigation, which
proposes a method for transforming a PLC requirement into an EARS require-
ment, and generating test cases out of it. The results of applying this method
on different industrial real-world PLC programs in the context of crane su-
pervision systems show that the EARS-generated requirement-based test cases
are effective and provide a convenient way for PLC testers to articulate test
specifications when compared to traditional methods.

In an attempt to improve the efficiency of the proposed PLC to Python
translation framework, we also automate the PyLC framework by equipping it
with an automated XML analyzer and an automated code generator, followed
by an automated meta-heuristic translation validation module. The automated
variation of PyLC is capable of translating a PLC program in FBD language
as a PLCopen XML file into an executable Python code. The automated PyLC
accomplishes the translation under the IEC 61131-3 standard and performs
super fast without any manual human interventions. The results of applying
the automated PyLC to different real-world PLC programs in the context of
crane supervision and nuclear plant control systems reveal that the automated
PyLC can translate various industrial FBD programs into Python code, with
diverse block-type support. The automated translation validation module of
PyLC, which is assisted by Pynguin [38], generates test cases effectively too,
achieving an average branch coverage of 98% across ten real-world industrial
PLC programs.

In future work, we plan to upgrade the proposed automated translation
framework of this thesis, by adding support for PLC programs developed in
the ST language. Furthermore, we will investigate the efficiency of using dif-
ferent search-based algorithms in testing PLC programs in an industrial setting,
by employing the PyLC framework. To increase the accuracy and correctness



87

of the Python code obtained by translating PLC programs into Python, using
the PyL.C framework, we plan to equip PyLC with the static verifier for Python,
called Nagini [112]. Developing an automated EARS-based test generator us-
ing PLC requirements in natural language is another future work direction of
this thesis. Last but not least, we intend to perform a rigorous comparison
between the efficiency of the proposed automated testing frameworks and the
current manual PLC testing used in the industry.






Bibliography

[1]

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. Choosing a test automation framework for programmable
logic controllers in codesys development environment. In 2022 IEEE

International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pages 277-284. IEEE, 2022.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. Pylc: A framework for transforming and validating plc soft-
ware using python and pynguin test generator. In Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing, pages 1476—
1485, 2023.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. An empirical investigation of requirements engineering and
testing utilizing EARS notation in PLC programs. Springer Nature Topi-
cal Issue on Advances in Combinatorial and Model-based Testing, 2023.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Cristina Seceleanu, Wasif
Afzal, and Filip Sebek. Automating test generation of industrial control
software through a plc-to-python translation framework and pynguin.
In 30th Asia Pacific Software Engineering Conference - APSEC 2023.
IEEE, 2023.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. An experiment in requirements engineering and testing using
ears notation for plc systems. In 2023 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 10-17. IEEE, 2023.

89



920

Bibliography

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

Bela Genge. A review of model-based testing of industrial automation
systems. Journal of Systems Architecture, 98:333-342, 2019.

Sang-Gu Lee, Ji-Hoon Jang, Kyu-Chul Lee, and Moonzoo Kim. Model-
based testing for automation software with improved code coverage.
In 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
pages 132-139. IEEE, 2017.

Danial Habibi, José Antonio Macias, Héctor Ayala, and Pedro Sanchez.
Fuzzing-based testing of industrial control systems: Challenges and op-
portunities. In 2020 IEEE/ACM 6th International Workshop on Security
Testing (SECTEST), pages 28-33. IEEE, 2020.

Héctor Ayala, Danial Habibi, José Antonio Macias, and Pedro Sanchez.
Real-time simulation of large-scale power systems with hardware-in-
the-loop. IEEE Transactions on Industrial Informatics, 15(2):1143—
1152, 2019.

Dong Cheng, Héctor Ayala, and Yuguang Huang. Intelligent control of
renewable microgrid systems. IEEE Transactions on Industrial Elec-
tronics, 63(2):1117-1127, 2016.

Rafael Blas, Francisco Moyano, Pedro Sdnchez, and David Pérez. Plc
program testing using model-based test case generation. Computers in
Industry, 124:103368, 2021.

David Havlik, Jiri Buresek, and Zdenek Riha. Model-based testing
of cyber-physical systems: A case study on wind turbine control. In
2019 42nd International Convention on Information and Communi-

cation Technology, Electronics and Microelectronics (MIPRO), pages
1144-1149. IEEE, 2019.

Amr S. Mohamed, Hsiang Yen, and Robert X. Gao. A systematic review
of security testing in industrial control systems. IEEE Transactions on
Industrial Informatics, 16(8):5271-5282, 2020.

Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems, volume 166. Springer, 2010.



Bibliography 91

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

Juergen Weber, Peter Feldmann, Roland Brandl, Stefan Almer, and Flo-
rian Matheis. Plc programming languages in the fourth industrial rev-
olution. In 2018 13th IEEE Conference on Industrial Electronics and
Applications (ICIEA), pages 270-276. IEEE, 2018.

Roland Brandl, Peter Feldmann, and Juergen Weber. Codesys devel-
opment system—more than an iec 61131-3 programming tool. In 2016
IEEE 2Ist International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1-4. IEEE, 2016.

Vahid Garousi, Wasif Afzal, Adem Caglar, Ihsan Berk Isik, Berker Bay-
dan, Seckin Caylak, Ahmet Zeki Boyraz, Burak Yolacan, and Kadir
Herkiloglu. Comparing automated visual gui testing tools: an indus-
trial case study. In Proceedings of the 8th ACM SIGSOFT International
Workshop on Automated Software Testing, pages 21-28, 2017.

Pdivi Raulamo-Jurvanen, Mika Mintyl4d, and Vahid Garousi. Choosing
the right test automation tool: a grey literature review of practitioner
sources. In Proceedings of the 21st International Conference on Evalu-
ation and Assessment in Software Engineering, pages 21-30, 2017.

Marcin Jamro. Pou-oriented unit testing of iec 61131-3 control software.
IEEE Transactions on Industrial Informatics, 11(5):1119-1129, 2015.

Florian Hofer and Barbara Russo. Iec 61131-3 software testing: A
portable solution for native applications. IEEE Transactions on Indus-
trial Informatics, 16(6):3942-3951, 2019.

Pdivi Raulamo-Jurvanen, Simo Hosio, and Mika V Maintyld. Practi-
tioner evaluations on software testing tools. In Proceedings of the Eval-
uation and Assessment on Software Engineering, pages 57-66. 2019.

Mirko Conrad. Testing-based translation validation of generated code
in the context of iec 61508. Formal Methods in System Design, 35:389—
401, 2009.

Eduard P Enoiu, Adnan éau§evic’, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated test generation us-
ing model checking: an industrial evaluation. International Journal on
Software Tools for Technology Transfer, 18:335-353, 2016.



92

Bibliography

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

Klaus Schneider. The synchronous programming language quartz. Tech-
nical report, Internal Report 375, Department of Computer Science,
University of Kaiserslautern, 2009.

Marcel Christian Werner and Klaus Schneider. From iec 61131-3 func-
tion block diagrams to sequentially constructive statecharts. In 2022
Forum on Specification & Design Languages (FDL), pages 1-8. IEEE,
2022.

Alistair Mavin Mav and Philip Wilkinson. Ten years of ears. [EEE
Software, 36(5):10-14, 2019.

Alistair Mavin, Philip Wilksinson, Sarah Gregory, and Eero Uusitalo.
Listens learned (8 lessons learned applying ears). In 2016 IEEE 24th
International Requirements Engineering Conference (RE), pages 276—
282. IEEE, 2016.

Mika V Mintyld, Kai Petersen, Timo OA Lehtinen, and Casper Lasse-
nius. Time pressure: a controlled experiment of test case development
and requirements review. In Proceedings of the 36th International Con-
ference on Software Engineering, pages 83-94, 2014.

Fabiano Dalpiaz and Arnon Sturm. Conceptualizing requirements using
user stories and use cases: a controlled experiment. In Requirements En-
gineering: Foundation for Software Quality: 26th International Work-
ing Conference, REFSQ 2020, Pisa, Italy, March 24-27, 2020, Proceed-
ings 26, pages 221-238. Springer, 2020.

Markus Weninger, Paul Griinbacher, Huihui Zhang, Tao Yue, and
Shaukat Ali. Tool support for restricted use case specification: Find-
ings from a controlled experiment. In 2018 25th Asia-Pacific Software
Engineering Conference (APSEC), pages 21-30. IEEE, 2018.

Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak.
Easy approach to requirements syntax (ears). In 2009 17th IEEE Inter-
national Requirements Engineering Conference, pages 317-322. IEEE,
2009.



Bibliography 93

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Meng Li, Baoluo Meng, Han Yu, Kit Siu, Michael Durling, Daniel Rus-
sell, Craig McMillan, Matthew Smith, Mark Stephens, and Scott Thom-
son. Requirements-based automated test generation for safety critical
software. In 2019 38th Digital Avionics Systems Conference (DASC),
pages 1-10. IEEE, 2019.

Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson. Model-
based test suite generation for function block diagrams using the uppaal
model checker. In 2013 sixth international conference on software test-
ing, verification and validation workshops, pages 158—167. IEEE, 2013.

Mehdi Malekzadeh and Raja Noor Ainon. An automatic test case gen-
erator for testing safety-critical software systems. In 2010 The 2nd In-
ternational Conference on Computer and Automation Engineering (IC-
CAE), volume 1, pages 163—167. IEEE, 2010.

TJ Prati, JM Farines, and MH De Queiroz. Automatic test of safety
specifications for plc programs in the oil and gas industry. [FAC-
PapersOnlLine, 48(6):27-32, 2015.

Havva Gulay Gurbuz and Bedir Tekinerdogan. Model-based testing for
software safety: a systematic mapping study. Software Quality Journal,
26:1327-1372, 2018.

Emil Alégroth, Kristian Karl, Helena Rosshagen, Tomas Helmfridsson,
and Nils Olsson. Practitioners’ best practices to adopt, use or abandon
model-based testing with graphical models for software-intensive sys-
tems. Empirical Software Engineering, 27(5):1-42, 2022.

Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test
generation for python. In Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Companion Proceedings,
pages 168-172, 2022.

Bart Broekman and Edwin Notenboom. Testing embedded software.
Pearson Education, 2003.

Alistair Sutcliffe. Requirements Analysis for Safety Critical Systems,
pages 149-180. Springer London, London, 2002.



94 Bibliography

[41] Jan L Rouvroye and Elly G van den Bliek. Comparing safety analysis
techniques. Reliability Engineering & System Safety, 75(3):289-294,
2002.

[42] M. Maslar. PLC standard programming languages: IEC 1131-3. In
Conference Record of 1996 Annual Pulp and Paper Industry Technical
Conference, pages 26-31, 1996.

[43] Iris Graessler and Julian Hentze. The new V-Model of VDI 2206 and its
validation. at-Automatisierungstechnik, 68(5):312-324, 2020.

[44] Bohan Liu, He Zhang, and Saichun Zhu. An incremental V-model pro-
cess for automotive development. In 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC), pages 225-232. IEEE, 2016.

[45] Liu Shuping and Pang Ling. The research of V model in testing embed-
ded software. In 2008 International Conference on Computer Science
and Information Technology, pages 463—466. IEEE, 2008.

[46] Ravi Shanker Yadav. Improvement in the V-Model. International Jour-
nal of Scientific & Engineering Research, 3(2):1-6, 2012.

[47] Marcio Eduardo Delamaro, José Carlos Maldonado, and Marcio Jino.
Mutation testing: a technique for assessing the quality of your test cases.
Software, IEEE, 18(4):76-82, 2001.

[48] Jeffrey M Voas. Automating boundary testing of real-number programs.
Software Engineering, IEEE Transactions on, 23(6):337-348, 1997.

[49] Elsye Ginting. Equivalence partitioning and boundary value analysis to
test information system: case study. International Journal of Scientific
& Engineering Research, 6(1):164-170, 2015.

[50] Michael Hutchins, Harry Foster, Tushar Goradia, and Thomas Ostrand.
Experiments of the effectiveness of dataflow-and control-flow-based
test adequacy criteria. Software Engineering, IEEE Transactions on,
20(8):697-708, 1994.

[51] C Mayer, A Sillitti, and G Succi. Manual vs. automated testing: Which
one is better for you? Journal of Systems and Software, 168:110610,
2020.



Bibliography 95

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Reinhard Hametner, Ingo Hegny, and Alois Zoitl. A unit-test framework
for event-driven control components modeled in iec 61499. In Proceed-
ings of the 2014 ieee emerging technology and factory automation (etfa),
pages 1-8. IEEE, 2014.

Dietmar Winkler, Reinhard Hametner, and Stefan Biffl. Automation
component aspects for efficient unit testing. In 2009 IEEE Conference
on Emerging Technologies & Factory Automation, pages 1-8. IEEE,
2009.

Dong Li, Linghuan Hu, Ruizhi Gao, W Eric Wong, D Richard Kuhn,
and Raghu N Kacker. Improving MC/DC and fault detection strength
using combinatorial testing. In 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), pages
297-303. IEEE, 2017.

Gunwant Dhadyalla, Neelu Kumari, and Timothy Snell. Combinatorial
testing for an automotive hybrid electric vehicle control system: a case
study. In 2014 IEEE Seventh International Conference on Software Test-
ing, Verification and Validation Workshops, pages 51-57. IEEE, 2014.

A Rengarajan and Raja Praveen KN. An innovation of differential unit
tests based smart industrial automation software debugging tool. In 2023
International Conference on Distributed Computing and Electrical Cir-
cuits and Electronics (ICDCECE), pages 1-6. IEEE, 2023.

Rob Palin, David Ward, Ibrahim Habli, and Roger Rivett. ISO 26262
safety cases: Compliance and assurance. 2011.

Ron Bell. Introduction to iec 61508. In Acm international conference
proceeding series, volume 162, pages 3—12. Citeseer, 2006.

Florian Gross, Gordon Fraser, and Andreas Zeller. Search-based system
testing: high coverage, no false alarms. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, pages 67—
77, 2012.

Miriam Ugarte Querejeta, Eunkyoung Jee, Lingjun Liu, Pablo Valle,
Aitor Arrieta, and Miren Illarramendi Rezabal. Search-based test case



96

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

selection for plc systems using functional block diagram programs. In
2023 IEEE 34th International Symposium on Software Reliability Engi-
neering (ISSRE), pages 228-239. IEEE, 2023.

Kivanc Doganay, Markus Bohlin, and Ola Sellin. Search based testing
of embedded systems implemented in iec 61131-3: An industrial case
study. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, pages 425-432. IEEE, 2013.

Susanne Kandl, Raimund Kirner, and Peter Puschner. Development of a
framework for automated systematic testing of safety-critical embedded
systems. In 2006 International Workshop on Intelligent Solutions in
Embedded Systems, pages 1-13. IEEE, 2006.

Paul C Jorgensen. Software testing: a craftsman’s approach. Auerbach
Publications, 2013.

Igor Buzhinsky, Vladimir Ulyantsev, Jari Veijalainen, and Valeriy Vy-
atkin. Evolutionary approach to coverage testing of iec 61499 function
block applications. In 2015 IEEE 13th International Conference on In-
dustrial Informatics (INDIN), pages 1213-1218. IEEE, 2015.

Eunkyoung Jee, Junbeom Yoo, Sungdeok Cha, and Doohwan Bae. A
data flow-based structural testing technique for fbd programs. Informa-
tion and Software Technology, 51(7):1131-1139, 20009.

Marco Lormans, Hans-Gerhard Gross, Arie Van Deursen, Rini
Van Solingen, and André Stehouwer. Monitoring requirements coverage
using reconstructed views: An industrial case study. In 2006 13th Work-
ing Conference on Reverse Engineering, pages 275-284. IEEE, 2006.

RVRK Kavitha, VR Kavitha, and N Suresh Kumar. Requirement based
test case prioritization. In 2010 International Conference on Commu-
nication Control and Computing Technologies, pages 826-829. IEEE,
2010.

Anne Kramer and Bruno Legeard. Model-based testing essentials-guide
to the ISTQOB certified model-based tester: foundation level. John Wiley
& Sons, 2016.



Bibliography 97

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Re-
formulating branch coverage as a many-objective optimization problem.
In 2015 IEEE 8th international conference on software testing, verifica-
tion and validation (ICST), pages 1-10. IEEE, 2015.

Giovanni Grano, Timofey V Titov, Sebastiano Panichella, and Harald C
Gall. Branch coverage prediction in automated testing. Journal of Soft-
ware: Evolution and Process, 31(9):e2158, 2019.

Yi Wei, Bertrand Meyer, and Manuel Oriol. Is branch coverage a good
measure of testing effectiveness? Empirical Software Engineering and
Verification: International Summer Schools, LASER 2008-2010, Elba
Island, Italy, Revised Tutorial Lectures, pages 194-212, 2012.

Ahmed Gario, Anneliese Andrews, and Seana Hagerman. Testing of
safety-critical systems: An aerospace launch application. In 2014 IEEE
Aerospace Conference, pages 1-17. IEEE, 2014.

Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark
Harman. An empirical study on mutation, statement and branch cover-
age fault revelation that avoids the unreliable clean program assumption.
In 2017 39th International Conference on Software Engineering (ICSE),
pages 597-608. IEEE, 2017.

Gregory Gay, Matt Staats, Michael W Whalen, and Mats PE Heimdahl.
Moving the goalposts: coverage satisfaction is not enough. In Proceed-
ings of the 7th International Workshop on Search-Based Software Test-
ing, pages 19-22, 2014.

Laura Inozemtseva and Reid Holmes. Coverage is not strongly corre-
lated with test suite effectiveness. In Proceedings of the 36th interna-
tional conference on software engineering, pages 435445, 2014.

Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton,
and Frederick G Sayward. Mutation analysis. Technical report, Geor-
gia Inst of Tech Atlanta School of Information And Computer Science,
1979.

Junbeom Yoo, Eui-Sub Kim, and Jang-Soo Lee. A behavior-preserving
translation from fbd design to ¢ implementation for reactor protection



98

Bibliography

(78]

[79]

(80]

[81]

(82]

[83]

[84]

[85]

system software. Nuclear Engineering and Technology, 45(4):489-504,
2013.

Eunkyoung Jee, Donghwan Shin, Sungdeok Cha, Jang-Soo Lee, and
Doo-Hwan Bae. Automated test case generation for fbd programs im-
plementing reactor protection system software. Software Testing, Verifi-
cation and Reliability, 24(8):608-628, 2014.

Weigang He, Jianqi Shi, Ting Su, Zeyu Lu, Li Hao, and Yanhong Huang.
Automated test generation for iec 61131-3 st programs via dynamic
symbolic execution. Science of Computer Programming, 206:102608,
2021.

Felix Dobslaw, Ruiyuan Wan, and Yuechan Hao. Generic and industrial
scale many-criteria regression test selection. Journal of Systems and
Software, 205:111802, 2023.

Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A
model-driven validation & verification environment for embedded sys-
tems. In 2008 International Symposium on Industrial Embedded Sys-
tems, pages 241-244. IEEE, 2008.

Marcel Christian Werner and Klaus Schneider. From iec 61131-3 func-
tion block diagrams to sequentially constructive statecharts.

Birgit Vogel-Heuser, Juliane Fischer, Stefan Feldmann, Sebastian
Ulewicz, and Susanne Rosch. Modularity and architecture of plc-based
software for automated production systems: An analysis in industrial
companies. Journal of Systems and Software, 131:35-62, 2017.

Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and
Michael Hoffmann. Industry 4.0. Business & information systems engi-
neering, 6:239-242,2014.

Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen,
and Mika V Mintyld. Benefits and limitations of automated software
testing: Systematic literature review and practitioner survey. In 2012
7th International Workshop on Automation of Software Test (AST), pages
36-42. IEEE, 2012.



Bibliography 99

(86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Eduard Enoiu, Daniel Sundmark, Adnan éauéevic’, and Paul Pettersson.
A comparative study of manual and automated testing for industrial con-
trol software. In International Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 412-417. IEEE, 2017.

Stefan Berner, Roland Weber, and Rudolf K Keller. Observations and
lessons learned from automated testing. In Proceedings of the 27th in-
ternational conference on Software engineering, pages 571-579, 2005.

Vahid Garousi and Frank Elberzhager. Test automation: not just for test
execution. IEEE Software, 34(2):90-96, 2017.

Colin Robson and Kieran McCartan. Real world research: a resource

for users of social research methods in applied settings. Wiley, 2016.

Conradi and Hofmann. Empirical Methods and Studies in Software En-
gineering. Springer Berlin Heidelberg, 2003.

Robert K. Yin. Case study research and applications: Design and meth-
ods. Sage Publications, 2018.

Per Runeson and Martin Host. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engi-
neering, 14(2):131-164, 2009.

William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Experi-
mental and quasi-experimental designs for generalized causal inference.
Houghton Mifflin, 2002.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjérn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

John W. Creswell and J. David Creswell. Research design: Qualitative,
quantitative, and mixed methods approaches. Sage Publications, 2017.

Vahid Garousi, Michael Felderer, and Mika V Mintyld. The need for
multivocal literature reviews in software engineering: complementing
systematic literature reviews with grey literature. In Proceedings of the
20th international conference on evaluation and assessment in software
engineering, pages 1-6, 2016.



100

Bibliography

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Au-
tomated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software
Engineering, 44(2):122-158, 2017.

Andrea Arcuri. Many independent objective (mio) algorithm for test
suite generation. In Search Based Software Engineering: 9th Interna-
tional Symposium, SSBSE 2017, Paderborn, Germany, September 9-11,
2017, Proceedings 9, pages 3—17. Springer, 2017.

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.
Feedback-directed random test generation. In 29th International Con-
ference on Software Engineering (ICSE’07), pages 75-84. IEEE, 2007.

Gordon Fraser and Andrea Arcuri. Whole test suite generation. /EEE
Transactions on Software Engineering, 39(2):276-291, 2012.

Alessio Ferrari, Franco Mazzanti, Davide Basile, and Maurice Ter Beek.
Systematic evaluation and usability analysis of formal methods tools
for railway signaling system design. IEEE Transactions on Software
Engineering, 2021.

Mubarak Albarka Umar and Chen Zhanfang. A study of automated soft-
ware testing: Automation tools and frameworks. International Journal
of Computer Science Engineering (IJCSE), 6:217-225, 2019.

Heidilyn Veloso Gamido and Marlon Viray Gamido. Comparative re-
view of the features of automated software testing tools. International
Journal of Electrical and Computer Engineering, 9(5):4473, 2019.

Harpreet Kaur and Gagan Gupta. Comparative study of automated test-
ing tools: selenium, quick test professional and testcomplete. Journal
of Engineering Research and Applications, 3(5):1739-1743, 2013.

Emil Borjesson and Robert Feldt. Automated system testing using vi-
sual gui testing tools: A comparative study in industry. In International
Conference on Software Testing, Verification and Validation, pages 350—
359. IEEE, 2012.



[106]

[107]

[108]

[109]

[110]

[111]

[112]

Sebastian Ulewicz and Birgit Vogel-Heuser. Increasing system test cov-
erage in production automation systems. Control Engineering Practice,
73:171-185, 2018.

Sebastian Ulewicz and Birgit Vogel-Heuser. Guided semi-automatic
system testing in factory automation. In International Conference on
Industrial Informatics (INDIN), pages 142-147. IEEE, 2016.

Sebastian Ulewicz and Birgit Vogel-Heuser. System regression test pri-
oritization in factory automation: Relating functional system tests to the
tested code using field data. In Annual Conference of the IEEE Indus-
trial Electronics Society, pages 4619—4626. IEEE, 2016.

Sebastian Ulewicz and Birgit Vogel-Heuser. Industrially applicable sys-
tem regression test prioritization in production automation. Transactions
on Automation Science and Engineering, 15(4):1839-1851, 2018.

GIACOMO Barbieri, GABRIEL Quintero, OSCAR Cerrato, JULIAN
Otero, DAVID Zanger, and ALEJANDRO Mejia. A mathematical model
to enable the virtual commissioning simulation of wick soilless cultiva-
tions. J. Eng. Sci. Technol, 16:3325-3342, 2021.

Flemstrom Daniel, Enoiu Eduard, Azal Wasif, Sundmark Daniel,
Gustafsson Thomas, and Kobetski Avenir. From natural language re-
quirements to passive test cases using guarded assertions. In 2018 IEEE
International Conference on Software Quality, Reliability and Security
(ORS), pages 470-481. IEEE, 2018.

Marco FEilers and Peter Miiller. Nagini: a static verifier for python. In
Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I 30, pages 596—603. Springer,
2018.






11

Included Papers

103






Chapter 8

Paper A:

Choosing a Test Automation
Framework for
Programmable Logic

Controllers in CODESYS
Development Environment

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina Seceleanu
Published in the 15th IEEE International Conference on IEEE International
Conference on Software Testing, Verification and Validation Workshops ICSTW
2022), The Next Level of Test Automation (NEXTA 2022).

105



106 Paper A

8.1 Abstract

Programmable Logic Controllers are computer devices often used in industrial
control systems as primary components that provide operational control and
monitoring. The software running on these controllers is usually programmed
in an Integrated Development Environment using a graphical or textual lan-
guage defined in the IEC 61131-3 standard. Although traditionally, engineers
have tested programmable logic controllers’ software manually, test automa-
tion is being adopted during development in various compliant development
environments. However, recent studies indicate that choosing a suitable test
automation framework is not trivial and hinders industrial applicability. In this
paper, we tackle the problem of choosing a test automation framework for test-
ing programmable logic controllers, by focusing on the COntroller DEvelop-
ment SYStem (CODESYS) development environment. CODESYS is deemed
popular for device-independent programming according to IEC 61131-3. We
explore the CODESY S-supported test automation frameworks through a grey
literature review and identify the essential criteria for choosing such a test au-
tomation framework. We validate these criteria with an industry practitioner
and compare the resulting test automation frameworks in an industrial case
study. Next, we summarize the steps for selecting a test automation framework
and the identification of 29 different criteria for test automation framework
evaluation. This study shows that CODESYS Test Manager and CoUnit are
mentioned the most in the grey literature review results. The industrial case
study aims to increase the know-how in automated testing of programmable
logic controllers and help other researchers and practitioners identify the right
framework for test automation in an industrial context.

8.2 Introduction

Testing is an important activity in the engineering of industrial control soft-
ware. In certain application domains (e.g., automation industry), programmable
logic controllers (PLCs) provide management and monitoring for control soft-
ware [1]. Even if test execution on PLCs is usually performed manually,
test automation is emerging during PLC development at different stages of
integration. Different PLC vendors and PLC software manufacturers have
proposed several Integrated Development Environments (IDEs). One of the



8.2 Introduction 107

most frequently used PLC IDEs in the industry is CODESY'S, a manufacturer-
independent software that is free to use. It supports all the PLC programming
languages of IEC 61131-3 standard and is widely used by many industrial com-
panies.

Test automation can be defined as the process of automating software test-
ing tasks such as test script development, test execution, and requirements ver-
ification using an automation test framework [2], [3]. Choosing the right test
automation tool has received significant attention from both academia and in-
dustry in recent years[4]. Furthermore, recent observations of collaborations
between industry and academia emphasize the importance of selecting the right
test automation tool since it is a non-trivial task for many practitioners [5]. This
could stem from at least two reasons; the misunderstanding of what important
criteria to use for choosing the right tool and the lack of knowledge of the pros
and cons of using test automation frameworks in practice.

In this paper, we address the problem of choosing the right test automation
tool for PLC programs in CODESYS IDE by leveraging a Grey Literature Re-
view (GLR) followed by a comparative study on the discovered tools. Aiming
at conducting an effective comparison between the detected tools, we discover
the most important features of the test automation tools through a literature re-
view. We evaluate the validity of the discovered features by asking a group of
engineers from a large automation company to review them. Based on the goal
of this study, we formulate the following research questions:

1. What are the reported test automation frameworks for CODESYS in the
grey literature?

2. What are the reported features that should be considered when choosing
a test automation framework for CODESYS?

3. How do different test automation frameworks for CODESYS compare
in terms of different features?

4. How do different test automation frameworks for CODESYS compare
in terms of their applicability to an industrial use case?

We aim to answer these research questions using a GLR and a case study
in which we compare the identified test automation frameworks.



108 Paper A

# RefrgeratorContolproject: - CODESYS
Fle Edt View Pjet FBDADAL Buld Onine Debug Took Window Hep ¢
Er-2- 1) Y {3 (7| | Applcation Device PLCLogid - &

[8] Smuston  |@) Veualmaton |44 TeskConfguraton

nx
our

Lasthuld: ©0 ® 0 Precomple o/ G Project user: (nobody) Qe

Figure 8.1: CODESYS Integrated Development Environment

8.3 BACKGROUND AND RELATED WORK

8.3.1 PLC Programming, IEC 61131-3 and CODESYS

In recent years the IEC 61131-3 programming standard for the automation in-
dustry has been proposed, and today it is widely accepted and used by a variety
of well-known PLC manufacturers worldwide. The smallest independent soft-
ware unit in a PLC program is called a POU (Program Organisation Unit), also
known as a block. There are three types of POU: function, function block (FB),
and program, which can call each other with or without parameters. Based on
IEC 61131-3 standard, a POU can be programmed using several programming
languages [6] (i.e., structured text (ST), instruction list (IL), ladder diagram
(LD), Sequential Function Chart (SFC) and function block diagram (FBD)).
CODESYS stands for COntroller DEvelopment SYStem, and it is an in-
tegrated development environment (IDE) for programming controller applica-
tions according to the international industrial standard IEC 61131-3 [7]. The
framework is developed by Smart Software Solutions GmbH In this work, we
choose CODESYS as our IDE for two reasons. First, CODESYS is free to use
and is popular in industry [7]. Second, CODESYS is a device-manufacturer-



8.3 BACKGROUND AND RELATED WORK 109

independent IDE ! that can be used to develop PLC programs for a wide range
of PLC devices from various vendors.

