
Access Granted – Carefully: Securing Model
Information in Collaborative Modeling

Malvina Latifaja,, Federico Ciccozzia, Antonio Cicchettia

aMälardalen University, , Västerås, 722 20, Sweden

Abstract

The collaborative nature of model-driven software engineering introduces signif-
icant challenges in safeguarding the confidentiality and integrity of the collab-
orative model. Existing access control mechanisms often rely on transient, vir-
tual views lacking persistence and fine-grained permissions, making them unsuit-
able for scenarios requiring offline collaboration and leading to potential secu-
rity breaches and user frustration. This work describes a dual-layered approach
leveraging role-based access control policies to enhance security in collaborative
modeling environments. The first layer utilizes multi-view modeling techniques
to create materialized view models tailored to specific user roles, thereby restrict-
ing unnecessary access to the entire model. The second layer refines access at the
individual element level within these view models, establishing fine-grained per-
missions enforced by model editors. This proactive enforcement prevents unau-
thorized actions before they occur, improving user experience and efficiency. The
proposed approach, implemented as an Eclipse plugin and demonstrated through
an illustrative example, ensures the confidentiality and integrity of shared model
data by granting stakeholders access only to information relevant to their spe-
cific responsibilities and expertise. By filtering out irrelevant data, the approach
also mitigates information overload, enabling stakeholders to concentrate on task-
relevant aspects of the model, thereby potentially improving collaborative effi-
ciency and effectiveness.

Keywords: Model Driven Engineering, Role Based Access Control, Multi View
Modeling, Collaborative Modeling

Email addresses: malvina.latifaj@mdu.se (Malvina Latifaj,
federico.ciccozzi@mdu.se (Federico Ciccozzi), antonio.cicchetti@mdu.se (Antonio
Cicchetti)

Preprint submitted to Journal of Systems and Software September 15, 2025

1. Introduction

Model-Driven Software Engineering (MDSE) [1] has redirected the focus of
software engineering towards prioritizing models as the fundamental artifacts in
the development of complex software systems. MDSE aims to increase the level
of abstraction and reduce the accidental complexity associated with the tools and
methods used during development [2]. Despite its benefits, the inherent complex-
ity and ongoing development demands of such systems render MDSE an endeavor
that cannot always be managed single-handedly. Collaborative MDSE emerges as
an integration of collaborative software engineering principles [3] with the ab-
straction and automation advantages provided by MDSE [4, 5]. This approach
fosters the development and maintenance of models collaboratively, enhancing
the efficiency and quality of the software development process [6]. While col-
laborative modeling practices offer considerable advantages, they also introduce
notable challenges, particularly in safeguarding the confidentiality and integrity of
sensitive information carried by the collaborative models. This type of environ-
ment encompasses a wide range of stakeholders, including developers, domain
experts, and managers, each bringing their distinct expertise and responsibilities
to the table. Their collaboration on a single, base model exposes far more infor-
mation than necessary to each participant, significantly increasing the risk of con-
fidentiality breaches and compromising the integrity of the collaborative model.
This issue is especially alarming considering that models can incorporate pro-
prietary algorithms, business logic, and personal data, making privacy and secu-
rity paramount. Insights from industrial practices highlight the essential need for
trustworthy collaborative modeling environments to feature comprehensive access
control mechanisms [7], which are pivotal in safeguarding the confidentiality, in-
tegrity, and availability – collectively known as the CIA triad – of information [8].
Access control mechanisms should be tailored to meet practitioners’ needs, in-
creasing the likelihood of their adoption in collaborative modeling environments.
They should support the definition of fine-grained access permissions and facil-
itate the management of these permissions to adapt to evolving project needs.
In addition, beyond the mere definition and management of access permissions,
they must ensure the consistent and accurate enforcement of access permissions
through automated processes.

Existing access control approaches hinge on transient, virtual view models that
lack independence from their base models [9]. This limitation renders the models

2

unsuitable for contexts requiring persistent views such as offline collaboration
scenarios. Others enforce access permissions via bidirectional transformations,
potentially leading to user frustration due to delayed feedback on unauthorized
actions [10]. Additionally, most current methodologies focus primarily on basic
read and write permissions. Such gaps highlight the need for approaches that
support persistent views and provide immediate, granular access control feedback
to enhance user experience and efficiency.

In this article, we propose a dual-layered approach that leverages the role-
based access control (RBAC) policy [11] to safeguard the confidentiality and in-
tegrity of collaborative model information in collaborative modeling environments
based on the Eclipse Modeling Framework (EMF) [12]. The first layer limits ac-
cess to the base model by employing multi-view modeling techniques [13] to cre-
ate materialized view models, which are essentially subsets of the base model con-
taining only the elements essential for specific user roles. Users can only access
and interact with the view models designated to their roles, effectively preventing
access to the entire base model. The second layer further refines access down to
the individual elements within view models, establishing fine-tuned access per-
missions. These permissions are enforced by model editors that dictate the extent
to which a specific user role can interact with and manipulate each element of the
view model. Unlike the trial and error methods, this approach proactively prevents
restricted operations.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on the key concepts, while Section 3 describes the related
work to this research. Section 4 illustrates a running example used throughout the
paper. Section 5 presents the proposed approach, while Section 6 describes the ap-
plication of the approach on the illustrative running example. Section 7 evaluates
the approach on an industrial domain-specific language, while Section 8 provides
a discussion on the benefits and limitations of the approach, and threats to validity.
Section 9 concludes the paper and describes future research directions.

2. Background

This section describes the key concepts relevant to our study. Section 2.1
outlines the modeling framework for our proposed solution. Sections 2.2 and 2.3
discuss multi-view modeling and access control, respectively.

3

2.1. Eclipse Modeling Framework and Ecore
Eclipse Modeling Framework (EMF) is a modeling framework and code gen-

eration facility for building tools and other applications based on a structured data
model [12]. It utilizes XMI-based model specifications to generate a suite of
Java classes, complemented by adapter classes that enable viewing and command-
based editing of the model, and a basic editor. EMF consists of three fundamen-
tal parts. EMF’s core framework encompasses Ecore1, a metamodel for defin-
ing models, and provides runtime support including change notifications, default
XMI serialization for persistence, and a reflective API for efficient manipulation
of EMF objects. The EMF.Edit framework provides generic reusable classes for
building editors for EMF models. Lastly, the EMF.Codegen, a code generation
facility, is designed to generate all necessary components for a complete EMF
model editor. This includes a GUI for setting generation options and initiating
generators.

2.2. Multi-View Modeling
Multi-view modeling delivers customized views designed to cater to the unique

needs, expertise, and goals of various stakeholders, ensuring alignment and rele-
vance to their specific contributions. The core of multi-view modeling lies in the
viewpoint/view/model paradigm, as formalized by the ISO/IEC 42010:2011 stan-
dard [14]. According to this standard, a viewpoint represents a specific abstraction
using a chosen set of constructs and rules, addressing specific concerns within a
system. Consequently, it determines the conventions, like notations, languages,
and model types, for crafting a specific kind of view. A view is the resulting in-
stance of applying a viewpoint to a particular system of interest and is composed
of one or more models. In the context of multi-view modeling, domain-specific
languages (DSLs) are leveraged to address certain system concerns. The models
conforming to each DSL then provide a distinct view of the system. Multi-view
modeling approaches are classified into projective and synthetic [15]. Projective
methods involve defining viewpoints by selectively abstracting concepts from an
existing base language. This approach is notable for facilitating automatic syn-
chronization through centralized manipulations in a single model. However, it
requires a well-defined semantics of the base language and may restrict customiz-
ability due to the static nature and predefined views of the base language. On

1
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/

emf/ecore/package-summary.html

4

https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html

the other hand, synthetic methods establish viewpoints as independent metamod-
els. In this approach, synchronization is achieved by defining interactions among
different viewpoints or views. As the number of views increases, this method
becomes increasingly complex, making synchronization progressively more chal-
lenging. Prior work [15] has developed a hybrid methodology that combines the
projective and synthetic approaches. This method allows for the creation of views
based on a base metamodel, similar to the projective approach, yet these views
emerge as separate metamodels, similar to the synthetic approach. This ensures
inherent synchronization during view definition, alongside the flexibility of intro-
ducing views at any development stage.

2.3. Access Control
Access control refers to a security mechanism, pivotal in safeguarding shared

resources against unauthorized access, thereby ensuring information security [16].
It acts as a defensive barrier, blocking unauthorized individuals from accessing or
altering sensitive data, including proprietary algorithms and strategic business in-
formation. This mechanism not only preserves the confidentiality of information
but also safeguards its integrity from malicious tampering. Furthermore, access
control policies are key in mitigating unintentional alterations by individuals who
might not possess the required knowledge or expertise, such as novice engineers.
Access control operates fundamentally through two key processes being authen-
tication and authorization [17]. Authentication entails the verification of a user’s
credentials, assuring that users are who they claim to be. It necessitates users
to provide valid credentials, which are cross-verified against a pre-established
database, thereby ensuring that only authorized individuals can access specific
information within an organization. On the other hand, authorization determines
the extent of access and actions permissible to authenticated users. Authorization
operates through access control policies, incorporating rules that dictate the allow-
able levels of access to various data resources. Two main types of access control
policies are recognized [18]:

• Discretionary Access Control (DAC): a user-centric approach that grants
users the autonomy to assign access permissions. For instance, platforms
like Google Drive 2 allow owners to share files or folders, granting specific
access levels to other users, such as edit or view permissions, which can be
modified or revoked as necessary.

