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Abstract

Background. Machine learning components are being deployed across nearly every business sector and their importance is
continually growing. However, the engineering practices for building these systems remain poorly understood compared to
those for conventional software systems.
Objective. This work provides practical guidance to support architects in designing and implementing machine
learning-intensive systems, and identifies areas where there are gaps in understanding and achievement.
Method. Building on our prior research, we developed a checklist of quality concerns for architects of machine
learning-intensive systems. This checklist was iteratively refined through expert interviews and subsequently validated in a
workshop with experienced architects.
Results. The main result of this work is a comprehensive list of 40 checks, organized into two main categories and 16
subcategories. Also, we present the results of a workshop where the importance and degree of achievement of each check
was assessed by 25 practicing architects of ML-intensive systems.
Conclusion. The findings of this study offer valuable support to architects in addressing the unique challenges of ML-intensive
systems and provide guidance to practitioners and researchers in terms of where future work should be focused.

1. Introduction

Machine learning (ML) has become mainstream in
software, being deployed in systems in nearly every business
sector. However, due to its relative newness and its
unique challenges, the state of engineering practice for
building these systems continues to lag behind other types
of software systems. A number of industry studies have
reported that a majority of ML projects fail, typically not
progressing beyond the prototype stage [1, 2]. There
are several obvious culprits for these failures, which have
been pointed out in the literature: the miscommunications
between data scientists and software engineers, the relative
immaturity of the technologies, the fast pace of technology
evolution, and the ever-increasing quality demands placed
upon ML-intensive systems. Adding to these challenges is
the inherent stochastic nature of ML models, which can
lead to inconsistent or unpredictable behavior. This lack
of reliability may undermine trust and limit adoption in
operational contexts where determinism and explainability
are essential. Moreover, problems can be introduced at
various stages—including the data science process, system
design and deployment, and system evolution—further
complicating the successful realization of ML projects.

In this paper, we will describe the challenges and
concerns for building an ML-enabled system, by which we
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mean a software system that integrates one or more ML
components. We have collected, analyzed, and validated
these challenges and concerns in a three step multi-method
empirical process.

We began by building upon a foundation of prior
research. Specifically we built upon the results of our
previous study [3], which identified key design decisions,
challenges and best practices in ML-intensive systems. In
addition, we conducted interviews with architects to catalog
their quality concerns, resulting in a refined checklist of
concerns supported by documentation such as scholarly
citations or excerpts from interviews. Finally, we organized
a workshop with practitioners to validate the checklist and
to gather feedback on the perceived importance and current
level of achievement of each check. In this context, we
define a check as a guiding question or consideration that
architects should assess when designing, implementing, or
maintaining ML-intensive systems [4, 5, 6, 7]. Checks are not
direct concerns themselves, but prompts aimed at verifying
whether critical architectural aspects have been adequately
addressed.

ML experts, data scientists, software engineers, and
software architects have struggled to find a common
language to discuss the concerns for ML-enabled
systems. Although ML introduces some requirements and
considerations that are not always obvious or well-articulated
and documented during system design, in large part the
concerns of ML-enabled systems overlap with those of
conventional systems. That is to say, in most cases, we want
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these systems to be secure, to perform well, to be robust,
to be easy to modify and extend, and so forth. However, in
addition to these universal concerns, there is a set of these
concerns that are driven by the nature of this being an ML
system. Such systems need to address certain common
requirements in a more stringent manner, such as privacy
or model modularity. In what follows, we will describe
areas where the design drivers of ML-intensive systems
may deviate from current software engineering practices or
simply be unfamiliar to software engineers, as well as those
which are highly overlapping with conventional software.

1.1. Research Questions

To be more precise about our research objectives, we now
detail the Research Questions (RQs) that motivated this study.

• RQ1 - What are the most important design
considerations for the architect of an ML-intensive
system?

• RQ2 - What design qualities of ML-intensive systems
are difficult for architects to achieve in practice?

• RQ3 - Where are there gaps between the importance
and the achievement of design qualities of
ML-intensive systems?

These research questions were posed as a way of focusing
our investigation on the process of architecting ML-intensive
systems, to identify: how it is similar to the software
architecture design process in general [8], how it is different,
and areas where it seems to currently be inadequate.

1.2. Contribution

ML-intensive systems are, quite simply, the future of
software. This research provides an empirically grounded
window into the problems facing architects of such systems.
In particular, we have identified the most important areas
of architectural concerns, and also the areas where there
is the biggest gaps between importance and achievement.
Therefore, these results highlight areas where future research
and development must focus.

1.3. Roadmap

The paper is organized as follows. Section 2 describes
the research methodology we followed to perform this study
and discusses the threats to validity of the study. Section 3
presents the checklist for software architects we synthesized
in our study. Section 4 details the validation workshop and
its qualitative and quantitative results. Section 5 discusses
the results of this study. Section 6 compares the work with
related works. Finally, Section 7 discusses conclusions and
future work directions.

2. Research Method

We designed and conducted this study using
complementary research methodologies to address the
inevitable limitations of each of the individual approaches.
Specifically, we began by building on the results of our
prior mixed-method study [3], which employed a systematic
literature review [9] and expert interviews [10] to create
a knowledge base of quality concerns for architects of
ML-intensive systems. This knowledge base was our
foundation, but it was subsequently extended with a series
of interviews with architects of ML-intensive systems,
aiming to catalog their quality concerns [10]. Over the
course of nine months, we iteratively refined this catalog.
To validate and enrich these findings, we organized a
workshop where practitioners—–architects of ML-intensive
systems—–offered critical feedback and additional insights
into the quality concerns that we identified. We provide
a public replication package to enable independent
verification and replication of our methodology and study.1

The research method we followed is summarized in Figure 1.

2.1. Step 1 - Initial Checklist

Our prior mixed-method study [3] identified 6 main
categories of design challenges, namely Architecture, Data,
Evolution, Quality Assurance (QA), Model, and Software
Development Life Cycle (SDLC). The study also identified (i)
7 main categories of best practices, namely QA, Architecture,
Model, Hardware (HW) & Platform, Evolution, SDLC, and
Data, and (ii) 7 main categories of design challenges, namely
Data, Architecture, Model, Evolution, HW & Platform, QA,
and SDLP. Overall, we contributed 35 design challenges,
42 best practices, and 27 design decisions related to the
architecting of machine learning systems.