8.3.2 Related Work

Inrecent years, researchers have made efforts to develop test automation frame-
works for PLC software. Jamro introduces a method for POU-oriented unit
testing for IEC 61131-3 languages [8]. In this approach, test cases are de-
fined in CPTest+, a dedicated test definition language. The proposed approach
is introduced in the CPDev engineering environment. Recently, Hofer and
Russo [9] presented a unit-testing framework named APTest (Advanced Pro-
gram Organization Unit Testing) for CODESYS IDE. The framework is devel-
oped based on the IEC61131-3 standard and CPTest+. APTest is a POU-based
framework equipped with a test library supporting different types of assertions
and is compatible with CODESYS (version 2.3). Even if these academic tools
have a wide range of capabilities such as test parallelization, simulating ana-
logue signals, and supporting time-dependent behaviours, there is limited evi-
dence of how industrially useful these frameworks are. In addition, these tools
are only compatible with older versions of CODESYS.

Selecting a test automation framework is an essential part of software test-
ing, and recent studies have looked at different challenges to implementing
automation support. Raulamo-Jurvane et al. [5] performed a GLR to iden-
tify the practitioners’ criteria for choosing the right test automation tools. The
study showed that practitioners select and embrace the widely known and uti-
lized tools. Garousi et al. [4] compared visual GUI testing frameworks (i.e.,
Sikuli and JAutomate) using several relevant features and performed an indus-
trial case study. In 2019, Raulamo-Jurvane et al. investigated the practitioners’
opinions on evaluating testing tools by conducting an online survey [10]. They
found that evaluations in which one uses a tool seem to be more favourable
than those based on opinions and considering the opinions of seven experts
provides a reasonable level of reliability.

These results kindled our interest in studying how to tackle the problem of
choosing a test automation framework for programmable logic controllers in
CODESYS, especially when these tools are used to test safety-critical indus-
trial control systems.

Thttps://www.codesys.com/



110 Paper A

Literature
Review

CODESYS IDE
Ecosystem

TAF
Features

Test Automation
Frameworks (TAFs)

Industrial e
e TAFs Validation
A

Evaluation
TAFs

Selection
Industrial Case Study |[«————— TAFs Comparison

Figure 8.2: An Overview of The Methodology Used for Choosing Test Automation
Frameworks (TAFs) for PLCs.

84 METHOD

In this study, we leverage a hybrid methodology that combines conducting a
GLR and an industrial case study. Our aim of performing GLR is to find the
most-discussed available test automation frameworks of CODESYS IDE sys-
tematically and reasonably, reflecting the practitioners’ point of view. In con-
trast, the case study is performed to represent and compare the functionality
of the proposed frameworks in a real-world industrial case study. The overall
conceptual architecture of the proposed hybrid methodology can be observed
in Figure 8.2, and it will be discussed in more detail in the rest of this section.

8.4.1 Grey Literature Review

We find the GLR as one of the most suitable approaches to conduct our study
since the available information about test automation frameworks of CODESYS
is more accessible online than in academic papers. Consequently, to explore
the available automation frameworks targeting CODESYS, we need to gather
information across the web, and prioritize it based on features and popularity.
We base our approach on the GLR approach proposed by Garousi e al. [11].
The conducted GLR approach (Step 1 in Figure 8.2) consists of several steps.



8.4 METHOD 111

Table 8.1: GLR Search Strings

A B C D
CODESYS Test Automation Framework
Testing Automated Tool
Automatic

Table 8.2: Considered Object Properties

Object Properties
Extracted fi ‘ Object Type [ Literature Type | Demographic info
| Documentation | Tutorial [ Description | Discussion | other | Grey [ Formal | Year | Author(s) | Author’s Organisation

Title | Link

8.4.2 Search Process and Framework Selection

First, we aim to detect the test automation frameworks available for CODESYS,
and consequently, we perform a GLR by searching for a combination of topic-
related keywords on Google. We carry out several exploratory search queries
using strings such as "CODESYS test automation framework" and "CODESYS
test automation tool". Moreover, we also consider the related search strings
suggested to us by Google. However, we remove the suggestions that include
a specific framework name. We present the final search strings in Table 1. We
consider the keywords of each column as synonyms and combine them via the
OR operator (e.g., framework OR tool). Then, we produce the whole search
string using the AND operator between the existing keywords of columns A to
D.

We follow the guidelines used by Raulamo et al. [5] to identify the avail-
able test automation frameworks targeting CODESYS. Firstly, the pool of con-
tents is revised by the first author of this paper to remove any irrelevant results
from it. Secondly, the new version of the pool is reviewed by at least one of
the authors of this paper. We only include the results related to CODESYS-

Table 8.3: Selection Criteria for GLR

Selection Criteria

Author’s Credibility
Alexa Rank | Referral Sites

CODESYS Verified | v3.x Support




112 Paper A

compatible test automation frameworks. Furthermore, all the academic papers
are excluded from the contents pool. It should be noted that in case of any
conflicting views among authors, we leverage a voting system to choose the
results for the final pool, based on the opinion of the majority of the authors.

8.4.3 Pool of Objects

Every result and its corresponding information is called an "Object" in the rest
of this study. We consider several properties for every object. The considered
properties are shown in Table 8.2. The final pool of objects and defined criteria
are accessible online on GitHub?.

8.4.4 Data Extraction Method

To classify the objects of the pool of contents and specify the required criteria
to detect the efficient test automation frameworks of CODESYS, we follow
a systematic qualitative method of specific related work [12]. All authors of
this paper have reviewed the qualitative analysis of this work. Since coding in
qualitative analysis is not just a preliminary step of analyzing the data, but it
also includes "deep analysis and interpretation of the data meanings" [12], we
select the relevant results and analyze them.

8.4.5 Selection Criteria

The final version of the considered criteria to classify the objects of the pool
is shown in Table 8.3. Since the goal is to discover valid test automation
frameworks that are compatible with CODESYS IDE, we checked the official
CODESYS documentation. The next criterion is the credibility of the object’s
author, for which two parameters are evaluated: the number of referral sites
to an object, and the Alexa rank of the object’s website. Moreover, as we are
looking for up-to-date frameworks compatible with the CODESYS v3.x fam-
ily, the publishing date is another criterion used in filtering the results. The first
version of the CODESYS V3.x family was released in 2016°.



https://github.com/MikaelSalari/CODESYS-Tool-Comparison
https://store.codesys.com/en/codesys.html

8.4 METHOD 113

8.4.6 Discovery and Validation of Features

To perform an effective comparison between the discovered test automation
frameworks of CODESYS, first, we need to identify the most important re-
ported features of test automation frameworks. To this end, we conduct an
informal literature review on the related work in this area to gather a list of
features that should be considered during the comparison process (Step 2 in
Figure 8.2).

In this paper, we reviewed the literature and identified five existing works
as our sources of information for test automation framework feature extraction:
(1) The study of Ferrari et al. [13] on the selection and adoption of formal
tools in the railway domain, (2) Umar et al. [14] which is an overview of
popular existing test automation tools, (3) the study of Gamido et al. [15]
performing a comparative review based on the user’s needs, (4) a study [16]
focusing on some well-known test automation frameworks including Selenium,
Quick Test Professional and Testcomplete, and (5) a comparative study [17] on
two different automated visual GUI testing tools including CommercialTool
and Sikuli.

Aiming at making this work more aligned with industry, we asked a group
of engineers who are working at a large industrial automation company in Swe-
den to evaluate the validity of the discovered features from their point of view
(Step 3 in Figure 8.2). These engineers are experts in developing and testing the
supervisory PLC programs. Besides feature validation, the engineer also added
two new features that are important from the company’s perspective in choos-
ing the right test automation tool. We only include the industrial-validated
features in our tool comparison study, since our priority is to help practitioners
in their choice, based on their needs.

8.4.7 Industrial Case Study

To practically use the results of this comparison, we evaluate the applicability
of the discovered test automation frameworks for CODESYS in a real-world
scenario, using an exploratory case study using an industrial system (Step 4 &
5 in Figure 8.2). The case is provided by a large industrial automation company
in Sweden.



114 Paper A

8.5 Results

8.5.1 RQI1 - Discovered Test Automation Frameworks

As a result of the GLR, we obtained 120000 search results which are all writ-
ten in English. We only stored the first 100 results locally to build the pool of
contents since we discovered that these contain relevant sources to our topic.
Most of the objects in the final version in the pool of objects have been pub-
lished by industry individuals, including IDE developers and PLC vendors.
Aiming to establish a trade-off between the preferences of companies and in-
dependent framework developers in our results, we included valid third-party
developers and GitHub topics in the final pool. After reviewing the content
of the pool, we ended up with a pool consisting of 13 sources. After ana-
lyzing the final objects based on the defined criteria, we discovered three test
automation frameworks as the most prevalent automation frameworks target-
ing CODESYS. Out of all the collected results, 62% of the objects in the pool
are pointing towards CODESYS Test Manager* (the largest share of the dis-
covered objects). Two other frameworks, CoUnit® and TcUnit are revealed
in 15% of the objects each. Other frameworks were mentioned in 8% of the
objects. Our results suggest that most of the discovered objects of our GLR af-
ter screening and applying the selection criteria point towards CODESYS Test
Manager, CoUnit (formerly known as CfUnit), and TcUnit as the predominant
test automation frameworks targeting CODESYS. We note here that CoUnit
is developed based on TcUnit and both frameworks have similar functionality.
Since CODESYS IDE officially supports only the former, we include CoUnit
in the final list of discovered automation frameworks.

Answer RQ1: Our results suggest that the most prevalent test automation
frameworks targeting CODESYS IDE for PLC testing are the CODESYS
Test Manager and CoUnit.

8.5.2 RQ?2 - Test Automation Frameworks Features

Conducting a comparison between the discovered test automation frameworks
of CODESYS, first, we need to identify the essential features of these test au-

4]ff31.//w com/codesys—test-manager.html?

com/lib/counit/home/Home/


https://store.codesys.com/codesys-test-manager.html?
https://forge.codesys.com/lib/counit/home/Home/

8.5 Results 115

Table 8.4: Extracted and Validated Framework Features.

Industry-validated Features
Category Feature Extraction Source
Company Constraints Cost L13], [14], [15], [16], [17]
Supported Platforms [13], [14],[15]
. Industrial Usage [13]
Maturity Stage of Develop{fnent [13]
Documentation and Report Generation [13]
. . .. Playback Record [15]
Testing Functionalities TestySuite Support (7]
Test Suite Extension Industry
Tool Flexibility Teamwork Support [13]
DevOps/ALM Integration Support [14]
Continuous Integration (CI) Support [14]
. Script Language [14], [15], [17]
Usability Availability of Customer Support [13], [14]
Quality of Documentation [13]
Maintenance Support Industry

tomation frameworks. To this end, we followed a hybrid approach which con-
sisted of a literature review of related works followed by an industrial feature
validation. Based on three sources of information used (academic works, in-
dustrial input, and official documentation), we discovered 29 industry-reported
essential features that should be considered when choosing a test automation
framework for PLCs. We acknowledge that many of these features are generic.
Still, the instantiation of these features is specific to PLCs. Since our aim in
conducting this work is to address the needs of industrial practitioners, we eval-
uated the validity of the discovered features by checking them with a group of
engineers working with CODESYS and PLC testing in an industrial automa-
tion company in Sweden. These engineers validated these features of a test
automation framework by marking the ones a tester would use to choose such
a framework (i.e., 15 out of 29 features were considered important by these
engineers). The list of the discovered and validated test automation framework
features and non-validated ones as well as their category and source of extrac-
tion, are shown in Table 8.4 and 8.5 respectively. It should be noted that the
gathered data does not need any further processing (e.g., open coding).

We divided the discovered features into five categories based on their focus,
including Company Constraints, Maturity, Testing Functionalities, Framework



116 Paper A

Table 8.5: Other Extracted Framework Features.

Other Features
Category Feature Extraction Source
Company Constraints Ease of Installation [13], [14]
License Type Tool Documentation
Test Script Specification [13]
Supported Testable Objects Tool Documentation
Testing Functionalities Requirements Traceability [13]
Script Creation Time [14]
Import Support [17]
Backward Compatibility [13], [17]
o Standard Input Format [13]
Tool Flexibility Modularity of The Tool [13]
Framework Development Language [17]
Programming skills [14], [15]
Usability Report Format [15]
Graphical User Interface (GUI) [13]

Flexibility, and Usability.

Company Constraints

Cost indicates the cost model used (FREE, MIX, PAY) [13], Supported Plat-
forms specifies the platforms supported by the framework (Windows, Mac,
Linux) [13], Ease of Installation indicates whether the framework installation
requires installing other additional components or covers all the installation re-
quirements. (YES, NO, PARTIAL) [13], and License Type implies the type of
license used for the test automation framework (e.g., Apache, MIT).

Maturity

Industrial Usage specifies the level of reported industrial usage in academic
papers and reports (HIGH, MEDIUM, LOW) [13] and Stage of Development
indicates whether the framework has evolved through releasing different ver-
sions (MATURE), it is an academic or early version (PROTOTYPE) or it is
new but has strong fundamental roots (PARTIAL) [13].



8.5 Results 117

Testing Functionalities

Test Script Specification determines how the test script is represented by the
framework: Graphical User Interface (GUI), Textual Representation (TEXT),
imported textual file IMPORT) [13]. Supported Testable Objects feature
was discovered by reviewing the tools documentation. This feature indicates
the object types that are supported for testing in a PLC program (APPLI-
CATION, IEC LIBRARIES, COMMUNICATION). Documentation and Re-
port Generation characterizes whether the automatically generated reports
and documentation of a tool contain well-detailed technical details (COM-
PLETE) or only some summarized technical details are available (SUMMA-
RIZED) [13]. Requirements Traceability specifies if the framework can pro-
vide traceability between the generated test cases to other related artefacts
(YES, NO) [13]. Script Creation Time relates to the time required to pro-
duce test scripts (QUICK, SLOW) [14]. Playback Record indicates whether
the framework can record testing sessions and playback these as test scripts
(YES, NO) [15]. Import Support specifies if the framework can import test
cases and test scripts using external files (Python, Java, NO) [17]. Test Suite
Support relates to the framework’s ability to support the user in the creation
and execution of test suites (YES, NO) [17]. Test Suite Extension indicates
the ease of extending test suites using the provided features of a certain test
automation tool. Developing new test suites in a PLC program is a crucial and
sensitive task because all the connections between the different test suites (test
counterparts of a POU under test) should be updated after any new modifica-
tions. (EASY, MEDIUM, HARD).

Framework Flexibility

Backward Compatibility indicates to which extent test scripts developed with
previous versions of the CODESYS framework can be used in the current
version (YES, NO, UNCERTAIN) [13]. Standard Input Format specifies
whether the language that is used for developing test cases is based on a stan-
dardized programming language or not (YES, NO) [13]. Modularity of The
Tool specifies if the framework supports a wide range of different modules
and add-ons that can be used to extend its functionality or not (YES, NO)
[13]. Teamwork Support indicates whether the framework supports multi-
user development and collaboration (YES, NO) [13]. Framework Develop-



118 Paper A

ment Language details the programming language that is used to develop the
framework (e.g., Python, Java, C, Jython) [17].

Usability

Programming Skills specifies what level of programming skills is needed
to work with the framework. Available options are advanced needed pro-
gramming skills (ADVANCED), no programming skills required (NOT RE-
QUIRED) or only required for advanced test scripts (PARTIAL) [14]. De-
vOps/ALM Integration Support relates to the framework’s ability to support
integration with DevOps or ALM environments (YES, NO) [14]. Continuous
Integration (CI) Support indicates if the framework supports CI frameworks
(YES, NO) [14]. Script Language specifies the programming language(s) re-
quired for creating test scripts (e.g., Python, Structured Text, Function Block
Diagram, Ladder) [14]. Report Format indicates how the test reports are rep-
resented in a framework (HTML, XML, CSV) [15]. Availability of Customer
Support evaluates the level of support and tutorials provided for the users of a
certain tool (HIGH, MEDIUM, LOW) [13]. Graphical User Interface (GUI)
investigates the suitability of the designed graphical user interface of a frame-
work. Available options are; The GUI is designed properly and is powerful
enough to cover almost all the available functionalities of a framework (YES);
The provided GUI is user-friendly, but does not provide a graphical representa-
tion of all functionalities of a framework (PARTIAL); The GUI exists but it is
limited in its functionality (LIMITED); the framework has no GUI (NO) [13].
Quality of Documentation Specifies the framework’s level of documentation
and tutorial which is provided by the framework developers. Available options
are; The framework is well-documented and a wide range of updated tutorials
and framework specifications are easily accessible online (VERY GOOD); The
framework is documented properly but the provided documentation is not eas-
ily accessible or it is only available offline (GOOD); The framework is not doc-
umented sufficiently or it can not be accessed easily INSUFFICIENT) [13].
Maintenance Support implies the level of maintenance support that is pro-
vided and whether testing new functions in a POU under test is easy or not
(EASY/HARD).



8.5 Results 119

Results RQ2: We discovered several features that should be considered
when choosing a test automation framework for PLC testing: cost, sup-
ported platforms, industrial use, stage of development, documentation
and report generation, record playback, test suite support, test suite ex-
tension, team support, DevOps/ALM support, continuous integration sup-
port, scripting language, import support, availability of customer sup-
port, quality of documentation, and maintenance support.

8.5.3 RQ3 - Test Automation Frameworks

We conducted an initial comparative examination given the features identified
in the previous section. We focus on Test Manager and CoUnit as our chosen
test automation frameworks in CODESYS IDE. The results of this compara-
tive examination are shown in Table 8.6. Even if both frameworks support only
Windows platforms and have continuous integration support, we can observe
significant differences. In terms of cost, CODESYS Test Manager is a commer-
cial product but available for academics to use in their research. CoUnit is an
open-source software freely available. Industrial usage of Test Manager is con-
sidered HIGH since its use has been reported in several industry-related reports
[18], [19], [20], [21], [22]. Regarding the framework’s maturity, CODESYS
Test Manager seems to be more mature and has evolved through eight differ-
ent versions so far, compared to CoUnit (i.e., in 3 versions). One of the main
advantages of CODESYS Test Manager is the ability to record and playback
that is not supported by the counterpart framework. Both frameworks support
test suites in .xml file format. In addition, CODESYS Test Manager has the
advantage of supporting .tsd (Tamino Schema) extension (used as a container
of elements that a Tamino XML Server document contains). CODESYS Test
Manager supports test suites to be extended by using specific predefined test
commands, but the extension of test suites in CoUnit demands ST program-
ming knowledge, and the user needs to instantiate the code for each single test
case. CODESYS Test Manager supports Python and all IEC 61131-3 program-
ming languages for developing the test scripts, while CoUnit only supports
the ST programming language. Availability of customer support is another
essential factor from an industry point of view in this comparison, and the
CODESYS Test Manager seems to be superior in this respect. The quality of
the documentation provided by the CODESYS Test Manager is excellent since



120 Paper A

comprehensive educational material and good video tutorials are available. On
the other hand, CoUnit provides less documentation and tutorials. Maintenance
support is another important feature proposed. CODESYS Test Manager sup-
ports direct main PLC program testing and one instantiation of the code under
test can be used in all related test suites but these features are not available in
CoUnit.

Results RQ3: Based on our initial comparison between CODESYS Test
Manager and CoUnit based on the 15 industry-validated features, the
results show that CODESYS Test Manager is more mature and has sev-
eral advantages over CoUnit, including user support, record and play-
back features, and easy test suite extension. Nevertheless, CoUnit, as
an open-source counterpart, also provides testers with many key features
used during PLC testing.

8.5.4 RQ4 - Applicability in an Industrial Case Study

Aiming to answer this research question, we applied the two test automation
frameworks we found through our GLR to an industrial case study by consid-
ering several possible test scenarios. Our case is a control system provided by a
large automation company in Sweden consisting of several POUs. This system
is developed in the FBD programming language.

The Function Block (FB) in this POU consists of several computational
blocks executed cyclically. The program executes in a cyclic loop where ev-
ery cycle contains three phases: read (reading all inputs and storing the input
values), execute (computation without interruption), and write (update the out-
puts). The FBD program is created as a composition of interconnected blocks
with data flow communication. When activated, a program consumes one set
of input data and then executes it to completion. We considered functional sce-
narios for testing the POU. We evaluate this functionality and the applicability
of Test Manager and CoUnit by automating the test execution for the provided
case and all POUs. To this end, we generated several test suites consisting of
manually created test cases.

To automate the test execution in CODESYS Test Manager, the first step
needed is instantiating the POU in the main PLC program. Next, we create
the required test suites containing 10 test cases. Each test case includes several
test actions that are supposed to alter the values of the inputs and compare the



121

8.5 Results

9[qQu[IBAR 10U aIE SpUBWIWOD 153} [edrydels pue N0,
pauoddns jou st weiSord Hd urew 9y Jo Funsal 19T

Q[qE[IBAR SIB SPUBWIWOD 159) [eo1ydeIs pue [0,
pauoddns st weroxd urew HId 91 Jo Sunsa) 10911

1oddng oouruUIBIA

QIVH ASvd
SUITUO J[QR[IBAR SIP [BLIOIN) [BNIX3) PUER UOHBIUSWINIOP [00L QUI[UO J[QR[IBAE dIE SOIPIA [ELIOIN) [BIDLFO PUE UOHEIUIWNIOP [00) OF woneIawNa0 Jo ANLEnd)

aoon do0D AddA

ON (31qerreae st oddns 1owoIsnd §ASAAOD [BPYJO)STA nuoddng 1owoisn) jo Apiqe[reay
(LS) 1X91, parmonng sogen3ue| SurwweSold pauoddng ¢-1€119 DA [V ‘UopAg afen3ue 1duog
SOX. SOX. uoddng (1) uones3auy snonunuo)
PapIAOIJ uonEULIOJU] ON P3pIAOIJ UONBULIOJU] ON poddng uoneidaiu] INTv/sd0asq

ON ON 1oddng yromuwea],

$3SBD 1891 ()| UIRIUOD AJUO UBD A)INS 159) AIOAT 4
paxnbai s1159) 19pun N Y} JO UONENURISUI IOUNSIP MAU © ASED 159) MU KIS IO
a3en3ue| S ur pado[oAdp 9q 0) PIJU $ISED 159) MIN 4

PAIILI] JOU ST 2)INS 1S9} & APISUI SISLD 1$9) JO JOQUINU Y
S3SBD 153 PUB SI)INS 153) MAU [ UI PIsn 3 UL 153} 19pun O Y} JO UONBNURISUI SUQ.
‘SpUBWIWO? 159} [eoryderd ojqereae oy Sursn pado[oadp 9q A[Ised URD SISED 159) MIN

UOISUSIXH NG 1S,

QIVH ASvd
papioddns ST UOTSU)X [UIX" payioddns aIe SUOISUIXA [WIX” “PSY' 4 Jioddng a1ng 15aL
SHA SHA
-~ QInJea) $5213014 1S, AY) BIA PIZI[Lal 3q URD 1099y YraKEId
SdX
AAZIAVININNS AL TINOD uoneIauAn 1oday pue uonEUAWNIOJ
1IeJ OS Pasea[aI SUOISIAA ¢. IeJ OS Pasea[aI SUOISIAA § A p—
VLIV TANLVIN
MOT HOIH as() [ersnpuy
SMOPUIA\ JJOSOIDIIAT SMOPUIA 1JOSOIITIA suopie[d paroddng
ASUDOI[ 90108 U sasodind orwapeoe 10§ SN 01 931J INq “ASUIDI] [RIOIIWLWO),. 1500
e XIN
nnoy JaFeuey 1591, aanjea

'SQINJB9,] PaYePI[EA Y} UO PIseq U0 pue JOSeUBA 1S9, SASHAOD Ueamiaq uostredwio)) ay) JO MIIAIOAQ UV :9°§ 9[qB],




122 Paper A

test_Check_Signals
Check Signals

status_ins [ENE—{Status [PYes FALSE g
Inputl_ins [Z5EGA— Inputl Egual ~ Equal_ins [[38%53
Input2_ins XIS Input2 Err = Err_ins

DTime_ins[ Tgoms  —{DTime

test_Check_Signals

Check_Signals

status_ins EEU— Status ox ~ji—

Inputl_ins EEECEN— Inputl Equal p~ Equal_ins

Input2_ins ENEES— Input2 Errf=Err_ins
DTime_ins —DTime

Figure 8.3: An example of the POU under test before (top) and after execution (bottom)
of the developed test scripts in CODESYS Test Manager

output of the PLC program with the expected result. For example, five test
cases target the functionality of the TON block. In these test cases, we provide
just one active input signal with the expected output Err being true. The subse-
quent five test cases use two active signals at different random time slots. After
executing the developed test scripts in CODESYS Test Manager, the results of
running the PLC program can be observed during execution as shown in Fig-
ure 8.3. After running the test suite in CODESYS Test Manager, we observed
all the test cases passing, as can be seen in Figure 8.4. The CODESYS Test
Manager automatically generates a test report in HTML which includes infor-
mation on e.g., test settings, test result and status, execution time, and pinned
scripts.

To evaluate the applicability of CoUnit, we developed ten different test
cases. Since CoUnit does not contain any GUI interface facilitating the cre-
ation of test cases, we developed the test scripts in the ST language. Moreover,
unlike CODESYS Test Manager, CoUnit does not support the use of the entire
Program as a testable object type, and it only supports this functionality at the
POU level. We instantiate the POU for every defined test case. In addition, the
framework needs to be added as a library into the target PLC program. Also,
for each POU under test, the user needs to develop a dedicated function block
as a test counterpart, which is responsible for four main tasks, including instan-
tiating the POU under test, defining the inputs, describing the expected output,
and finally, calling the CoUnit assertion methods to compare the expected out-
put with the actual one. A snippet of the developed test suite for the CoUnit



8.5 Results 123

Summary Details

Overview
Date T14/2022 11:43 AM
Seript Check_Signal Check_Signal_tst (0.0)
Tester msil1
Test setfings: Verbase;
Summary
1
Total tast 10 Execution  00:00:02.5587454
cases time
Succesded 10 Pinned on
Failed ] seripts
Skipped 0
Version information
Details
| Collapse all H Collapse succeeded H Expand all ‘ ‘ Show parameters H Hide parameters

= [-] Check_Signal Check_Signal_tst [0.0] - Succeaded
1. [] Testthe Error - Succeeded
1. Action: Activate the sistus input - Succeeded

2. Action: Modify the Input! value - Succeeded
3. Action: Modify the Input? valus - Succeeded
4. Action: Modify the Dtime - Succeeded
5. Action: Compare the Err value - Succeeded

2. [#] Testthe Error 1 - Succeeded

3. [#] Testtha Errer 2 - Succeeded

4. [#] Testthe Error 2 - Succeeded

5. [#] Testthe Error 4 - Succeeded

6. [] Testine Equal - Succeeded
1. Action: Astivate the sistus input - Succeeded
2. Action: Modify the Input! value - Succeeded
3. Action: Modify the Input2 value - Succeeded
4. Action: Medify the DTime - Succeeded
5. Action: Compare the Equal value - Succeeded

7. [#] Testthe Equal 1- Succeeded

2. [#] Testthe Equal 2- Succeeded

Q. [+] Testthe Equal 3 - Succeeded

10. [#] Testtha Equal 4 - Succeeded

Figure 8.4: A generated test report in CODESYS Test Manager

test automation framework implemented in the ST programming language is
shown in Figure 8.5. After running CoUnit in the main program (PRG_Test in
Figure 8.5), the framework automatically executes the defined test cases on the
POUs under test. When the test execution ends, CoUnit generates a test report
in the XML format that provides users with information about the test results,
including the test suite name, the number of test cases, the test case name, test
case status (PASS or FAIL), and the class name.