2
https://www.google.com/drive/

5

https://www.google.com/drive/

• Non-Discretionary Access Control (NDAC): here, the determination of ac-
cess permissions is centralized and administered by system authorities or
administrators, rather than the resource owner. This model is particularly
apt for scenarios necessitating rigorous security and hierarchical access con-
trols, such as in Amazon Web Services (AWS) Identity and Access Manage-
ment (IAM) 3, where access is managed centrally using predefined policies
and roles.

Of the many access control policies encompassed within NDAC—like multi-
level security (MLS), attribute-based access control (ABAC), and Separation of
Duty (SoD), we employ Role-Based Access Control (RBAC) [17]. The selection
of RBAC stems from a deliberate consideration of organizational structures and
the principles of effective access management. RBAC mirrors the hierarchical and
role-oriented nature of organizational structures, making it a more intuitive choice
for access control in contexts where users are entrusted with permissions based on
their designated roles, responsibilities, and hierarchical positions within the orga-
nization. Furthermore, RBAC offers a more streamlined and scalable approach to
access management, as it simplifies the process of assigning and managing per-
missions by associating them with roles rather than individual users.

3. Related Work

Previous works [15, 19] propose a hybrid strategy for multi-view modeling
that leverages an arbitrary number of views built atop a base modeling language.
However, with respect to access control, these works only entail the specifica-
tion of basic read-only and editable permissions. Martinez et al. [9] introduce a
method that leverages views as mechanisms for enforcing access control, utiliz-
ing EMFViews [20] to dynamically generate views through live queries on the
base model. The elements within these virtual models serve merely as proxies for
the actual elements in the base model; hence, view models remain transient and
can neither be viewed nor edited independently in other modeling contexts. By
having self-persistent views our approach supports offline collaboration, but also
benefits from the versatility of a typical metamodel, such as linking any desired
concrete syntax or be modified if necessary, including extensions or additional
abstraction layers. Other works [10, 21–23] propose a secure collaborative mod-
eling framework utilizing lenses to generate and maintain synchronized secure

3
https://aws.amazon.com/iam/

6

https://aws.amazon.com/iam/

views with the underlying base model. Lenses support bidirectional model trans-
formation mechanisms called GET and PUTBACK. The GET function controls
read access by filtering the gold (base) model into a front (view) model based on
read permissions, while the PUTBACK function validates front model alterations
against write permissions before potentially updating the gold model. Hence,
the enforcement of access permissions is done by the bidirectional transforma-
tions, whereas in our work, this enforcement is managed by the model editor, and
is not dependent on the underlying synchronization infrastructure. In addition,
this approach to change propagation informs users about their editing permissions
through a trial-and-error process, a method the authors themselves acknowledge
could lead to user frustration and inefficiency due to delayed feedback on unau-
thorized modifications. Connected Data Objects (CDO)4 model repository by
Eclipse follows a similar approach in which users are only informed of restric-
tions on write operations at the time of commit. Our approach adopts a preventive
model by integrating a model editor designed to enforce editing permissions. Ad-
ditionally, while the existing approaches are focused on read and write operations,
our solution extends the functionality to CRUD operations, thus providing a more
fine-grained control over model interactions. Another relevant study [24] explores
the definition of finely-grained role-based access control, but it targets mobile col-
laborative modeling with active DSLs with a primary focus on mobility aspects.
An alternative path of research in access control management proposes imple-
menting security policies directly at the file level. A notable example is Apache
Subversion 5, which provides administrators the capability to enforce path-based
authorization, thereby controlling user access to specific segments of the repos-
itory. Within a collaborative MDSE environment, this approach necessitates the
division of models into distinct files. Such fragmentation may obstruct seamless
collaboration and is limited to enforcing access control policies with relatively
coarse granularity. As can be observed, our discussion in this section is intention-
ally directed towards strategies that predominantly address access control rather
than the broader scope of synchronization in multi-view modeling. This deci-
sion stems from our research’s use of multi-view modeling primarily as a tool for
achieving finely-grained access control efficiently. However, we acknowledge the
existence of other approaches for providing synchronization in multi-view mod-
eling, such as view triple graph grammars (VTGGs) [25] [26] and lenses [27].

4
https://wiki.eclipse.org/CDO/Security_Manager

5
https://subversion.apache.org

7

https://wiki.eclipse.org/CDO/Security_Manager
https://subversion.apache.org

Since the enforcement of permissions is separate from the synchronization in-
frastructure, and the consistency rules applied during the definition of views and
permissions ensure the well-formedness of the view model, any appropriate syn-
chronization transformation approach can be utilized.

4. Running Example

This section introduces a simplified version of a university metamodel, serving
as an illustrative example throughout the paper to elucidate the proposed solution
and its workflow. Figure 1 illustrates the Ecore-based metamodel of the structure
of the university consisting of multiple departments. Each department is tasked
with the administration of various academic programs. Each program is com-
prised of a series of individual courses. Department employees, are responsible
for delivering course content. Additionally, each department undertakes a variety
of research projects. Projects, represent collaborative research initiatives that may
involve a combination of department employees and external partners, which may
include individuals from industrial sectors or other academic institutions.

4.1. User Roles
In this example, we outline three main user roles engaging with the university

model.

• Project Managers: represent a group of individuals hired by the univer-
sity to coordinate the research projects for each department, and oversee
the assignment of both internal employees and external partners to various
projects.

• Program Coordinators: represent a group of individuals hired by the univer-
sity to coordinate the development and management of academic programs,
and guarantee that both programs and courses remain current and relevant.

• Administration: their role is related to the coordination of administrative
matters related to both research and academic programs. As such, they
maintain an overview of the entire model.

User roles and users are defined by an authorized individual, which throughout
the rest of this paper we refer to as admin. The admin is also in charge of assigning
users to user roles.

8

Figure 1: University metamodel

4.2. Views
Each of the outlined user roles has unique responsibilities and areas of exper-

tise, necessitating interaction with only certain parts of the university model that
are relevant to their needs. Defining views that contain only a few aspects of the
overall base university model allows them to concentrate on the elements that are
most crucial to their roles and goals. These views act as a primary access control
layer by excluding non-essential elements, thereby minimizing the risk of expo-
sure to potential security vulnerabilities. For this example, the following views
are required:

• Teaching View: tailored to the needs and concerns of program coordina-
tors, while also accessible to the administration. It includes the following
elements: University, Department, Program, Course, and Employee.

9

• Research view: tailored to the needs and concerns of project managers,
while also accessible to the administration. It includes the following ele-
ments: University, Department, Employee, Project, Partner, and Type.

Figure 1 employs color coding to visually distinguish the elements present in each
view. The admin is responsible for defining the properties and meta-elements of a
view and allocating access to this view to specific user roles.

5. Proposed Approach

The proposed approach is designed to ensure the confidentiality and integrity
of model information in collaborative modeling environments through a dual-
layered strategy. Essentially, the first layer filters access by defining view models
on top of the base model in a multi-view modeling fashion and allocating roles
to these views, thereby allowing interactions solely to users with the designated
roles. The second layer refines this access, allowing for precise control over what
each role can do within the view model through fine-grained access permissions.
The solution is tailored to work with Ecore-based metamodels using EMF tree-
based model editors. Before delving into the details and technical aspects of our
approach, we clarify some core terminology. A base metamodel refers to a meta-
model defined in terms of Ecore and representing the foundation for the views. A
base model is a model that conforms to the base metamodel. A view metamodel
represents a selection of elements from the base metamodel, also defined in Ecore.
A view model conforms to a view metamodel.

Figure 2 provides a high-level overview of our proposed solution. For the
first layer, an admin (not shown in the figure) establishes a group of users and
roles, and then assigns users to these roles. At the same time, an admin can also
define a series of view metamodels, which may have overlapping elements. This
process results also in the generation of view models, subsets of the base model,
and conforming to the defined view metamodels. A synchronization infrastructure
is generated and maintained between view (meta)models and base (meta)model.
The established roles are granted access to these views. For the second layer,
the admin sets specific permissions, defining the extent of access each role has
over a particular view. To enforce these permissions, each role uses a dedicated
model editor for each view it can access. The total number of model editors
required is the sum of those needed by each role. These model editors enforce
the specified permissions, allowing users with a given role to manipulate the view
models within their permitted scope. For instance, Sara, a program coordinator,

10

uses model editor PC A to manipulate the academic view model. This editor is
tailored to enforce the permissions associated with the program coordinator’s role
when manipulating the academic view model. Any modifications that Sara makes
to the academic view model are then systematically reflected in the base university
model. If there are elements that overlap between the academic and research
view models and Sara has altered these in the academic view, these changes are
automatically propagated from the university model to the research view model.

One important consideration, is the fact that conceptually, the two layers rep-
resent a logical separation rather than a strict requirement. While the approach is
designed to support scenarios involving multiple views which are commonly used
in practice to address separation of concerns and team-specific responsibilities,
it does not impose this structure as mandatory. Theoretically, in cases where a
single metamodel is sufficient and no view differentiation is needed, create, read,
update, and delete permissions could be applied directly to the base metamodel
without generating separate view models. The approach accommodates common
multi-view scenarios while remaining adaptable to simpler use cases without com-
promising its applicability or effectiveness.