In step 1, we derived 94 potential checks from the
challenges, best practices, and design decisions presented
in [3].

This step is represented as a circled “1” in Figure 1.
Each check was assigned a unique ID for traceability. We
then organized these checks into an initial checklist of three
distinct lists, corresponding to challenges, best practices, and
design decisions.

2.2. Step 2 - Interviews

As a parallel activity, we collaborated with data scientists
to leverage their expertise in identifying key challenges and
quality concerns associated with designing and constructing
ML-enabled systems. The identified categories of concerns
were: (i) system-level concerns that aim at influencing the
system as a whole, (ii) component-level concerns that involve
the ML component, or components, which have significant
non-local effects on the system, (iii) system environment
concerns that focus on how the system environment needs

1https://github.com/AlessioBucaioni/mlchecks
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Figure 1: Overview of the adopted research method.

to be appropriately provisioned for, in particular, the ML
function, (iv) ML-specific concerns that are important to
overall system success, but where the solution to these
concerns lives primarily outside the decisions made for the
software architecture, and (v) non-architectural concerns
that focus on fairness, privacy, or ethics.

To further refine these insights, we conducted
semi-structured interviews at the Software Engineering
Institute (SEI), involving six experienced system architects
from organizations such as PNC Bank, FedEx, and Google
(represented as a circled “2” in Figure 1). These were
semi-structured interviews where each participant met with
three SEI researchers. During the interviews, participants
walked through and commented on each of the identified
concerns, provided critical feedback, and contributed
additional perspectives. The analysis of these interviews
and discussions revealed five distinct categories of concerns
based on their scope of influence: system environment,
system-level, component-level, process, and architecture.

2.3. Step 3 - Categorizing and refining the checklist

In the next step, we revised the initial checklist by
organizing the 94 identified checks into the five categories of
concerns derived from the interviews. During this process,
we eliminated redundant and generic checks (represented
as a circled “3” in Figure 1). For example, the check “Does
your system require real-time capabilities?” (stemming from
a best practice) and “Do you have applicable techniques
for ensuring privacy and confidentiality of your data?”
(stemming from a design challenge) were removed due
to their overly broad nature. This step was conducted
iteratively, with the starting set of checks divided equally
among the researchers. Each researcher categorized their
assigned checks, followed by a collaborative validation and
discussion of the categorizations to ensure consistency and
accuracy. This refinement process resulted in a categorized
and streamlined checklist comprising 60 checks.

2.4. Steps 4 - Templating and refining the checklist
Subsequently, we standardized the representation of

all checks using an established template inspired by the
work of Caldas et al. [11] (represented as a circled “4”
in Figure 1). At the same time, we further refined the
set of checks with the aim of minimizing less relevant
ones and ensuring optimal categorization (represented as
a circled “5” in Figure 1). Key refinements implemented
during this stage included the removal of a few checks
deemed less significant, the exclusion of concern categories
that no longer had associated checks (namely component
and system environment), and the reorganization of checks
within the system-level category around system -ilities.
Similar to the previous step, this process was conducted
iteratively over nine months. The initial set of checks was
divided equally among the researchers, with each researcher
responsible for templating their assigned checks. This
was followed by collaborative validation and discussions to
ensure consistency and accuracy across all templated checks.

The result of these iterations was a finalized list of 40
checks, grouped into two main categories: System Concerns
and Process Concerns. The former category focuses on
the “ilities” of ML-intensive systems, such as reliability,
scalability, security, and maintainability, while the latter
addresses various aspects of the development process, such
as documentation and team collaboration. We originally
defined five categories based on prior literature and the
initial workshop, but three of these categories remained
unpopulated after the consolidation process. The absence
of checks in three of the initial categories suggested that, in
practice, those concerns were either too abstract or already
implicitly covered by the other two categories. It is worth
noting that during this step, two additional checks were
introduced: one addressing Blue/Green and Canary testing,
and another focused on Failure Mode and Effects Analysis
(FMEA). All the checks are detailed in Section 3.

2.5. Step 5 - Workshop
In the final step, we conducted a workshop with 25
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architects of ML-intensive systems to validate the checks and
gather their feedback regarding the importance and the level
of achievement of each concern (represented as a circled
“6” in Figure 1). The workshop was organized as a half-day
session as part of the ITARC conference2, a prominent
event for IT architects and professionals interested in IT
architecture, organized by Dataföreningen Kompetens and
IASA Sweden. The workshop brought together 25 registered
participants with substantial expertise across a variety of
sectors. On average, participants had 23.7 years of experience
in architecting industrial systems, with experience ranging
from 10 to 40 years. In contrast, their experience in
building ML systems was more recent, averaging 1.85
years, with a range from 1 to 6 years. Participants
represented a diverse set of sectors. Government was the
most represented, accounting for 16.7% of the attendees.
Banking & Finance and Automotive followed, each with
8.3% representation. A number of sectors—IT Infrastructure,
Forensic & Legal, Telecom, Healthcare, Public Transport,
Public Sector, Smart City, Engineering & Consulting, Medical,
Mining, Aviation, and Consulting—were each represented by
4.2% of participants. The remaining participants, coming
from various other backgrounds, made up the final 16.7%.

The session began with an introduction to the workshop’s
objectives, followed by the collection of basic participant
information, such as their industry type and years of
experience. Each of our identified checks was then presented
to the attendees, accompanied by brief explanations and
practical examples to provide context to them. Participants
were then asked to evaluate the importance and level of
achievement of each check using a 5-point Likert scale.
Their ratings were collected using Mentimeter, an interactive
app that allows presenters to create dynamic presentations
with audience engagement features. Using Mentimeter, the
participants were able to input their responses in real-time,
via their smartphones or other internet-connected devices.
Additionally, participants were invited to provide free-text
remarks for each check, enabling the collection of qualitative
feedback alongside the quantitative ratings. The workshop
concluded with an open discussion, focusing on potential
additional checks that might have been overlooked and
participants’ general thoughts on the checklist and the
process. The results of the workshop are presented in
Section 4.