Finally, we report our overall experiences in using both test automation
frameworks. The following results and features are PLC-specific. Regard-
ing installation and configuration, we found out that setting up CODESYS
Test Manager seems to be more straightforward since it can be installed as a
standard add-on package. On the other hand, CoUnit needs to be installed as



124 Paper A

= 1} Application |3 Check_Signals_Test.Scenario2_Check_Signals X
=1 Global Variables METHOD Scenario2 Check_Signals
@ variable_Configuration E
= 12 pous
=2 Function Block
] check_Signals (F8)
|Z] PRG_Test (PRG)
=) Test Fun :
=D Test1
=) Check_Signals Tests
= [E] Check_Signals_Test (F8)
|5 Scenario1_Check_Signals
| Scenariol_Chedk_Signals_1
|7 Scenariol_Check_Signals_2
|74 Scenario1_Check_Signals_3
|7 Scenariol_Check_Signals_4
|7 |Scenario2_Check_Signals
|7 Scenario2_Chedk_Signals_1

[T Scenario2_Check_Signals_2 f

|iM Scenario2_Check_Signals_3

[ Scenario2_Check_Signals_4 TEST_FINISHED():

eck_Signals;
BOOL;

:= t_Inputl,
:= t_DTize,
Result_Equal,

i= (Result_Equal = ExpectedResultl),
€ E 0

Figure 8.5: A test suite developed in the CoUnit

a package and imported as a library in every project under test. Regarding
the ease of use, CODESYS Test Manager is more user-friendly and provides
features for developing test scenarios using available test commands in the
GUI integrated into CODESYS IDE. Moreover, developing test cases with this
framework does not require the use of any of the IEC61131-3 programming
languages. On the other hand, creating the same test cases in CoUnit is more
time-consuming due to the use of ST scripts and instantiations. When compar-
ing the frameworks’ capabilities related to testable objects, we found out that
the Test Manager can create harnesses for PLC applications, IEC libraries, and
communications. In contrast, CoUnit can only be used at the application level.
Regarding test assertion timeouts we note here that PLC programs are exe-
cuted cyclically in a loop, and one needs to set a test assertion timeout to make
sure that the result comparison process ends after a certain amount of time.
Only CODESYS Test Manager can be used to set a custom timeout, a use-
ful feature when testing complex PLC programs. After executing test scripts
on both frameworks, we discovered that test reports generated by CODESYS
Test Manager provide the user with detailed information. On the other hand,
CoUnit only reports scarce information.

Results RQ4: Using the discovered features as a basis, the application on
an industrial PLC program revealed that both frameworks provide proper



8.6 CONCLUSIONS and FUTURE WORK 125

automation functionality. However, CODESYS Test Manager seems to be
more mature, provides more helpful test execution features, and is more
user-friendly. In contrast, CoUnit seems limited in its usefulness, and
working with it requires ST programming.

8.5.5 Threats to Validity

In this section, we discuss some of the threats to the validity for this study.
To address internal validity, we iterated on the search strings by conducting
several initial searches. Aiming to minimize the bias in the process of inter-
pretation, analysis, and selection of the gathered sources, we made sure that at
least two authors of this paper reviewed each source. The extraction method we
used for filtering and categorizing the gathered data in the pool of contents is
based on the systematic qualitative analysis approach proposed by Huberman
et al. [12]. When considering the construct validity of our study, we employed
already proposed methods [5], [4]. Consequently, the data has been examined
and checked multiple times to realize an agreement on the obtained features
in this study. Regarding external validity, since this research is conducted in a
very specific domain and it only focused on test automation tools of a particu-
lar PLC IDE, more studies are needed to generalize the process of choosing a
test automation framework.

8.6 CONCLUSIONS and FUTURE WORK

This paper addresses the practical problem of choosing the right test automa-
tion tool for PLC programs in CODESYS IDE. First, we identified the most-
discussed test automation tools of CODESYS by performing a GLR on existing
test automation frameworks of CODESYS followed by a qualitative analysis
based on several criteria. Aiming at performing an effective comparison be-
tween the discovered test automation frameworks of CODESY'S, we identified
29 features as important features of test automation tools by conducting a liter-
ature review. Finally, to investigate the applicability of the discovered tools in a
real-world case study, we performed an automated test execution on an indus-
trial case study based on two different test scenarios. Our findings imply that
both discovered test automation tools of CODESYS provide users with nec-



126 Paper A

essary automation functionalities but CODESYS Test Manager seems more
mature, has more useful test execution features, and is more user-friendly. By
contrast, CoUnit is not user-friendly, is limited in its automation features, and
working with it demands ST programming knowledge. In future research, we
plan to conduct a more comprehensive evaluation of CODESYS Test Man-
ager when used in an industrial context as well as how to connect such a test
automation framework for automated testing of timers and stateful blocks in
PLCs.

8.7 Acknowledgment

This work has received funding from the EU’s H2020 research and innovation
program under grant agreement No 957212.



Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

Irfan Ahmed, Sebastian Obermeier, Sneha Sudhakaran, and Vassil Rous-
sev. Programmable logic controller forensics. IEEE Security & Privacy,
15(6):18-24, 2017.

Elfriede Dustin, Jeff Rashka, and John Paul. Automated software testing:

introduction, management, and performance. Addison-Wesley Profes-
sional, 1999.

Eliane Figueiredo Collins and Vicente Ferreira de Lucena. Software test
automation practices in agile development environment: An industry ex-
perience report. In International Workshop on Automation of Software
Test (AST), pages 57-63. IEEE, 2012.

Vahid Garousi, Wasif Afzal, Adem Caglar, Thsan Berk Isik, Berker Bay-
dan, Seckin Caylak, Ahmet Zeki Boyraz, Burak Yolagan, and Kadir Herk-
iloglu. Comparing automated visual gui testing tools: an industrial case

study. In International Workshop on Automated Software Testing, pages
21-28, 2017.

Piivi Raulamo-Jurvanen, Mika Mintyl4d, and Vahid Garousi. Choosing
the right test automation tool: a grey literature review of practitioner
sources. In International Conference on Evaluation and Assessment in
Software Engineering, pages 21-30, 2017.

Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems. Springer, 2010.

Dag H Hanssen. Programmable logic controllers: a practical approach
to IEC 61131-3 using CODESYS. John Wiley & Sons, 2015.

127



128

Bibliography

(8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Marcin Jamro. Pou-oriented unit testing of iec 61131-3 control software.
IEEE Transactions on Industrial Informatics, 11(5):1119-1129, 2015.

Florian Hofer and Barbara Russo. Iec 61131-3 software testing: A
portable solution for native applications. IEEE Transactions on Indus-
trial Informatics, 16(6):3942-3951, 2019.

Pdivi Raulamo-Jurvanen, Simo Hosio, and Mika V Mintyld. Practitioner
evaluations on software testing tools. In Proceedings of the Evaluation
and Assessment on Software Engineering, pages 57-66. 2019.

Vahid Garousi, Michael Felderer, and Mika V Mintyld. The need for mul-
tivocal literature reviews in software engineering: complementing sys-
tematic literature reviews with grey literature. In International Confer-

ence on Evaluation and Assessment in Software Engineering, pages 1-6,
2016.

A Michael Huberman and Johnny Saldana Matthew B Miles. Qualitative
data analysis: A methods sourcebook. 2019.

Alessio Ferrari, Franco Mazzanti, Davide Basile, and Maurice Ter Beek.
Systematic evaluation and usability analysis of formal methods tools for
railway signaling system design. [EEE Transactions on Software Engi-
neering, 2021.

Mubarak Albarka Umar and Chen Zhanfang. A study of automated soft-
ware testing: Automation tools and frameworks. International Journal of
Computer Science Engineering (IJCSE), 6:217-225, 2019.

Heidilyn Veloso Gamido and Marlon Viray Gamido. Comparative review
of the features of automated software testing tools. International Journal
of Electrical and Computer Engineering, 9(5):4473, 2019.

Harpreet Kaur and Gagan Gupta. Comparative study of automated test-
ing tools: selenium, quick test professional and testcomplete. Journal of
Engineering Research and Applications, 3(5):1739-1743, 2013.

Emil Borjesson and Robert Feldt. Automated system testing using visual
gui testing tools: A comparative study in industry. In International Con-
ference on Software Testing, Verification and Validation, pages 350-359.
IEEE, 2012.



Bibliography 129

(18]

[19]

[20]

(21]

(22]

Sebastian Ulewicz and Birgit Vogel-Heuser. Increasing system test cov-
erage in production automation systems. Control Engineering Practice,
73:171-185, 2018.

Sebastian Ulewicz and Birgit Vogel-Heuser. Guided semi-automatic sys-
tem testing in factory automation. In International Conference on Indus-
trial Informatics (INDIN), pages 142—147. IEEE, 2016.

Sebastian Ulewicz and Birgit Vogel-Heuser. System regression test pri-
oritization in factory automation: Relating functional system tests to the
tested code using field data. In Annual Conference of the IEEE Industrial
Electronics Society, pages 4619-4626. IEEE, 2016.

Sebastian Ulewicz and Birgit Vogel-Heuser. Industrially applicable sys-
tem regression test prioritization in production automation. Transactions
on Automation Science and Engineering, 15(4):1839-1851, 2018.

GIACOMO Barbieri, GABRIEL Quintero, OSCAR Cerrato, JULIAN
Otero, DAVID Zanger, and ALEJANDRO Mejia. A mathematical model
to enable the virtual commissioning simulation of wick soilless cultiva-
tions. J. Eng. Sci. Technol, 16:3325-3342, 2021.






Chapter 9

Paper B:

PyLC A Framework for
Transforming and Validating
PLC Software using Python
and Pynguin Test Generator

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina Seceleanu
Published in The 38th ACM/SIGAPP Symposium On Applied Computing (SAC
2023).

131



132 Paper B

9.1 Abstract

Many industrial application domains utilize safety-critical systems to imple-
ment Programmable Logic Controllers (PLCs) software. These systems typ-
ically require a high degree of testing and stringent coverage measurements
that can be supported by state-of-the-art automated test generation techniques.
However, their limited application to PLCs and corresponding development
environments can impact the use of automated test generation. Thus, it is
necessary to tailor and validate automated test generation techniques against
relevant PLC tools and industrial systems to efficiently understand how to use
them in practice. In this paper, we present a framework called PyLC, which
handles PLC programs written in the Function Block Diagram and Structured
Text languages such that programs can be transformed into Python. To this
end, we use PyLC to transform industrial safety-critical programs, showing
how our approach can be applied to manually and automatically create tests
in the CODESYS development environment. We use behaviour-based, trans-
lation rules-based, and coverage-generated tests to validate the PyLC process.
Our work shows that the transformation into Python can help bridge the gap
between the PLC development tools, Python-based unit testing, and test gener-
ation.

9.2 Introduction

Industrial control software is vital in today’s modern industry. One of the most
popular industrial control devices in safety-critical systems is the PLC. PLC
devices are being produced in the market by different vendors and are different
in terms of their specifications. Programming PLC devices is done via five dif-
ferent programming languages that are supported in the IEC 61131-3 standard,
including Function Block Diagram (FBD), Structured Text (ST), Sequential
Function (SFC), Ladder Diagram (LD), and Continuous Function (CFC) [1].
In PLC programming, one or more programming languages of IEC 61131-
3 can be used in each Programmable Organisation Unit (POU). Like any other
programming language, PLC programming can be aided by using an Integrated
Development Environment (IDE), which can parse, compile and execute code
on the target PLC device. One of the most popular IDEs in the current PLC



9.2 Introduction 133

industry is CODESYS, developed by Smart Software Solutions'. CODESYS
supports all the programming languages of the IEC 61131-3 standard. In ad-
dition, the IDE is equipped with different add-ons, such as unit testing frame-
works that can be used to create test cases manually. The only non-IEC 61131-
3 programming language that CODESY'S supports is Python, such that the IDE
can import and execute the scripts directly.

There has been little research on rigorously applying automated test gen-
eration approaches for PLC programs in industrial practice. Bridging PLC
programs with a high-level dynamic language such as Python is challenging.
This paper proposes a PLC to Python translation framework, called PyLC,
which fills the gap between PLC development and automated test generation
using Pynguin [2]. Our designed translation framework can transform an FB-
D/ST PLC program into Python code in a systematic way. We validate this
transformation using unit testing by focusing on three types of validations:
requirement-based, translation-based, and code-based unit test cases.

To achieve the goal of our research, we formulated the following research
questions.

1. How to translate a PLC program that is developed in ST/FBD into Python
code?

2. How to validate the translated PLC code into Python using manual unit
testing and automated test generation?

The paper is organized as follows. Section 9.3 briefly overviews PLC pro-
gramming languages FBD and ST, CODESYS, Python, as well as Pynguin.
Section 9.4 describes the translation process, translation challenges, and trans-
lation validation mechanisms of the PyLC framework. Section 9.5 explains
the gathered results of this study regarding each formulated research question
as well as threats to validity. Section 9.6 overviews the related work. Finally,
section 9.7 briefly overviews the conclusions and potential future research di-
rections.

Thttps://www.codesys.com/



134 Paper B

9.3 BACKGROUND

In this section, we briefly overview PLC languages FBD and ST, IEC 61131-3
standard and the CODESYS environment and Pynguin test generator as a basis
for describing our framework.

9.3.1 PLC Programming, IEC 61131-3, and CODESYS

IEC 61131-3 standard [1] has been proposed in the last decade for program-
ming PLC devices. This standard supports six different programming lan-
guages, including three graphical ones, which are FBD, LD, and SFC, as well
as three textual ones, including ST, IL, and SFC (textual version) [1]. In recent
years, this standard received significant acceptance from both PLC manufac-
turers and large industrial automation companies.

The smallest independent software unit in a PLC code is POU. A POU can
be of three types: Function, Function Block (FB), and Program (PRG). While
a Function does not contain any internal state information, the values returned
by a function block depend on the values of its internal memory. In practice,
a PLC program consists of several POUs communicating with each other with
or without parameters. The PLC uses periodic cyclic scanning by executing
the instructions that perform periodic program loop scanning.

Function Block Diagram (FBD)

The FBD language originates in the signal processing area and shares a wide
range of similarities in terms of graphical interface elements with LD language
[1]. An FBD representation consists of three main parts, including (i) the POU,
(ii) a declaration, and (iii) the actual code representing the behaviour [1]. The
declaration part can be represented graphically or textually, while the code
consists of networks of functions and FBs. Each network in FBD consists of 3
main elements: (i) a network label, (ii) a network comment, and (iii) a network
graphic. In addition, the FBD network contains block diagrams and control
flow statements connected horizontally or vertically via connections.
Connections, graphical elements for execution control, and connectors are
all graphical objects in FBDs. The IEC 61131-3 defines eight main categories
of standard functions for FBD, including data type conversion functions, nu-
merical functions, arithmetic functions, bit-string functions (bit-shift and bit-



9.3 BACKGROUND 135

Status Ok
2 TON_Descr

XOR TON AND
Inputl _1 —IN Q & —— Err
Input2 - ET

DTime —|PT
Status —|

AND
Inputl — & — Equal
Input2 —
Status —

Figure 9.1: A Snippet of an example PLC Program (Check_Signals) written in FBD.

wise boolean functions), selection and comparison functions, character string
functions, functions for time data types, and functions for enumerated data
types [1]. The standard also defines five types of standard FBs: bistable el-
ements (i.e., flip-flops), edge detection, counters, timers, and communication
function blocks. FBD allows programmers to implement their desired appli-
cations using a network of connected functions, function blocks, and Input-
s/Outputs (I/0). FBD programs operate based on the sequential execution of
the connected blocks in a cyclic manner.

Aiming to clarify the functionality of FBD programs, we show an example
of a real-world PLC program. The FBD program that we considered is named
Check_Signals and is shown in Figure 9.1. This FBD code is used as a POU
for checking the status of the real-time enabled signals in a PLC program for
control system supervision. This POU consists of several connected computa-
tional blocks executed cyclically. Each computational element (e.g., the XOR,
AND) or FB (TON) in this POU goes through three execution steps: (i) reading
and storing the inputs, (ii) execution of the operations, and (iii) writing the out-
put(s). This FBD program is constructed as a chain of interconnected blocks



136 Paper B

FUNCTION BLOCK SafeSupervision

VAR_INPUT
ItemNumberl: WORD;

4 ItemNumber2: WORD;

END VAR

VAR_OUTPUT
out_ItemNoSupervisionOk: BOOL;
out_ItemNo: WORD; (* A safe item nu

END VAR

VAR
EmptyWord: WORD;

END VAR

out_ItemNoSupervisionOk :=
{ItemNumberl = ItemNumber2)
AND (ItemNumberl <> EmptyWord);

IF out_ItemNoSupervisionOk THEN
out_ItemNo := ItemNumberl;
7 ELSE
8 out_ItemNo := EmptyWord;

Figure 9.2: A Snippet of an example PLC Program (SafeSupervision) written in ST
language.

and a data flow communication between them. When the POU is activated, a
program consumes one set of inputs and executes them to completion. In this
example, the POU is enabled using the (Inputl, Input2) and Status signals. An
error is raised in the system when the two input signals have different values
assigned to them for a preset time (D7ime) while the Status signal is active.

Structured Text (ST)

ST is one of the most popular text-based programming languages of the IEC
61131-3 standard [1]. A developed algorithm in ST can be divided into sev-
eral statements. Programmers can use statements to compute/assign values in
ST to control the command flow and call/leave a POU. ST supports different
operands including literal (numeric, alphanumeric characters, time), variables
(single-/ multi-element variables) and function calls. Figure 9.2 shows an ST
program example. This ST code is used as a POU in a control system super-
vision PLC program and has the following behaviour: to check the control
system identification numbers, and compare them to each other and generate
an output based on their status. As shown in Figure 9.2, the program consists
of variables/data type declaration using the assignment statements, while the



9.3 BACKGROUND 137

program logic concerning the execution order is written separately.

PLC Development Environment

There are several IDEs for developing PLC programs (e.g., Beremiz, GEB
Automation, Simulink PLC Coder). However, one of the most popular IDEs
in the industry is CODESYS (COntroller DEvelopment SY Stem) and supports
all of the supported programming languages of IEC 61131-3 standard?. In the
rest of the paper, we will refer to PLC programs developed in the CODESYS
development environment.

9.3.2 Python and Pynguin
Python

Python is an open-source dynamic programming language that was invented
by Guido van Rossum in 1990. The motivation behind creating this program-
ming language was to produce an advanced scripting language for the Amoeba
system [3]. As a result, Python has gained massive popularity during the
last 20 years. Based on the latest statistics of top programming languages in
2022, Python is the top programming language worldwide based on the TIOBE
and PYPL Index?. Python has good compatibility with parsing XML files, a
widespread format used when dealing with PLCOpen* formats used in the PLC
IDE:s for file exchange.

Pynguin Test Automation Framework

Pynguin [2] is a state-of-the-art automated test case generation tool for Python
programs that uses search-based algorithms. It supports four different well-
known search-based test case generation algorithms, including MOSA [4], DY-
NAMOSA [5], MIO [6], and WHOLE SUITE [7]. It is also equipped with a
random test generator named RANDOM (8], which works based on the RAN-
DOOP algorithm [9]. We note here that Python is the only non-IEC 61131-3
programming language officially supported by CODESYS IDE (a well-known

Zhttps://www.codesys.com/
3https://statisticstimes.com/tech/top-computer-languages.php
“https://plcopen.org/



138 Paper B

PLC IDE) and can be directly compiled inside the IDE. For more information
about Pynguin, we refer the reader to the following publications [2], [10], [11].

9.4 PyLC: From PLC to Python and Pynguin

In this section, we propose a translation framework called PyLC consisting of
four main phases chained to each other and working sequentially to eventu-
ally enable automatic test generation for PLC programs via Pynguin. Figure
9.3 shows the framework’s workflow, while more details of each phase are de-
scribed in the rest of the paper. The first step is transforming the PLC program
into Python code by considering the Translation Rules and PLC code spec-
ifications based on the IEC 61131-3 standard (Steps 1 and 2 in Figure 9.3).
Then the generated Python code is fed into the Translation Validation module,
which checks the correctness of the transformed PLC code in Python based on
the three different unit testing mechanisms (Step 3 in Figure 9.3). Finally, the
Translation Validation module of the transformed code (Step 4 in Figure 9.3)
uses unit testing to ensure that the code is scrutinized for proper use in further
analysis and test generation.

9.4.1 Translation Process

Our translation policy includes two common programming languages of IEC
61131-3: ST and FBD. Since ST is a textual programming language like Python,
the transformation process is more straightforward. It includes translating each
logical operator (e.g., AND, XOR, OR functions) into the corresponding oper-
ator in Python and mapping these together based on the network of the original
PLC program.

The rest of the section explains the transformation rules and validates the
generated Python code. The translation process of our framework consists of 7
main steps, which can be observed in Figure 9.4. The translation process starts
by analyzing the PLC program’s inputs and outputs, transforming the input
signals into Python function arguments, and considering the output signals as
global variables in Python (Steps A, B in Figure 9.4). Then, the functionality
of each interface Function and Function Block (FB) inside the PLC program
(e.g., AND, XOR, TON) is analyzed based on their standardized functionality
description in IEC61131-3 documentation (Step C in 9.4). In the next step,



9.4 PyLC: From PLC to Python and Pynguin 139

/ PLC o Translation @ Python \

> > &
»

Program |iEc61131-3 Rules - Code

9 FAILED
v

e Unit Testing

Validated PLC Program in Python Translation
PASSED | vyalidation

\Z )

Figure 9.3: An Overview of the PyLC Framework, the Proposed Translation Mecha-
nism for Translating a PLC Program into Python Code and Validating the Translation.

A

the identified interface FBs are transformed into corresponding Python sub-
functions that represent the same functionality based on the Block translation
rules described in the rest of this section (Step D in Figure 9.4). After trans-
lating the blocks into sub-Python functions and feeding them with the inputs
as main Python function arguments, we analyze the network between different
FBs, inputs, and outputs in the original PLC program to simulate these connec-
tions in the Python code and correctly map the elements to each other (Step E
in Figure 9.4). The final step is identifying the execution order of the program
elements inside the PLC program and implementing it in the translated Python
code (Steps F, G in Figure 9.4).

An overview of the translation rules we adhere to in the translation process
is observed in Table 9.1. It is worth mentioning that every described step in
this table is done by considering IEC 61131-3 specifications for the PLC pro-
gram elements under translation. In other words, the translation mechanism is
realized by using all the translation rules.

FBD/ST Structure

For each PLC program, first, we scan all the program inputs and create a Python
function that consists of all the inputs as arguments. Considering Python is a
dynamic programming language and can identify the variable data types auto-
matically, to avoid causing any discrepancies for the Python interpreter, we de-
fine each argument data type in our translation mechanism (e.g., bool(Inputl),



140 Paper B

ables Range

Category PLC Python

Input(s) Scanning PLC Pro- | Declaring the inputs as the main
gram Inputs Python function arguments *

Output(s) Scanning PLC Pro- | Declaring the outputs as global
gram Outputs variables in Python ?

Data Type Identifying the data | Binding the data type of each PLC
type of each I/0 I/O to the corresponding data type

in Python ¢
Data Range Detecting I/O Vari- | The accepted range of values for

each PLC data type is declared us-
ing <, >, and = operators

FB Behavior

Analyzing the be-
haviour of the FB
based on the require-
ments

Implementing the FB behaviour
in Python as a sub-function with
a dynamic range of inputs based
on standardized ST and FBD im-
plementation and specification in
IEC-611313/CODESYS. ¢

FB Network

Analyzing the exist-
ing network between
different FBs, Inputs,
Outputs

Connecting the related Sub-
function of each FB to other FBs,
Inputs, and Outputs by a Python
function call

Execution Order

Extracting the execu-
tion order of the pro-
gram

Simulating the execution order by
calling the main and sub Python
functions in the correct order

Cyclic Execution

Identifying the cyclic
execution delay time

Implementing the cyclic execu-
tion using a Python timer mod-
ule equipped with a specific itera-
tion(s) number

“We use one main python function for the whole translated POU.

’Nested Python sub-functions are used inside the main function.

“When a direct data type mapping does not exist, a similar type is used.

4For complex FBs (e.g., Timers) the standardized specification is implemented.

Table 9.1: Translation Rules (TR) of the Proposed PLC Program to Python Code Con-
sidering IEC-61131-3 Standard




9.4 PyLC: From PLC to Python and Pynguin 141

PLC Program

o |iEc 611313 )
3 ¥

FBs Functional
Analysis

ol D)
Python Main Python Sub-

Function F "
Arguments unctions
L

1/0 Analysis

el
FB Network
Analysis
6}

FB Execution
Order Analysis

o}

Python Code

Figure 9.4: The Translation Work Flow (TWF) Used in PyLC Framework for Translat-
ing a PLC Program into Python.

int(Input2)). Moreover, a type-checking mechanism is implemented in each
function representing an FB using if-else statements. Inside the main Python
function, a sub-function for each block inside the FBD network of the pro-
gram under translation is generated. The translated Python code adheres to
the execution order of the original PLC program, so the internal functions call
each other based on this specific order. For each input of the FBD program,
the name is preserved during the translation process for better code readabil-
ity. Every variable type in the original PLC program (e.g., boolean, integer)
is preserved in the transformed Python code. However, some variable types
like TIME do not exist in Python and should be simulated based on its specific
specification in the [EC61131-3 standard (Section 9.5).



142 Paper B

Cyclic Execution and Triggering

Each block inside an FBD code has an interface with a name identifier, input
and output ports, and a list of parameters. The behaviour of the block is only
accessible via the block interface. When a block is activated, the values at
the input ports are ready to be read. The output ports will be updated when
the execution of each statement in the block ends. The behaviour of a block
is implemented individually with updates to the local variables. Moreover,
the program contains a clock variable that models the delay between program
execution cycles. In our translation policy, the cyclic execution of the PLC
program is implemented using an iterator Python function that monitors and
executes the code cyclically.

Basic Blocks Translation

Each basic interface FBD block (e.g., AND, OR, XOR) is translated into a
Python function with a dynamic range of arguments that can be used in differ-
ent programs. The translation process works based on the following steps:

* The Logical Operator blocks are translated using the logical Python op-
erators AND, OR, and " (XOR).

* The Arithmetic Operator blocks are translated using the arithmetic Python
operators +, =, —, /, *.

* The Comparison blocks are translated using the relational Python oper-
ators <, <=, >=, ==.

* The Selection blocks are translated using if-then-else statements in Python.

Timer Function Blocks Translation

There are four different timers in FBD programs, including TON (ON delay
timer), TOF (OFF delay timer), TP (Pulse Timer), and TONR (Time accumu-
lator), which are different in terms of their functionality. In all of the timer
function blocks, there is one Trigger input (IN) and two time-related variables,
including a delay time input (PT) and an elapsed time monitoring module (ET).
In the original version of timer function blocks, when the timer block is acti-
vated using the trigger input signal (IN), ET starts a timer in the amount of the



9.4 PyLC: From PLC to Python and Pynguin 143

considered delay time in PT. As soon as the value of PT and ET match, the out-
put (Q) is activated. In our transformation, when the trigger signal of the timer
function block (IN) becomes true, the constant values of the delay timer (PT)
and the predefined constant value in ET will be compared. If the ET and PT
values are equal, the output (Q) is activated. It should be noticed that for each
different function block, the functionality is implemented based on its defined
functionality described in the IEC 61131-3 documentation [1].

Translation Example

We illustrate the translation methodology using two running examples for the
FBD and ST code. First, we present the translation of Check Signals and Safe-
Supervision PLC programs, which are used in the supervision PLC program of
a control system in a large automation company in Sweden.

FBD to Python Example: The FBD program that we consider for transla-
tion is the proposed FBD example in Figure 9.1. The step-by-step translation
process of this example is shown in Table 9.2. Based on the translation method-
ology described in Figure 9.4, the first step (2A) is analyzing the inputs which
in this case are Status, Inputl, Input2, and ET. The next step (2B) is creating
a main Python function with the needed inputs. Next, we perform the func-
tional analysis of each FB in the example to identify each FB requirement and
behaviour based on the official documentation of IEC 61131-3 documentation
(Step 2B). As it can be observed in Figure 9.1, in this example, we have four
FBs, including three Basic FBs (2 AND and 1 XOR) and one Timer FB (TON).
Based on step 3B in our Translation methodology, for each of these FBs, we
declare a Python sub-function that behaves like the original FB in the POU
based on our FB functional analysis in the last step. After creating the main
Python function, which includes the sub-Python functions representing each
FB inside, in step 4, we analyze the existing network between different POU
elements under translation, followed by an execution order analysis of the FBs
in step 5. Finally, in step 6, we connect the nested Python functions to other
elements based on the conducted network analysis and execution order.

ST to Python Example: The ST program we considered for this part is Safe-
Supervision. This program is described in Section 9.3. Based on the proposed
translation mechanism in Figure 9.4, the first step is to detect the inputs and out-
puts of the program as well as their data type. In this program, the inputs are



144 Paper B

def SafeSupervision(ItemNumberl: int, ItemNumber2=int) -> int:
def AND(*args):
for 1 in range(l, len(args)):

val = args[0]

if type(args[i]) is not bool:
raise TypeError

else:
val = val and args[i]
return val

out_ItemNoSupervisionOk = AND((ItemNumberl == ItemNumber2),
(ItemNumberl is not None))
if out_TItemNoSupervisionOk:
out_ItemNo = ItemNumberl
else:
out_ItemNo = None
return out_ItemNo

Figure 9.5: An Overview of a small PLC program (SafeSupervision) translated into
Python using The PyLC Framework.