Section 5.1 describes the design and technical execution of the first layer, high-
lighting the development of the multi-view modeling environment. Sections 5.2
and 5.3 delve into the design and technical execution of the second layer, focusing
on the definition and enforcement of access permissions.

5.1. Setting Up the Multi-View Modeling Environment
The first step of our approach deals with determining the users and their roles.

These roles will be granted access to the views, utilizing the specialized wizards
outlined in Section 5.1.1. The second step involves the development of the multi-
view modeling environment, including the definition and generation of views, as
detailed in Sections 5.1.2 and 5.1.3, and the setup of a synchronization framework
among these views, as explained in Section 5.1.4.

5.1.1. Role and User Management
The definition of users and roles is carried out by the admin via specialized

Java SWT 6 wizards. The role wizard streamlines role management, allowing for
the creation, alteration, and removal of roles. Each new role shall have a name
and a description that outlines its specific functions. The user wizard, facilitates

6
https://www.eclipse.org/swt/

11

https://www.eclipse.org/swt/

Figure 2: Workflow of the proposed approach

the management of user accounts, allowing for their creation, modification, and
deletion. It necessitates details such as the user’s first name, last name, username,
email, password, and the roles allocated to each user. The solution supports the
assignment of multiple roles to a single user, too.

5.1.2. View Metamodel Definition
The view metamodel’s definition is administered through a specialized view

wizard, comprised of several pages, each with a specific purpose. On the details
page, essential parameters such as viewName, viewNSUri, and viewPrefix are re-
quired to identify each new metamodel. To streamline this process, the system
automatically generates default values for these details. The admin can then mod-

12

ify these auto-generated values if customization is desired. In addition, the admin
assigns the roles authorized to access the view models and loads the base model.
The selection page displays the meta elements from the base metamodel. Here,
the admin chooses the meta elements to be included in the view metamodel. Such
selection follows the set of rules described in related work [19] for the views and
the base metamodel to be consistent and their respective models to be synchroniz-
able. In addition, for each EClass element, the admin selects a sub-element that
serves as a unique identifier for matching elements between the base and view
model.

5.1.3. View Metamodel Generation
View definition is followed by the generation of the view metamodel. The

generation process operates by traversing the elements of the base metamodel,
organized in a tree structure. For each element, it evaluates whether it has been
selected by the admin. Selected elements are included in the view metamodel,
while the rest are omitted. Once all elements have been processed, an Ecore Mod-
eling Project is automatically generated. This project is configured with the nec-
essary structure and properties. The generated view metamodel, containing only
the user-selected elements, is then saved within this project as an Ecore file.

5.1.4. Synchronization Infrastructure
Multi-view modeling environments have two fundamental aspects: the for-

mer involves defining and creating views as described in Section 5.1.2 and Sec-
tion 5.1.3, respectively; the latter involves developing a synchronization infras-
tructure that propagates changes between the base model and view models. Con-
sidering the broad applicability of our solution across various Ecore metamod-
els and the potential for users to define numerous views, the synchronization
infrastructure in this work is automatically generated. The generation process
builds upon previous related work [28], where the authors contributed with a map-
ping modeling language for specifying relationships between elements within two
Ecore-based metamodels, along with higher-order transformations (HOTs) that fa-
cilitate the generation of model-to-model (M2M) transformations based on these
mapping models. Figure 3 depicts the generation of the synchronization infras-
tructure, combining the aforementioned solution [28] with necessary customiza-
tions for its adaptation to the current scenario, and is referenced repeatedly in
this section for a detailed exploration of the synchronization infrastructure. Our
current solution sets itself apart in two main aspects.

13

Figure 3: Setup of the synchronization infrastructure between base and view model

• We have streamlined the process by automating the generation of mapping
models. This is a significant improvement over the related work, which re-

14

quires manual user-definition of these mapping models. This enhancement
is a direct outcome of the narrower and more defined context in this work,
where the view metamodel forms a precise subset of the base metamodel,
and every meta element in the view metamodel is identical to its counterpart
in the base metamodel, having been derived directly from the latter.

• The approach proposed in the related work was designed for scenarios where
there is a complete mapping between the source and target metamodels,
and the developed HOTs are intended for such scenarios. In our current
approach, however, the view metamodel is just a part of the base meta-
model, hence, not every element of the base has a corresponding element
in the view. As a consequence, employing the previously defined HOTs
could lead to the generation of model transformations, erroneously modi-
fying elements of the base model not pertaining to the view. To overcome
this challenge, we have designed and implemented new HOTs specifically
aimed at ensuring these transformations effectively retain all the unique el-
ements and information of the base model.

The following paragraphs provide details on the generation of mapping models
and the HOTs employed for the generation of the synchronization infrastructure
(i.e., model transformations).

Generation of Mapping Models.. The selection of elements for a particular view
triggers not only the construction of an Ecore metamodel representing the view,
but also the generation of two mapping models (i.e., Base2View.mapping and
View2Base.mapping), which contain the relationships between elements of the
base and view metamodels. These mapping models conform to the mapping mod-
eling language, introduced in the related work [28], and encapsulate the links
between the corresponding elements of the two metamodels. Given that the view
metamodel represents an exact subset of the base metamodel, the process inher-
ently ensures that each element in the view metamodel has an unambiguous cor-
respondence with a counterpart in the base metamodel and vice versa.

Higher-Order Transformations.. HOTs are a type of model transformation where
the input and/or output are transformation models themselves [29]. They are em-
ployed to leverage the capabilities of transformations, treating them as objects.
Prior research [28] has proposed HOTs that, driven by user-defined mapping
models, generate M2M transformations conforming to the Query/View/Transfor-

15

mation Operational (QVTo)7 language. These transformations rebuild the target
model based on information from the source model. In the given context, em-
ploying these HOTs has proven effective for initially generating and subsequently
updating the view model (i.e., target) from the base model (i.e., source). This is
because the generated model transformation (i.e., Base2View.qvto) can account
for every element in the view model by referencing its counterpart in the base
model. However, challenges arise when attempting to propagate changes from
the view model back to the base model. The generated M2M regenerates the base
model (i.e., target) to match the view model, but cannot account for all its ele-
ments since not all of them have a counterpart in the view model (i.e., source).
As a result, information associated with these unmatched elements is lost during
the transformation process. In response to this challenge, we developed HOTs
that use the generated mapping model defining correspondences from the view
model to the base model (i.e., View2Base.mapping) as input for generating a
model transformation (i.e., View2Base.qvto) for propagating changes from the
view model to the base model. This model transformation operates directly on the
base model, updating elements that have a correspondence in the view model, all
while preserving those elements that are unique to the base model. This can also
be seen in Figure 3. In the case of Base2View.qvto, it takes a base model as input
and produces a view model as output. On the other hand, View2Base.qvto takes
both the view model and base model as input and directly modifies the base model
to reflect changes made in the view model. In the following, we describe the out-
come of our HOT, which is the generated View2Base.qvto model transformation.

Input/Output Specifications: the model transformation uses the base and view
metamodels as input and base metamodel as output. During the execution of this
transformation, it accepts a base and view model as input and produces an updated
base model that accurately reflects the applied changes.

Element Matching: the model transformation requires matching elements between
the base and view model by comparing the elements’ unique identifiers defined at
view definition phase. Using identifiers allows to correctly find the two corre-
sponding elements between base and view models.

Handling of Containment EReferences: can be updated, added, or deleted (i.e.,

7
https://wiki.eclipse.org/QVTo

16

https://wiki.eclipse.org/QVTo

their target EClass can be updated, added, or deleted). The model transforma-
tions use the information from the element matching process for differentiating
between updates, additions, and deletions of elements.

• Update: an element in the view model with a match in the base model,
implies that the element has neither been added or deleted, but may have
been updated. Hence, an update rule is invoked to synchronize the possible
changes.

• Addition: an element in the view model with no match in the base model
implies the addition of the element in the view model. Thus, this element is
also added to the base model.

• Deletion: an element in the base model without a match in the view model
implies the deletion of the element from the view model. Thus, this element
is also deleted from the base model.

Handling of Non-Containment EReferences: can be added or removed (i.e., their
target EClass can be added or removed from the list of referenced EClasses). The
model transformations use the information from the element matching process to
differentiate between the two.

• Addition: a non-containment EReference in the view model, pointing to a
target element with no match among the target elements of the same non-
containment EReference in the base model, implies an addition. Thus, this
element is also added to the list of target elements of the non-containment
EReference in the base model.

• Removal: a non-containment EReference in the base model, pointing to
a target element with no match among the target elements of the same
non-containment EReference in the view model, implies a removal. Thus,
this element is also removed from the list of target elements of the non-
containment EReference in the base model.

Handling of EAttributes and EEnumLiterals: For EAttributes and EEnumLiterals,
which by design cannot be added or deleted, a standard update transformation is
applied. This step ensures that they are consistently updated between the view and
base model.

17

We leveraged Xtend 8 – a high-level, Java-based programming language noted
for its efficacy in code generation tasks – to write the HOTs used generate the
model transformation from a mapping model. The generated model transfor-
mation propagates changes from the view to the base model while simultane-
ously ensuring that elements in the base model, which are not impacted by the
transformation, remain intact. The completion of the synchronization infrastruc-
ture, achieved through the generation of two unidirectional model transformations,
marks the establishment of the initial access layer. This layer permits users to ac-
cess and alter only designated areas of the base model, referred to as view models,
according to their allocated roles, and supports bidirectional synchronization.