2.6. Threats to validity

We carried out this research according to well-established
guidelines for empirical studies in software engineering
including those by Kitchenham and Brereton [9] and by
Wohlin et al. [10]. Hereafter, we describe the main threats
to validity according to the scheme by Wohlin et al. [10] and
elaborate on mitigation strategies.

Internal Validity. One potential threat to internal validity
arises from participant bias. The feedback collected

2https://itarc.nu/eng/

during the workshop may have been influenced by the
participants’ individual backgrounds or familiarity with
ML-intensive systems. For instance, participants with limited
experience in ML systems may have underestimated the
importance or feasibility of certain checks. To mitigate
this, we ensured a diverse group of participants with
varying roles and industries, ranging from IT architecture
to solution architecture, and spanning sectors such as
finance, healthcare, and public governance. Additionally,
participants were provided with clear explanations and
practical examples of each check to improve understanding
and reduce misinterpretation. Another threat stems from the
potential difficulty in understanding the context or scope of
certain checks, as noted in the qualitative feedback. Some
participants expressed challenges in interpreting specific
questions, which could have affected the accuracy of their
ratings. To address this, we revised the checklist template by
detailing the Context field to provide more specific guidance
and ensure the checks are easier to comprehend in future
applications.

External Validity. The generalizability of the results presents
a key challenge. While the workshop included participants
from a diverse range of industries, it may not fully capture
the needs of architects in less-represented sectors. Moreover,
the sample size of 25 participants, though diverse, limits the
extent to which the findings can be applied to a broader
population. This was mitigated by having participants with
significant expertise (ranging from 10 to over 40 years of
experience) to ensure that the feedback reflected a high level
of professional insight. Future iterations of the checklist
could benefit from validation sessions with larger and more
varied participant groups.

Construct Validity. The comprehensiveness of the checklist
itself may pose a threat to construct validity. Although
the checklist was derived from a systematic process, there
is a possibility that certain niche concerns or emerging
trends in ML-intensive systems were overlooked. This
could limit the checklist’s applicability across all contexts.
To mitigate this, the checklist was iteratively refined
through expert interviews, collaborative discussions, and
participant feedback during the workshop to incorporate as
many relevant perspectives as possible. Another construct
validity issue relates to the evaluation metrics used. The
5-point Likert scale employed to measure importance
and achievement, while standard, may not fully capture
the nuanced perspectives of participants regarding the
applicability or feasibility of specific checks. To address this,
we complemented the quantitative ratings with qualitative
feedback, allowing participants to provide additional context
and suggestions for each check.

Conclusion Validity. The observed disparity between the
importance and achievement ratings of some checks
highlights a significant threat to conclusion validity.
While this gap is central to RQ3, the reasons behind the
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underachievement of certain checks were not fully explored
during the study. This limits our ability to draw definitive
conclusions about the root causes of these disparities. To
partially address this, we incorporated participant remarks
and discussion points into the analysis to provide some
context for these gaps. Future studies should delve deeper
into these underlying causes through follow-up interviews or
focused case studies. The limited timeframe of the workshop
also posed challenges. As a half-day session, the workshop
may not have allowed participants sufficient time to engage
deeply with each check or provide comprehensive feedback.
While the session was designed to maximize efficiency,
future iterations could include extended workshops or
asynchronous feedback mechanisms to collect more detailed
responses.

Reliability. The subjectivity of the qualitative feedback
introduces another threat. While themes were identified and
synthesized from participant remarks, individual differences
in expression may have introduced variability in the analysis.
This risk was mitigated by involving multiple researchers
in the thematic analysis process to ensure consistency and
reduce potential biases. Similarly, the iterative refinement
of the checklist may have introduced researcher bias.
Despite efforts to maintain consistency through collaborative
discussions, there is always a possibility of divergence in
interpretation. To address this, we implemented a structured
process for refining the checklist, with each step documented
and validated by multiple researchers to ensure transparency
and reliability.

3. Checklist for Software Architects

This section presents the checklist that we created for our
study. It begins with a description of the concern categories
and a description of the template, followed by an overview of
the checklist’s composition together with few representative
checks. The complete checklist is available on our website 3.

3.1. Concern Categories

We began with four categories of concerns, as identified
during our initial interviews. From this starting point we
refined the checks and applied a template, to ensure that they
were consistently documented. This process of employing a
documentation template led to the removal of two of the four
concern categories, as these no longer had associated checks.
The final concern categories were:

• System concerns, which address different quality
attribute concerns. These concerns apply to the
system as a whole, and do not require special
considerations for ML components, as compared to
other components.

3https://alessiobucaioni.github.io/mlchecks/webpage/

• Process concerns, which pertain to the effective
management and execution of the project in which
the ML-enabled system is developed and maintained.
They also address concerns specific to the process of
architecting the ML-enabled system.

3.2. Template for the Checks

To present the checks, we defined a simple template
inspired by the work of Caldas et al. [11]. It consists of the
following fields:

• ID: the unique identifier assigned to the check. We
followed a systematic naming convention: the capital
initial of the main category—S for System and P
for Process—followed by the capital initial of the
corresponding subcategory (e.g., A for Availability) and
an integer. In cases where the combination of category
and subcategory initials was not unique or potentially
ambiguous, we used a two-letter abbreviation for the
subcategory (e.g., SMD for System–Modularity).

• Name: a descriptive name summarizing the check.

• Source: the origin of the check, as identified in our prior
work [3].

• Context: contextual information providing additional
details about the check.

• Check: the specific question or statement that
constitutes the actual check.

• ML Specificity: indicates the degree to which a check is
specific to ML-intensive systems. It is categorized into
three levels: low (L), medium (M), and high (H), based
on the underlying rationale for the check.

3.3. Checklist

Figure 2 provides an overview of the checklist, organized
into the two major concern groups described above: system
and process. For clarity and brevity, Table 1 presents a
simplified version of the checklist, omitting the source and
context fields to enhance readability and save space.