ItemNumberl, ItemNumber2 and the outputs are out_ItemNoSupervisionOk,
out_ItemNo. The data type for all aforementioned variables is WORD except
for out_ItemNoSupervisionOk, which is BOOL. The next step is to declare the
identified inputs as the main Python function arguments and the identified out-
puts as global variables inside the main and sub-Python functions. Then we
need to analyze the workflow and functionality of the program by interpret-
ing the available conditional statements (e.g., IF, THEN, ELSE, END_IF) and
operators (e.g., AND) in the program. Finally, we need to declare Python sub-
functions for each of the identified operators and conditional statements and
connect them based on the workflow of the original ST code. The translated
version of the SafeSupervision example in Python can be observed in Figure
9.5.

9.4.2 Validation of the Translated Code

To validate the correctness of the translated code in Python, we propose a unit
testing-based validation mechanism that consists of 3 different validation types,



9.4 PyLC: From PLC to Python and Pynguin 145

including 1) requirement-based testing, 2) translation rules checking, and 3)
search-based test generation. To check the validity of the translated code, we
generate and execute unit test cases that meet the requirements of each vali-
dation category. It should be noted that our proposed validation mechanism is
not used to demonstrate the semantic equivalence of the source and target pro-
grams. Instead, we aim to validate the transformation through unit testing and
conformance tests. Conformance tests are made to verify whether the PyLC
results comply with the requirements imposed by the PLC program definition
and the translation rules checks. The proposed translation validation mecha-
nism consists of 8 main steps and can be observed in Figure 9.6. The rest of
this section provides more information about each validation filter.

Validation by Requirement-based Testing: Checking the expected behaviour
of the PLC program on the target Python program is used to detect behavioural
errors in the transformation results. Since each PLC program in FBD or ST
consists of multiple sequential connected basic or complex blocks, our de-
signed requirement-based test cases are aimed to test two abstraction levels,
including 1) program units, and 2) overall execution scenarios. The former
relates to testing the specification of each unit in the program (e.g., functions,
function blocks) in the code. In contrast, the latter examines the overall be-
haviour of the program (network of connected blocks to each other) based on
the possible execution scenarios.

In this study, requirement-based unit testing is done via three steps. First,
the described requirement-based unit test cases are generated manually for a
translated PLC program into Python (Step 1 in Figure 9.6). Secondly, the
test cases are executed on the translated PLC program in Python to check
whether the translated program behaves as expected or not (Step 2 in Figure
9.6). Finally, the same test cases are executed on the original PLC program in
CODESYS IDE to check whether the same passed or failed test cases in the
Python environment can produce the same results in the original PLC version
(Step 3 in Figure 9.6).

Finally, the actual output of both modular-based and program scenarios-
based test cases after test execution is compared with the expected output (Step
3 in Figure 9.6). If the execution status of each requirement-based test case in
Python is equal to the execution status of the same program in CODESYS IDE,
the translated PLC code in Python is valid given the specified requirements. It
should be noted that the previously described behaviour validation unit test



146 Paper B

|

el |

: PLC Code |

Unit Test
o Requirements Generation @
J 0 Translation Pynguin
| Requirement Rules TAF
| -based Tests A 4 v
— Translation search
es -
- ‘_
Execution 9 RUI?I_S Ptased Based Tests
1 2 v ests
Program Execution Test
Units Scenarios . Test
6 Execution 0 Execution
o' — v ¥
CODESYS Results CODESYS
Test > Checkin [ Test —
Manager 6 Manager
_— L -
Validated |
PLC Code |

Figure 9.6: An Overview of the Hybrid Unit-Testing Validation Mechanism of the

Translated PLC Code in Python

cases are created manually. In terms of the test execution tool in Python, the
created test cases are executed using a Python unit testing framework® while
the test execution in CODESYS level is done via CODESYS Test Manager®.
Importing and implementing the Python-based test cases into CODESYS Test
Manager is done manually via a test action. It means that, for each test case
in Python, several test actions are declared in CODESYS Test Manager (e.g.,
WriteVariable, CompareVariable) to set the inputs and compare the actual out-
puts with the expected ones. In addition, each PLC program is instantiated in

| in Python I
1

Shttps://docs.python.org/3/library/unittest.html
Ohttps://store.codesys.com/codesys-test-manager.html



9.4 PyLC: From PLC to Python and Pynguin 147

PRGY X | f] StartPage
H 2 » pl @ _; TestAction Extended Settings

Pynquin test cases.PRGO|] Title: |Set input1 value | Action: |\WriteVariable

= Test Case 0
Setinput1 value
Set input2 Value Variable: [ Device. Application.PLC_PRG.ChA
Set Status Value
SetPT Value

= TestCase 1

Configuration Parameters (0/0)

Value: -454.0

Setinput1 value
Setinput2 Value
Set Status Value
Set PT Value
SetReady

Test Case 2

Test Case 3

Test Case 4

Test Case 5

oF o

Figure 9.7: A Snippet of the Written Test Cases in CODESYS Test Manager for a PLC
program.

the main PLC program to be used by the CODESYS Test Manager. Finally,
the PLC device login is completed, and CODESYS Test Manager test scripts
are executed on the original PLC program. A snippet of the implemented test
cases in CODESYS Test Manager can be seen in Figure 9.7.

Validation by Translation Rules Checking: Evaluating the proposed trans-
lation rules in Table 9.1 by static checking can increase the trust level in the
translation results. To this end, we create checks that can investigate the trans-
lation rules obligation in the translated PLC program in Python (Step 4 in Fig-
ure 9.6). Then, we execute these test cases using the Python unit test module
on the transformed PLC program in Python and confirm if all test cases pass in
this environment (Step 5 in Figure 9.6). If all the executed test cases pass suc-
cessfully, the transformation is validated with regard to the requirements posed
by the translation rules.

Validation by Search-based Testing: The final filter investigates the trans-
lated code’s correctness by comparing the results of the test execution based
on search-based algorithm test cases in both PLC and Python environments.
The search-based test cases are automatically generated using the Pynguin test



148 Paper B

automation tool (step 6 in Figure 9.6) that is equipped with different search-
based algorithms [2]. The generated test cases using Pynguin are first executed
on the transformed PLC code in the Python environment using the Pynguin
framework. Then, the execution results of each test case are collected. In
addition, the same test cases are imported in CODESYS Test Manager to be
executed automatically on the original PLC program in the PLC environment
(CODESYS IDE) as well (step 7 in Figure 9.6). Finally, the outcome of all test
cases in both environments is compared. If all test cases in all three unit testing
categories are successfully executed against the software (Step 8 in Figure 9.6),
the proposed code validation process is completed, and the resulting translation
results are validated (Step 8 in Figure 9.6).



9.4 PyLC: From PLC to Python and Pynguin

149

Table 9.2: Step by Step FBD to Python Translation Example Based on The Translation
Work Flow (TWF) of the PyLC framework and the related Translation Rules (TR).

Translated Code in Python/Description

E‘ZZF Step Name Tr_n':]:::f:kule PLC Code Description
Inputs Inputl(bool), Input2 (bool) #Python Main Function
Q(bool), Status (bool) def Check_Signals(inputl: bool, input2: bool,
10 Outputs ¢ .
A/B N N status: bool, pt: int) -> bool:
Analysis Data Type IN(bool), PT(TIME), Q(bool) if pt < 0:
Data Range raise ValueError
#Python Sub-Function (Dynamic range of Arguments)
def XOR(xargs):
vat = argsfe]
for 1 in range(1, len(args)):
XOR (Inputl, Input2) if type(args[il) is not bool:
raise TypeError
else:
val = val * args[i]
return val
#Python Sub-Function (Dynamic range of Arguments)
def AND(xargs):
val = args[e]
for i in range(1, len(args)):
AND(Q, Status) if typelargs[il) is not bool:
raise TypeError
else:
val = val and args[il
return val
#A Python Sub-function that simulates the TON behavior by
reading the real-time system clock in seconds.
def TON():
from datetime import datetime
global clockA
global clockB
FBs global Q
C/D  |Functionia FB Behavior datetime.now()
| Analysis int(clockA. strftine("%S"))
int(0)
TON(IN, PT, Q) Q = bool(Fatse)
if type(IN) == bool:
datetine.nou()
int(clockB.strftime("
ET = (clockB - clockh)
if ET < 0:
ET += 60
Q = False
if IN and ET == pt:
Q= Troe
return Q
#Python Sub-Function (Dynamic range of Arguments)
def AND(xargs):
vat = argsfe]
for i in range(1, len(args)):
AND(Input1, Input2, Status) if typeargs[il) ds not bool:
raise TypeError
else:
val = val and args[i]
return val
B One XOR block with two inputs is connected to a TON ) o
! ' #The connection between the Python code elements including
. block that has two inputs and s connected to an AND
E | Network FB Network ! b FBs, inputs, and outputs established using the Python
" block with two inputs. Another AND block with 3 inputs
Analysis is considered for the other signal status scenario. fonetion ealls in right erder
&
Exccution Order | Excecution Scenario 1: If the value of Status is enabled.|; pare o the code Body
(The exceution order of the | the value of Inputl and Input2 are checked. Ifone of |55 xor(input, input2) is True:
POU is implemented by them at the same time is True, the value of TON i TONG):
mapping the Python function | becomes True and after spending the pre-defined time in if ANDCQ, status):
FB calls to the corresponding | PT, the value of Q becomes True, and consequently, the Err = True
Execution | €xccution order n the original | - connected AND block is enabled and the final output return Err
F ord POU in FBD language. (Err) becomes True else:
TEEr | The described scenarios are 3 N pass
ANAIYSIS | et by analying the | Execution Scemario 2: If the value of Status is nabled. et anp( (inputs, input2), status) is True:
network of the sonneeted Fiss | 1€ value of Inputl and Tnput2 are checked. If both valuey  quat = True
Lo other elements based o thepd 1€ True the value of the second AND block becomes |~ return Equat
description in [EC 611313 | True and conscaquently, the value of the final oufput [ete:
standard) (Equal) becomes True. return False
Finally, INPUTS, OUTPUTS, NETWORK, and
Python . ) EXECUTION ORDER are linked to cach other to | #Cyclic execution is inplemented by calling a Python timer
G Code Cyelic Execution generate the trasnlated Python module with a preset time budget.
Code.




150 Paper B

9.5 Results

In the previous section, we have presented our approach towards translating
PLC programs into Python scripts that can be used for testing purposes. In
this section, we show relevant results in terms of performance, of applying our
framework to translating and validating real-world PLC programs.

9.5.1 RQI1 - PyLC Translation

We consider ten different PLC programs to evaluate our proposed translation
framework in real-world circumstances, including 6 ST and 4 FBD programs.
Detailed information on the translated PLC programs is shown in Table 9.3.
The considered PLC programs are of different sizes (between 21 and 338 Lines
of Code (LOC)). Nine of the ten selected PLC programs are being used in the
industry by a large automation company in Sweden. These programs are part of
a software system that supervises the control system operations. Six programs
perform supervision duties by checking the control system’s real-time signals.
In contrast, the other four PLC programs produce decisions based on the inputs
received from the connected positioning system based on cameras.

The translation of the mentioned PLC programs to Python is done using
the proposed translation workflow in Figure 9.4 and adheres to the proposed
translation rules in Section 9.4.1. We note here that, according to the data
in Table 9.3, the translation reduces the number of LOC for the considered ST
programs by an average of 65.20%. This can be explained by the fact that in ST
and FBD programming languages, one needs to include a variable declaration.
In addition, unlike Python, the syntax of ST programming requires the user to
declare the ending point of the conditional loops.

9.5.2 RQ2 - PyLC Validation

To evaluate the proposed method, we use the translation results of the translated
PLC programs in Section 9.5.1 by three different unit testing mechanisms de-
scribed in Section 9.4.2. In the following subsections, we describe and demon-
strate the results regarding each unit testing validation step, respectively.



9.5 Results 151

PRG PRG Type LOC | LOCin | No of No of
Name | Language in PLC | Python | FBS | Branches
PRG1 ST FUN 82 54 - 16
PRG2 ST FB 74 50 - 16
PRG3 ST FUN 137 86 - 34
PRG4 ST FB 338 261 - 134
PRG5 ST FB 21 17 - 8
PRG6 ST FB 38 14 - 0
PRG7 FBD FB - 30 3 14
PRG8 FBD FB - 57 5 28
PRG9 FBD FB - 46 4 22
PRGI10 FBD FB - 40 4 16

Table 9.3: Information Regarding Translated PLC Programs (PRG) from PLC into
Python Using the PyLC Framework

Test | PRG T Number Verdict Execution
Suite | Unit ype of TCs erdie Time (s)
1 AND | FUN 5 5/5 0.03
2 XOR | FUN 7 717 0.04
3 OR | FUN 5 5/5 0.02
4 SEL | FUN 6 6/6 0.03
5 TON | FB 10 10/10 0.08
6 TOF FB 10 10/10 0.09

Table 9.4: Results of executing the test cases for each common Program (PRG) unit as
well as their type: Function (FUN)/Function Block(FB)



152 Paper B

Test Program Number Verdict Execution
Suite of TCs Time (s)
1 PRG1 6 6/6 0.04
2 PRG2 9 9/9 0.07
3 PRG3 5 5/5 0.03
4 PRG4 9 9/9 0.03
5 PRG5 7 717 0.04
6 PRG6 8 8/8 0.04
7 PRG7 10 10/10 0.03
8 PRGS 5 5/5 0.02
9 PRG9 8 8/8 0.06
10 PRGI10 7 771 0.04

Table 9.5: Results of executing requirement-based test cases on the translated PLC
programs

Unit Testing Validation based on Requirements

Behaviour validation of the translated PLC programs into Python is done via
requirements-based testing. It means that for each PLC program transformed
into Python, the actual behaviour of the translated PLC program in Python is
compared with the expected behaviour in the original PLC program based on
test cases covering all stated requirements.

Based on the proposed technique for this type of validation (as shown in
Figure 9.6), we analyze the behaviour of the translated code from two differ-
ent aspects, which are test execution scenarios and individual program units
(consisting of functions and FBs). This means we design two sets of unit test
cases. The first set of test cases covers the overall behaviour of the program
based on the stated scenarios. In contrast, the second set of test cases examines
the expected behaviour of each FB in the translated PLC program in Python
according to the IEC 61131-3 standard.

Regarding the execution scenario-based testing, we design a test suite for
each PLC program that includes test cases based on the existing requirements.
Therefore, each test suite’s number of designed test cases is connected to the



9.5 Results 153

number of requirements. All the designed unit test cases are executed automat-
ically in Python using unittest’. Table 9.5 shows the test execution results for
each translated program. The results suggest that requirement-based test cases
have passed successfully on the resulting Python programs. The execution time
is between 0.02s and 0.07s.

Regarding the design of test cases for the standard functions and FBs (pro-
gram units) that are used in different PLC programs, we design different test
cases that are bound to check the correct functionality of each block based on
their expected behaviour.

We consider commonly-used PLC Functions (e.g., AND, XOR, OR and
SEL) and FBs (e.g., TON and TOF (Timers)). We have developed all test cases
manually based on the definition of each Function and FB in the IEC 61131-3
standard. The developed test cases have been executed automatically on the
translated programs in Python using the Python unittest tool. Table 9.4 shows
more details and results of testing these blocks. As it can be observed in Table
9.4, we have considered seven unit test cases for each function and ten test
cases for each function block. All test cases have been executed successfully
on the Function/FBs at the Python level, with the execution time not exceeding
0.09s.

Finally, for six out of ten translated PLC programs (PRGS to PRG10), both
categories of the aforementioned requirement-based test cases are executed on
the original PLC program in CODESYS IDE using CODESYS Test Manager.
The result of executing these test cases on both Python and PLC environments
is then compared. We find that the same test case execution status is obtained
in CODESYS IDE, indicating the program’s accurate translation using PyLC
Framework according to the specific tested requirements. The reason behind
excluding four PLC programs from this process is that these programs are de-
signed to analyze some data directly from specific hardware cameras, and alter-
ing these inputs manually in CODESYS Test Manager is not feasible directly
using unit testing.

Checking PyLC Translation Rules

We have also investigated the use of checks related to our translation rules. For
each PLC program, we have designed several unit test cases that investigate the

Thttps://docs.python.org/3/library/unittest.html



154 Paper B

Test Program Number Verdict Execution
Suite of TCs Time (s)
1 PRG1 5 5/5 0.03
2 PRG2 8 8/8 0.04
3 PRG3 10 10/10 0.05
4 PRG4 15 15/15 0.07
5 PRG5 5 5/5 0.03
6 PRG6 6 6/6 0.02
7 PRG7 8 8/8 0.04
8 PRGS 9 9/9 0.05
9 PRG9 11 11/11 0.04

10 PRGI10 10 10/10 0.07

Table 9.6: An overview of the results of Test Case (TC) execution on 10 cases based on
the proposed PyLC Translation Rules

alignment of the translated programs to the proposed translation rules in PyLC.
These test cases check if the transformation of certain PLC elements(i.e., in-
put(s), output(s), data type, data range, FB behaviour, FB network, execution
order, and cyclic execution) produces valid elements in the translated PLC pro-
grams. We have developed test cases manually using the Python unittest tool.
The results of executing the translation rules on the ten considered PLC pro-
grams are shown in Table 9.6.

Validation using Pynguin Test Generation

In this subsection, we show how we leverage Pynguin, an automated search-
based testing framework for Python, within our framework. Among all of the
supported search-based algorithms of Pynguin, we use DYNAMOSA (Pyn-
guin’s default algorithm) as our algorithm of choice for generating test cases.

We have followed Pynguin’s default configuration using DYNAMOSA, a
test generation time budget of 10 minutes, and mutation analysis enabled. The
results of automated test generation and execution on ten considered PLC pro-
grams of this study using Pynguin are shown in Table 9.7.



9.5 Results 155

Test Test Branch Killed/
Test Number . . . Covered .
. Program Verdict | Generation | Execution | Coverage Survived
Suite of TCs . . Branches
Time(s) Time (%) Mutants
1 PRGI 7 517 5 0.16 100 16/16 72/0
2 PRG2 7 417 4 0.14 100 16/16 67/0
3 PRG3 6 4/6 609 0.13 80 27/34 164/0
4 PRG4 27 20/27 653 0.5 88.89 119/134 170/0
5 PRG5 2 2/2 601 0.03 77.78 6/8 5/4
6 PRG6 1 1/1 1 0.02 100 0/0 0/0
7 PRG7 4 2/4 601 0.13 86.67 12/14 18/0
8 PRG8 7 3/7 601 0.14 75.86 21/28 26/0
9 PRG9 7 517 610 0.23 86.96 19/22 40/0
10 PRGI10 6 5/6 606 0.12 88.24 14/16 18/0

Table 9.7: Results of Automatic Test Generation/Execution for Translated PLC Pro-
grams using Pynguin TAF

As seen in Table 9.7, we find that the number of generated test cases ranges
from 1 to 27 test cases per program. Pynguin test cases obtain a branch cover-
age of 88.44% on average. Moreover, Pynguin achieves 100% branch coverage
for three transformed PLC programs. The size of the program influences the
test case generation time, and it ranges from s for PRG6 to 653s for a larger
program such as PRG4; however, letting the time budget exceed 10 min could
improve the coverage obtained for Pynguin test cases. Regarding mutation
analysis, Pynguin leverages assertion generation mechanisms during the test
generation phase. Pynguin will automatically switch to mutation analysis that
works based on MutPy®. We observe that Pynguin starts mutation analysis
for 9 out of 10 PLC programs, and in all except one case, it is able to kill all
the mutants. The results seem to be influenced by the 10-minute time limit
used for test generation, the specific mutant generation used by Pynguin, and
the possibility of having mutants that are not generated for a specific region
of the code. The number of generated mutants varies for each translated PLC
program, from 5 to 170 injected faults. Our intuition of the lack of generat-
ing any mutants for PRG6 by Pynguin is the high simplicity of the program.
The test execution time is 0.16 seconds on average. Regarding passed/failed
test cases, we observe that most of the generated test cases have successfully
passed, given the generated assertions.

The results of generating and executing test cases for the translated PLC

8https://github.com/se2p/mutpy-pynguin



156 Paper B

programs into Python using PyLC show that this method is feasible for vali-
dating the transformation and test generation during the development of PLC
programs. However, using other search-based algorithms and increasing the
test generation budget, especially for large programs such as PRG4, might in-
crease the obtained code coverage and improve the mutation analysis results.
In the end, we execute the generated test cases on the original PLC programs
in CODESYS IDE to investigate whether their execution in the original PLC
environment produces the same results. Executing the test cases in CODESYS
IDE has been done via CODESYS Test Manager.

9.5.3 Threats to Validity

We have successfully applied our PyLC approach to transform and validate
PLC programs. However, a significant threat to the validity of our experiments
is the question of the representativity of the programs used. While our case
study does not cover the whole range of possibilities of program transforma-
tions, these programs are still distinct from one another and of different sizes.

Regarding the data types used, Python is designed to automatically inter-
pret and detect various types based on the bounded values of each variable.
We have defined the exact variable type for each declared variable in Python
to mitigate the potential problem of using the generated test cases in Pynguin
in CODESYS IDE. The second threat refers to the default values that Python
considers for each variable type, which can be different from the PLC case.
To mitigate this threat, we declare the default value for each defined variable
manually. We acknowledge that we are aware of the possibility of minimising
these threats by using a static high-level language such as C, but we believe us-
ing Python is less expensive because of its full compatibility with CODESYS
IDE and being supported by powerful static verifiers such as Nagini®.

9.6 Related Work

Previous contributions in transforming PLC programs to other languages range
from SCs-based approaches (e.g., [12]) and the ones using the C language (e.g.,
[13]) to model-based approaches of transforming the actual FBD program code

9https://github.com/marcoeilers/nagini



9.6 Related Work 157

(e.g., [14]). The technique in [15] is based on the IEC 6150 models and sup-
ports other parts of the development process. However, compared to our work,
these works do not cope with the internal structure of the PLC language as-
pects for FBD and ST as we do. In addition, the transformation validation
can be complemented by using a systematic unit testing approach using both
requirement-based and structural test case generation while taking advantage
of the test automation frameworks available, as presented in this paper.

Marcel et al. [12] proposed two different translation mechanisms for trans-
lating the FBDs under the IEC61131-3 standard to Sequentially Constructive
States (SCs). The generated synchronous graphical SCs are equipped with
textual descriptions, and their impact on readability is evaluated inside the pro-
posed translation mechanisms. The first translation method of their work is
more straightforward and consists of a backward translation strategy of an FBD
to an equivalent textual ST model. The second proposed method is translating
the resulting ST models into a synchronous programming language [16]. The
idea is to benefit from intuitive functional reuse for a model-based design. This
study suggests that the translation mechanism can increase the readability of
the FBD code using code refactoring inside the synchronous paradigm.

Enoiu et al. [14] proposed a toolbox that can formalize logic coverage cri-
teria and use it inside a model-checker to generate test cases [14]. The authors
defined a translation mechanism that exports a model from an FBD program
to a UPPAAL timed automata to achieve this. In their translation procedure,
they used UPPAAL operators and comparison blocks for transforming the FBD
elements into a UPPAAL model. The performance of their proposed toolbox
is evaluated by applying this transformation to 157 industrial real-world PLC
programs for test generation using model checking. Compared to our work,
this work does not focus on validating the transformation.

Junbeom et al. [13] investigated the possibility of translating the nuclear
Reactor Protection System (RPS) software from FBD to C. Their proposed
translation mechanism consists of two sets of translation algorithms and rules.
First, the authors use backward and forward translation based on tracking the
execution and data-flow patterns in an FBD. To translate each FB in an FBD to
C, the authors defined an equivalent C function. Finally, the authors validated
each translation algorithm by showing that their example FBD program has the
same I/O behaviour for all existing inputs as the translated C code.

In the context of IEC 61508 standard [15], Mirko Conrad [17] proposed



158 Paper B

a framework that verifies and validates the models and their generated code.
The framework consists of numeric equivalence testing between the generated
code and its corresponding mode and some extra measurements to ensure no
unintended functionality has transformed. The author claims that Simulink
users can benefit from using this framework.

9.7 CONCLUSIONS and FUTURE WORK

In this work, we have proposed PyLC, a translation framework for translating
PLC programs into Python code, including validation of the translation process
using three different unit-testing validation mechanisms. We have evaluated
the applicability and efficiency of our proposed framework by applying it to the
different industrial PLC programs. Ultimately, we aim to use PyLC to generate
search-based test cases for PLC programs that can be used during regression
testing in the development of industrial control systems.

In future work, we want to automate PyL.C fully, by parsing in CODESYS
the PLC program and using the test manager to generate and execute test cases
without user intervention to minimize the manual overhead. Another direction
for future research is to equip PyLC with a formal verification mechanism,
to increase correctness assurance. The final contribution for future work can
be investigating the performance of the different search-based algorithms in
generating more effective test cases for evolving PLC programs.

9.8 Acknowledgements

This work has received funding from the EU’s H2020 research and innovation
program under grant agreement No 957212.



Bibliography

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

Michael Tiegelkamp and Karl-Heinz John. [EC 61131-3: Programming
industrial automation systems, volume 166. Springer, 2010.

Stephan Lukasczyk, Florian Kroif}, and Gordon Fraser. Automated unit
test generation for python. In International Symposium on Search Based
Software Engineering, pages 9-24. Springer, 2020.

Mark Lutz. Programming python. " O’Reilly Media, Inc.", 2001.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Re-
formulating branch coverage as a many-objective optimization problem.
In 2015 IEEE S8th international conference on software testing, verifica-
tion and validation (ICST), pages 1-10. IEEE, 2015.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Au-
tomated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software
Engineering, 44(2):122-158, 2017.

Andrea Arcuri. Many independent objective (mio) algorithm for test suite
generation. In International symposium on search based software engi-
neering, pages 3—17. Springer, 2017.

Gordon Fraser and Andrea Arcuri. Whole test suite generation. /EEE
Transactions on Software Engineering, 39(2):276-291, 2012.

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.
Feedback-directed random test generation. In 29¢h International Confer-
ence on Software Engineering (ICSE’07), pages 75-84. IEEE, 2007.

159



160

Bibliography

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed ran-
dom testing for java. In Companion to the 22nd ACM SIGPLAN confer-
ence on Object-oriented programming systems and applications compan-
ion, pages 815-816, 2007.

Stephan Lukasczyk, Florian Kroi}, and Gordon Fraser. An empiri-
cal study of automated unit test generation for python. arXiv preprint
arXiv:2111.05003, 2021.

Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test
generation for python. arXiv preprint arXiv:2202.05218, 2022.

Marcel Christian Werner and Klaus Schneider. From iec 61131-3 func-
tion block diagrams to sequentially constructive statecharts.

Junbeom Yoo, Eui-Sub Kim, and Jang-Soo Lee. A behavior-preserving
translation from fbd design to ¢ implementation for reactor protection
system software. Nuclear Engineering and Technology, 45(4):489-504,
2013.

Eduard P Enoiu, Adnan éau§evié, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated test generation us-
ing model checking: an industrial evaluation. International Journal on
Software Tools for Technology Transfer, 18(3):335-353, 2016.

Ron Bell. Introduction to iec 61508. In Acm international conference
proceeding series, volume 162, pages 3—12. Citeseer, 20006.

Klaus Schneider. The synchronous programming language quartz. Tech-
nical report, Internal Report 375, Department of Computer Science, Uni-
versity of Kaiserslautern, 2009.

Mirko Conrad. Testing-based translation validation of generated code in
the context of iec 61508. Formal Methods in System Design, 35(3):389—
401, 2009.



Chapter 10

Paper C:

An Empirical Investigation
of Requirements Engineering
and Testing Utilizing EARS
Notation in PLC Programs

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, Cristina Seceleanu
Submitted to the Springer Nature Journal’s Special Issue on Topical Issue on
Advances in Combinatorial and Model-based Testing 2023.

161



162 Paper C

10.1 Abstract

Regulatory standards for engineering safety-critical systems often demand both
traceable requirements and specification-based testing, during development.
Requirements are often written in natural language, yet for specification pur-
poses, this may be supplemented by formal or semi-formal descriptions, to in-
crease clarity. However, the choice of notation of the latter is often constrained
by the training, skills, and preferences of the designers.

The Easy Approach to Requirements Syntax (EARS) addresses the inher-
ent imprecision of natural language requirements with respect to potential am-
biguity and lack of accuracy. This paper investigates requirements specifica-
tion using EARS, and specification-based testing of embedded software writ-
ten in the IEC 61131-3 language, a programming standard used for developing
Programmable Logic Controllers (PLC). Further, we study, by means of an
experiment, how human participants translate natural language requirements
into EARS and how they use the latter to test PLC software. We report our
observations during the experiments, including the type of EARS patterns par-
ticipants use to structure natural language requirements and challenges during
the specification phase, as well as present the results of testing based on EARS-
formalized requirements in real-world industrial settings.