5.2. Access Permissions Definition
The generation of the multi-view modeling environment is followed by the

definition of access permissions for each user role to interact with a given view.
Definition of access permissions is carried out by the admin using CRUD (Create,
Read, Update, Delete) operations [30]. The admin selects the allowed operations
for each role and in relation to each meta element in the view metamodel, as de-
scribed in Section 5.2.1. The selection follows the set of predefined rules outlined
in Section 5.2.2, ensuring the consistency of access permissions.

5.2.1. Wizard for Access Permissions Definition
The definition of access permissions for a set of roles on a given view is car-

ried out using the view wizard introduced in Section 5.1.2. The permissions page
is populated with the roles with access to the view and the view’s meta elements.
Each meta element is associated with four checkboxes, representing CRUD oper-
ations, as shown in Figure 4. Depending on the specific kind of EObject – be it an
EClass, a containment or non-containment EReference, EAttribute, EENum, or
EENumLiteral – only certain checkboxes are active and selectable. Other check-
boxes are not active since the operations that they correspond to do not apply to
the EObjects they are associated with. An overview of checkbox status for each
EObject type is provided in Table 1.

To maintain a consistent layout that helps users navigate the wizard interface
more intuitively, we have retained the non active checkboxes in the wizard. Al-
though not directly selectable, they serve to provide a clear and coherent structure.
Additionally, checkboxes marked with an asterisk (*) are designed to be automat-
ically activated in response to the selection of certain related checkboxes, even

8
https://eclipse.dev/Xtext/xtend/documentation/index.html

18

https://eclipse.dev/Xtext/xtend/documentation/index.html

C R U D
EClass A A NA* A
ERef (containment) A A NA A
ERef (non-containment) NA A A NA*
EAttribute NA A A NA*
EENum NA A NA NA
EENumLiteral NA A NA NA

Table 1: Checkbox status per type of EObject (A - Active; NA - Non Active)

though they remain non active for direct user interaction. For instance, when a
user selects the Create (C), Update (U), or Delete (D) checkboxes for any EAt-
tribute or EReference within an EClass, the solution triggers the selection of the
Update (U) checkbox for that EClass. Similarly, selecting the Delete (D) check-
box for an EClass triggers the automatic selection of the Delete (D) checkbox for
all contained EReferences and EAttributes.

5.2.2. Consistency Rules
The mechanism for automatically managing checkbox states goes beyond just

handling inactive ones. We established a comprehensive set of rules to ensure
uniform behavior across all checkboxes. For instance, if an EClass is removed, it
naturally entails the removal of its associated EAttributes, EReferences, and any
EClasses linked through containment EReferences. This reasoning is embedded
in the wizard to avoid potential errors in the enforcement of permissions. The
wizard updates checkbox statuses (either selecting or deselecting them) on-the-fly.
This real-time mechanism gives users a clear understanding of how their choices
affect the permissions of related meta-elements. To define the consistency rules,
we started with overarching principles. These principles served as the foundation
for defining the rules. The latter are presented in Table 2 and their interpretation
is facilitated by the legend provided in the same table. Each rule is directly linked
to the underlying principles, which are outlined below.

P1: Permission to perform a create (C), update (U), or delete (D) operation on
an object is conditional to having the read (R) permission on the object –
see R1, !!R5 in Table 2.

P2: Permission to perform any CRUD operation on a nested object is condi-
tional to having the read (R) permission on the container object. In addition,
any CUD operation on a nested object is conditional to having the update
(U) permission on the container object – see R2, R3, !!R6, !!R7.

19

P3: Permission to perform a delete (D) operation on a container object is condi-
tional to having the delete (D) permission on all nested objects – see R4.

P4: Permission to perform any CRUD operation on an EClass is conditional to
having those permissions on its incoming containment EReference and the
container of that EReference (the latter is based on P2) – see R8 to R11, !!R8
to!!!R11.

P5: Permission to perform any CRUD operation on an EReference is condi-
tional to having those permissions on its source and target EClass – see R12
to R17, !!!R12 to !!!R15.

P6: Permission to perform a read (R) or update (U) operation on an EAttribute
is conditional to having the read (R) permission on the container EClass –
see R18 to R21.

P7: Permission to perform a read (R) operation on an EEnumLiteral is condi-
tional to having the read (R) permission on the container EEnum – see R22,
!!!R23.

In alignment with the established principles, we formulated the set of con-
sistency rules delineated in Table 2. The first column lists the identifiers of the
rules, the second outlines the user actions in the wizard interface, the third de-
scribes the effects of these actions on other checkboxes, and the fourth provides
concrete examples for each rule, based on the wizard shown in Figure 4. The user
actions and the examples have been structured to ensure a precise understanding
of the effects. For clarity, we tried out all examples involving the selection of a
specific checkbox with the wizard in a baseline state, with all checkboxes initially
deselected. Similarly, for the deselection of checkboxes, we consistently used the
same checkbox that was previously selected. This methodological consistency al-
lowed us to isolate the effects of each action without interference. It is important
to note that the user’s interaction with a checkbox (either through selection or de-
selection) can initiate a ripple effect, where each affected checkbox might further
alter the state of others. This chain reaction continues until all affected check-
boxes are appropriately adjusted. To illustrate, assume all checkboxes in Figure 4
are initially deselected. If a user selects checkbox R(9) – which corresponds to the
read (R) operation for EAttribute:depName at index 9 – this action triggers the
automatic selection of the read (R) operation checkbox for EClass:Department,
by principle P2. Following this, selecting R(7) would lead to the selection of

20

R(22), as dictated by principle P4. Subsequently, selecting R(22) would result
in the selection of R(21), again following principle P2. This example represents
a three-level chain reaction within the checkbox interactions (i.e., R(9) L1 R(7)

L2 R(22) L3 R(21)). For the sake of readability and conciseness, in Table 2 we
limited the illustration of chain reactions to just the second level. This applies
to both the examples shown and their effects, to avoid the complexity of longer
chains that could span multiple levels.

5.3. Access Permissions Enforcement
The enforcement of the defined access permissions is achieved through EMF

tree-based model editors. These editors provide a graphical user interface that al-
lows users to visualize and modify models through a hierarchical tree structure.
While they come with essential functionalities, their design allows for customiza-
tion to meet specific needs. We leverage this flexibility to enforce the defined
access permissions. Section 5.3.1 details EMF’s standard approach to creating
these tree-based model editors. Section 5.3.2 details the customization methods
we have employed for generating model editors that enforce the defined access
permissions.

5.3.1. Generation of EMF Tree-Based Model Editors
EMF tree-based model editors are generated through an automated process

supported by the framework itself. Starting from an Ecore model, the process
first involves the creation of a generator model (GenModel). The GenModel is a
configuration model that dictates the generation of the following plugins.

• Model Plugin: hosts the Java classes that represent the Ecore model. These
classes are derived from the Ecore model, conforming to the GenModel’s
specifications.

• Edit Plugin: provides infrastructure for structured interaction with the model.
The key components of this plugin are the Item Providers. Item Providers
are Java classes that support viewing and editing objects within the EMF
tree-based editor. They specify how model elements are presented and ma-
nipulated in the editor.

• Editor Plugin: comprises the graphical user interface for the EMF editor.
This includes the tree-based interface for model interaction and additional
UI components like wizards that enhance user engagement with the model.

21

Figure 4: Permissions triggered by selection of D(22)

22

Rule Action Effect Example
General rules
R1 PC|U |D(O) PR(O) C(21)→ R(21)
R2 PR(N) PR(C) R(23)→ R(21)
R3 PC|U |D(N) R1↑PRU (C) U(23)→ R(23)↑RU(21)
R4 PD(C) PD↓(N)↔ R3↓(N) D(7)→ D(8–10)↔ [R(7–10)↑U(7)]

""R5 ##PR(O) ###PCUD(O) $R(21)→!!CUD (21)

""R6 !!PR(C) R5↑##PCRUD ↓(N) $R(21)→!!CUD (21)↑###CRUD (22–24)

""R7 ####PCUD↓(N) ##PU (C) !!CUD (22–24)→ $U(21)
EClass (Class) specific consistency rules (not the root)
R8 PC|R|D(Class) PC|R|D(CR) R(7)→ R(22)

""R8 ####PC|R|D(Class) ####PC|R|D(CR) $R(7)→ $R(22)
R9 PC(Class) R1↑ [PC(inCR)↔ R3(inCR)] C(7)→ R(7)↑ [CR(22)↔ RU(21)]

""R9 ####PC(Class) %%%%%%%
PC(inCR)↔ R7(inCR) $C(7)→ $C(22)↔ $U(21)

R10 PR(Class) PR(inCR)↔ R2(inCR) R(7)→ R(22)↔ R(21)

!!R10 ####PR(Class) ###PR(inCR) $R(7)→ $R(22)
R11 PD(Class) [R4 ↔ R13(CR)]↑ [PD(inCR)↔ R15(inCR)] D(7)→ (see Figure 4)

!!R11 ####PD(Class) ###R8 ↔ R7 $D(7)→ $D(22)↑$U(21)
Containment EReference (CR) specific consistency rules
R12 PC|R|D(CR) PC|R|D(tClass) R(22)→ R(7)

!!R12 ####PC|R|D(CR) %%%%%PC|R|D(tClass) $C(22)→ $C(7)
R13 PC(CR) R3↑ [R12 ↔ R1(tClass)] C(22)→ R(22)↑RU(21)↑ [C(7)↔ R(7)]