3.3.1. System-Level Concerns
The system concerns category is divided into nine

subgroups, each addressing a salient quality attribute. These
concerns are: usability, data quality, testability, modularity,
monitorability, deployability, availability, reliability, safety
and security, and privacy.

Usability consists of two checks, primarily focusing on
visualization. While system usability, as broadly construed,
encompasses many aspects beyond visualization, these two
checks emerged from the sources of information we utilized,
namely scientific papers in the field and expert input.

Data quality is a critical aspect addressed by checks
spanning various phases, including data preparation, data
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Table 1: Checklist

System
Name ID Check ML Specificity

U
sa

b
il

it
y Data visualization SU1 Do you have data visualization techniques in place? H

Visualization
techniques

SU2 Have you considered visualization techniques to identify or highlight relationships between data and computing
tasks?

H

D
at

a
q

u
al

it
y

Data preparation SDQ1 Do you have strategies for preparing data and performing statistical analysis? H

Data cleaning SDQ2 Is your dataset clean, of good quality, and free from potential bias? H
SDQ3 Are you concerned about data cleaning in NL processing? H

Dataset size SDQ4 Do you have a well-sized dataset for training the ML component? H
Conceptual drift SDQ5 Are you engineering your ML-based system so as to adapt to input data changes, also known as concept drift? H

Te
st

ab
il

it
y

System correctness ST1 Do you have proper techniques for ensuring system correctness? M
Model validation ST2 Are you performing the validation of the model, e.g., to predict how a learning algorithm will behave on new

data? Are you combining model validation with data validation to better detect corrupted training?
H

M
o

d
u

la
ri

ty

Independent
upgradability SMD1

Are you building a component-based distributed system where parts may need to be upgraded? L

High Cohesion and
low coupling SMD2

Are high cohesion and low coupling important? L

Microservice
SMD3

If you are interested in maintainability and modifiability, did you consider using a microservice architecture? L

Discrete service
SMD4

Can you decompose your system into discrete services? L

M
o

n
it

o
ra

b
ili

ty Modeling intrinsic
uncertainty SMN1

Can you explicitly model the intrinsic uncertainty of ML components and assess how it propagates and impacts
other elements in the system at the designing stage?

H

Time predictability
SMN2

Do you have proper mechanisms, like monitoring and a-posteriori analysability for time predictability? M

Monitoring drift
SMN3

Do you have tests that monitor changes in input distributions? H

D
ep

lo
ya

b
ili

ty

Continuous
integration

SDE1 Can you use continuous integration techniques for the development of your system? L

Infrastructure as
code

SDE2 Do you have a method to manage the entire IT infrastructure, e.g. databases, servers, etc., that is needed to build
your ML system?

M

Blue/Green, Canary
testing

SDE3 Are you including Blue / Green or canary testing in your standard MLOps pipelines? Ö

A
va

ila
b

il
it

y Failure recovery
strategy

SA1 Did you consider failure recovery strategies to avoid propagation of failures? L

Domain knowledge SA2 Do you have the required level of domain knowledge to take availability decisions? M
Layered/tiered
architecture

SA3 Can you cleanly split business logic from ML components? If so, did you consider using a layered/tiered
architecture?

M

R
el

ia
b

il
it

y

Uncertainty SR1 Do you have complete information on the uncertainty of the ML components used at design time? H

Sa
fe

ty
&

Se
cu

ri
ty

Fail safe SS1 Do you have proper techniques for reaching safe states quickly when needed? L

Safety evaluation SS2 Have you included an evaluation process for architectural safety design choices? L
Coding standards SS3 Do you use strict and certified coding standards when developing safety-critical ML components? L
External certification SS4 Are you having your system safety-certified by an external body? L
Design to defend SS5 Are you explicitly designing and developing your ML system to defend vulnerable sections of the code that may

be subject to cyber-attacks?
M

Safety and fairness SS6 Do you have a way of systematically ensuring safety and fairness in your system? H

P
ri

va
cy Data loss and privacy SP1 Have you considered using federated learning to improve data loss and privacy in your ML system?. H

Process
Name ID Check ML Specificity
Documentation PD1 Do you have proper documentation or a plan to document your ML system? L
Heterogeneous
teams

PH1 Do you have heterogeneous teams mixing ML developers, data engineers, architects? M

Test-driven PT1 Do you have a test-driven development strategy for your QA and, overall, is your testing process well defined? L
Separate pipelines PSP1 Do you separate the branches for the training of the pipelines from the training of the model? H
Separate models PSD1 If you have more than one model to develop, did you plan to develop them separately? H

M
L-

aw
ar

e
p

ro
ce

ss Model customization
and reuse

SML1 Do you have expertise to customize and reuse models? H

Managing and
versioning

SML2 Do you have managing and versioning techniques in place? L

ML infrastructure for
deployment

SML3 Have you defined an ML infrastructure and deployment processes? L

Model selection SML4 Have you applied a systematic and documented approach for selecting the ML model used in your system? H
Model training SML5 Have you evaluated the model’s performance ? H
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Figure 2: Overview of the checks.

cleaning, and dataset size. These checks also highlight
the need to consider changes in input data over time,
emphasizing that updates in ML-based systems, due to
concept drift, can significantly impact system outcomes and
performance.

Testability includes two checks, one of which addresses
probabilistic system correctness by asking architects
whether they have appropriate techniques to ensure system
correctness. The other check—model validation—focuses
on verifying both the model and the data used.

Modularity encompasses four checks, focused on
how to decompose a complex system into smaller, more
manageable parts. The first check concerns the independent
upgradability of parts of a distributed ML system, and it
recommends using a multi-node architecture approach
as this allows distributed ML system components to
be upgraded independently. The three other checks
address high cohesion and low coupling. The first check
recommends using a client-server architecture when high

cohesion, low coupling, and security are important. When
maintainability and modifiability are important, and the
system can be decomposed into discrete services, the
recommendation is to use a use microservice architecture, as
recommended by the last two checks.