10.2 Introduction

Programmable Logic Controllers (PLCs) are used in engineering embedded
safety-critical software (e.g., in the railway and automation control domains)
[1]. Engineering such systems commonly demands certification according to
safety standards [2] that impose specific constraints on requirements engineer-
ing, implementation-based and specification-based testing. Several studies [3],
[4], [5], [6] have looked at how to generate test input data to achieve high
implementation coverage for domain-specific PLC systems.

However, since requirements are often expressed in natural language, us-
ing them as such to create test cases, and also keep requirements and test cases
aligned, is a difficult task. While such an alignment requires extensive do-
main knowledge, a systematic process for requirements engineering — includ-
ing their translation into a semi-formal, non-ambiguous form — combined with
testing would facilitate linking requirements to tests. Generally, in industry,



10.3 PRELIMINARIES 163

such translation is most often carried out manually, so manual processes are
used to model requirements by using structured notations, and automatically
create a set of tests that systematically exercises the specification when fed
to the system under test [7]. Given that there is little evidence on the extent
to which humans can effectively model requirements using semi-formal nota-
tions, and how the modelling impacts the development and testing of reliable
systems, in this paper, we investigate the implications of applying structured
requirements specification and test generation based on the latter, for PLC sys-
tems. In this context, we study how practitioners write requirements using
the Easy Approach to Requirements Syntax (EARS) [8], a simple notation for
specifying textual requirements in a structured and unambiguous manner.

We evaluate the EARS-based requirement modelling by involving human
subjects. Ten individuals take part as subjects, in an experiment. The subjects
are given three requirements specified in natural language, and are asked to
rewrite them manually, using the EARS notation.

This work builds upon our previous work [9], and it extends it by a rigorous
investigation of the applicability and efficiency of EARS-based testing of in-
dustrial PLC programs, including a comparison of EARS-based testing of PLC
programs with testing the same programs manually. The results of our study
show that humans create pattern-based requirements using semi-formal nota-
tions easily, with completeness being the most common issue when rewriting
and using such requirements for testing. Additionally, we find that test genera-
tion and execution using the EARS requirements for PLC systems is a promis-
ing approach that is applicable to real-world industrial settings. Our results
highlight the need for more research into how different requirement specifica-
tions and test design techniques for PLC software can influence the efficiency
and effectiveness of requirements engineering and requirements-based testing
for this type of software.

10.3 PRELIMINARIES

10.3.1 Programmable Logic Controllers

Programmable Logic Controllers (PLC) are the most used logic controllers in
today’s automation industry [10]. PLCs are being widely used in different in-
dustrial applications such as supervisory systems in nuclear and power plants.



164 Paper C

Programming a PLC device is usually done via one or a combination of dif-
ferent programming languages that are proposed in the IEC 61131-3 standard
[11], that is, Function Block Diagram (FBD), Structured Text (ST), Ladder
Diagram (LD), Sequential Function Chart (SFC), and Continuous Function
Chart (CFC). Among all programming languages for PLC, FBD and ST are
our main focus in this study, for two reasons. First, these two languages have
gained remarkable popularity in industry, during the last couple of years [12].
Second, the industrial case study that is provided to us for this study is a super-
visory PLC program developed in ST and FBD. ST is a text-based program-
ming language with a similar syntax to high-level programming languages such
as C, whereas, FBD is a visual programming language that is easy to use due
to its graphical interface. PLC programs are commonly developed in an In-
tegrated Development Environment (IDE) and are executed cyclically. Based
on the provided concept in IEC 61131-3, each cycle loop of a PLC program
execution consists of 3 main stages, that is, read, execute, write [11]. The
first stage reads all available inputs and stores them in the memory, whereas
the second stage (execute) carries out the computation tasks without interrup-
tion. The final stage (write) updates the output values based on the completed
computations of the previous stage.

10.3.2 CODESYS Development Environment

Developing a PLC program and simulating its behaviour needs to be done in an
IDE. Several different PLC IDEs have been proposed by different vendors so
far. One of the most popular IDEs in the market is CODESYS ! which was ini-
tially developed by CODESYS Group in 1994. CODESYS is a manufacturer-
independent IDE that has matured by releasing numerous updates and the lat-
est version at this moment is V3.5 SP18. Among all available PLC IDEs
in the market, We have chosen CODESYS as our preferred IDE because of
several reasons. Firstly, CODESYS is very popular among practitioners and
has almost full compatibility with the IEC61131-3 standard and supports all
proposed standard programming languages of this standard [12]. Secondly,
CODESYS is free to use for personal use and is equipped with good support
through releasing different versions. Last but not least, CODESYS can execute
Python scripts directly inside the IDE and it is also equipped with numerous

Thttps://www.codesys.com/



10.4 EXPERIMENTAL DESIGN 165

automation add-ons such as test automation tools.

10.3.3 EARS Semi-Structured Requirement Engineering Syn-
tax

Writing the stakeholder requirements in unconstrained Natural Language (NL)
is not accurate and can raise critical problems in lower levels of system de-
velopment [8]. Aiming at mitigating the ambiguity problems and increasing
the accuracy in the process of requirements engineering, some practitioners
stand up for using other textual and non-textual notations [8]. Using non-
textual notations demands translation of the original requirement, which can
be faulty sometimes. Training overhead is another drawback of proposing a
new type of notation. EARS is a semi-structured requirement engineering syn-
tax that was proposed by Alistair et al. in 2009 [8]. EARS provides a syn-
tax for transforming all-natural language requirements in one of the proposed
five Generic requirements syntax simple templates. The aforementioned five
simple templates of EARS are ubiquitous requirements, event-driven require-
ments, unwanted behaviours, state-driven requirements, and optional features.
Moreover, EARS supports writing complex requirements using a combination
of considered conditional keywords, including Where, While, and When.

10.4 EXPERIMENTAL DESIGN

In this section, we report the description of the performed experiment, includ-
ing the details of the instruction material and the artefacts used.

10.4.1 Research Questions

The main goal of this study is to investigate the process of requirements cre-
ation when constraining the use of NL. The EARS modelling notation has been
adopted by other organizations in different sectors and countries, so it is a re-
alistic model for requirements engineering and test creation. Since these are
intellectual activities in which humans allocate a variety of cognitive resources
(such as attention and effort) that one needs to use when confronted with chal-
lenges as they perform such tasks, our first step is understanding how human



166 Paper C

practitioners write such requirements and how these can be used for test cre-
ation.

The main goal of this study is to investigate the applicability of the EARS
semi-structured requirement engineering syntax in the context of PLC pro-
grams. Aiming at achieving this goal, we formulated the following research
questions.

* RQI: How is the EARS semi-structured requirement engineering syntax
and test creation applied in the context of PLC programs?

* RQ2: What EARS patterns are used during the writing of requirements?

* RQ3: What challenges are perceived during the specification of require-
ments and test creation using EARS?

* RQ4: How well do PLC test cases created from EARS requirements
compare to test cases created by industrial engineers for PLC programs
in industry?

10.4.2 Experimental Setup Overview

Aiming at achieving the goal of this study, we conduct a controlled experiment
that asks the participants to write 3 given requirements using EARS syntax.
The participants are free to choose their preferred EARS syntax template based
on their personal interpretation of the given requirements. The subjects of this
experiment are a group of 10 individuals as follows: four experienced engi-
neers at a large automation company in Sweden and Spain and six researchers
and managers from different universities and research institutions across Eu-
rope.

10.4.3 Object Selection

The objects of study were chosen manually based on the following criteria:

* The requirements should have a natural language specification that is
understandable and sufficiently rich in detail for an engineer to write
executable tests.

* The requirements should represent different types of real testing scenar-
ios in different areas where the IEC 61131-3 standard is used.



10.4 EXPERIMENTAL DESIGN 167

Table 10.1: The natural language requirements used during the experiment.

Requirement ID | Requirement Text

RI1 User account should be uniquely iden-
tified to a user.

RI2 The software shall warn the user of
malware detection.

RI3 Only authorised devices are allowed to
connect into the ICS network

* The requirements should be simple to understand without any domain
knowledge.

* The resulting test cases should be executed in the CODESYS environ-
ment.

We investigated the industrial libraries provided by a large-scale company
focusing on the development and manufacturing of control systems. We iden-
tified three candidate requirements matching our criteria, shown in Table 10.1.
The requirements should not be trivial, yet fully manageable to use within 60
minutes and no domain-specific knowledge should be needed to understand the
requirements. We then assessed the relative difficulty of the identified require-
ments by manually writing and creating tests.

10.4.4 Operationalization of Constructs

Requirements Templates. In this experiment, we investigate the effect of using
the EARS approach for requirements engineering and test creation. The pro-
posed generic requirements syntax of EARS we used in this experiment works
as follows:

<optional preconditions><optional trigger> the <system name> shall
<system response>

This simple syntax template forces the requirement engineer to emphasise
preconditions, triggers, and system responses in their developed requirements.
In EARS syntax, preconditions, and triggers are both optional, and the order



168 Paper C

of the used clauses is very important. The following briefly describes each
template of EARS.

Ubiquitous requirements (U)

A ubiquitous requirement is a type of requirement that is not bonded to any
preconditions or triggers and is always enabled in the system. The generic
structure of this template is as follows:

The <system name> shall <system response>

Event-driven requirements (ED)

The event-driven requirement is used only when an event is identified in the
system. This type of requirement uses When keyword. The generic structure
of this template is as follows:

WHEN <optional preconditions> <trigger> the <system name> shall
<system response>

Unwanted behaviours (UB)

Requirements that are related to Unwanted behaviours are defined using a
structure that is extracted from Event-driven requirements. Unwanted behaviour
refers to covering all possible situations that are not desirable and are usually
a big source of omissions in preliminary requirements. The reserved keywords
for this type of requirement in EARS are If and Then. The generic structure of
this template is as follows:

IF <optional preconditions> <trigger>, THEN the <system name> shall
<system response>
State-driven requirements (SD)

The State-driven requirement is only active if the system is in a specific sta-
tus. The reserved keyword for defining State-driven requirements in EARS is
While. The generic structure of this template is as follows:



10.4 EXPERIMENTAL DESIGN 169

WHERE <feature is included > the <system name> shall <system response>

Optional features (OF)

The Optional feature requirement is designed to be used when the author of
the requirement wants to include a specific feature in the system. The keyword
Where is considered for defining this type of feature in EARS. The generic
structure of this template is as follows:

WHERE <feature is included > the <system name> shall <system response>

Process Challenges. We are interested in two types of challenges encountered
during the use of EARS templates and their use for testing: challenges encoun-
tered during the specification of requirements and problems when designing
test cases for PLC systems. We performed thematic analysis [13] for qualita-
tive data analysis to extract the main themes as reflected by the input given by
each participant.

10.4.5 Instrumentation

One session was organized for the sake of the experiment. The subjects were
given the task to use the three requirements and rewrite these in EARS (to the
extent they consider sufficient based on the given specifications). They were
instructed to read the specifications, create these templates and think out loud.
The subjects were not grouped and the document needed for this experiment
was provided digitally and in written form. Before commencing the session,
a short tutorial of approximately 10 minutes on EARS syntax was provided to
the subjects in order to avoid further problems with the subjects’ unfamiliarity
with the concepts used. The tutorial included screencasts demonstrating EARS
requirements. Detailed information about the problem and instructions were
provided in the experiment session.

10.4.6 Data Collection Procedure

As part of the instructions, subjects submitted their solutions in the form of a
record documenting their work. Data from this experiment session was then



170 Paper C

used for quantitative and qualitative analysis.

10.5 EXPERIMENT CONDUCT

Once the experiment design was defined, the requirements for executing the
experiment were in place. The session was held for one hour and preceded by
a lesson on EARS notation. The requirements specification and testing process
used during the conduct of this experiment corresponds to the methodology in
Figure 10.1. The first step corresponds to the transformation of the requirement
specified initially in Natural Language (NL) into an EARS requirement using
the EARS syntax (Step 1 in Figure 10.1). In the next step, we are using the
resulting requirement to generate test cases that cover the specified behaviour
(Step 2 in Figure 10.1). The final steps in this methodology are to execute these
test cases (Step 3 in Figure 10.1) and to compare the actual behaviour with the
expected result to monitor whether the program works as expected (Step 4 in
Figure 10.1).

In total, fen individuals participated in our experiment. Before starting the
experiment, the participants were informed that their work would be used for
experimental purposes. The participants had the option of not participating in
the experiment and not allowing their data to be used this way.

The subjects worked individually during the experiment; we briefly inter-
acted with the participants to ensure that everybody had a sufficient under-
standing of the involved notations without getting involved in the writing of the
solution. All subjects used the provided documents and their machines. The
experiment was fixed to one hour. To complete the assignment, the subjects
were given the same time to work on writing these requirements according to
the given instructions. For collecting data, we provided a template to enforce
the usage of the same reporting interface. By having a common template for
reporting, we eased the data collection and analysis process.

To finish the assignment, we required the participants to provide the pro-
duced results as soon as they finished writing their responses. During the exper-
iment, the subjects do not directly communicate with others to avoid introduc-
ing bias. After each individual finished their assignment, a complete solution
was saved containing the answers for each solution. In addition, we separated
the data provided by the participants from their names.



10.6 EXPERIMENT ANALYSIS 171

EARS
NL Syntax R EARS
Requirement (1] Requirement
Test
9 Generation
Test = .
CODESYS Test _Execution PLC PRG in
Manager (3] CODESYS
Expected
o Output
Checking The
Results

Figure 10.1: An overview of the proposed EARS-based requirement specification and
PLC testing methodology used in this experiment.

10.6 EXPERIMENT ANALYSIS

This section provides an analysis of the data collected in this experiment. In
analyzing the qualitative data, we followed the guidelines on qualitative anal-
ysis procedures provided by Braun and Clarke [13]. For each requirement,
each subject in our study provided a set of EARS expressions. These expres-
sions were used to conduct the experimental analysis and testing. For each set
of tests produced, we provide evidence for their generation and execution in
CODESYS. These metrics form the basis for our analysis toward answering
the research questions.

10.6.1 Requirement Engineering Results

For each requirement, we have collected data about the type of EARS tem-
plate used by each participant, the approaches, and the challenges participants
experienced during requirement representation using the EARS notation. The
results are shown in Table 10.2, Table 10.3, and Table 10.4.



172 Paper C

Table 10.2: Results of the templates used for each requirement used in the experiment.

RI1 | RI2 | RI3 | Requirement ID/EARS Template
10 1 1 Ubiquitous (U)
0 5 4 Event-Driven (ED)
1 5 6 Unwanted Behaviours (UB)
0 0 3 State-Driven (SD)
0 0 0 Optional Features (OF)

Table 10.3: Results of the requirements writing in terms of the templates used by each
participant for each requirement. EARS template types are shown using their specific
acronyms as stated in Section 10.4.4 and Table 10.2.

RI1 RI2 RI3 Requirement ID/Participants
U,UB | U,UB,ED | U,SD,ED P1
U ED UB P2
U ED UB P3
U UB SD P4
U ED UB P5
U ED UB P6
U SD UB P7
U UB ED, UB, SD P8
U UB ED P9
U UB ED P10




10.6 EXPERIMENT ANALYSIS 173

Table 10.4: Results showing the main themes identified related to approaches and chal-
lenges encountered during the translation process.

Main Themes

Theme Descriptions

Requirements are not

complete and clear
enough for EARS
translation.

When starting with the translation,
requirements in NL are not com-
plete enough to decide precisely which
EARS template to use.

Using single or multi-
ple EARS templates is
not clear enough, espe-
cially when using these
for testing.

There is a need, when using these pat-
terns for testing, to use multiple and
separate templates for each require-
ment to cover both positive and nega-
tive cases arising.

The system perspective
is not easily identifiable
from the requirements.

It is difficult to decide which perspec-
tive to use when translating the EARS
requirement (e.g., system, subsystem
level).

The optional feature
template is not applica-
ble for the selected re-
quirements

Even if the Option requirement is used
for systems that include a particular
element and variants, this modelling
form was not used during requirement
transformation using the EARS nota-
tion since the participants did not need
to handle system or product variation.




174 Paper C

Participants strictly adhered to one or multiple EARS templates. It seems
that the ubiquitous template has been used by all participants to model require-
ment RI1 and just in one case when representing requirements RI2 and RI3
(as shown in Table 10.2). Participants explained that the “shall” statement is
clearly indicated and should be used to describe the required behaviour. Nev-
ertheless, one participant decided to use the unwanted behaviour template for
RII to indicate the prohibited behaviour in such a form that can be used for
testing.

The event-driven and unwanted behaviour templates have been used by
participants to represent requirement RI2, while some participants used the
state-driven pattern (as shown in Table 10.3). Participants chose to do this
since they drafted requirements in several increments. Firstly, they considered
how the system behaves typically (also called sunny-day behaviour). For some
participants using EARS, this results in requirements in the state-driven and
event-driven patterns. Secondly, some participants decided to specify what
the system must do in response to the unwanted behaviour, which produced
requirements in the unwanted behaviour pattern.

In addition, the thematic analysis of the notes taken by participants when
performing these steps in requirement representation resulted in several main
themes related to approaches and challenges experienced during the transla-
tion process. Several participants mentioned that the initial NL requirements
are not complete and clear such that these can be used directly for testing. One
participant mentioned the following: “What happens if the device is not au-
thorized, missing failure models, startup/default/safe state...?”. This resulted
in issues when starting with the translation process, especially when deciding
which templates to use. Several participants had issues in deciding when to
use single or multiple EARS templates to cover both positive and negative be-
haviours that need to be tested. One participant stated the following: “We could
possibly use event-driven type requirement. At the same time, it is unwanted
we could use, this one is quite complicated”. Some participants preferred the
use of the “shall not” form, which has been observed by some participants as
having an impact on the test case created since only a set of test cases involving
the unwanted behaviour would need to be created to show satisfaction with the
requirement. Another observation relates to the use of an optional feature tem-
plate, which for the given requirements was not used by any of the participants
since there was no need to specify any product variation or specific features.



10.6 EXPERIMENT ANALYSIS 175

10.6.2 PLC Testing Results

Aiming at evaluating the applicability of using EARS semi-structured syntax
when creating test cases for PLC programs, we used three programs that im-
plement the behaviour stated in the three provided natural language require-
ments used in this experiment. All these three PLC programs are developed in
CODESYS IDE using the Structure Text (ST) programming language. In this
paper, we refer to these programs as PRGI, PRG2, and PRG3.

After generating the EARS-based test cases for each program, we execute
these automatically using the CODESYS test automation framework named
CODESYS Test Manager?. The final step in this methodology is to compare
the actual output with the expected output to observe whether the program
works as expected.

We used the concretization steps of the EARS expressions as stated by
Flemstrom et al. [14]. This happens by mapping the system response, con-
dition, and events to the actual implementation in PLC. This contains infor-
mation about the implementation elements of a system and its interfaces. An
engineer needs to consider this information and identify the given signals and
their characteristics. In this way, we define a set of signals related to the feature
under test. In these cases, the next step for the selected requirements would be
to design test cases to show that the requirement has been met. In our experi-
ment, we could directly use a subset of positive and negative cases by randomly
choosing values from an equivalence class. Nevertheless, in a general case, the
translation and concretization steps are not easy and one would need to decide
how to automate such steps and if we are to use exhaustive testing, equivalence
class testing, combinatorial testing, or any other test selection technique for
designing test cases.

Test Results of PRG1

PRG1 is the PLC program we considered for testing the RI1 requirement (refer
to Table 10.1) in the PLC environment. This program is using the values of the
user account and user lists. Then it checks for unique IDs and returns an
indication of whether each user account is uniquely identified to a user or not.
A snippet of the PRG1 PLC program is shown in Figure 10.2.

Zhttps://store.codesys.com/en/codesys-test-manager.htm]



176 Paper C

PROGRAM UniqueUserAccount

2 VAR
user : ARRAY[1..10] OF WSTRING;:
4 user_account : ARRAY([1..10] OF DINT;
: iz ¢ INT;
6 K : INT;

UniqueID : BOOL; (*Non-Uni
Result Unique: BOOL := FJ
END_VAR

Figure 10.2: PRG1 PLC interface program written in the ST language in CODESYS
IDE corresponding to the evaluation of the RI1 requirement.

H2 rrl ad8 - TestActon Extended Settings

EARS.RQ1.UniqueUserAccount [0.0] Title: |user_accuunt ‘ Action: |Writevariable (TestManager.} "
= EARS_RQ1_Unique_User_Account

Configuration p, ters (0
e arameters (0/0)

|user_ar.r.nunt Variable: [Dev::e‘Appl\cahon.UnlqueUserAccount.user_ar.cnunl[zl
Expected Output
= EARS_RQ1_Non_Unique_User_Account

user

Value: |sss

user_account
Expected Qutput

Figure 10.3: The generated test cases for PRG1 based on the EARS syntax for RI1 as
shown in CODESYS IDE

To design and execute the required test cases to test the RI1 Requirement
in PRG1, we use the transformed requirement from the NL requirement shown
in Table 10.5.

Based on the EARS requirement we use two test cases to cover the identi-
fication of the user and the case when the user is not identified. Each test case
includes the following three test actions: two WriteVariable test actions to al-
ter the user and user account inputs and one CompareVariable test action that
compares the actual output with the expected one. The generated test cases for
PRG1 used to test the adherence of the program to RI1 requirements are shown
in Figure 10.3.

After designing the required test cases, we execute them automatically on
PRG1 to investigate the adherence of the mentioned PLC program to the RI1
requirement. As can be observed in Figure 10.4, all test cases have been exe-



10.6 EXPERIMENT ANALYSIS

Table 10.5: EARS Requirements examples obtained from the experiment and the re-

sulting concretized EARS requirements.

is authorised> the
<system> shall
<grant access to
the device>

Requirements | EARS Require- | Concretized EARS Require-

ments ments

RI1 The <user account | if <uniqueID=FALSE> then
system> shall <UniqueUserAccount> shall
<identify the <Result_Unique=FALSE>
user> If <the user
is not identified>
then <user account
system> shall
<alert>

RI2 When <malware is | When <NormalActivity
detected> the # MaliciousActivity> the
<system> shall <MalwareDetection>  shall
<warn the user> <MalwareDetected=TRUE >

RI3 When <the device | When <found=TRUE>

the <SearchID> shall
<ConnectionAllowed=TRUE>




178 Paper C

Summary Details

Overview
Date 1/25/2023 2:38 PM
Script EARS.RQ1.UniqueUserAccount (0.0)
Tester msi11
Test settings: Verbose;
Summary
e
Total test cases 2 Execution time  00:00:00.3191599
Succeeded 2 Pinned scripts 0/1
Failed 0
Skipped 0
Version information
Details
1 Collapse all H Collapse succeeded H Expand all || Show parameters “ Hide parameters

+ [-] EARS.RQ1.UniqueUserAccount [0.0] - Succeeded

1. [-]EARS_RQ1_Unique_User_Account - Succeeded
1. Action: user - Succeeded
2. Action: user_account - Succeeded
3. Action: Expected Output - Succeeded

2. [-]JEARS_RQ1_Non_Unique_User_Account - Succeeded
1. Action: user - Succeeded
2. Action: user_account - Succeeded
3. Action: Expected Output - Succeeded

Figure 10.4: Test execution results for PRG1 PLC program based on the EARS-based
generated test cases for RI1

cuted in 0.3 seconds. All executed test cases have successfully passed on the
PRG1 program.

Test Results of PRG2

The PLC program we use for executing the generated test cases for RI2 in
Table 10.1 is named PRG2. This program is shown as a black-box malware
detection system in the PLC environment that can be used for investigating
the context of RI2. PRG2 consists of the following interfaces: two input sig-
nals named MaliciousActivity and NormalActivity as well as one output signal
named MalwareDetected. When MaliciousActivity and NormalActivity signals
have divergent information, the Malware Detection system is triggered, and
the value of the MalwareDetected signal becomes True. An interface snippet
of PRG2 is shown in Figure 10.5.

Considering the experiment results, we use the resulting EARS Event-
driven requirement pattern as the most suited type of template for transforming
the requirement from NL to EARS in the form shown in Table 10.5.



10.6 EXPERIMENT ANALYSIS 179

PROGRAM MalwareDetection
2 VAR
3 MalwareDetected: BOOL;
MaliciousActivity: BOOL;
NormalActivity: BOOL;
END_VAR

Figure 10.5: A snapshot showing the PRG2 PLC interface program written in the ST
language in CODESY'S IDE corresponding to the evaluation of the RI2 requirement.

Based on the developed EARS requirement for RI2 requirement, we gen-
erate two test cases for PRG2. Each test case consists of two test actions (Ma-
liciousActivity and NormalActivity) that alter the value of the inputs, as well as
one test action (Expected Output that compares the actual behaviour with the
expected one. The first test case checks if a(Malware is Detected) while the
second test case checks if a (Malware is Not Detected)

The generated test cases for PRG2 based on the RI2 requirement are then
automatically executed using CODESYS Test Manager in 1.71 seconds. All
developed test cases have successfully passed.

Test Results of PRG3

PRG3 is the PLC program used to execute the generated test cases for RI3
in Table 10.1 ("Only authorised devices are allowed to connect into the ICS
network". This program consists of the following units: /) a database of autho-
rised device IDs, which is implemented using an array of IDs, 2) an input signal
corresponding to the device ID that needs to be authorised, and 3) a boolean
output signal (i.e., found) which returns True in the case of the authorised de-
vice being allowed to connect given the ID is known. We show a snapshot of
this PLC program in Figure 10.6.

As discussed in Section 10.6.1, different individuals transformed the NL
requirement into the EARS requirement in different forms. We use the most
common form developed by the participants to transform RI3 to an EARS
Event-Driven syntax pattern in the following form shown in Table 10.5.

Based on the aforementioned EARS requirement for RI3, we developed 2
test cases for Successful Authorization and Unsuccessful Authorization. Each



180 Paper C

PROGRAM SearchlID

2 VAR

id to find : INT := 111;
found : BOOL;
array of ids : ARRAY[0..9] OF IN

i : INT;
END_ VAR

Figure 10.6: A snapshot showing the PRG3 PLC program written in the ST language in
CODESYS IDE corresponding to the evaluation of the RI3 requirement.

developed test case consists of two actions, including the provision of a new
Input ID and Comparing the actual output with the expected output. The gen-
erated test cases have been automatically executed on PRG3 using CODESYS
Test Manager in 1.14 seconds. Both test cases have successfully passed after
being executed on the PRG3 PLC program.

10.7 EARS-based Testing in Real-world Industrial
Settings

To expand our investigation of the applicability and efficiency of PLC testing
using EARS patterns in real-world industrial settings (RQ4), in this section, we
extend our evaluation by including a real-world PLC program that is being used
in the context of crane supervision by a large automation company in Sweden.
To be more specific, we compare the EARS requirement-based test cases with
real-world test scripts that are being used for PLC testing by industry. We
believe the conduction of this comparison can reveal hidden facts about the
applicability and efficiency of using EARS-based testing versus the current
real-world PLC testing in the industry.



10.7 EARS-based Testing in Real-world Industrial Settings 181

PLC program
Reversed @
Engineering Extract NL
Requirements

Mitigate ® Transform to
Ambiguity EARS
Requirements

Transform ®
1/0 to Signals Concretizing
Test Cases
Test
Generation @ CODESYS Test
Manager
Automated ®
Test Execution CODESYS
Profiler
Test
Specifications © Result
Checking

Figure 10.7: The proposed EARS-based testing method for real-world industrial PLC
testing

10.7.1 Methodology for EARS-based testing in real-world
industrial settings

The methodology we propose for using EARS-based testing in real-world in-
dustrial settings consists of six steps and is shown in Figure 10.7. The first
step is to use reversed engineering to extract the functional requirements from
the real-world PLC program (step 1 in Figure 10.7). The next step is to trans-
form the NL requirements into EARS requirements to mitigate ambiguity and
increase the clarity of the extracted requirements for the tester (Step 2 in Fig-
ure 10.7). As the next step, the EARS requirements need to be concretized for
facilitating the test generation by converting the Inputs/Outputs (I/O) into sig-
nals (step 3 in Figure 10.7). After having the concretized test cases, it is time
to generate test cases via the pre-defined test Actions inside the CODESYS
Test Manager tool (step 4 in Figure 10.7). The next step is to automatically
execute the test cases on the PLC program using the CODESYS Test Manager
tool (step S in Figure 10.7). The final step in this methodology is to enhance
the generated test specifications of CODESYS Test Manager by measuring the



182 Paper C

code coverage using the CODESYS Profiler tool and checking the results (Step
6 in Figure 10.7).

10.7.2 Real-world Industrial PLC Program

In this section, We start by introducing the included real-world PLC program
by defining its purpose and functionality. Then we analyze the industrial test
script of this PLC program and compare it to our proposed EARS-based testing
approach.

The included real-world PLC program in this work is called CraneNum-
berCheck and is shown in Figure 10.8. This PLC program serves the purpose
of checking the match/mismatch of two crane numbers as part of a crane su-
pervision program. As can be observed in Figure 10.8, this PLC program is
developed in ST language and is composed of two input variables which rep-
resent the crane numbers and are called Crane_I and Crane_2 (Lines 2-5 in
upper box in Figure 10.8). Moreover, this PLC program consists of two output
variables called Matched_Crane_No and out_Safe_Crane_No (Lines 6-9). The
first one checks if the crane numbers match and are not empty Word, whereas
the latter checks if the crane number is safe and if crane numbers mismatch,
this word is set to an empty word.