!!R13 ###PC(CR) ###R7↑R12 $C(22)→ $U(21)↑$C(7)
R14 R(CR) R2↑R12 R(22)→ R(21)↑R(7)

!!R14 ###PR(CR) !!R12 $R(22)→ $R(7)
R15 PD(CR) R3↑ [R12 ↔ R11(tClass)] D(22)→ (see Figure 4)

!!R15 ###PD(CR) ###R7↑R12 $D(22)→ $U(21)↑$D(7)
Non-Containment EReference (NCR) specific consistency rules
R16 PR(NCRe f) [R2 ↔ R10(sClass)]↑ [PR(tClass)↔ R10(tClass)] R(6)→ [R(1)↔ [R(8)↔ R(7)]]↑ [R(14)↔ [R(10)↔ R(7)]]
R17 PU (NCRe f) R3 ↔ R16 U(6)→ [R(6)↔ [R(1)↔ [R(8)↔ R(7)]]]↑ [R(14)↔ [R(10)↔ R(7)]]
EAttribute (Att) specific consistency rules (R20 and R21: Attribute EType = ENum)
R18 PR(Att) R2 ↔ R10(C) R(12)→ R(11)↔ R(2-1)
R19 PU (Att) R3 ↔ R10(C) U(12)→ [R(12)↑RU(11)]↔ R(2-1)
R20 PR(Att) R18↑ [PR(EN)↔ R22(EN)] R(13)→ [R(11)↔ R(2-1)]↑ [R(18)↔ R(19-20)]
R21 PU (Att) R19↑ [PR(EN)↔ R22(EN)] U(13)→ [R(13)↑ [R(11)↔ R(2-1)]]↑ [R(18)↔ R(19-20)]
ENum (EN) and ENumLiteral (ENL) specific consistency rules
R22 PR(ENL) PR(EN) R(19)→ R(18)

!!R23 ###PR(EN) ####PR↓(ENL) $R(18)→ $R(19-20)

Legend
Description of acronyms used is as follows: object (O), container object (C), nested object (N), containment reference (CR), non-containment reference (NCR),
incoming containment reference (inCR), source class (sClass), target class (tClass), attribute (Att), enumeration (EN), enumeration literal (ENL).
PX (O) and "PX (O) Selection and deselection of a permission X ↗ {C,R,U,D} on an object O
PX↓(O) and "PX ↓(O) Selection/deselection of a permission on all objects O
PC|U |D(O) and !!PC|U |D (O) Selection/deselection of at least one of {C,U,D} on O
PCUD(O) and !!PCUD (O) Selection/deselection of all of {C,U,D} on O

Table 2: Set of rules for consistency enforcement between access permissions and legend for
reading the table

The generation process of these plugins involves the use of Java Emitter Tem-
plates (JET)9. EMF comes with a suite of JET templates that are written in a (Java
Server Pages) JSP-like syntax and express EMF code patterns. These templates

9
https://projects.eclipse.org/projects/modeling.m2t.jet

23

https://projects.eclipse.org/projects/modeling.m2t.jet

undergo processing by the JET engine, which converts each template into the
source of a Java class. Subsequently, the JET engine compiles, dynamically loads,
and utilizes these classes to produce the specified output. By default, EMF uses
static templates which are converted into template classes and compiled ahead of
time to speed up the generation process [12].

5.3.2. Customization of EMF Tree-Based Model Editors
To enforce the user-defined access permissions in EMF tree-based model ed-

itors, we focus on customizing Item Providers, which manage the viewing and
editing of elements. While one could customize each generated Item Provider sep-
arately, this approach is time-consuming and inefficient. Our methodology, there-
fore, adopts a streamlined and automated process where we initially customize the
JET template utilized for generating Item Providers to consider the defined access
permissions. Then, we guide the generator to use the customized JET template,
which is also referred to as dynamic because, unlike static templates, it has not
been pre-compiled. This process is described in Figure 5. When the admin final-
izes the view wizard, it initiates the generation of view.ecore, view.genmodel, and
view.rbac. The view.rbac file represents a model conforming to a custom-designed
language (detailed in Section 5.3.3) which encapsulates the defined access per-
missions. The view.ecore file encapsulates the specifics of the established classes,
while the view.genmodel file contains essential information required for code gen-
eration. When generating the view.genmodel, we specified particular properties to
instruct the generator to utilize the customized JET template. Specifically, we en-
abled the dynamic templates property by setting its value to true, guiding the
system to skip the use of default templates from org.eclipse.emf.codegen.

ecore.genmodel and instead choose to translate and compile the JET templates
we provided. Moreover, we configured the template directory to point to
the location of the dynamic templates in our project. The combination of these
sources of information enables the EMF code generator to generate a tree-based
model editor enforcing the defined access permissions.

The advantages of this approach are multiple. Firstly, we automate the cus-
tomization process of Item Providers, avoiding the need for individual manual
modifications. Secondly, by embedding the access permissions directly into the
generation process of the Item Providers, we ensure a consistent implementa-
tion of these permissions across the model editor. Finally, we offer flexibil-
ity and adaptability, allowing for straightforward updates to access permissions
without extensive manual reworking of the underlying Item Provider code. Sec-
tion 5.3.3 describes the role-based access control domain-specific modeling lan-

24

Figure 5: Generation workflow of tree-based model editors with RBAC

guage (DSML). Section 5.3.4 details the customizations made to the JET template
responsible for the generation of Item Providers.

5.3.3. Role-Based Access Control DSML
To encapsulate the user-defined access permissions, we defined a role-based

access control DSML. For each role that has access to a particular view, a unique
RBAC model is generated. These RBAC models encapsulate the access permis-
sions each role has over each element within the view. We intentionally structured
the DSML to imitate the structure of an Ecore metamodel for seamless integration
as input to the JET template and possible reverse engineering needed for future
work. As depicted in Figure 6, the root element is the AccessControlModel charac-
terized by attributes name – reflecting the name of the view metamodel – and role,
denoting the user role to which the permissions apply. The elements EClass and
EEnum are compositionally linked to the root element. In a similar compositional
manner, EAttribute and EReference are linked to EClass, while EEnumLiteral to
EEnum. Each of these elements possesses a set of features that they inherit from
the ElementPermission abstract class. These features include a name attribute for
the EObject they are associated with, and a reference to the EObject element.

25

Moreover, they feature a list of permissions that define the CRUD operations, as
detailed in the Permissions enumeration.

Figure 6: Role-based access control DSML

5.3.4. Dynamic Templates
EMF utilizes a collection of JET templates to automatically generate tree-

based model editors. To refine this generation process to enforce access permis-
sions within the model editor, we adapted the JET template responsible for Item
Provider generation. This adaptation involves using a generated RBAC model as
input, directing the generation of Item Providers in a way that enforces the spec-
ified permissions. Initially, we duplicated the JET templates into our project and
we modified the ItemProvider.javajet template accordingly. Since the tree-
based editor’s default setup allows for unrestricted CRUD operations on all model
elements, we intervened to implement constraints where the out-of-the-box func-
tionality permits more than what the RBAC model dictates. Specifically, our cus-
tom logic in the template evaluates the RBAC model’s permissions for each model
element and adjusts the generation of Item Providers to enforce these restrictions
accordingly. For each element, depending on which operations are restricted, the
template selectively generates or omits code segments in the Item Providers. For
instance, if the RBAC model restricts the creation of certain EClasses for specific
roles, the template is designed to omit the generation of code segments in Item

26

Providers that would otherwise enable such creation capabilities. This principle is
similarly applied for all the remaining operations.

The mechanisms described so far represent the realization of the second secu-
rity layer which permits users to manipulate the elements of the accessible view
models according to the access permissions defined for each element. The in-
terested reader can find further details on the required adjustments to the Item
Providers for restricting each operation type in our GitHub repository 10.

6. Illustrative Example

To provide a complete overview of the running example introduced in Sec-
tion 4, this section details the entire process leading up to the generation of the cus-
tomized model editor. A demo illustrating these steps is available in our GitHub
repository 10. Figure 7 illustrates the permissions’ page of the view wizard. In
this example, we define the project manager’s access permissions on the research
view. The first column of the wizard displays the meta model elements that com-
prise the research view, selected in prior step. The second column features four
checkboxes for each view element, representing the complete set of CRUD oper-
ations. The final column includes a checkbox for each EAttribute object, enabling
the user to select a unique identifier for each EClass. The wizard ensures real-
time consistency in access permissions through a dynamic check activated each
time a checkbox is selected. This process may prompt the selection of additional
checkboxes to maintain consistency. For instance, selection of delete (D) opera-
tion on EClass:Project leads to the automatic selection of read (R) operation on
EClass:Project , selection of delete (D) permission on all its children, and selec-
tion of delete (D) operation on EReference:project. This cascade of automatic
selections continues, ensuring all relevant checkboxes are selected to preserve the
consistency of access permissions. Finalization of the wizard results in the cre-
ation of several artefacts, including the view metamodel and the corresponding
view model, where the latter is a subset of the base model. The base model illus-
trated in Figure 8a is an instantiation of the university (base) metamodel illustrated
in Figure 1, while the view model illustrated in Figure 8b, is an instantiation of the
research (view) metamodel comprised of the view elements illustrated in Figure 7.
Model transformations, generated upon finalizing the wizard, ensure that modifi-
cations in the base and view models are accurately propagated among one another,

10
https://github.com/MLJworkspace/RBAC_Solution

27

https://github.com/MLJworkspace/RBAC_Solution

Figure 7: Defined access permissions for illustrative example

28

and guarantee that information is preserved without loss during the propagation
of changes. For example, when the project is renamed from Saturn to Jupiter in
the view model, this change is propagated in the base model. Simultaneously, the
program and course elements, which exist in the base model but not in the view
model (nor are they part of the view metamodel), remain intact.