Monitorability includes three checks that focus on
modeling the intrinsic uncertainty of ML components and
assessing how this uncertainty propagates and impacts other
system elements during the design stage. These checks also
address incorporating mechanisms such as monitoring and
a-posteriori analysability to ensure time predictability, and
implementing tests to detect changes in the environment
that make historical training data no longer representative of
current reality, drift.

Deployability includes three checks. These address
the use of continuous integration techniques in system
development, the adoption of methods for managing the IT
infrastructure needed to build ML systems (e.g., databases
and servers) through approaches like infrastructure as code

7



or architecture as code [12], and the use of risk mitigation
methods, like Blue/Green or canary testing, which may be
highly effective in standard MLOps pipelines.

Availability focuses on two checks. The first one
concerns the implementation of failure recovery strategies
to prevent failure propagation. The second emphasizes
architectural designs that isolate failures by separating
business logic from ML components, enabling engineers to
perform rollbacks more easily and effectively.

Reliability is represented by a single check, which probes
the degree to which information on the uncertainty of ML
components is available during the design phase.

Safety and Security are addressed by six checks. These
ensure the existence of techniques to reach safe states
quickly when needed, systematic methods for ensuring
safety and fairness (e.g., FMEA), evaluation processes
for architectural safety design choices, adherence to
strict and certified coding standards for safety-critical ML
components, an external certification process for critical
systems, and explicit design and development techniques
to defend vulnerable sectionsof ML system code against
cyber-attacks.

Privacy focuses on minimizing data loss and improving
data privacy. Federated learning is recommended as a
method to address these concerns.

Example of Checks of the System Concerns. Here after, we
provide a detailed example of a system check focusing on the
quality attribute of usability.

• ID: SU2

• Name: Visualization techniques

• Source: Panousopoulou et al. [13]

• Context: In large ML-based systems, visualisation
techniques help express the relationships between data
and computing task.

• Check: Have you considered visualization techniques
to identify or highlight relationships between data and
computing tasks?

Note that our goal was not to exhaustively explore the quality
concerns surrounding usability. Our goal was to reflect the
quality concerns that are specific to ML-intensive systems,
as supported by the literature and by our interviews. This
check therefore emphasizes the importance of incorporating
visualization techniques into the design process of large
ML-based systems, particularly to express the relationships
between data and computing tasks. Panousopoulou et
al. [13] suggest that data visualization techniques enhance
the design process by aiding in the representation of these
relationships and facilitating data analytics. In large-scale
systems, where the complexity of data flows and distributed
computing can become challenging, visualization plays a
critical role in improving usability and enabling better
decision-making during system design. For instance,

adopting data visualization techniques in the design process
helps identify and communicate data dependencies and
computational requirements effectively. These techniques
are instrumental in facilitating data management and
analytics, ensuring that critical aspects of the system are both
accessible and interpretable to stakeholders.

3.3.2. Process Concerns
The process concerns are divided into six sub-groups, and

the first five groups each consist of a single check.
The Documentation check is included to ensure that

appropriate documentation is available or planned. This
does not mean that everything must be documented. It
focuses on careful consideration of where more thorough
documentation might be required, as this can enhance
efficiency, reusability, reproducibility, and shareability.

Heterogeneous teamsprobes whether teams include a
mix of ML developers and architects. This combination
best leverages the practical experience of ML developers
alongside the expertise of architects.

Test-driven development strategy examines whether
there is a test-driven development strategy in place, for
quality assurance (QA) and for the standardization of the
testing process.

Scalability checks whether there are separate branches
for pipeline training and model training. In large-scale ML
systems, this separation helps avoid the so-called “pipeline
jungle”.

Separate development of models attempts to ensure that
models, when there are several, are developed separately.
This approach simplifies system configuration, reduces the
likelihood of costly errors, and helps identify unused or
redundant models within the ML-based systems.

The final process concern is ML-Aware Process, which
is subdivided into five checks. Model customization
and reuse asks one to consider whether the expertise to
customize and reuse models is available. Managing and
versioning focuses on the presence of effective techniques
for managing ML models, and, as they often rapidly evolve,
versioning them. ML infrastructure for deployment queries
the establishment of a proper ML infrastructure, along
with suitable training and deployment processes. Model
selection emphasizes careful selection of models based on
the specific requirements of the domain (rather than, say,
simply reusing models that a familiar). Model training
addresses the importance of carefully managing the training
process and optimizing model performance to enhance
system outcomes.

Example of Checks of the Group process Concerns. Here,
we provide an example of process check focusing on
documentation.

• ID: PD1

• Name: Documentation

• Source: I10, Wan et al. [14], Anjos et al. [15]
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• Context: A lack of documentation can affect the quality
of ML systems and can negatively affect the reuse
of processes. Contrariwise, proper documentation
increases the efficiency, reusability, reproductivity, and
shareability.

• Check: Do you have proper documentation or a plan to
document your ML system?

This check focuses on the importance of proper
documentation in critical areas of ML-based systems. A lack
of appropriate documentation can hinder the use, reuse, and
extension of these systems, negatively affecting their quality
and long-term viability. Anjos et al. [15] and Wan et al. [14]
emphasize that comprehensive documentation enhances
efficiency, reusability, reproducibility, and shareability, and
supports the overall design process. Proper documentation
ensures that processes are well-understood and facilitates
smoother collaboration and system evolution.

4. Validation

The validation of the checklist was conducted through a
workshop with 25 active participants. The primary objectives
of the workshop were: to validate the checklist categories and
subcategories, to quantitatively assess the importance and
achievement levels of each check, and to gather qualitative
feedback to refine the checklist further. These goals directly
addressed the overarching RQs of this study: ensuring the
checklist’s practical applicability, identifying gaps in current
practices, and fostering a comprehensive understanding of
quality concerns in ML-intensive systems.