As can be seen in the bottom box in Figure 10.8, the functional logic of
the PLC program consists of two main parts and works as follows. In the first
part, the Matched_Crane_No is set to True if the crane numbers are equal and
Crane_l is not an empty Word (Lines 1-3 in the bottom box of Figure 10.8).
The second part of the program’s logic checks whether the crane numbers are
matched or not. In case of success, the program returns the safe crane number,
otherwise, it returns an empty Word (Lines 5-9 in the bottom box in Figure
10.8).

10.7.3 Industrial Testing of the Real-world Industrial PLC
Program

The current testing process of the CraneNumberCheck PLC program in in-
dustry is handled by manually developing a counterpart testing POU in ST
language. Part of the real-world industrial test script that is used for testing this
PLC program is shown in Figure 10.11. As can be observed in Figure 10.11,



10.7 EARS-based Testing in Real-world Industrial Settings 183

1 FUNCTION_BLOCK CraneNumberCheck
VAR _INPUT
Crane_1: WORD;
Crane_2: WORD;
END_VAR
VAR _OUTPUT
Matched Crane_No: BOOL;
out_Safe Crane No: WORD;
9 END_VAR
1 VAR
EmptyWord: WORD;
END_VAR

Matched Crane No :=
(Crane_1 = Crane_2)
AND (Crane 1 <> EmptyWord) ;

IF Matched Crane No THEN

out Safe Crane No := Crane 1;
ELSE

out Safe Crane No := EmptyWord;
END_IF

Figure 10.8: A snapshot showing the CraneNumberCheck PLC program as a real-world
industrial case study in the context of port crane supervision program

the industrial test script consists of several main steps. It starts with the ini-
tialization of a puls starting block as a trigger for starting the testing process,
followed by an IF condition for enabling the test cases one by one (Lines 1-6
in Figure 10.11). The next step is the initialization of variables for test con-
trol (Lines 7-16 in Figure 10.11). After setting up the initialization, the next
step is to define the main testing process which includes setting up a delay be-
tween test steps and the pulse generator followed by setting up a timer function
that simulates the cyclic execution behaviour of PLC programs (Lines 18-26
in Figure 10.11). The rest of the testing process of CraneNumberCheck PLC
program consists of unit test cases that define inputs and expected output.

10.7.4 Results of EARS-based Testing of a Real-world In-
dustrial PLC Program

In this section, we use the proposed EARS-based testing methodology (refer to
Figure 10.7) for testing the CraneNumberCheck PLC program as a real-world
industrial case study. The first step is to reverse engineer the PLC program to



184 Paper C

extract the functional NL requirements (Step 1 in Figure 10.7). The extracted
NL requirements for this PLC program are shown in Table 10.6. This table also
includes the used EARS pattern and the EARS version of each requirement
which is described as step 2 of our proposed methodology in Figure 10.7. It is
worth mentioning that all these functional NL requirements are validated by a
team of experienced PLC engineers in a big automation company in Sweden.

As it can be observed in RQ2 and RQ3 rows of Table 10.6, the extracted
functional requirements in NL can sometimes become complicated and hard
to follow for the developers while their EARS version on the "Requirement in
EARS" column are modularised and much easier to comprehend for the PLC
program developer/testers. Moreover, we can observe that one complicated NL
requirement can break into several smaller EARS requirements which also can
increase the readability of the requirements.

After having the functional requirements in EARS syntax, we take the next
step of our methodology which is concretizing the EARS requirements for gen-
erating unit test cases (step 3 in Figure 10.7). The procedure of concretizing
the EARS requirements for PLC testing is simple and works as follows. Each
I/0O inside the requirement is transformed into a signal which can facilitate the
test generation process as the next step. The concretized version of each EARS
requirement for CraneNumberCheck PLC program is shown in Table 10.7.

The next step in testing the CraneNumberCheck PLC program based on
the proposed testing approach is to generate test cases based on the concretized
EARS requirements in the step before (Step 4 in Figure 10.7). To this end,
first, we need to instantiate the CraneNumberCheck PLC program as a func-
tion block inside the main PLC program. A snippet of the function block we
instantiated for CraneNumberCheck PLC program can be observed in Figure
10.9. As the next step, we used CODESYS Test Manager to design the test
cases using the pre-defined Test Actions of this tool. After automatic exe-
cution of test cases on the CraneNumberCheck PLC program and using the
CODESYS Profiler tool for measuring code coverage (Steps 5,6 in Figure
10.7), we gathered the following results. All the designed test cases with a
timeout budget of 1 second have been successfully passed within 12 seconds on
the PLC program under test. Moreover, the automatic test execution based on
the proposed EARS-based PLC testing method for real-world industrial PLC
programs achieved 100% code coverage on CraneNumberCheck PLC program
based on the CODESYS Profiler report. A snippet of gathered full code cov-



10.7 EARS-based Testing in Real-world Industrial Settings 185

fb_CraneNumberCheck

CraneNumberCheck
CraneNoSetl —Crane 1 Matched Crane No |————— result
CraneNoSet2 —Crane 2 out Safe Crane No [~ number

Figure 10.9: A snapshot showing the function block instantiation of CraneNum-
berCheck POU inside the main PLC program to prepare it for testing

Expression Tpe  Value Comment

% Crane_1 WORD <Set breakpoint in order to watch this variable>  First crane number
% Crane_2 WORD <Set breakpoint in order to watch this variable> Second crane number
"# Matched_Crane_No BOOL  <Setbreskpointin order to watch this varisble>  Crane numbers match and are not an empty word
"# out_safe_Crane_No WORD  <Setbreakpoint in order to watch this variable> A safe crane number. If crane numbers missmatch, this word is set to an empty wo
# EmptyWord WORD <Set breakpoint in order to watch this variable >
=] I Matched Crane No| ?7? | :=
2 (Crane_1 7 ] = Crane_2[ 77 )

AND (Crane 1] ?7? | <> EmptyWord ??? |);

' IF Matched Crane No| ??? | THEN
6 out_Safe Crane No| ??? | := Crane 1] 77 |;

& 7 ELSE
8 out Safe Crane No| ??? | := EmptyWord ?7? J;
END IF

Figure 10.10: A snapshot showing the CODESYS Profiler report on gathered full cov-
erage for CraneNumberCheck PLC program using the proposed EARS-based method
(refer to Figure 10.7)

erage after testing the CraneNumberCheck PLC program is shown in Figure
10.10. As it can be observed in Figure 10.10, all the covered code branches af-
ter executing EARS-based test cases have been marked with green colour. The
gathered results promise an acceptable level of applicability and efficiency of
the proposed EARS-based testing method in the context of PLC programming,
however, more investigation by applying this method to more complicated PLC
programs needs to be done to validate the generalizability of this claim.



186

Paper C

a valid condition for not matching crane numbers.
(Constraints)"

No Functional Requirements: EARS Pattern Requirement in EARS
RQ1 | "The function block shall accept two crane num- | Ubiquitous requirement (U) | The system shall accept two crane
bers (Crane_1 and Crane_2) as input parameters. numbers (Crane_1 and Crane_2) as
(Input Requirements)" input parameters.
RQ2 | "The function block shall provide two output vari- | Unwanted behaviours | UB: IF the crane num-
ables: Matched_Crane_No: This variable indi- | (UB)/State-driven require- | bers match and are not
cates whether the crane numbers match and are | ments (SD) an empty word, THEN
not an empty word. out_Safe_Crane_No: If the the system  shall  set
crane numbers match, this variable shall store a Matched_Crane_No to
safe crane number. If the crane numbers do not true.
match, it shall be set to an empty word. (Output SD: WHERE the crane num-
Requirements)" bers match, the system shall
set out_Safe_Crane_No to a
safe crane number.
SD: IF the crane numbers
do not match, THEN
the system shall set
out_Safe_Crane_No to
an empty word.
RQ3 | "The function block shall implement the follow- | State-driven  requirement | WHERE the function block is ac-
ing logic: Matched_Crane_No shall be true if | (SD) tive, the system shall:
Crane_1 is equal to Crane_2 and both are not - Set Matched_Crane_No to true IF
empty words. If Matched_Crane_No is true, Crane_l is equal to Crane_2 and
out_Safe_Crane_No shall be set to Crane_1. If both are not empty words.
Matched_Crane_No is false, out_Safe_Crane_No - Set Matched_Crane_No to false IF
shall be set to an empty word. (Logic)" Crane_1 is not equal to Crane_2 OR
either of them is an empty word.
- IF Matched_Crane_No is true,
THEN set out_Safe_Crane_No to
Crane_1.
- IF Matched_Crane_No is false,
THEN set out_Safe_Crane_No to
an empty word.
RQ4 | "The function block expects that an empty word is | Ubiquitous requirement (U) | The system shall consider an empty

word as a valid condition for not
matching crane numbers.

Table 10.6: Industry-validated functional requirements for CraneNumberCheck PLC
program (refer to Figure 10.8) in both NL and EARS versions

10.7.5 EARS-based Testing vs Manual PLC Testing in In-

dustry

Comparing the overall current manual testing process of CraneNumberCheck
PLC program in the industry versus the proposed EARS-based testing mecha-
nism reveals several facts including:

1. Need of domain-specific knowledge. One needs to have a good under-

standing of one of the IEC61131-3 programming languages to be able
to develop test cases for the PLC program in the current industrial ap-
proach. Moreover, the manual tester needs a testing background and



10.7 EARS-based Testing in Real-world Industrial Settings

187

Requirement in EARS

Concretized Requirement

The system shall accept two crane numbers
(Crane_1 and Crane_2) as input parameters.

if <Crane_1 & Crane_2 Exist=FALSE>then <SystemAccep-
tance>shall <Acceptance=FALSE>

UB: IF the crane numbers match and are not
an empty word, THEN the system shall set
Matched_Crane_No to true.

SD: WHERE the crane numbers match, the sys-
tem shall set out_Safe_Crane_No to a safe crane
number.

SD: IF the crane numbers do not match, THEN the
system shall set out_Safe_Crane_No to an empty
word.

UB: if <Crane_1 = Crane_.2 & Crane_l &
Crane_2 # Empty>then <Matched_Crane_No>shall
<Matched_Crane_No=TRUE>

SD: WHERE <Crane_1 = Crane_2>the <System>shall
<out_Safe_Crane_No=SafeCraneNumber>

SD: IF <Crane_1 # Crane 2>THEN <System>shall
<out_Safe_Crane_No=Empty Word>

The function block shall implement the follow-
ing logic: Matched_Crane_No shall be true if
Crane_1 is equal to Crane_2 and both are not
empty words. If Matched_Crane_No is true,
out_Safe_Crane_No shall be set to Crane_1. If
Matched_Crane_No is false, out_Safe_Crane_No
shall be set to an empty word.

'WHERE the function block is active, the system shall:

- Set Matched_Crane_No to true IF Crane_1 is equal to Crane_2
and both are not empty words.

- Set Matched_Crane_No to false IF Crane_l is not equal to
Crane_2 OR either of them is an empty word.

- IF Matched_Crane_No is true, THEN set out_Safe_Crane_No
to Crane_1.

- IF Matched_Crane_No is false, THEN set out_Safe_Crane_No
to an empty word.

"The system shall consider an empty word as a
valid condition for not matching crane numbers."

if <Crane_1 # Crane_2>then <SystemAcceptance>shall <Ac-
ceptance=Empty Word>

Table 10.7: The concretized requirements of CraneNumberCheck PLC program (refer

to Figure 10.8) which are generated based on the requirements in EARS syntax.

engineering experience to implement and connect all testing units prop-
erly. On the other hand, testing the PLC programs with the proposed
mechanism using CODESYS Test Manager does not demand any deep
knowledge of specific programming language and can be handled easily
using Test Actions.

. Efficiency. In the case of a simple PLC program such as CraneNum-
berCheck which consists of 25 Lines of Code (LOC), the test script con-
sists of 119 LOC which shows a difference in efficiency. On the other
hand, the proposed EARS-based testing approach only consists of 26 test
actions, which use all the powerful features of CODESYS IDE.

. Manual overhead and complexity. The current testing process for PLC
programs in the industry is highly complex, with significant manual in-
tervention. Specifically, many features already present in the CODESYS
IDE, such as cyclic execution, delay, test control process, and test start
trigger, are being recreated manually. This redundancy exacerbates the
complexity, especially with more intricate PLC programs. Conversely,



188 Paper C

the proposed EARS-based testing approach simplifies this by requir-
ing the manual definition of only the inputs and expected outputs. All
other features are readily accessible through the user-friendly GUI of
the CODESYS Test Manager tool. Additionally, the availability of pre-
defined test actions within the Test Manager tool enhances the use of
CODESYS’s features and automation capabilities for PLC testers.

4. Test specifications.The existing manual testing process in the industry
offers testers limited information, providing only the outcomes of passed
or failed test cases. In contrast, the proposed EARS-based testing ap-
proach utilizes both CODESYS Test Manager and CODESYS Profiler
to provide a comprehensive set of test specifications. These include ad-
ditional details like test execution time, coverage reports, outcomes of
individual test actions, test verdicts, and more.

5. Ambiguity and clarity of functional requirements. After reviewing
a limited set of requirements gathered from the industry, it became ap-
parent that the current functional requirements are predominantly at the
system level, lacking specificity for individual code branches. Addi-
tionally, the complexity of industrial testing processes relies heavily on
the tester’s expertise. In contrast, the proposed EARS-based approach
reduces the vagueness of requirements and encompasses both unit and
system-level testing, potentially leading to a more thorough testing pro-
cedure. Furthermore, this approach yields requirements and test cases
that are straightforward and comprehensible, facilitating understanding
among all stakeholders, including testers, managers, and clients.

10.7.6 Limitations of the Study and Threats to Validity

External Validity. All of our subjects are individuals who have limited experi-
ence with EARS. Furthermore, because these practitioners have experience in
requirements engineering, we see no reason the use of professionals with deep
knowledge of EARS in our study would yield a completely different result.
Professionals with experience in EARS would intuitively write better require-
ments than the ones written by our subjects. Our study has focused on three
relatively brief with reduced complexity, but these requirements represent rel-
evant samples they would encounter in practice. We have used the CODESYS



10.7 EARS-based Testing in Real-world Industrial Settings 189

:= in St

(* Enat esting case by case *)
IF (in_Start OR _RTRIGL.Q) AND in_StartC THEN

in_StartC := FALSE;
END_IF
(* Initializati jariables for test control *)
IF (_RTRIG1.Q) OR (in_StartC AND (step >= EnumValueSTest_TestDone)) THEN

FOR i := | TO 7 BY 1 DO

out_Status.Case Ok[i] :=

END_FOR

out_ActCase := 0;

out_All Ok := FALSE;

out_Status.Done := FALSE;

step := 1;
END_IF

(* Test process *)

IF in_Start OR 1in_StartC THEN
(* Delay between test step a )
(* Sett f timer, every case will be long minimally Oms *)
_TON1 (IN:= step = stepOld, PT:= timerTime, Q=>, ET=> );

(* Default st

craneNosSetl :

craneNoSet2 :

(* Test procedure
CASE step OF
oF sar
(* All inputs ar
out_ActCase := 1;

out ActCase := 2;

Figure 10.11: A snippet showing part of the real-world test script for testing the Cra-
neNumberCheck PLC program in the current industry.

tool for automated test creation and execution. There are many tools for devel-
oping and executing tests, and these may give different results. Nevertheless,
CODESYS is one of the most used development environments for PLCs, and
its output in tests is similar to the output produced by other tools.

Internal Validity. All subjects were assigned to perform the experiment at the
same time. This was dictated by the way the experiment was organized, with a
presentation followed by practical work. Subjects without sufficient knowledge
of EARS may affect the final result. To avoid this problem, the session was
structured to follow the corresponding EARS lesson. Another threat to internal
Validity could arise from using unclear objectives given to the subjects. To
address this, we tested the material ourselves.

Construct Validity. Capturing the challenges of requirements engineering and
testing is a difficult problem. We rely on human feedback by using a think-out-
loud method that gives a rough measure of the challenges encountered.
Conclusion Validity. The results of this study are based on an experiment using
10 participants and three requirements. For each requirement, all participants



190 Paper C

performed the study, which is a relatively small number of subjects. Neverthe-
less, this was sufficient to obtain various results showing an effect between the
modelling of these different types of requirements.

10.8 Related Work

Mavin and Wilkinson [15] reflected on the ten years of EARS [8] and shared
some lessons learned in their review paper. For example, they have discovered
that users of EARS manage to author more useful draft requirements as they
incrementally work to find the appropriate EARS pattern. They recommend
that new engineers write several requirements and seek expert review with the
application of EARS being more useful if one can apply the following activi-
ties: training, thinking, semantics, syntax, and review. In our study, we confirm
some of these results even if we do not cover all these activities stated.

Mavin et al. [16] report on the understanding of four experienced EARS
practitioners and their reflections on their experiences of applying EARS in dif-
ferent projects and domains over six years. They report the following EARS-
specific lessons learned: training should be short, use EARS with or without a
tool, use coaching to embed learning, challenge the EARS Patterns, and ques-
tion if the EARS clauses are necessary and sufficient.

Mintyla et al. [17] performed a controlled experiment on test case devel-
opment and requirement review and the effects of time pressure. They saw no
statistically significant evidence that time pressure would lower effectiveness
or provoke negative influences on motivation, frustration, or performance.

Dalpiaz et al. [18] investigated the adequateness, completeness, and cor-
rectness of use cases and user stories for the manual creation of a static con-
ceptual model. They performed a controlled experiment with 118 subjects, and
their results show that for creating conceptual models, user stories work better
than use cases. Furthermore, user story repetitions and conciseness contribute
to these results. However, as we aim with our study, more evidence needs to
be provided regarding the aspects that must be considered when selecting and
using a modelling and requirement notation.

Weninger et al. [19] report the results of a controlled experiment in which
they compared two approaches for defining restricted use case requirements
from multiple perspectives, including misuse, understandability, and restric-



10.9 CONCLUSIONS AND FUTURE WORK 191

tiveness. Their results indicate the usefulness of the restricted use case mod-
elling approach.

The paper by Levi Lucio et al. [20] introduces the EARS-CTRL tool, an
editor built on MPS, designed to aid in the crafting and analysis of EARS re-
quirements for controllers. This editor inherently ensures well-formedness,
offering a structured method and suggesting relevant terms from a glossary
during the editing process. The paper discusses automated checks for the fea-
sibility of requirements, utilizing a controller synthesis tool, and the generation
of synchronous dataflow diagrams for verified requirements. While it recog-
nizes the challenges in representing complex states, the research emphasizes
the importance of closing the gap between natural language requirements ar-
ticulated in EARS and formal specifications, thereby enhancing the automation
of requirement analysis and synthesis within an industrial setting.

10.9 CONCLUSIONS AND FUTURE WORK

In this paper, we have conducted an experiment in requirements engineering
and testing using EARS notation for PLC systems. In the requirement engi-
neering part of our experiment, we found out that most participants preferred
the EARS ubiquitous pattern for transforming the RI1 requirement from NL to
the EARS syntax, whereas the unwanted behaviour and event-driven patterns
were the most popular types for RI2 and RI3 requirement transformations. It
was observed that different individuals used different EARS patterns for trans-
forming the same requirement based on their personal interpretation, which
shows an acceptable level of flexibility in EARS syntax. In the testing part of
our experiment, we assessed the use of EARS patterns for PLC testing in two
phases. Initially, we executed EARS-based test cases on three PLC programs
written in the ST language, which were developed based on the requirements
included in our study. Subsequently, we introduced an EARS-based testing
methodology to real-world industrial PLC programs. The results from these
tests and the subsequent comparison with traditional PLC testing methods in-
dicate that EARS-generated requirement-based test cases for PLC programs
are effective and offer an accessible means for PLC testers to express test spec-
ifications.

In future work, we want to investigate the applicability of using EARS in
PLC requirement engineering on other levels of testing and by including more



192 Paper C

PLC programs. Inspection of the impact of choosing different EARS templates
for describing the requirements over the quality of the generated test cases can
be another future direction of our work. Moreover, we want to automate our
solution and generate test cases from the created EARS requirements based on
existing functional and non-functional requirements.

Acknowledgment

This work has received funding from the EU’s H2020 research and innova-
tion program under grant agreement No 957212 and from Vinnova through the
SmartDelta project.

Statements and Declarations

Competing Interests. The authors declare that they have no conflict of inter-
est.

Funding Information. EU’s H2020 research and innovation program un-
der grant agreement No 957212 and from Vinnova through the SmartDelta
project.

Author contribution. Mikael Ebrahimi Salari is the main driver and con-
tributor of the paper while the rest of the authors contributed to the methodol-
ogy and provided valuable feedback.

Data Availability Statement Synthetic data and also data from industry.

Research Involving Human and /or Animals. Not Applicable.

Informed Consent. Informed consent was obtained from all individual
participants included in the study.



Bibliography

(1]

(2]

(3]

(4]

(6]

Moses D Schwartz, John Mulder, Jason Trent, and William D Atkins.
Control System Devices: Architectures and Supply Channels Overview.
In Sandia Report SAND2010-5183. Sandia National Laboratories, 2010.

CENELEC. 50128: Railway Application-Communications, Signaling
and Processing Systems—Software for Railway Control and Protection
Systems. In Standard Report. 2001.

Eduard P Enoiu, Adnan Cauéevié, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated Test Generation us-
ing Model Checking: an Industrial Evaluation. In International Journal
on Software Tools for Technology Transfer, volume 18, pages 335-353.
Springer, 2014.

Yi-Chen Wu and Chin-Feng Fan. Automatic Test Case Generation for
Structural Testing of Function Block Diagrams. In Information and Soft-
ware Technology, volume 56. Elsevier, 2014.

E. Jee, J. Yoo, S. Cha, and D. Bae. A data flow-based structural testing
technique for FBD programs. In Information and Software Technology,
volume 51, pages 1131-1139. Elsevier, 2009.

Kivanc Doganay, Markus Bohlin, and Ola Sellin. Search Based Testing
of Embedded Systems Implemented in IEC 61131-3: An Industrial Case
Study. In International Conference on Software Testing, Verification and
Validation Workshops, pages 425-432. IEEE, 2013.

193



194

Bibliography

(7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

Vahid Garousi and Junji Zhi. A Survey of Software Testing Practices in
Canada. In Journal of Systems and Software, volume 86, pages 1354—
1376. Elsevier, (2013).

Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak.
Easy approach to requirements syntax (ears). In 2009 17th IEEE Inter-
national Requirements Engineering Conference, pages 317-322. 1EEE,
2009.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. An experiment in requirements engineering and testing using
ears notation for plc systems. In 2023 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages
10-17. IEEE, 2023.

David M Auslander, Christopher Pawlowski, and John Ridgely. Recon-
ciling programmable logic controllers (plcs) with mechatronics control
software. In Proceeding of the 1996 IEEE International Conference on
Control Applications, pages 415-420. IEEE, 1996.

Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems, volume 166. Springer, 2010.

Dag H Hanssen. Programmable logic controllers: a practical approach
to IEC 61131-3 using CODESYS. John Wiley & Sons, 2015.

Virginia Braun and Victoria Clarke. Thematic analysis. American Psy-
chological Association, 2012.

Flemstrom Daniel, Enoiu Eduard, Azal Wasif, Sundmark Daniel,
Gustafsson Thomas, and Kobetski Avenir. From natural language re-
quirements to passive test cases using guarded assertions. In 20/8 IEEE
International Conference on Software Quality, Reliability and Security
(ORS), pages 470—481. IEEE, 2018.

Alistair Mavin Mav and Philip Wilkinson. Ten years of ears. IEEE Soft-
ware, 36(5):10-14, 2019.



Bibliography 195

[16]

[17]

(18]

(19]

(20]

Alistair Mavin, Philip Wilksinson, Sarah Gregory, and Eero Uusitalo.
Listens learned (8 lessons learned applying ears). In 2016 IEEE 24th In-
ternational Requirements Engineering Conference (RE), pages 276-282.
IEEE, 2016.

Mika V Mintyld, Kai Petersen, Timo OA Lehtinen, and Casper Lasse-
nius. Time pressure: a controlled experiment of test case development
and requirements review. In Proceedings of the 36th International Con-
ference on Software Engineering, pages 83-94, 2014.

Fabiano Dalpiaz and Arnon Sturm. Conceptualizing requirements us-
ing user stories and use cases: a controlled experiment. In International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality, pages 221-238. Springer, 2020.

Markus Weninger, Paul Griinbacher, Huihui Zhang, Tao Yue, and Shaukat
Ali. Tool support for restricted use case specification: Findings from a
controlled experiment. In 2018 25th Asia-Pacific Software Engineering
Conference (APSEC), pages 21-30. IEEE, 2018.

Levi Licio, Salman Rahman, Chih-Hong Cheng, and Alistair Mavin. Just
formal enough? automated analysis of ears requirements. In NASA For-
mal Methods: 9th International Symposium, NFM 2017, Moffett Field,
CA, USA, May 16-18, 2017, Proceedings 9, pages 427-434. Springer,
2017.






Chapter 11

Paper D:

Automating Test Generation
of Industrial Control
Software through a
PLC-to-Python Translation
Framework and Pynguin

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Cristina Seceleanu, Wasif Afzal,
Filip Sebek

Published in the 30th Asia-Pacific Software Engineering Conference (APSEC
2023), Software Engineering In Practice (SEIP) Track.

197



198 Paper D

11.1 Abstract

Numerous industrial sectors employ Programmable Logic Controllers (PLC)
software to control safety-critical systems. These systems necessitate exten-
sive testing and stringent coverage measurements, which can be facilitated by
automated test-generation techniques. Existing such techniques have not been
applied to PLC programs, and therefore do not directly support the latter re-
garding automated test-case generation. To address this deficit, in this work,
we introduce PyLC, a tool designed to automate the conversion of PLC pro-
grams to Python code, assisted by an existing test generator called Pynguin.
Our framework is capable of handling PLC programs written in the Function
Block Diagram language. To demonstrate its capabilities, we employ PyLC
to transform safety-critical programs from industry and illustrate how our ap-
proach can facilitate the manual and automatic creation of tests. Our study
highlights the efficacy of leveraging Python as an intermediary language to
bridge the gap between PLC development tools, Python-based unit testing, and
automated test generation.

11.2 Introduction

Programmable Logic Controllers (PLC) are extensively utilized in safety-critical
systems due to their ability to control and monitor various physical processes.
PLC programs, developed using the IEC 61131-3 standard programming lan-
guages [1], are responsible for ensuring the correct and safe operation of these
systems. Creating a PLC program necessitates the use of an Integrated Devel-
opment Environment (IDE). Among the various options available, CODESYS
IDE stands out as one of the most extensively utilized IDEs for PLC program-
ming [2]. It supports the development, testing, and deployment of PLC pro-
grams compliant with the IEC 61131-3 standard'.

Despite the importance of safety-critical systems, testing for industrial PLC
programs in these domain-specific IDEs is predominantly manual. These man-
ual testing methods are time-consuming, error-prone, and lack systematic test
coverage [3]. Moreover, the involved test engineers executing test cases man-
ually often face challenges in comprehensively covering the entire program’s

Thttps://www.codesys.com/



11.2 Introduction 199

functionality and potential edge cases. Consequently, undetected defects or
vulnerabilities may persist, posing significant risks to the system’s safety, se-
curity and reliability [4].To address the shortcomings of manual testing, there is
an increasing push towards automated testing techniques in PLC development,
for enhanced efficiency, broader test coverage, and consistent reproducibility
of test results.

Automated testing techniques, such as search-based testing, hold the promise
of enhancing the effectiveness and reliability of testing safety-critical PLC
programs [5], [6]. Search-based testing employs meta-heuristic search algo-
rithms to automatically generate test cases, exploring a vast search space to un-
cover hidden defects and ensure adequate coverage. Limited research has been
conducted regarding the rigorous application of automated test-generation ap-
proaches for PLC programs in industrial settings. The integration of PLC pro-
grams with dynamic high-level languages, such as Python, poses significant
challenges in terms of implementing/simulating the behaviour of PLC-specific
functions, cyclic execution, building the network between the graphical ele-
ments, and data type conversions.

To facilitate the integration of state-of-the-art automated testing techniques
with PLC programs, this work presents a tool-supported PLC to Python trans-
lation framework, which adds a new methodology and provides automation on
our previous work [7]. Our contribution, called PyLC, is capable of filling the
gap between PLC development and automated test generation using the Pyn-
guin tool [8], by automating the “PLC program to Python” transformation. To
achieve the goal of our research, we address the following research questions

(RQ):

* RQI - How to translate a PLC program developed in Function Block
Diagram (FBD) language into Python code, fully automatically?

* RQ2 - How can we validate the correctness of the proposed automated
translation framework, and evaluate its applicability through automated
test generation in a real-world industrial context?