In the context of enforcing access permissions, the models illustrated in Fig-
ure 8 are accessed through their corresponding customized EMF tree-based model
editors. The comparison between the two reveals distinct permission settings.
In the base model, it is possible to delete a department instance and create new
projects, employees, and programs. Conversely, the view model restricts these
capabilities. Here, deleting a department instance is disabled, and the creation
of employees and programs is prohibited. These limitations align with the access
permission established in Figure 7, which explicitly restricts project managers
from performing these operations. Access permission enforcement is achieved
by customizing the generation process of the Item Providers – responsible for
viewing and editing elements in the model editor – which in the customized ver-
sion, considers the permissions defined in the wizard in Figure 7 and generates
the Item Providers accordingly. Listing 1 presents a code snippet that illustrates
the createRemoveCommand() method as implemented in the University Item-
Provider. This method is not generated by the standard generation process. In-
stead, it is specifically generated due to the project manager’s lack of delete (D)
permission for the EClass:Department. As a result, this method disables the
Delete option when right-clicking on a Department element, a functionality high-
lighted in Figure 8b.

1 public Command createRemoveCommand (EditingDomain editingDomain , EObject owner , EStructuralFeature feature ,

Collection <?> collection) {

2 if (owner instanceof University) {

3 for (Object object : collection) {

4 if (object instanceof Department) {

5 return UnexecutableCommand.INSTANCE;

6 }

7 }

8 }

9 return RemoveCommand. create (editingDomain , owner , feature , collection);

10 }

Listing 1: createRemoveCommand() method for Department in University ItemProvider

7. Evaluation

We evaluate our approach and prototype on a commercial textual language
designed for developing stateful and event-driven real-time applications. This

29

(a) Editor providing full access to the base model

(b) Editor providing limited access to the view model

Figure 8: Tree-based editors for base and view models

30

language is part of the Code RealTime 11 extension, which operates for both Vi-
sual Studio Code and Eclipse Theia. The language, known as Art, introduces a
new syntax for well-established concepts rooted in the Real-Time Object-Oriented
Modeling (ROOM) language [31], which has been successfully used in indus-
try for over three decades. Art is particularly well-suited for modeling both the
behavior and structure of real-time applications. The structural part defines the
high-level architecture through elements such as capsules, ports, connectors, pro-
tocols, and capsule parts. The behavioral part captures the dynamic behavior of
the system using state machines, transitions, states, pseudostates, actions, and
other relevant elements. Although Art is a commercial language, comprehensive
descriptions of its features and usage are publicly available 12. Our evaluation
process emphasizes the behavioral part, demonstrating how well-defined access
controls can secure sensitive behavioral information. One of the key reasons for
selecting Art for this evaluation is our involvement in its initial development, par-
ticularly in defining the language’s behavioral part [32]. Moreover, Art’s behav-
ioral modeling capabilities are sufficiently complex to demonstrate the effective-
ness of fine-grained access control. While the Art language itself cannot be made
publicly available due to its commercial nature, we can provide an overview of its
complexity to offer context for our evaluation. The metamodel consists of ↘ 50
classifiers, with abstract classes forming a strong foundation for inheritance, and
includes ↘ 80 structural features. By utilizing multiple inheritance and nesting up
to three layers, the model establishes a clear and effective abstraction hierarchy.

7.1. Defining the Behavioral View
The initial phase of the evaluation process involved the definition of a view

representing the behavioral aspect of Art. This was accomplished by selecting
elements that specifically characterize the system’s dynamic behavior. To en-
sure the validity of the resulting view metamodel, the solution automatically in-
cluded several specialized classes and structural elements, with capsules being a
key example. Capsules are crucial because they provide the runtime context for
state machine execution. In the metamodel, state machines are contained within
capsules, which, according to Rule 5 in the related work, means that both the
containing class (the capsule) and its corresponding containment reference must
be included. This necessity became even more evident when elements were se-
lected without enabling the automatic consistency check. Attempts to finalize the

11
https://secure-dev-ops.github.io/code-realtime/

12
https://secure-dev-ops.github.io/code-realtime/art-lang/

31

https://secure-dev-ops.github.io/code-realtime/
https://secure-dev-ops.github.io/code-realtime/art-lang/

view metamodel under these conditions resulted in errors, specifically indicating
that EClass: Capsule is required by EClass: TopStateMachine due

to containment dependencies. Consequently, the inclusion of additional re-
quired elements ensures that behavioral constructs maintain correct referencing
and inheritance relationships, thereby producing a valid metamodel.

7.2. Role and Permission Definition
As shown in Figure 9, we defined three key roles, each representing a typical

stakeholder in a real-time system modeling scenario:

• System Architects: responsible for describing the overall architecture of the
system. Have full access to all instances of behavioral elements. In addition,
they have full access control over instances of structural elements automat-
ically included in the behavioral view, such as capsules, allowing them to
make the necessary adjustments to both structural and behavioral aspects.

• Behavioral Part Architects: responsible for describing behavior. Have full
access to all instances of behavioral concepts but only read access to struc-
tural ones like capsules that were automatically added. This ensures that
the structural configurations defined by the system architects remain un-
changed.

• Testers: responsible for validating system behavior against expected out-
comes. Have only read access to instances of both behavioral and struc-
tural elements, enabling them to analyze state transitions, verify behavioral
logic, and ensure traceability between test cases and behavioral specifica-
tions without modifying the models.

During the permission definition process, the solution automatically deter-
mined which additional, interdependent elements required selection of permis-
sions based on dynamic consistency checks. Although this automation may ap-
pear trivial in terms of reducing individual clicks, it brings a significant benefit
being that the person in charge of defining permissions does not have to manually
trace and assess dependencies. This not only streamlines the overall configura-
tion process but also reduces the likelihood of missing or incorrectly assigning
permissions, ultimately resulting in a more reliable and maintainable permission
setup. Figure 10 illustrates the permission settings for the view, detailing the ac-
cess rights for three distinct user roles. The System Architect is granted full per-
missions for all view elements. In contrast, the Behavioral Architect has full ac-
cess to behavioral components but read-only access to structural ones. The Tester

32

Figure 9: Role definition wizard

role is the most restricted, with read-only access to the entire view. Note that
the column for the key identifier attribute is empty. This is because the elements
shown do not define this attribute in their own classes. Instead, they inherit it from
the abstract NamedElement class. Consequently, the identifier must be configured
directly on the NamedElement definition, which is located in a different section
of the wizard not visible in this excerpt.

7.3. Generation of Artifacts
Upon finalizing the configuration in the permission definition wizard (Fig-

ure 10), pressing the Finish button automatically generates the following primary
artifacts:

1. View Metamodel: the generated view metamodel for the behavioral part
of Art includes 31 classifiers and 27 structural features, with key abstract
classes forming a clear inheritance hierarchy. It supports hierarchical be-
havioral modeling with nested structures reaching a depth of three levels.
Validation checks confirmed the metamodel’s correctness, ensuring consis-
tency and completeness in representing the behavioral view.

33

Figure 10: Permissions’ definition wizard

2. Synchronization Infrastructure: the approach generates two model trans-
formations to ensure consistency between the base model conforming to
the base metamodel of Art, and the subset model conforming to the gener-
ated view metamodel of the behavioral part of Art. The first transformation
extracts and maps relevant elements from the base model to create a sim-
plified subset, requiring ↘ 180 lines of code. The second transformation,
which propagates changes from the subset model back to the base model,
is more complex, with ↘ 800 lines of code. This increased complexity is
due to the need to synchronize changes without overwriting or losing in-
formation present in the base model but absent from the subset. It involves
detailed checks to manage additions, updates, and deletions, as well as logic
to preserve relationships and maintain model consistency. The synchroniza-
tion infrastructure ensures that any changes made in either model are accu-
rately reflected in the other without loss of information. Listing 2 shows an
excerpt of the in-place transformation (Pkg2Pkg, lines 1-30) that synchro-
nizes a Package element in a base model with its counterpart from a view
model. The logic begins by identifying and selecting the corresponding
view package for processing (lines 7-8). The transformation then handles
additions and updates by iterating through the elements of the view pack-
age (lines 9-23). If an element from the view (viewElem) is not found in the
base model, a new Capsule element is instantiated and added (lines 10-18).

34

Conversely, if an element already exists in both models, the transformation
delegates to a more specific mapping (syncElement) to recursively synchro-
nize its internal properties (lines 19-22). Finally, the routine handles the
removal of obsolete elements. The packagedElement collection is updated
by retaining only those elements from the base model that also exist in the
view model (lines 24-26). This process ensures any element not present in
the view is removed from the base model. The application of these model
transformations to available Code RealTime Art sample models confirmed
their correctness, demonstrating accurate synchronization and consistency
between the base and subset models.