The workshop was organized as a half-day session
during the ITARC conference, a prominent event for IT
architects and professionals in IT architecture, hosted
by Dataföreningen Kompetens and IASA Sweden. It
brought together 25 registered participants representing a
diverse range of industries and roles, including software
development, IT architecture, solution architecture, and
enterprise architecture. Their expertise spanned sectors
such as finance, healthcare, automotive, public governance,
and technology, with professional experience ranging from
10 to over 40 years. Participants were asked to evaluate
the importance and achievement levels of each check
using a 5-point Likert scale. Their responses were
collected in real-time through Mentimeter, an interactive
app designed for dynamic presentations and audience
engagement. This tool enabled participants to input
their feedback seamlessly using smartphones or other
internet-connected devices. In addition to quantitative
ratings, participants were encouraged to provide free-text
remarks for each check, offering qualitative insights into its
relevance and clarity. The workshop concluded with an
open discussion, focusing on potential additional checks that
might have been overlooked, as well as general feedback
from the participants on the checklist and on the validation
process.

4.1. Quantitative feedback

During the workshop, participants evaluated each of the
40 checks using a 5-point Likert scale for both importance
and achievement. As mentioned, the responses were
collected in real-time using Mentimeter. We now summarize
the results of their feedback, which are also graphically
represented in Figure 3, showing a scatter plot of the weighted
average importance and achievement scores for each check.

Importance. The weighted average score for importance
was 3.49 and the standard deviation was 0.46. Scores ranged
from a minimum of 2.58 to a maximum of 4.41. Notably,
seven checks scored above the average plus the standard
deviation, identifying critical design considerations for
ML-intensive systems (RQ1) and highlighting areas where
proper implementation can bridge gaps between importance
and achievement (RQ3). Examples of these checks include:
“Did you consider failure recovery strategies to avoid
propagation of failures?” (SA1), which highlights the need
for robust validation practices, and “Are high cohesion
and low coupling important?” (SMD2), emphasizing
fundamental principles for maintaining system modularity
and maintainability. Conversely, nine checks scored below
the average minus the standard deviation, signaling qualities
that architects find less relevant in practice (RQ1). For
instance, “Are you including Blue/Green or canary testing
in your standard MLOps pipelines?” (SDE3) scored lower,
suggesting these methods might not yet be widely adopted or
deemed relevant in broad contexts. Similarly, “Are you having
your system safety-certified by an external body?” (SS4)
received lower ratings, possibly reflecting the niche nature of
such certifications.

Achievement. The weighted average score for achievement
was 2.72, with a standard deviation of 0.63, and scores
ranged from a minimum of 1.6 to a maximum of 4. Overall,
achievement scores were consistently lower than importance
scores by an average factor of 0.77, indicating that many of
the identified checks have yet to be widely implemented
(RQ3), despite the attendees acknowledging that they are
important. Notably, six scores exceeded the weighted average
plus one standard deviation. Examples include: “Do you have
proper techniques for ensuring system correctness?” (ST1)
and “Are you performing the validation of the model, e.g.,
to predict how a learning algorithm will behave on new
data?” (ST2) Conversely, six scores fell below the weighted
average minus one standard deviation, highlighting critical
areas that are difficult to achieve in practice for the architects.
Examples of these checks include: “Have you defined an ML
infrastructure and deployment processes?” (SML3) and “Do
you separate the branches for the training of the pipelines
from the training of the model?” (PSP1).

One notable observation was the identification of 15 checks
where the difference between the weighted averages for
importance and achievement was significant—exceeding
the 0.77 factor. This highlights substantial gaps between
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the perceived importance and actual achievement of design
qualities in ML-intensive systems (RQ3).

4.2. Qualitative Feedback

Participants provided valuable free-text remarks that
offered deeper insights into the checklist’s strengths
and areas for improvement. For example, participants
emphasized the need for clearer formulations and context
for some checks, such as those related to data visualization
and input monitoring. One participant noted, “Visualization
is a good way to discover trends, but further data processing
with other tools is required,” highlighting the practical
challenges faced. Another participant remarked on the lack
of explicit checks for legal and ethical considerations, such
as GDPR compliance. Key themes that emerged included:

• Clarity and Context: Several participants emphasized
the need for clearer formulations and better
contextualization of certain checks to ensure their
scope and purpose were easily understood. To address
this, we detailed the Context field in the check template
to provide more specific guidance for each check.

• Practicality: Challenges related to data management,
visualization, and resource allocation were frequently
mentioned. Comments such as “Visualization is a good
way to discover trends, but further data processing
with other tools is required” reflected the need for
actionable strategies. This theme highlights the need
for actionable insights for researchers and practitioners
to improve the practical application of the checklist in
real-world settings.

• Applicability to ML: Some participants questioned
whether specific checks were sufficiently tailored to ML
systems or if they were general architectural concerns,
underscoring the importance of emphasizing
ML-specific contexts in future iterations.

• Ethical and Legal Considerations: The absence of
explicit checks for ethical and legal concerns, such
as GDPR compliance, was highlighted by a few
participants. This theme provides a clear direction for
both researchers and practitioners to incorporate these
aspects in future iterations of the checklist.

The open discussion at the end of the workshop did
not result in new checks or categories, but reinforced the
importance of tailoring the checklist to practical, real-world
challenges faced by practitioners. Moreover, there was a clear
consensus among participants on the urgent need for such a
checklist to be made available as soon as possible, reflecting
its practicality, relevance, and potential impact in addressing
current gaps in the design and development of ML-intensive
systems.

4.3. Impact on the Checklist

The workshop feedback was instrumental in identifying
which checks were perceived as more or less important
and highlighting those that were underachieved despite
their importance. These aspects are discussed in detail
in Section 5. While the checklist itself was not modified,
this validation process provided a deeper understanding
of its applicability and areas requiring emphasis in future
realizations. Moreover, we believe that the insights from the
workshop should influence future iterations of the checklist
by prioritizing checks that address critical gaps, particularly
those areas where there is a disparity between importance
and achievement. Additionally, this understanding will help
in tailoring the checklist to meet specific industry needs,
ensuring its broader adoption and relevance in diverse
contexts.

5. Discussion

While software engineers have been designing and
architecting systems for decades, it is only in recent years that
the majority of engineers and architects have encountered
the unique challenges posed by ML-enabled—and especially
ML-intensive—systems. As with any emerging engineering
challenge, practitioners are actively seeking guidance to
navigate these complexities. This need for support
was a recurring theme echoed throughout our workshop
discussions.