The choice of Python in this work is important, as Python’s simplicity,
vast libraries, compatibility with CODESYS IDE, and rich ecosystem make
it more suited for automatic test case generation compared to other high-level
languages. The transformation is, therefore, a sine qua non-condition for bring-



200 Paper D

ing automated test case generation for Python to CODESYS, hence enabling
automated verification of correct functionality of FBD PLC programs.

The paper is organized as follows. Section 11.3 briefly overviews the prelim-
inaries on PLC, IEC 61131-3 standard, and Python. Section 11.4 describes
how the proposed automated translation framework works. Section 11.5 ex-
plains the procedure of automated validation of the translated code using meta-
heuristic algorithms. Section 11.6 overviews the results of this study. Section
11.7 presents related work, whereas Section 11.8 concludes the paper and out-
lines future research directions.

11.3 Preliminaries

In this section, we overview PLC and the IEC61131-3 standard for program-
ming PLC devices, as well as Python and the Pynguin test generator.

11.3.1 Programmable Logic Controllers, IEC61131-3, and
CODESYS IDE

PLCs, crucial for industrial automation, particularly in power plants [9], are
programmed using IEC 61131-3 languages [10]. This includes textual lan-
guages like Structured Text (ST) resembling C, and graphical languages like
FBD, widely favoured in industry [11]. FBD offers modularity, reusability,
and efficiency [12]. PLC programs follow IEC 61131-3’s cyclic operation with
three stages: input reading, computation, and output updating. This ensures
consistent process control. An illustrative FBD program for nuclear plant tem-
perature control is shown in Figure 11.1. The widely accepted CODESYS IDE,
aligned with IEC 61131-3, incorporates the CODESYS Test Manager for ef-
ficient testing, including automated regression testing and Python integration
[2]. These attributes prompt its selection as the PLC testing tool for this study.

11.3.2 Python and Pynguin Test Automation Tool

Python, known for its simplicity and readability, is a high-level programming
language with a diverse library ecosystem including NumPy, Pandas, Tensor-
Flow, and PyTorch. Pynguin is a specialized Python test automation tool that
uses Genetic Algorithms (GA) to autonomously generate effective test cases,



11.3 Preliminaries 201

GE ‘ AND NoT OR OR
£ X — — — th X _Trip
k X _Min — 2 & 21 21
LE
£ X— —
- <
kX Max —i - e
£_Module_Error —
OR
f_Channel_Error —| —
_Chame erre >1
th X Logic_Trip— = — 1

Figure 11.1: A snippet of an FBD program for controlling the temperature in a nuclear
plant (PRG9)

improving code coverage and test suite quality [8]. It also integrates advanced
algorithms like Dynamic Search-Based Software Testing (DSBST) and Evo-
lutionary Testing (ET). Additionally, Pynguin employs DYNAMOSA [13] for
multi-objective optimization and dynamic analysis, along with mutation anal-
ysis to assess test case effectiveness by introducing controlled changes to eval-
uate detection capability. This provides an evaluation of the test suite’s effec-
tiveness.

11.3.3 Logical Operators in IEC61131-3

Each language of IEC61131-3 has a set of operators that can be used to manip-
ulate data types and values. These operators are classified into four categories:
Arithmetic, Relational, Logical and Bitwise®. Arithmetic operators perform
mathematical operations on numerical data types, such as addition, and sub-
traction. Relational operators compare two operands and return a Boolean
value (TRUE or FALSE) based on the result of the comparison. Logical oper-
ators as one of the most-used operators in PLC programs, operate on Boolean
operands and return a Boolean value based on the logical operation (e.g. AND,
OR). Finally, Bitwise operators operate on bit strings or integers and return a
bit string or an integer based on the Bitwise operation (e.g., XOR, NOT).

Zhttps://bit.ly/44uSUYz



202 Paper D

11.3.4 PLCopen XML Tree

The PLCopen XML tree is an industry-standard file format widely used in the
field of PLCs for the exchange of programming data. This XML-based format
provides a hierarchical representation of the PLC program structure, including
the organization of tasks, programs, and function blocks, as well as the asso-
ciated variables and their data types. Notably, the CODESYS IDE, which has
been selected as the preferred IDE for this study, fully embraces and accommo-
dates the PLCopen XML format [14]. The PLCopen XML file consists of four
main parts, which typically require separate processing. These parts include A)
the file and project data, B) user-defined data types, C) the POUs (consisting
of interface and code body), and D) the configurations. The text-based lan-
guages are stored as a single text string, sometimes utilizing HTML to indicate
line breaks, while the graphic-based languages are represented as a traversable
syntax tree [15]. A snippet of part of a PLCopen XML tree for the PRG9 FBD
program is shown in Listing 11.3.

11.3.5 Cyclic Execution

One of the key features of PLCs is the cyclic execution of the program. This
means that the PLC repeatedly scans the inputs, executes the program logic,
performs diagnostics and communication tasks, and updates the outputs in a
loop. The time it takes to complete one scan cycle is called the scan time, which
typically ranges from 10 microseconds to 10 milliseconds®. The scan time
depends on the complexity of the program, the number of inputs and outputs,
and the speed of the CPU. The cyclic execution feature ensures that the PLC
can respond to changes in the input signals and control the output devices in a
timely and consistent manner [16]. However, it also poses some challenges for
testing and debugging PLC programs, as data flow relationships and reachable
states need to be considered?.

11.3.6 Data Types in IEC61131-3 and Python

Programming languages use diverse data types, shaped by their design goals
and paradigms. This section contrasts IEC 61131-3’s and Python’s data types.

3https://bit.ly/30Yxb5p
“https://bit.ly/47UO2Pf



11.4 PyLC: An Automated PLC to Python Translation Framework
203

IEC 61131-3 defines elementary types like boolean, integer, real, byte, word,
date, time-of-day, and string. Users can create derived types based on these
or other types (arrays, structures, enums, subranges). Python supports object-
oriented, imperative, functional, and procedural styles. Built-in types include
str, int, float, list, tuple, dict, set, bool, bytes, etc. User-defined types use classes
and modules .

Comparing IEC 61131-3 and Python reveals distinctions. IEC 61131-3 has
strong typing, requiring explicit type declaration, while Python is dynamically
typed. Numeric differences include IEC 61131-3’s intricate spectrum (SINT,
INT, DINT, LINT, etc.), while Python uses ’int’ and ’float’. IEC 61131-3 in-
tricately categorizes date and time types, while Python uses the *DateTime’
module. Character types vary; IEC 61131-3 has size and encoding variations
(CHAR, WCHAR, STRING, WSTRING), and Python uses ’str’. IEC 61131-3
offers function blocks, and Python uses functions, classes, and modules.

11.4 PyLC: An Automated PLC to Python Trans-
lation Framework

In this work, we propose an automated translation framework from PLC to
Python, based on the translation rules proposed in our earlier work [7]. The
proposed automated translation framework, PyLC, operates based on the auto-
mated parsing and analysis of a PLC program developed in the FBD language,
represented as an PLCopen XML tree. Specifically, PyLC takes a POU as
input, automatically extracts all the necessary information about the PLC pro-
gram being translated, and stores it within a dictionary data structure in Python.
This stored information is then utilized when PyLC automatically generates the
executable Python code.

The overall translation process of PyLC is depicted in Figure 11.2. As il-
lustrated, the initial step involves importing a PLC program developed in the
FBD language as an PLCopen XML file. This is followed by automated pars-
ing and analyzing of the XML tree to extract information about each POU
and the blocks contained within (Step 1 in Figure 11.2). Subsequently, PyLC
uses this extracted information to automatically generate executable Python

Shttps://bit.ly/3Y YKItL



204 Paper D

Automated
Python Code
Generation

Figure 11.2: An Overview of the PyLC Framework, the Proposed Automated Transla-
tion Mechanism for Translating a PLC Program into Python Code and Validating the
Translation Automatically.

code. This involves defining the required main and sub-functions and establish-
ing the network between the existing Blocks from the imported PLC program
(Step 2 in Figure 11.2). Next, PyLC employs the meta-heuristic automated
unit testing techniques from Pynguin tool [8] to validate the translation (Step
3 in Figure 11.2). Lastly, the test cases generated by Pynguin are imported
into the CODESYS IDE to be executed on the original PLC program using
the CODESYS Test Manager tool. The PLC program’s translation into Python
is deemed valid if the generated test cases yield consistent results (Step 4 in
Figure 11.2).

The detailed step-by-step PyLC workflow follows.

11.4.1 PyLC Translation Workflow

The translation workflow of PyLC, as demonstrated in Figure 11.3, consists
of five main stages spanning both the PLC and Python environments. In this
section, we describe each step of the PyLC translation process.



11.4 PyLC: An Automated PLC to Python Translation Framework
205

FBD

Program CODESYS

Test
Manager

M

PLC

Translation

Validation / \

Test Execution

Pynguin
TAF
Inputs Net ID
Outputs Connection
Meta-heuristic
Test Generation
u =

XML
Analyzer {o/

Type Position

POU Local ID

Python

Inputs

Outputs

Local Vars Python
Code
Generator

Type

Figure 11.3: The Automated Translation Work Flow (TWF) Used in PyLC Framework
for Translating a PLC Program into Python with the assistance of the Pynguin Test
Automation Framework (TAF).

Step 1 - XML Analyzer

The XML Analyzer module of PyLC (Step 1 in Figure 11.3) imports an FBD
program in the form of a PLC Open XML tree. It then analyzes this tree to
extract useful information, specifically concerning the POU and FBD blocks.
Subsequently, this extracted information is stored in a Python file. The primary
elements analyzed include PLC Open XML Tree, POU and FBD blocks.

A snippet of the abstracted pseudo-code that we use for developing the
PyLC XML Analyzer algorithm is shown in Listing 11.1. This module lever-
ages the ElementTree XML © module of Python and classifies all the extracted

Shttps://docs.python.org/3/library/xml.etree.elementtree.html



1
2

4
5
6
8
9

10

26

206 Paper D

information into two main categories including POU and Block(s). The re-
sults of this Python script are exported as a Dictionary data structure in Python
which facilitates the next step of the PyLC process.

As seen in Listing 11.1, the XML analyzer module of PyLC extracts sev-
eral useful information from the PLC Open XML tree regarding each exist-
ing FBD Block which includes POU Name, Block Local ID, Block Type (e.g.,
XOR, AND, etc), Block Position, Block Input Variables, Block Formal Param-
eters, Block Connection Point In Status, and Connection Referral Local ID.
In terms of extracting information regarding POU, PyLC collects POU Name,
POU Type, Input Variables, Input IDs, Output Variables, Output IDs, and Lo-
cal Variables.

All the extracted information about the POU and Blocks in the XML Ana-
lyzer module of PyLC are to be used in the next translation step, to implement
the functions and FBD network.

Listing 11.1: The Abstracted Pseudo-Code for PyLC XML Analyzer Module to Extract
Useful Info from a PLCopen XML Tree

Load XML file 'FBD_Program.xml’
Get root element 'root’
Define namespaces ’'ns’ as { plcopen’: 'PLC_Namespace’, ’“xhtml’: ’PLC_
Namespace ’ }
Open ’file.py’ for writing
Write "import_xml.etree.ElementTree _as_ET\n\n"
@For{each ’'pou’ in root.findall(’.//\{PLC_Namespace\}pou’) }:@
Get ’'pou_name’ from ’‘name’ attribute of ’pou’
Get 'pou_type’ from ’pouType’ attribute of “pou’
Initialize empty list “input_vars’
@For{each ’var’ in pou.findall(’.//\{PLC_Namespace\}inputVars/\{PLC_
Namespace\} variable ’) }:@
Get ’input_name’ from ’'name’ attribute of 'var’
Get 'input_type’ from ’type’ tag within ’var’
Append "{input_name }:{input_type}" to 'input_vars’
@EndFor@
Initialize empty list “input_ids’
@For{each ’var’ in pou.findall (".//{PLC_Namespace}inVariable") }:@
Get ’expression’ from ’expression’ tag within ’var’
Get ’local_id’ from ’localld’ attribute of ’var’

Append {’Expression’: expression, ’InVariable’: ’local_id '} to
input_ids”’
@EndFor@
% ... (similar steps for “output_vars’, ’output_ids’, “local_vars’)

@For{each ’'block’ in root.findall (" .//plcopen:block’, ns)}:@
Get 'B_local_id’ from ’localld’ attribute of “block’
Generate 'B_dict_name’ like "BI", "B2", etc.

Get 'B_type_name’ from ’typeName’ attribute of ’“block’
% ... (similar steps for 'B_position’)



11.4 PyLC: An Automated PLC to Python Translation Framework
207

Initialize empty list "B_input_vars’

@For{each “input_var’ in block.findall(’.//plcopen:inputVariables/
plcopen:variable’, ns) }:@
Get ’input_local_id’ from ’refLocalld’ attribute of ’input_var

Append ’input_local_id’ to 'B_input_vars’
@EndFor@
% ... (similar steps for ’B_var_formal_param’, 'B_conn_point_in’,
>B_conn_ref_local_id ")
Write information about block into ’file.py’ using the generated
variables
@EndFor@

5 @EndFor@

Write information about POU into ’file.py’

37 Close ’file.py’

Step 2 - Python Code Generator

The Python Code Generator unit of the PyLC workflow (Step 2 in Figure 11.3)
parses the extracted POU/Block information in the last step to transform the
FBD code into an executable Python code by generating the required Python
functions. These functions call each other based on the existing block exe-
cution order in the FBD network of the original PLC program. This process
demands considering numerous details including supporting different Block
types in FBD, analyzing the network between the elements using their network
ID, converting the PLC data types to the equivalent or similar data types in
Python, and finally, implementing Inputs/Outputs (I/O) in their right position.
A snippet of the pseudo-code that we used for developing the PyLC Code Gen-
erator Module is shown in Listing 11.2.

Based on our proposed PLC to Python translation rules and translation
workflow [7], PyLC automatically generates one main function for the POU
with POU inputs as input arguments (Lines 17-21 in Listing 11.2). Then, inside
this main function, it generates one or several Python sub-functions that cor-
respond to each Block type in the FBD program under translation (e.g., TON,
AND, XOR) (Lines 22-59 in Listing 11.2). Next, these main and sub-functions
are connected to each other based on the existing FBD network in the original
FBD program. It is worth mentioning that PyLC leverages Python’s Abstract
Syntax Tree (AST) module to parse and manipulate Python code as a tree-like
data structure which allows us to perform various dynamic transformations and
modifications on the generated code such as modifying the function body of the
TON block (Lines 22-46 in Listing 11.2) and converting the variable data types



208 Paper D

No. Block Category FBD Block
1 Logic Blocks AND, OR, XOR, NOT,
(LOG) NAND, NOR
5 Comparator Blocks EQ.NE. GT, GE, LT, LE
(COMP) U Tem
Timers and Counter Blocks
3 (TIM) TON, TOF, TP, CTU, CTD
4 Mathematical Blocks ADD, SUB, MUL, DIV,
(MATH) MOD,EXP, SQRT
5 Function Blocks SR. RS, MUX. DEMUX
(FB)
6 Special Blocks AND/OR Selector, OSR, Edge Detection,
(SPC) Latch, and Unlatch.

Table 11.1: The list of the supported FBD Blocks in the PyLC automated translation
framework

from PLC to Python (Lines 60-62 in Listing 11.2).

PyLC automated translation framework supports all four main operators of
the IEC 61131-3 standard based on their definition in the standard handbook
[1]. In other words, we consider several default templates for the IEC 61131-
3 operators in the Python code generator module of PyLC (Lines 22-57 in
Listing 11.2). In case PyLC identifies a specific type of operator in the PLC
program under translation, it automatically generates a corresponding Python
sub-function for it in the generated Python code (Step 2 in Figure 11.3). The
list of the supported IEC61131-3 standard FBD Blocks based on their category
in the PyLC framework is shown in Table 11.1.

The network of PLC program blocks, according to IEC61131-3, is a way of
structuring the software development for industrial control systems, aiming to
improve the software code’s quality, reusability, maintainability and documen-
tation [1]. Correct identification of the existing network between the Blocks
in the PLC program being translated is crucial when converting a PLC pro-
gram to Python. This information serves two main purposes: establishing the
execution order of the blocks in the translated PLC program in Python, and
implementing the inter-block connections. To address this, PyLC features an
FBD network analyzer that extracts the Position, Local ID, Network ID, and
Connection information of each block in the PLC program being translated
(refer to Step 1 - Block section in Figure 11.3). With this FBD network infor-
mation at its disposal, PyLC can recreate the network among various elements
from the original PLC program in its Python translation.



11.4 PyLC: An Automated PLC to Python Translation Framework
209

In the process of translating an FBD program into Python, connecting the
Inputs/Outputs (I/0) to the correct units is a must. To implement this properly,
PyLC tags each I/O with their corresponding ID in the PLC program being
translated (refer to Step 1 - Block section in Figure 11.3) and stores this in-
formation in the shape of a Python dictionary during the translation process.
Finally, PyLC renames all the I/O elements to their correct name in the orig-
inal PLC program by mapping their ID to the related name using the stored
information in the previously mentioned Python dictionary.

Considering the different data type expressions in PLC and Python and
having some non-existing PLC data types in Python (e.g., TIME), proper type
conversion is a crucial task in the FBD to Python translation process. To this
end, the Type Conversion unit of PyLC identifies each I/O type based on the
extracted information from the PLC open XML tree (refer to Step 1 - Block
section in Figure 11.3) and converts it to either equivalent or similar data type
in Python (Lines 60-61 in Listing 11.2). In the case of common data types in
both languages such as BOOL or INT, PyLC transforms them to the equivalent
data type in Python which are bool and int in this example respectively. In the
case of facing a non-existing PLC data type in Python, PyLC does the auto-
matic data type transformation by transforming the PLC-specific data type to
the most similar data type in Python (e.g., TIME to int). This attribute greatly
benefits tools like Pynguin, an automated Python test generator, by prevent-
ing the creation of incorrect data types for inputs. This, in turn, reduces the
potential for Python compilation errors.

To simulate the cyclic execution behaviour of the PLC programs in the
translated code, the PyLC Code Generator module generates a separated Python
function that executes the code cyclically for a certain number of times by us-
ing the assistance of Python’s time module. both the execution cycle time and
the number of executions are editable by the user. Moreover, this cyclic exe-
cution function receives new inputs from the user for each execution cycle and
transforms the received inputs from string to their right data type automatically
(e.g., str-to-bool, str-to-int). This function is excluded from the pseudo-code to
save space but it is visible in the translation example in Section 11.4.2 (Lines
12-28 in Listing 11.5).

Listing 11.2: The Abstracted Pseudo-code for Python Code Generation Module of
PyLC

I import Python modules (sys, time, inspect, ast)



w

a

210 Paper D

sys.path.append(’.")
import generated_code_from_XML

blocks = [obj for name, obj in vars(generated_code_from_XML).items () if
name. startswith ('B’)]
POU = generated_code_from_XML .POU
type_count = {}
@for{block in blocks }:@
type_name = block[ typeName’ ]
@if{type_name in type_count}:@
type_count[type_name] += 1
@else@:
type_count[type_name] = 1
input_var_types = POU[ input_vars’]
expression_to_type = {}
@for{input_id in POU[’input_ids’]}:@
expression_to_type[input_id[ Expression’]] = input_var_types.split(’ :’
)[1]
generated_code_from_XML_str = """
import time
import sys
def {POU[’pou_name ’]}({’, ’.join[input_id[ InVariable ’].strip() + ’:’ +

expression_to_type[input_id [  Expression ']] if input_id[  Expression

in expression_to_type else input_id[ InVariable *].strip () for
input_id in POU[ input_ids "]]}):
@for{block in blocks }:@
@if{block [ typeName’] == 'TON’ }:@
generated_code_str += """
import time
state = {’Q’: False, ’ET’: 0, ’is_active ’: False, ~’
last_update_time ’: time.time ()}
def update():
current_time = time.time ()
elapsed_time = current_time — state[’last_update_time ]
if V_{block[ inputVariables "J[0]}:
if not state[’is_active "]:

state [ is_active ’] = True
state ["ET’] = 0
state [ last_update_time '] = current_time

state ["ET’] 4= elapsed_time
if state[’ET’] >= V_20000000003:
state[’Q’] = True

else:
state[’Q’] = False
state [’ET’] = 0
state [ is_active ’] = False
update ()

V_{block[’block_localld ]} = state[’Q’]

return V_{block[’block_localld "]}
@endif@
@else@ :

# Handle other Time blocks similarly (e.g. TOF,TP)
@endif@

']



64
65
66
67
68
69
70

7

11.4 PyLC: An Automated PLC to Python Translation Framework

211
@else@ :
@if{block [ typeName’'] == 'XOR’ }:@
input_variables = [f"V_{var.replace(’",_ "_")}" for var in
block [ "inputVariables ' ]]
generated_code_str += f"V_{result_var}_=_{ _"_ .join(
input_variables) }\n"
@endif@
@else@ :
# Handle other block types similarly (e.g. AND)
@endif@
generated_code_str += f"V_{block[ block_localld "]} _=_{subfunc_name
FV_{’, V_’.join ([ var.replace( ', _')_for_var_in_block[’
inputVariables "]]) })"
@endfor@
# Using AST to convert the data types in generated code
generated_code_str = generated_code_str.replace ('BOOL’, ’bool’).replace(’
TIME’, “int’).replace (’INT", “int’).replace( STRING’, ’'str’).replace(

'CHAR", “str’).replace('WCHAR’, ’str’).replace( WSTRING", ’str’)

> # Write the generated code to a file

with open(’generated_code_1.py’, 'w’) as file:
file . write (generated_code_str)
# Using AST to simplify and optimize code

input_file = ’generated_code_2.py’

output_file = ’“generated_code_3.py’
remove_redundant_input_args (input_file , output_file)
tree = ast.parse(open(output_file).read())

for node in ast.walk(tree):
remove_redundant_loop_variables (node)

updated_code = ast.unparse(tree)

with open(output_file, 'w’) as output_file:
output_file.write (updated_code)

Step 3 - Meta-heuristic Test Generation

Validating the correctness of the translated FBD code into Python using the
PyLC framework is essential to guarantee the correct behaviour of the trans-
lated code. To this end, PyLC leverages automated meta-heuristic testing with
the assistance of the Pynguin test generator (step 3 in Figure 11.3). To be more
specific, the translated PLC code in Python in the previous step is imported
to the Pynguin test generator to apply both search-based testing and mutation
analysis on the code using the DYNAMOSA algorithm with an up limit testing
time of 1200 seconds. After generating and executing the meta-heuristic test
cases on the translated PLC program into Python, we investigate the test result
metrics such as branch coverage, generated mutants, survived mutants, instan-
tiated fitness function and so on to measure the applicability and efficiency of
using Pynguin in terms of validating the translated PLC programs using the



}

212 Paper D

PyLC tool. The generated test cases in this phase are saved to be used in the
next stages of PyLC translation. A snippet of the Pynguin live log while gen-
erating test cases for a translated PLC program is shown in Figure 11.4.

Step 4 - Test Execution

To ensure that the translated PLC program behaves as its original PLC program
twin, we need to execute the same test cases on the original PLC program to
investigate if they produce the same outputs or not (step 4 in Figure 11.3). To
this end, we import the generated meta-heuristic test cases of the last step into
the CODESYS Test Manager tool to be automatically executed on the original
PLC program in the PLC development environment. Then we collect and store
the test execution results for the next step of the PyLC translation framework.

Step 5 - Translation Validation

To validate the correctness of the translated FBD program into Python in the
PyLC tool, we need to compare the test execution results on both PLC and
Python versions of the PLC program under translation to see whether they cor-
respond to each other or not (step 5 in Figure 11.3). In case the test execution
results on the translated code into Python using PyLC generate the same test
execution results on the PLC version of the program, the PLC program is suc-
cessfully translated and validated using the proposed translation framework,
otherwise, the translation is considered invalid.

11.4.2 PyLC Translation Example

To provide a clearer picture of how PyLC automated PLC to Python translation
framework works, we provide a running example in this section which is shown
in Figure 11.1. To prepare the target PLC program (PRG9) for translation, first,
we need to export it as a PLC Open XML file. A snippet of part of the XML
file for PRGY is shown in listing 11.3.

Listing 11.3: Part of the PLC Open XML Tree of PRG9 PLC Program

<?xml version="1.0" encoding="utf-8"?>

> <project xmlns="http://www.plcopen.org/xml/tc6_0200">

<fileHeader companyName="" productName="CODESYS" productVersion=
"CODESYS, V3.5 _SP16" creationDateTime="2023-08-14T13:43:53.0957274" />



11.4 PyLC: An Automated PLC to Python Translation Framework
213

king f

nerating tes

Figure 11.4: A Snippet of The Pynguin Test Generator Processing a Translated PLC
program into Python using the PyLC Automated Translation Framework

<contentHeader name="" modificationDateTime="2023-08-14T13
:43:13.5176598...">
<types>
<dataTypes />
<pous>
<pou name="PRGI9" pouType="functionBlock">
<interface>
<inputVars>
<variable name="f_X">
<type>
<INT />
</type>
</variable>
<variable name="f_Module_Error">
<type>
<BOOL />
</type>
</variable>

<variable name="f_Channel_Error">

The first step toward translation is to import the PLC open XML file of the
FBD program into the PyLC XML analyzer module to automatically extract
the information about the existing POU(s) and Blocks in the PLC program
under translation (Step 1 in Figure 11.3). Part of the results of applying the
PyLC XML Analyzer module on PRG9 is shown in Listing 11.4. As shown in
the Listing 11.4, the extracted information from the XML tree using the PyLC
XML analyzer module is classified based on the Blocks (B1-B7) and POU.

Listing 11.4: Part of Extracted Information from PRG9 FBD Program using PyLC XML
Analzer Module



214 Paper D

I POU = {’pou_name’: ’"PRGY’,

2 'pou_type’: ’functionBlock’,

3 input_vars’: [’f_X:INT’, ’f_Module_Error:BOOL’, ’f_Channel_Error:BOOL
’, "th_X_ Logic_Trip:BOOL’],

4 "input_ids’: [{’Expression’: ’'f_X’, ’'InVariable’: ’ _10000000001"}, {’
Expression’: 'k_X Min’, ’InVariable’: ’ 100000000027}, {’
Expression’: "f_X’, ’InVariable’: ’_,10000000004"}, {’Expression’:

’

"k_X_Max’, ’InVariable’: ’ _10000000005"}, {’Expression’:
f_Module_Error’, ’InVariable’: ’_10000000009"}, {’Expression’:
f_Channel_Error’, ’InVariable’: ’ _10000000011’"}, {’Expression’:
th_X_Logic_Trip’, ’InVariable’: ’_10000000012"1}1,

5 foutput_vars’: [’th_X Trip:BOOL’'],

6 "output_ids’: [{’Expression’: ’'th_X Trip’, ’OutVariable’: '
10000000015 }1,

7 ’local_vars’: ["k_X_Min:BOOL’, ’'k_X_Max:BOOL’]}

§ Bl = {’pou_name’: ’'Nuclear_plant’,

9 "block_localId’: ”710000000003",

10 ’'typeName’: ’'GE’,

11 'position’: {’'x': '0’, 'y': 0"},

12 ’inputVariables’: [’/10000000001’, 710000000002"7,

13 'variableFormalParameter’: [’Inl’, ’'In2’, ’'Outl’],

14 ’connectionPointIn’: [’connectionPointIn’, ’connectionPointIn’],

15 ’connectionRefLocalId’: [”/10000000001", "10000000002"171}

16 #Similar information is extracted for Blocks B2-B7

The second step in the PyLC translation workflow is to import the extracted
information from the PRG9 XML tree into the PyLC Code Generator module
to automatically generate an executable translated Python code out of it (step 2
in Figure 11.3). We show part of the resulting generated Python code for PRG9
using the PyLC translation framework in Listing 11.5.

Listing 11.5: Part of Generated Translated Python Code for PRG9 using the PyLC
framework

import time

def PRGY (f_X: int, k_X_Min: int, k_X_ Max: int, f_Module_Error: bool,
f_Channel_Error: bool, th_X_ Logic_Trip: bool):

3 def GE(f_X, k_X_Min):

)

4 V_10000000003 = f_X >= k_X_Min
5 return V_10000000003

6 V_10000000003 = GE(f_X, k_X_Min)

7 def LE(f_X, k_X_Max):

8 V_10000000006 = f_X <= k_X_Max
9 return V_10000000006

10 #Similar sub-functions for other existing FBD Blocks
11 return £/10000000015:{Vv_10000000015}"

12 def run_cyclically():

13 def str_to_bool(s):

14 return s.lower() in (’'true’, 't’, ’'1")
15 def str_to_int(s):
16 try:

17 return int (s)



11.5 Automated Validation of The Translated Code using Meta-heuristic
Algorithms 215

except ValueError:
print (' Invalid_input._enter_a valid _integer.’)
return None

for 1 in range(5):

print (£’ Iteration_{i_+_1}")

f_ X = str_to_int (input (f’'Value for_f X?_(bool):_ "))

#Similar steps for all other inputs (e.g. k_X Min)

result = PRGY (f_X, k_X Min, k_X_ Max, f_Module_Error,
f_Channel_Error, th_X Logic_Trip)

print ("Result:’, result)

time.sleep(3)

28 run_cyclically ()

As it can be observed in Listing 11.5, PyLC generates a main Python func-
tion for the main POU which includes the main inputs of the FBD program as
function arguments (Line 2 in Listing 11.5). Moreover, PyLC includes several
sub-functions in this code, based on their order of execution in the original FBD
program (Lines 3-10 in Listing 11.5). Each of these sub-functions represents
the behaviour of the corresponding Block inside the original PLC program. The
FBD network is also realized by tagging the I/O with their corresponding Net-
work ID and is indicated with a prefix of "V_’ (e.g., V_10000000003). Finally,
PyLC returns the final output of the FBD program as the return value of the
main Python function (Line 11 in Listing 11.5).