1 mapping artlang::Package::Pkg2Pkg() : artlang::Package

2 inherits artlang::NamedElement::syncNamedElem

3 {

4 init {

5 result := self;

6 }

7 if (viewModel.objectsOfType(view::Package)->exists(p | p.id = self.id)) then {

8 viewModel.objectsOfType(view::Package)->forOne(viewPkg | viewPkg.id = self.id) {

9 viewPkg.packagedElement ->forEach(viewElem) {

10 if (self.packagedElement ->exists(baseElem | baseElem.id = viewElem.id) = false) {

11 if (viewElem.oclIsTypeOf(view::Capsule)) {

12 var newElem := object artlang::Capsule {

13 name := viewElem.name;

14 id := viewElem.id;

15 };

16 result.packagedElement += newElem;

17 }

18 ... // other types

19 }

20 else {

21 self.packagedElement ->selectOne(e | e.id = viewElem.id).map syncElement();

22 }

23 };

24 result.packagedElement := self.packagedElement ->select(baseElem |

25 viewPkg.packagedElement ->exists(v | v.id = baseElem.id)

26);

27 }

28 }

29 endif;

30 }

Listing 2: View2Base.qvto trasformation excerpt for Package element

3. Customized Editors: three EMF tree-based editors were automatically gen-
erated, one for each defined role, to enforce the specified access permis-
sions. Each editor’s implementation consists of 33 files: 31 corresponding
to the subset metamodel’s classifiers and two additional files for the edit
plugin and provider adapter factory. For example, the editor generated for
the tester role, which requires read only access to all elements, shows that
all 31 classifier related files are automatically adapted according to the ac-
cess control model. As a result, any operations for creating, modifying, or
deleting instances of these classifiers or their structural features are disabled
in the generated editor. Listing 3 shows an excerpt from the Capsule’s Item-
Provider file, highlighting the createRemoveCommand(), which disables

35

deletion rights for the tester role.
1 @Override

2 public Command createRemoveCommand(EditingDomain editingDomain , EObject owner , EStructuralFeature

feature , Collection <?> collection) {

3 if (owner instanceof Capsule) {

4 for (Object object : collection) {

5 if (object instanceof TopStateMachine) {

6 return UnexecutableCommand.INSTANCE;

7 }

8 }

9 }

10 return RemoveCommand.create(editingDomain , owner , feature , collection);

11 }

Listing 3: createRemoveCommand() automatically added to the Capsule ItemProvider to disable
deletion rights for the tester role

The evaluation demonstrates that the approach effectively automates three crit-
ical aspects: generating a valid subset metamodel, establishing synchronization
between the base and subset models, and enforcing role-based access permissions
through customized model editors. The process requires minimal manual input.
Users select the elements to be included in the subset, with the system automati-
cally incorporating all additional elements necessary to ensure metamodel valid-
ity. Similarly, when defining access permissions, real time consistency checks
automatically adjust related operations and elements to maintain coherent permis-
sion structures. The synchronization infrastructure, also generated automatically,
ensures that any modifications in the subset model are accurately reflected in the
base model and vice versa, without information loss. Manually performing these
tasks would be considerably more complex and error-prone, involving detailed
analysis to maintain metamodel validity, the implementation of intricate synchro-
nization logic to guarantee consistency, and the customization of model editors to
enforce permissions. The approach significantly reduces this complexity, provid-
ing a reliable and efficient solution for defining and managing access-controlled
views.

8. Discussion

Benefits of the proposed solution. The proposed solution enhances the confiden-
tiality and integrity of model information in collaborative modeling environments.
Simultaneously, it aims to streamline the individual modeling experience by min-
imizing the information overload that results from interacting with a comprehen-
sive base model. The latter is a result of offering customized view (meta)models,
allowing users to engage with only the relevant aspects of the base (meta)model.
The solution employs the RBAC policy and supports the definition of fine-grained

36

access permissions using CRUD operations. Central to the novelty of the solu-
tion is a process that addresses both the consistency of the security policy and its
enforcement. Firstly, a set of automatic consistency rules prevents the definition
of contradictory permissions, mitigating the risk of human error at the policy cre-
ation stage. Secondly, these verified and consistent security rules are then used to
drive a modified code generation process. This represents a fundamental change
to the standard EMF implementation, enabling “enforcement by construction”.
Rather than requiring manual and error-prone security coding, the permissions
are automatically embedded into the editor’s source code as it is created, mak-
ing the final tool inherently secure by design. This tight integration of automated
consistency checking and proactive enforcement not only ensures the integrity
of the security policy but also provides significant flexibility. Any changes in
permissions are immediately and correctly reflected in the model editor, allow-
ing the system to respond quickly to changes in project requirements and team
composition. Incorporating these capabilities, the solution effectively meets the
technical requirements for a fine-grained, consistent, and flexible access control
system. It safeguards shared model information by mitigating the risks of confi-
dentiality breaches and ensuring the integrity of model data through its automated
enforcement mechanisms. These technical features are designed with the goal of
improving the collaborative process. By supporting users to perform efficiently in
their designated sections of a shared model, the approach is intended to foster a
more effective environment for teamwork and improve overall productivity.

Limitations of the proposed solution. The solution is confined to Ecore-based
metamodels within the Eclipse Modeling Framework (EMF). This dependency
on a specific technological space, while enabling us to leverage a rich tooling
ecosystem, restricts the direct application of our implementation to other meta-
metamodeling languages or platforms. A primary limitation comes from the en-
forcement mechanism, which is currently coupled with EMF’s default tree-based
editors. This presents a conflict when considering its application to graphically
oriented standard notations like UML or SysML. Although our approach is fully
applicable to the underlying data structure of these notations, given the use of their
standardized Ecore representations, the security enforcement does not automati-
cally extend to their graphical notation. For instance, in an Eclipse-based tool like
Papyrus, our generated secure tree editor could operate alongside the graphical
editor, but permissions would not be enforced on the diagrams themselves. For
non-Eclipse tools like MagicDraw or Enterprise Architect, a direct integration is
not feasible. The approach would need to be reimplemented from the ground up

37

on that platform. Furthermore, beyond technical integration, applying our work
to general-purpose languages like UML or SysML introduces a methodological
trade-off. The standard practice for extending these languages is through profiles,
which avoids invalidating the core language. However, when used for rights man-
agement, this approach typically relies on post-operation validation. To replicate
the proactive prevention offered by our solution, a standard tool would need to
be enhanced with a non-standard mechanism to interpret the edit rights profiles
proactively, or one could adopt alternative research techniques like metamodel
pruning [33] to achieve an outcome comparable to the mechanisms proposed in
our approach. Despite platform-specific challenges, we consider the conceptual
blueprint of our work to remain transferable. The fundamental idea of using ma-
terialized views to govern coarse-grained access, followed by the enforcement
of fine-grained permissions at the editor level, is a strategy that could be reim-
plemented in any sufficiently extensible modeling tool. Broadening support to
various model editors and graphical notations is a clear direction for future en-
hancement.

On another note, the current implementation focuses on the authorization as-
pect of access control, with authentication being a separate concern that has not
yet been addressed. The practical implication is that, as of now, the system
does not restrict user access to the various role-specific model editors upon lo-
gin. The authorization logic is independent of any specific authentication method,
which allows for different mechanisms to be integrated in the future. Address-
ing this marks a clear path for future enhancement, where an authentication layer
that could range from traditional username/password systems to integration with
enterprise-level identity providers could be introduced. More forward-looking
approaches, such as the use of Decentralized Identifiers (DID), would be particu-
larly well-suited, offering greater user autonomy and security in distributed, col-
laborative modeling environments. In terms of synchronization infrastructure, our
approach relies on user-selected unique identifiers for element matching, which
poses a risk of inconsistencies. Additionally, the synchronization process is man-
ually triggered, highlighting the need for automated change detection and conflict
management strategies which fall outside the scope of this paper. However, the
existing body of literature on conflict management provides a solid foundation for
future research in this area [34]. Overall, these limitations, mostly of implemen-
tative nature, reflect our choice to focus on access control related aspects in the
scope of this initial solution, laying the groundwork for future improvements.

38

Threats to validity. Our evaluation combines lightweight toy examples used to ex-
ercise every core feature of the plugin and a case study with the industry-adopted
Art language, demonstrating both conceptual soundness and practical viability.
However, we acknowledge several threats to the validity of our findings [35]. With
respect to internal validity, researcher bias may have influenced our examples and
case-study design, potentially favoring scenarios that showcase the strengths of
our approach. By publishing all artifacts and inviting independent replication,
we lay the groundwork for objective scrutiny and enable any researcher or prac-
titioner to replicate our results, inspect our implementation, and extend our ap-
proach. With respect to construct validity, we have not yet conducted formal
end-user studies, so our evaluation does not yet capture formal usability or effi-
ciency. Our validation strategy was to first establish the technical feasibility and
correctness of our framework, as we believe this is a necessary prerequisite for
a meaningful user study. Our case study with the industry-adopted Art language
served this purpose, confirming that the core mechanisms function correctly on
a complex model. Therefore, while benefits like enhanced security are verifiable
technical outcomes of our design, other user-oriented claims (e.g., streamlining
the modeling experience and enhancing collaborative efficiency) are posited as
direct consequences of our technical features and their adherence to well-known
usability principles. We acknowledge that while our approach is designed to be
user-friendly, a formal usability study is required to quantitatively measure its im-
pact on user productivity and satisfaction. To confirm and refine our assumptions,
we plan structured usability experiments measuring task completion time, error
rates, and subjective satisfaction, and pilot deployments with industry partners to
observe how the tool performs in practice and identify any adoption challenges.
With respect to external validity, our evaluation relies on a single, industrial case
study using the Art language. While this demonstrates practical viability, further
case studies across different domains and with varied modeling language charac-
teristics are necessary to build a stronger case for generalizability.