In our preparatory work for the workshop, we uncovered
a broad spectrum of concerns that an architect might need
to address when designing ML-intensive systems. These
concerns spanned system qualities, such as reliability,
scalability, and security, as well as process issues, including
documentation, team collaboration, and deployment
strategies. Our research highlighted the diversity and
complexity of challenges faced by architects, ranging from
ensuring the robustness of ML models to managing the
interplay between data science and traditional software
engineering practices. What we learned in the workshop,
however, was not just the breadth of these concerns but
also the extent to which each one impacts practitioners who
grapple with them on a daily basis. Participants consistently
emphasized the practical difficulties they face, such as
balancing the need for flexibility with the demand for system
stability, managing concept drift in real-world deployments,
and ensuring compliance with evolving ethical and legal
standards. These insights provided invaluable context,
helping us better understand which concerns require the
most immediate attention and which might benefit from
additional research or tooling.

Our first key finding from this study is that the importance
of these concerns consistently outpaces their level of
achievement. This disparity alone underscores the urgent
need for a comprehensive checklist, alongside other forms
of guidance such as training courses and best practice
frameworks. A well-designed checklist serves as a concise
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and practical tool, encapsulating the collective expertise
and distilled wisdom of the research and practitioner
communities. Such tools have proven invaluable in domains
where quality is critical, such as medicine and aviation,
helping professionals mitigate risks, adhere to standards, and
ensure consistency. By adapting this approach to the field of
ML-intensive systems, we aim to address the pressing gaps
between what architects recognize as important and what
they are currently able to achieve.

Figure 3 presents a scatter plot illustrating the weighted
average importance and achievement scores for each check.
Based on this plot, the remainder of this section will
discuss checks positioned above the average, those below
the average, and checks exhibiting a substantial discrepancy
between their importance and achievement scores.

5.1. Checks above the mean

The checks that are significantly above the mean are
discussed below. We categorize them into two groups. The
first group refers to checks whose importance was ranked
above the average. These highlight critical areas of concern
for ML-intensive system architects and include: SMD2, SDE1,
SA1, SS1, SP1, SML1, PD1, SML2.

These checks focus on foundational principles of software
architecture (e.g., cohesion, coupling, and reuse) and address
key challenges unique to ML-intensive systems, such as
managing privacy, ensuring failure recovery, and maintaining
documentation. These areas are critical because they directly
impact the maintainability, reliability, and scalability of
ML-intensive systems, which are increasingly deployed in
safety-critical and high-stakes domains.

The second group refers to checks whose achievement
was ranked above the average. These represent areas
where architects reported better success in implementing the
practices and include: SDE1, SMD1, SMD2, SMD3, SU1, SU2.

The checks reflect established practices in software
engineering, such as continuous integration, modular
system design, and validation techniques. These areas have
been widely adopted and adapted for ML-intensive systems
due to the availability of supporting tools, frameworks, and
methodologies. The relatively high achievement ratings
suggest that architects are leveraging these well-understood
practices to address challenges in ML-intensive systems
effectively, even as they adapt to new requirements
introduced by machine learning components.

5.2. Checks below the average

The checks ranked below the mean reflect challenges
related to perceived relevance, technical complexity, resource
constraints, and expertise gaps. We categorize them into two
groups. The first group refers to checks whose importance
was ranked below the average. These represent areas
that architects perceive as less critical in the context of
ML-intensive systems or checks that are less applicable. The
group includes: SU1, SDQ4, SDQ5, SU2, SMN2, SMN3, SDE3,
SS4, PSD1.

These checks often address advanced or specialized
practices that may not yet be widely adopted or deemed
essential by architects of ML-intensive systems. For
example, practices such as monitoring input distributions or
engineering for concept drift are relatively new challenges
specific to ML-intensive systems. Similarly, techniques like
Blue/Green testing or safety certification may only apply
in certain industries or use cases, leading to their lower
perceived relevance. These results suggest that, while these
checks may be crucial in niche or high-stakes applications,
they are not universally prioritized across all ML-intensive
systems.

The second group refers to checks whose achievement
was ranked below the average. These highlight practices that
architects find difficult to implement, despite their admitted
relevance to ML-intensive systems. The group includes:
SML1, SML3, PSP1, SS4, SDE3.

These checks highlight areas that require significant
resources, technical expertise, or organizational
commitment to implement. For example, defining robust
ML infrastructure, customizing models, and employing
advanced deployment strategies like Blue/Green testing
are practices that often involve steep learning curves,
specialized tooling, and cross-disciplinary collaboration.
These challenges can make implementation difficult, even
when the practices are recognized as relevant. The findings
point to gaps in the availability of tools, frameworks, and
training needed to support architects in adopting these
practices effectively. Note that there are some checks, such
as safety-certification and Blue/Green testing that were
not ranked particularly high by our participants, but where
the achievement of these was ranked even lower. That is,
although not all architects need these techniques, the ones
who do need them are struggling.

5.3. Checks with substantial discrepancy between average
importance and achievement

In addition, we observed a substantial number of checks
with a large discrepancy between their importance and
achievement (where we consider the difference to be “large”
if it exceeded the average difference between importance and
achievement). These checks highlight areas where architects
recognize the significance of specific practices, but struggle
to implement them effectively. These areas need to be
highlighted, as they can serve as valuable inspiration for
future research directions. The checks include: SDE3, SA1,
SA2, SA3, SR1, SS1, SS2, SS3, SS4, SS5, SS6, SP1, PD1, PH1,
PT1, PSP1, PSD1, SML1, SML2, SML3, SML4, SML5.

The significant gaps between the importance and
achievement of these checks often point to challenges
associated with education, awareness, technical complexity,
resource constraints, and the evolving nature of ML-intensive
systems. Many of these practices, such as federated learning,
safety certifications, and advanced MLOps strategies like
Blue/Green testing, require specialized knowledge, tools,
and processes that may not yet be widely available or
adopted. Additionally, some checks, such as maintaining
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Figure 3: Scatter plot featuring the weighted average importance and achievement for each check.

heterogeneous teams or managing versioning techniques,
highlight organizational and interdisciplinary challenges,
reflecting the need for better collaboration between data
science, engineering, and architecture teams. These gaps
suggest that while architects understand the criticality of
such practices, they may lack the necessary resources, tools,
or expertise to implement them effectively. This presents a
clear opportunity for future research and development: to
focus on supporting and operationalizing these practices,
creating better tools, frameworks, and training programs to
bridge the gap between importance and achievement.