To implement the cyclic behaviour of the PLC program, PyLC’s cyclic
execution simulator feature executes the PRG9 5 times every 3 seconds and for
each iteration it receives new input values from the user (Lines 12-28 in Listing
11.5).

11.5 Automated Validation of The Translated Code
using Meta-heuristic Algorithms

In this study, we use the DYNAMOSA algorithm [17] as the selected meta-
heuristic algorithm for validating the correctness of the translated PLC program
into Python.

DYNAMOSA Algorithm

The integration of DYNAMOSA in Pynguin enables diverse and effective test-
case generation, enhancing software fault detection and quality. DYNAMOSA



216 Paper D

merges genetic algorithms and local search, by iteratively exploring the soft-
ware’s search space for optimal test cases. In this work, we adopt Pynguin’s
DYNAMOSA due to its multi-objective optimization, while also considering
goals like code coverage, execution time, and fault detection [17]. This em-
powers Pynguin to efficiently create well-balanced test cases.

Translation Validation Procedure in PyLC

To ensure the accurate translation of PLC programs to Python, we employ the
Pynguin test generator tool [8]. Specifically, once a PLC program is converted
into executable Python code, this translated code is then input into Pynguin.
The tool serves two primary purposes: (i) it generates and executes meta-
heuristic test cases, and (ii) it performs mutation analysis on the translated
PLC program into Python (as depicted in Step 3 of Figure 11.3).

Following this, the test execution results for each translated PLC program
are recorded from the Pynguin tool. As a next step, we manually create identi-
cal test cases for the corresponding original PLC programs using the CODESYS
Test Manager tool within the PLC environment. Subsequently, we compare the
outcomes from executing these test cases in both the PLC and Python environ-
ments. This is done to ascertain whether they yield consistent expected outputs.
In the PyLC translation framework, a PLC program’s translation into Python
is deemed valid only if it successfully clears this validation stage (as illustrated
in Step 4 of Figure 11.3).

11.6 Results

11.6.1 Experimental Setup

In our experimental setup, we primarily focus on two main programming en-
vironments. Firstly, in the PLC environment, we employ the CODESYS V3.5
SP16 as our IDE and utilize the CODESYS Test Manager for automation test-
ing. Secondly, for the Python environment, we turn to Pycharm V17.0.6 as
our chosen IDE. To facilitate automated testing, we make use of the Pynguin
v0.32.0 tool. For our meta-heuristic testing strategy within this setup, we’ve
adopted the DYNAMOSA algorithm. The tests run with a maximum time bud-
get of 20 minutes. To refine our approach further, we use the Tournament Se-



11.6 Results 217

lection as our selection function, Single Point Relative Crossover for crossover,
and Rank-Based Preference Sorting for ranking.

11.6.2 RQI1-Automated Translation from PLC to Python

To demonstrate the applicability and efficiency of the proposed translation
framework, we translate ten different real-world PLC programs using the PyLC
framework. The detailed list of the included FBD programs in this study is
shown in Table 11.2. Most of these PLC programs are used in the context of
supervising industrial control systems developed by an automation company in
Sweden. In contrast, the remaining ones are implemented in a nuclear plant.
As depicted in Table 11.2, all the considered PLC programs are developed in
the FBD language and vary in size and complexity.

After applying the PyLC framework to these PLC programs and examin-
ing the information provided in Table 11.2, we can draw several conclusions.
First, the FBD programs selected for translation encompass a variety of FBD
block types, as detailed in Section 11.2. This diversity highlights the extensive
block support offered by PyLC. Second, the PyLC translation process is swift,
with an average translation time of just 0.74 seconds. We conclude that the
size of the FBD program being translated, specifically the number of blocks,
can influence the translation efficiency. Larger PLC programs, like PRG4 and
PRG7, tend to have marginally longer translation times.

Results-RQ1: The automated PyLC framework demonstrates the capabil-
ity for translating efficiently an array of industrial FBD programs, char-
acterized by diverse block types, into Python code.

Overall, the collected results underline the potential and effectiveness of
the PyLC translation framework in converting FBD-based PLC programs into
executable Python code. This not only opens avenues for utilizing Python’s
capabilities within industrial automation but also offers a systematic approach
to bridge the gap between PLC programming languages and general-purpose
languages like Python.



218 Paper D

PRG No. of No. of Included LOC in | Translation
Name | Branches | Blocks Block Types Python Time (s)
PRGI 12 4 LOG/TIM 80 0.7
PRG2 14 5 LOG/TIM/FB/SPEC 91 0.8
PRG3 6 3 LOG 50 0.5
PRG4 16 13 LOG/COMP 132 1.1
PRG5 3 1 MATH 22 0.4
PRG6 3 1 MATH 20 0.5
PRG7 16 13 LOG/COMP 100 1
PRGS8 4 2 COMP 30 0.7
PRGY 8 7 LOG/COMP 77 0.6
PRGI10 10 1 LOG 51 0.5

Table 11.2: Information Regarding the Translated PLC Programs (PRG) in FBD lan-
guage into Python using PyLC

11.6.3 RQ2-Evaluation and Validation of Translation in an
Industrial Context

To assess the correctness and validity of the PyLC translation framework within
an industrial setting, we translate ten real-world industrial PLC programs into
Python, as detailed in the previous section. Subsequently, we utilize the Pyn-
guin meta-heuristic test generator [8] to generate search-based test cases for
the PLC programs translated using the PyLC framework. After collecting the
test generation and execution results from Pynguin, we introduce the same test
cases into the PLC environment for execution on the original PLC program
within the CODESYS IDE. We then compare the test execution outcomes in
both environments to determine the validity of the code translation from PLC
to Python. The results of the automated meta-heuristic testing for the included
PLC programs using Pynguin are presented in Table 11.3. The evaluation of
the translated Python code involved the instantiation of fitness functions, iter-
ation counts, search time, mutant generation, and mutant survival rates. These
metrics collectively provide insights into the efficiency, effectiveness, and cov-
erage of the translation and testing processes.

Based on the results of the automated meta-heuristic testing of PLC pro-
grams translated into Python using the PyLC framework, as detailed in Table
11.3, several conclusions can be drawn. First, PLC programs that incorporate
Timer blocks, such as PRG1 and PRG2, require more mutants, iterations, and
increased search time due to the complexity that they introduce. Second, Pyn-



11.6 Results 219

guin managed to achieve complete branch coverage for eight out of ten eval-
uated PLC programs. The average branch coverage for all the PLC programs
assessed in this study is 98.84%, suggesting strong compatibility between the
Pynguin test generator and the proposed PyLC translation framework. Third,
when examining PLC programs without Timer blocks, like PRG3 to PRG10,
Pynguin’s performance is notably swift, with an average search time of 1.6
seconds. In contrast, with PLC programs containing Timer blocks, there is a
significant surge in search time, causing the test generator to reach its prede-
fined search time limit of 1200 seconds.

The results indicate a diverse spectrum of outcomes across the different
PLC programs. Notably, the number of instantiated fitness functions varies,
suggesting the complexity of each program’s behaviour. Iteration counts vary
as well, implying differing degrees of convergence in the optimization process.
Search time, representing the duration of test generation, shows a consistent
time allocation of 1200 seconds per program, which facilitates a controlled
evaluation environment.

Mutant generation and survival rates reveal intriguing patterns. While the
number of generated mutants varies, indicating the diversity of test scenar-
ios explored, the count of surviving mutants sheds light on the robustness of
the translated Python code. The variations in the surviving mutants might be
attributed to the specifics of each program’s logic and the efficacy of the trans-
lation framework.

The assessment of test cases and verdicts provides insights into the quality
of the translated Python code’s behaviour. Verdicts, ranging from 1 to 6, denote
the number of tests that have passed, highlighting the correctness of the trans-
lated code. Coverage metrics, including overall coverage, covered branches,
and covered branchless code objects, showcase the comprehensiveness of the
test suite in exercising different aspects of the translated code.

The experimental results demonstrate the viability and effectiveness of the
PyLC translation framework in transforming FBD programs into executable
Python code. The subsequent testing using the Pynguin test generator enables
the generation of diverse test scenarios and the evaluation of the translated
code’s behaviour. The varying outcomes across different PLC programs un-
derscore the significance of program-specific characteristics in the translation
and testing processes. The insights garnered from this study contribute to the
advancement of automated PLC testing methodologies, via the PLC-to-Python



220 Paper D

prc | [nstantiated . Search | Generated | Surviving | Test ) Covereq | Branchless
Fitness | Iterations | > Verdict | Coverage code objects
Program . N Time (s) Mutants Mutants | cases Branches
functions covered
PRGI 16 6042 1200 58 25 4 3/4 93.75 12 4/4
PRG2 19 5080 1200 43 25 4 414 94.74 13/14 5/5
PRG3 8 1 1 7 4 2 2 100 o6 2
PRGA 2 i 4 23 i5 9 | 5P 100 16/16 88
PRGS 3 1 1 5 2 1 1/1 100 3/3 0/0
PRG6 3 1 1 5 5 1 1/1 100 3/3 0/0
PRG7 24 1 3 23 17 4 4/4 100 16/16 8/8
PRGS 6 1 1 6 3 2 2/2 100 4/4 2/2
PRGO i3 1 2 B 7 ) 100 878 55
PRGI0 2 i i 5 2 [ 100 10/10 n

Table 11.3: Information Regarding Automated Testing of The Translated Real-world
PLC Programs to Python using the Pynguin Tool

translation.

In our goal to ascertain the accuracy of the translation, we test the generated
Python code, by utilizing meta-heuristic testing, and record the test execution
outcomes for each translated program using the Pynguin tool. Subsequently,
we import these test cases into the PLC environment to execute them on the
original PLC programs, aiming to discern congruence in their results. Upon
automated execution of the acquired test cases on the original PLC programs
(ranging from PRG1 to PRG10) via the CODESYS Test Manager, we observe
that the test cases generated in the Python environment yield identical results
when executed on the original PLC programs within the CODESYS IDE. This
consistency shows the efficacy and correctness of the PLC-to-Python transla-
tions facilitated by our proposed PyLC framework.

Results-RQ2: The automated PyLC translation framework, aided by Pyn-
guin, generates test cases efficiently, attaining an average branch cover-
age of 98% across ten distinct real-world industrial PLC programs.

11.6.4 Limitations, Threats to Validity, and Discussion

Our PyLC method effectively automates the transformation and validation of
PLC programs. However, the selected programs might not be fully represen-
tative, potentially affecting our experiment’s validity, even though they differ
in characteristics and sizes. In terms of datatype transformations from PLC to
Python, as discussed in Section 11.3.6, some PLC data types in the IEC61131-
3 standard lack equivalents in Python. We have mapped these to the clos-
est Python counterparts, potentially affecting validity in certain instances. In



11.6 Results 221

terms of time-related data types and blocks in FBD that do not exist in Python
(e.g., TON, TOF, TP), we simulate the behaviour of the time-related data types
and blocks in Python by using the Python 7ime module. To be more specific,
for this behaviour simulation, first, we transform the TIME data type of FBD
into int in Python. Then we simulate the behaviour of each time-related block
by reading the current system clock and starting a timer to keep track of the
elapsed time. In the next step, based on the block’s functional requirements in
IEC 61131-3, we check the internal state of the inputs as well as the elapsed
time periodically and update the block output based on this. Regarding the
PLC cyclic execution, it should be noted that PyLC can simulate the cyclic
execution behaviour of the PLC program in the translated Python code but we
found out this feature is not compatible with the Pynguin test generator and it
stuck in an infinite loop. To solve this problem, we omit the cyclic execution
feature of the translated program which can be a threat to validity in PLC pro-
grams that contain time-related blocks.

Our emphasis on the FBD in this work arises from several considerations.
Firstly, the conversion of a graphical language into a textual one, such as
Python, poses a greater level of complexity. Secondly, FBD holds extensive
prevalence within industrial applications. Thirdly, existing research has al-
ready addressed the transformation of ST programs into Python, obviating the
need for redundant efforts. Transforming a graphical programming language
such as FBD into a textual language like Python without having the predefined
FBD function block operations in Python is another encountered challenge. To
tackle it, we implement/simulate the behaviour of each existing function block
in FBD inside the PyLC translation framework. Moreover, to implement the
graphical network between the blocks in FBD, first, we tag all the variables and
blocks with their unique ID. Then, we rebuild the network based on the tags in
the shape of the Python function calls.

The scalability of the proposed automated translation framework and its appli-
cability on large-scale and more complex PLC programs cannot be concluded
in this work and needs further investigation. Upon reviewing the results of
automated testing for 10 FBD programs using PyLC (refer to Table 11.3), an
interesting trend emerges. It is evident that while the branch coverage for most
programs is commendable, not all generated mutants were eliminated. This
suggests that the automatically generated assertions by the Pynguin tool might
not be entirely accurate, prompting the need for further investigation.



222 Paper D

11.7 Related Work

This segment offers a concise outline of research efforts in leveraging alter-
native programming languages for program transformation. It also outlines
investigations into automating testing processes for PLC programs.

11.7.1 Program Transformation to Python for Enhanced Fea-
tures and Tools

Peterson et al. [18] propose "F2PY," a tool automating Python-Fortran inter-
faces by transforming FORTRAN to Python. It prioritizes user-friendliness,
compiler independence, and automated generation of Fortran procedure wrap-
pers. Xia et al. introduce "PypeR," a Python package facilitating seamless
Python-R interaction via pipe communication, enhancing subprocess manage-
ment, memory control, and cross-platform portability [19]. The package ac-
commodates multiple R versions, ensures memory-efficient termination of linked
R processes, and boasts pure Python construction for wide system compatibil-
ity. In a related effort, J. Rey et al. present "PySAL" [20], an open-source
Python library for spatial analysis, built upon "GeoDA" and "STARS" pack-
ages, discussing its motivation, design, integration with graphical toolkits, and
future prospects of coupling with alternative front-ends like "jython," "RPy,"
and "ArcGIS" [20].

Prior work focused on translating programming languages to leverage tar-
get languages’ structures. However, automating FBD to Python conversion,
capitalizing on Python’s rich testing tools, remains unexplored. This study
thoroughly investigates this by analyzing syntactic and conceptual differences
between the languages.

11.7.2 Automated Testing of ICS Control Applications

Several academic works have investigated different aspects of automated test-
ing for PLC programs, aiming to improve test coverage, detect faults, and en-
sure the correctness of control logic. Adiego et al. [21] introduce an auto-
mated testing approach for critical PLC programs using the BIP framework.
This addresses challenges in manual testing, offering early bug detection and
automation benefits. The method transforms UNICOS programs to BIP mod-



11.8 Conclusions and Future Work 223

els, demonstrated via a water treatment case study. The study by Tychalas et
al. [22] explores ICS security, focusing on PLC control applications. It in-
vestigates vulnerabilities in PLC binaries and runtime, using a novel fuzzing
framework. The research reveals potential vulnerabilities in complex binaries
and emphasizes the impact on control system stacks. Some studies explore au-
tomated PLC program testing, including symbolic execution [23] and runtime
verification [24]. He et al. [23] propose STAutoTester, addressing tool scarcity.
The framework combines DSE with pruning for efficient multi-cycle test data
generation and is evaluated on 21 programs. The work enhances PLC soft-
ware reliability, complementing verification, monitoring, and testing. Enoiu
et al. [25] introduced a tool-driven approach for safety-critical software writ-
ten in FBD. Their toolbox, COMPLETETEST, was evaluated on 157 programs
from Bombardier Transportation AB, demonstrating efficient test generation
and scalability. This research addresses a crucial need in safety-critical soft-
ware development, particularly in industries like railways. The approach, uti-
lizing model-checking techniques, shows promise in improving FBD program
testing. The evaluation provides valuable insights into its practicality and per-
formance.

Overall, these academic works demonstrate the ongoing efforts to utilize
automated testing techniques for PLC programs. However, employing auto-
mated meta-heuristic testing techniques for PLC programs remains obscure.
Our work attempts to investigate this by transforming FBD PLC programs into
Python.

11.8 Conclusions and Future Work

In this work, we have introduced PyLC, a fully automated PLC to Python
framework, which builds on our previous work [7]. PyLC can import a PLC
program, written in FBD, as a PLCopen XML file, and transform it automati-
cally into executable Python code. This automated translation framework con-
sists of two main modules including an automated XML Analyzer and an au-
tomated Python Code Generator. PyLC supports all the common block types
of FBD programs, and performs very fast without any manual human interven-
tion. We have demonstrated the applicability and efficiency of PyLC by apply-
ing it to 10 different industrial real-world case studies of a major automation
company in Sweden. The results show both PyLC’s potential and the trans-



224 Paper D

lation’s correctness, using automated meta-heuristic validation assisted by the
Pynguin [8] test automation tool. The validity and correctness of the translated
PLC programs have been assessed via scientifically proven testing techniques
such as automated meta-heuristic testing (98.84% coverage) and mutation anal-
ysis. The results of this study show that PyLC can assist the current manual
PLC testing stage of automation companies, at the unit level.

In future work, we aim to conduct a more thorough examination of the
scalability of PyLC, investigate the compatibility of timer blocks with Pynguin,
as well as enhance the translation validation mechanism of PyL.C with a Python
static verifier.

Acknowledgment

This work is funded by EU H2020, via the VeriDevOps project, grant agree-
ment No 957212.



Bibliography

(1]

(2]

[4]

(5]

(6]

(7]

Tec 61131-3:2013. programmable controllers - part 3: Programming lan-
guages, 2013.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. Choosing a test automation framework for programmable
logic controllers in codesys development environment. In 2022 IEEE
Int. Conf. on Software Testing, Verif. and Validation Workshops (ICSTW),
pages 277-284. IEEE, 2022.

Klaus Lochmann, Amir Mohammad Alebrahim, Michael Felderer, Ed-
uardo Gémez, and Rudolf Ramler. Automated testing of plc software: A
systematic mapping study. Journal of Systems and Software, 143:45-67,
2018.

Amr Salem and Reinhard Gotzhein. Software testing for safety-critical
systems: Challenges and solutions. In 2016 IEEE Ist Int. WS on Safety
and Security of Intelligent Vehicles (SaSelV), pages 20-27. IEEE, 2016.

Mark Harman and Phil McMinn. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transac-
tions on Software Eng., 38(2):427-448, 2012.

Jeff Offutt, Ahmed Abdurazik, and Lori A. Clarke. Mutation testing of
safety-critical software. Software Eng. Journal, 11(6):355-369, 1996.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina Se-
celeanu. Pylc: A framework for transforming and validating plc software
using python and pynguin test generator. In Proc. of the 38th ACM/SI-
GAPP Symp. on Applied Computing, pages 1476-1485, 2023.

225



226

Bibliography

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test
generation for python. In Proc. of the ACM/IEEE 44th Int. Conf. on Soft-
ware Eng.: Companion Proc., pages 168—172, 2022.

David M Auslander, Christopher Pawlowski, and John Ridgely. Recon-
ciling programmable logic controllers (plcs) with mechatronics control
software. In Proc. of the 1996 IEEE Int. Conf. on Control Applications,
pages 415-420. IEEE, 1996.

Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems, volume 166. Springer, 2010.

Jan Hanssen, Jonas Jensen, and Anders Olsen. Model-based testing of
programmable logic controller programs. Journal of Ind. Automation,
2015.

Dag H. Hanssen. Function Block Diagram (FBD), pages 157-179. John
Wiley & Sons, Ltd, 2015.

Jiayi Wu and Qingfu Zhang. Dynamosa: A dynamic multi-objective
search algorithm for continuous optimization problems. In Proc. of the
2018 IEEE Congress on Evolutionary Computation, pages 1-8. IEEE,
2018.

E Blanco Vifiuela, M Koutli, T Petrou, and J Rochez. Opening the floor
to plcs and ipcs: Codesys in unicos. ICALEPCS13, San Francisco, USA,
2013.

Markus Simros, Martin Wollschlaeger, and Stefan Theurich. Program-
ming embedded devices in iec 61131-languages with industrial plc tools
using plcopen xml. In CONTROLO’2012, 2012.

Yuxuan Liu, Zhenbang Wang, Ji Zhang, and Yang Liu. Data flow testing
for plc programs via dynamic symbolic execution. In 2021 28th Asia-
Pacific Software Eng. Conf. (APSEC), pages 123-132. IEEE, 2021.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Au-
tomated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software
Eng., 44(2):122-158, 2017.



Bibliography 227

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

Pearu Peterson. F2py: a tool for connecting fortran and python programs.
Int. Journal of Computational Science and Eng., 4(4):296-305, 20009.

Xiao-Qin Xia, Michael McClelland, and Yipeng Wang. Pyper, a python
package for using r in python. Journal of Statistical Software, 35:1-8,
2010.

Sergio J Rey and Luc Anselin. Pysal: A python library of spatial analyt-
ical methods. In Handbook of applied spatial analysis: Software tools,
methods and applications, pages 175-193. Springer, 2009.

Borja Fernandez Adiego, Enrique Blanco Vinuela, Jean-Charles Tournier,
Victor M Gonzalez Sudrez, and Simon Bliudze. Model-based automated
testing of critical plc programs. In 2013 11th IEEE Int. Conf. on Industrial
Informatics (INDIN), pages 722-727. IEEE, 2013.

Dimitrios Tychalas, Hadjer Benkraouda, and Michail Maniatakos.
{ICSFuzz}: Manipulating {I/Os} and repurposing binary code to enable
instrumented fuzzing in {ICS} control applications. In 30th USENIX Se-
curity Symp. (USENIX Security 21), pages 2847-2862, 2021.

Weigang He, Jianqi Shi, Ting Su, Zeyu Lu, Li Hao, and Yanhong Huang.
Automated test generation for iec 61131-3 st programs via dynamic sym-
bolic execution. Science of Computer Programming, 206:102608, 2021.

Luis Garcia, Saman Zonouz, Dong Wei, and Leandro Pfleger De Aguiar.
Detecting plc control corruption via on-device runtime verification. In
2016 Resilience Week (RWS), pages 67-72. IEEE, 2016.

Eduard P Enoiu, Adnan éau§evié, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated test generation us-
ing model checking: an industrial evaluation. International Journal on
Software Tools for Technology Transfer, 18:335-353, 2016.












	Thesis
	Introduction
	Background & Related Work
	Development and Testing of Safety-Critical Software in Industry
	IEC 61131-3 Standard and PLC Programming
	Structured Text (ST)
	Function Block Diagram (FBD)

	Testing of PLC Safety-Critical Software in Industry

	Unit Testing Techniques
	Manual Testing
	Search-based Testing
	Requirement-based Testing

	Test Coverage
	Requirement Coverage
	Branch Coverage

	Mutation Analysis
	Related Work
	Developing or Choosing The Right Test Automation Frameworks
	Transforming a PLC Program to Other Programming Languages
	Application and Efficiency of Using Different Requirement Notations in Testing
	Testing Embedded Industrial Systems


	Research Overview
	Motivation & Research Goal
	Research Method
	Research Process


	Contributions
	Thesis Contributions
	Individual Contribution

	Included Papers
	Paper A
	Paper B
	Paper C
	Paper D


	Results
	Choosing the Right Test Automation Tool for CODESYS IDE
	Discovered Test Automation Frameworks of CODESYS IDE
	Test Automation Frameworks Features
	Test Automation Frameworks
	Applicability in an Industrial Case Study

	Translation of ST/FBD Programs to Python
	PyLC Translation
	PyLC Validation
	Unit Testing Validation based on Requirements
	Checking PyLC Translation Rules
	Validation using Pynguin Test Generation


	Application of EARS Notation in Testing PLCs
	Requirement Engineering Results
	Test Results of PRG1
	Test Results of PRG2
	Test Results of PRG3

	EARS-based Testing vs Manual PLC Testing

	Automated Translation of FBD Programs to Python
	Automated Translation from PLC to Python
	Evaluation and Validation of Translation in an Industrial Context


	Discussion and Limitations
	Discussion
	Limitations

	Conclusion and Future Work
	Bibliography

	Included Papers
	Paper A: Choosing a Test Automation Framework for Programmable Logic Controllers in CODESYS Development Environment
	Abstract
	Introduction
	BACKGROUND AND RELATED WORK
	PLC Programming, IEC 61131-3 and CODESYS
	Related Work

	METHOD
	Grey Literature Review
	Search Process and Framework Selection
	Pool of Objects
	Data Extraction Method
	Selection Criteria
	Discovery and Validation of Features
	Industrial Case Study

	Results
	RQ1 - Discovered Test Automation Frameworks
	RQ2 - Test Automation Frameworks Features
	Company Constraints
	Maturity
	Testing Functionalities
	Framework Flexibility
	Usability

	RQ3 - Test Automation Frameworks
	RQ4 - Applicability in an Industrial Case Study
	Threats to Validity

	CONCLUSIONS and FUTURE WORK
	Acknowledgment
	Bibliography

	Paper B: PyLC A Framework for Transforming and Validating PLC Software using Python and Pynguin Test Generator
	Abstract
	Introduction
	BACKGROUND
	PLC Programming, IEC 61131-3, and CODESYS
	Function Block Diagram (FBD)
	Structured Text (ST)
	PLC Development Environment

	Python and Pynguin
	Python
	Pynguin Test Automation Framework


	PyLC: From PLC to Python and Pynguin
	Translation Process
	FBD/ST Structure
	Cyclic Execution and Triggering
	Basic Blocks Translation
	Timer Function Blocks Translation
	Translation Example

	Validation of the Translated Code

	Results
	RQ1 - PyLC Translation
	RQ2 - PyLC Validation
	Unit Testing Validation based on Requirements 
	Checking PyLC Translation Rules
	Validation using Pynguin Test Generation

	Threats to Validity

	Related Work
	CONCLUSIONS and FUTURE WORK
	Acknowledgements
	Bibliography

	Paper C: An Empirical Investigation of Requirements Engineering and Testing Utilizing EARS Notation in PLC Programs
	Abstract
	Introduction
	PRELIMINARIES
	Programmable Logic Controllers
	CODESYS Development Environment
	EARS Semi-Structured Requirement Engineering Syntax

	EXPERIMENTAL DESIGN
	Research Questions
	Experimental Setup Overview
	Object Selection
	Operationalization of Constructs
	Ubiquitous requirements (U)
	Event-driven requirements (ED)
	Unwanted behaviours (UB)
	State-driven requirements (SD)
	Optional features (OF)

	Instrumentation
	Data Collection Procedure

	EXPERIMENT CONDUCT
	EXPERIMENT ANALYSIS
	Requirement Engineering Results
	PLC Testing Results
	Test Results of PRG1
	Test Results of PRG2
	Test Results of PRG3


	EARS-based Testing in Real-world Industrial Settings
	Methodology for EARS-based testing in real-world industrial settings
	Real-world Industrial PLC Program
	Industrial Testing of the Real-world Industrial PLC Program
	Results of EARS-based Testing of a Real-world Industrial PLC Program
	EARS-based Testing vs Manual PLC Testing in Industry
	Limitations of the Study and Threats to Validity

	Related Work
	CONCLUSIONS AND FUTURE WORK
	Bibliography

	Paper D: Automating Test Generation of Industrial Control Software through a PLC-to-Python Translation Framework and Pynguin
	Abstract
	Introduction
	Preliminaries
	Programmable Logic Controllers, IEC61131-3, and CODESYS IDE
	Python and Pynguin Test Automation Tool
	Logical Operators in IEC61131-3
	PLCopen XML Tree
	Cyclic Execution
	Data Types in IEC61131-3 and Python

	PyLC: An Automated PLC to Python Translation Framework
	PyLC Translation Workflow
	Step 1 - XML Analyzer
	Step 2 - Python Code Generator
	Step 3 - Meta-heuristic Test Generation
	Step 4 - Test Execution
	Step 5 - Translation Validation

	PyLC Translation Example

	Automated Validation of The Translated Code using Meta-heuristic Algorithms
	DYNAMOSA Algorithm
	Translation Validation Procedure in PyLC


	Results
	Experimental Setup
	RQ1-Automated Translation from PLC to Python
	RQ2-Evaluation and Validation of Translation in an Industrial Context
	Limitations, Threats to Validity, and Discussion

	Related Work
	Program Transformation to Python for Enhanced Features and Tools
	Automated Testing of ICS Control Applications

	Conclusions and Future Work
	Bibliography