6. Related Work

There have been several attempts to create guidance for
software architects over the past few decades. The IEEE
1471 standard, created in 2000, attempted to enumerate best
practices for architectural descriptions, including rationale.
It was superseded by ISO/IEC/IEEE 42010 [16]. A number
of studies also attempted to catalog architectural design
primitives [4], techniques for architecture review [5, 6], and
guidance for architecture decision-making [7].

While we did not find any prior work that explicitly
provides a checklist to guide software architects in designing
ML-intensive systems, several related studies in the literature
merit discussion.

First, the study in by Nazir et al. [3], which forms
the foundation of our work, identified challenges, best
practices, and design decisions for ML-intensive systems.

As detailed in previous sections, we build on these findings
and extend them by contributing a ready-to-use checklist
specifically tailored for architects. Similarly, the study by
Gorton et al. identifies fundamental engineering challenges
in developing AI systems, with a focus on data collection,
integration, inference, and continuous model updates and
validation [17]. Our checklist aims to address and mitigate
some of these challenges.

The empirical study reported by Zhang et al. explores
architectural decisions in AI-based system development,
providing valuable insights that align with the concerns
addressed in our checklist [18]. Meanwhile, the work
by Lu et al. adopts a different approach by proposing
a pattern-oriented reference architecture for designing
responsible AI systems, particularly those based on
foundation models [19]. This work primarily focuses on
responsible AI, offering a complementary perspective to our
checklist-driven methodology.

Several works by Serban have addressed best practices in
ML engineering and the architectural challenges associated
with ML systems. In one study, the authors mined both
academic and grey literature to identify 29 engineering best
practices for ML applications [20]. Their findings indicated,
for instance, that larger teams tend to adopt more practices,
and that traditional software engineering practices generally
exhibit lower adoption rates compared to ML-specific
practices. Furthermore, the authors developed statistical
models that could accurately predict perceived effects—such
as agility, software quality, and traceability—based on
the degree of adoption of specific practice sets. By
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combining adoption rates with the importance of practices
(as determined through these models), they identified both
underutilized yet important practices and widely adopted
practices that have limited impact on the studied outcomes.
In a subsequent study, Serban and colleagues conducted
a mixed-methods empirical investigation into architectural
challenges in ML systems [21]. This included: a systematic
literature review to identify architectural challenges and
their proposed solutions, semi-structured interviews with
practitioners to qualitatively enrich the findings; and a
survey to quantitatively validate them. The results revealed
that traditional software architecture challenges continue to
play a significant role when integrating ML components,
while new ML-specific challenges also emerge. Interestingly,
the study found that traditional decision drivers—such
as scalability—remain dominant, whereas ML-heightened
drivers, such as privacy, play a relatively marginal role in
architectural decision-making.

Similar to Serban’s work on ML engineering best
practices, Nahar et al. conducted a meta-summary
study to synthesize knowledge on practical challenges
in ML engineering [22]. Using systematic literature
review guidelines, they collected 50 relevant papers that,
collectively, reported input from over 4,758 practitioners.
From these sources, the authors extracted, grouped, and
organized more than 500 distinct mentions of challenges.
These challenges were then categorized into the following
areas: Requirements Engineering, Architecture, Design,
and Implementation—with special attention to Model
Development and Data Engineering—Quality Assurance,
and two crosscutting categories, Process Challenges and
Team Challenges.

While Serban et al. and Nahar et al. focused on identifying
ML engineering practices and architectural challenges
through literature reviews and practitioner studies, our work
complements theirs by operationalizing these insights into
a structured checklist of quality concerns, prioritized and
validated by experienced software architects, to support
concrete decision-making in ML-intensive system design.

Finally, the study by Heyn et al. contributes a
compositional approach to creating architecture frameworks,
with a specific application to distributed AI systems [23].
While its focus is within the domain of software architecture,
its ambition and scope differ significantly from our objective
of creating a practical, actionable checklist for architects of
ML-intensive systems.

7. Conclusion and Future Work

This study provides an empirically grounded
investigation into the quality concerns faced by real-world
architects of ML-intensive systems. By employing a
multi-method research approach, we identified, refined, and
validated a comprehensive checklist of design considerations
that address both system and process concerns. The
study revealed critical gaps between the importance and
achievement of these design qualities, emphasizing the need

for targeted efforts to enhance the practices surrounding the
development and deployment of ML-enabled systems.

The key findings of this research highlight areas of high
importance, such as ensuring system correctness, improving
documentation, and adopting modern architectural
practices like microservices, which architects may perceive
as important, and yet they frequently remain underachieved.
Conversely, certain practices, such as safety certification
and advanced deployment strategies like Blue/Green testing,
were deemed less critical, or perhaps were difficult to
implement given current practices. These insights, aligned
with the research questions, underscore the challenges
architects face and offer actionable directions for both
practitioners and researchers.

While this study has advanced the understanding
of architectural concerns in ML-intensive systems,
there remain opportunities for further refinement and
application of the checklist. Future efforts should focus
on expanding validation across diverse industries and
audiences, enhancing tool support to facilitate practical
implementation, and addressing gaps related to ethical and
legal considerations.

As discussed in the validation section, Section 4, an
interesting research direction identified by the practitioners,
concerns ethical and legal considerations, such as GDPR or
AI Act [24] compliance. Additionally, adapting the checklist
for domain-specific needs and integrating emerging trends in
ML technologies will further ensure its relevance and impact.
Longitudinal studies evaluating its effectiveness over time
could provide deeper insights into its practical benefits and
inform ongoing improvements.

Finally, the checklist that we proposed ought to be treated
as a living artifact, and hence should be periodically updated.
Thus the entire community of researchers and practitioners
who are focused on the design of ML-intensive systems can
contribute by refining existing checks, proposing new ones,
and further validating the list.
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