9. Conclusions and Future Work

This article proposes a dual-layered approach that provides role-based access
control to ensure the confidentiality and integrity of model information in collab-
orative modeling environments. The first layer focuses on the creation of view
(meta)models on top of a base (meta)model, along with a seamless synchroniza-
tion mechanism between them. This efficiently restricts access to the base model,
limiting users to interact solely with the view models assigned to their respective

39

roles. The second layer fine-tunes this access by establishing fine-grained access
permissions describing the permissible operations over each element type within
the view models. Each building block of the solution was either substantially ex-
tended or developed anew, and these pieces are glued into a single, automated
pipeline. Key contributions include:

• Automated, in-place synchronization: We extended existing solution by: i)
automatically generating mapping models between view and base models,
and by ii) defining higher-order transformation (HOT) templates to auto-
matically consume the derived mapping models and produce QVTo scripts
that preserve unmapped elements. This eliminates manual mapping and
prevents data loss.

• Live policy consistency engine: We designed and implemented from scratch
a set of 23 formal CRUD consitency rules, enforcing them on-the-fly within
the access-permission wizard. Administrators receive immediate feedback
on conflicting or incomplete policies, ensuring correctness before any code
is generated.

• Security-aware editor generation: By replacing EMF’s default static JET
templates with custom, RBAC-driven templates, our framework emits mod-
eling editors that enforce access constraints by construction. The resulting
editors require no post-hoc hand-coded checks.

• End-to-end automation: Launching the view-and-permission wizards trig-
gers an automatic process that assembles the standalone view metamodel,
dynamic GenModel, RBAC specification, synchronization transformations,
and role-specific editors, fully eliminating manual intervention between slic-
ing, synchronization, and enforcement.

Our end-to-end solution spanning view definition, bidirectional synchronization,
and role-based access control specification and enforcement provides a level of
integration and automation required in industrial modeling projects.

For future work, we plan to extend the solution to apply to blended editors.
Moreover, we aim to extend this research by focusing on establishing permissions
at the instance level, assigning permissions to each instance, rather than applying
a one-size-fits-all rule to all instances of a given meta element. Future work will
also combine the RBAC policy with the attribute-based access control (ABAC)
policy, adding restrictions based on attributes, since the current approach can be

40

easily adapted to include additional access control policies without altering the
underlying framework for defining and enforcing permissions. For example, in
ABAC, for attributes that are static and manually defined this can be achieved by:
(i) establishing a method to define attributes and reference them during permis-
sion specification, and (ii) implementing a method to extract attribute values and
enforce permissions accordingly. Attributes that are dynamic, like location, neces-
sitate distinct mechanisms for detection and value extraction. The methodologies
proposed by [24] offer valuable insights into addressing the latter scenario. In
addition, in future work, the adaptability of the theoretical approach is intended
to be explored across various modeling frameworks beyond EMF. Our analysis
into the dependencies among model elements and CRUD operations has yielded
reusable consistency rules applicable across various technological stacks, poten-
tially requiring only minimal adjustments. Moreover, the strategy for enforcing
permissions by utilizing predefined permissions as inputs in the model editor gen-
eration process can be extended to other modeling platforms. However, a more in
depth examination of existing modeling platforms is essential. Finally, upcoming
efforts will be dedicated to assessing the proposed solution in industrial contexts.

References

[1] D. C. Schmidt, Model-driven engineering, Computer-IEEE Computer Society-
39 (2) (2006) 25.

[2] R. France, B. Rumpe, Model-driven development of complex software: A research
roadmap, in: Future of Software Engineering (FOSE’07), IEEE, 2007, pp. 37–54.

[3] J. Whitehead, Collaboration in software engineering: A roadmap, in: Future of Soft-
ware Engineering (FOSE’07), IEEE, 2007, pp. 214–225.

[4] M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering in practice,
Morgan & Claypool, 2017.

[5] H. Muccini, J. Bosch, A. van der Hoek, Collaborative modeling in software engi-
neering, IEEE Software 35 (6) (2018) 20–24.

[6] D. Di Ruscio, M. Franzago, I. Malavolta, H. Muccini, Envisioning the future of
collaborative model-driven software engineering, in: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Companion (ICSE-C), IEEE, 2017,
pp. 219–221.

41

[7] I. David, K. Aslam, I. Malavolta, P. Lago, Collaborative model-driven software engi-
neering—a systematic survey of practices and needs in industry, Journal of Systems
and Software 199 (2023) 111626.

[8] M. Nieles, K. Dempsey, V. Y. Pillitteri, An introduction to information security,
NIST special publication 800 (12) (2017) 101.

[9] S. Martı́nez, A. Fouche, S. Gérard, J. Cabot, Automatic generation of security com-
pliant (virtual) model views, in: Conceptual Modeling: 37th International Confer-
ence, ER 2018, Xi’an, China, October 22–25, 2018, Proceedings 37, Springer, 2018,
pp. 109–117.

[10] C. Debreceni, G. Bergmann, I. Ráth, D. Varró, Enforcing fine-grained access control
for secure collaborative modelling using bidirectional transformations, Software &
Systems Modeling 18 (2019) 1737–1769.

[11] R. S. Sandhu, Role-based access control, in: Advances in computers, Vol. 46, Else-
vier, 1998, pp. 237–286.

[12] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling
Framework, Pearson Education, 2008.

[13] A. Cicchetti, F. Ciccozzi, A. Pierantonio, Multi-view approaches for software and
system modelling: a systematic literature review, Software and Systems Modeling
18 (2019) 3207–3233.

[14] ISO/IEC/IEEE, Systems and software engineering–architecture description,
ISO/IEC/IEEE 42010: 2011 (E)(Revision of ISO/IEC 42010: 2007 and IEEE Std
1471-2000) 2011 (2011) 1–46.

[15] A. Cicchetti, F. Ciccozzi, T. Leveque, Supporting incremental synchronization in
hybrid multi-view modelling, Models in Software Engineering (2012) 89–103.

[16] H. C. v. Tilborg, S. Jajodia, Encyclopedia of Cryptography and Security (2011).

[17] R. Sandhu, D. Ferraiolo, R. Kuhn, The NIST model for role-based access con-
trol: Towards a unified standard, in: ACM workshop on role-based access control,
Vol. 10, 2000.

[18] V. C. Hu, R. Kuhn, D. Yaga, Verification and test methods for access control poli-
cies/models, NIST Special Publication 800 (2017) 192.

[19] A. Cicchetti, F. Ciccozzi, T. Leveque, A hybrid approach for multi-view modeling,
Electronic Communications of the EASST 50 (2012).

42

[20] H. Bruneliere, J. G. Perez, M. Wimmer, J. Cabot, EMF Views: A view mechanism
for integrating heterogeneous models, in: 34th International Conference on Concep-
tual Modeling (ER 2015), 2015.

[21] G. Bergmann, C. Debreceni, I. Ráth, D. Varró, Query-based access control for secure
collaborative modeling using bidirectional transformations, in: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems, 2016, pp. 351–361.

[22] C. Debreceni, G. Bergmann, M. Búr, I. Ráth, D. Varró, The MONDO collaboration
framework: secure collaborative modeling over existing version control systems, in:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, 2017, pp. 984–988.

[23] C. Debreceni, G. Bergmann, I. Ráth, D. Varró, Secure views for collaborative mod-
eling, IEEE Software 35 (6) (2018) 32–38.

[24] L. Brunschwig, E. Guerra, J. de Lara, Towards access control for collaborative mod-
elling apps, in: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings, 2020,
pp. 1–10.

[25] A. Anjorin, S. Rose, F. Deckwerth, A. Schürr, Efficient model synchronization with
view triple graph grammars, in: Modelling Foundations and Applications: 10th Eu-
ropean Conference, ECMFA 2014, Springer, 2014, pp. 1–17.

[26] J. Jakob, A. Königs, A. Schürr, Non-materialized model view specification with
triple graph grammars, in: Graph Transformations: Third International Conference,
ICGT 2006 Natal, Rio Grande do Norte, Brazil, September 17-23, 2006 Proceedings
3, Springer, 2006, pp. 321–335.

[27] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt, Combina-
tors for bidirectional tree transformations: A linguistic approach to the view-update
problem, ACM Transactions on Programming Languages and Systems (TOPLAS)
29 (3) (2007) 17–es.

[28] M. Latifaj, F. Ciccozzi, M. Mohlin, Higher-order transformations for the genera-
tion of synchronization infrastructures in blended modeling, Frontiers in Computer
Science 4 (2023) 1008062.

[29] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, J. Bézivin, On the use of higher-order
model transformations, in: European Conference on Model Driven Architecture-
Foundations and Applications, Springer, 2009, pp. 18–33.

43

[30] J. Martin, Managing the data base environment, Prentice Hall PTR, 1983.

[31] B. Selic, G. Gullekson, J. McGee, I. Engelberg, Room: An object-oriented method-
ology for developing real-time systems, in: CASE’92 Fifth International Workshop
on Computer-Aided Software Engineering, 1992, pp. 230–240.

[32] M. Latifaj, F. Ciccozzi, M. W. Anwar, M. Mohlin, Blended graphical and textual
modelling of UML-RT state-machines: An industrial experience, in: European Con-
ference on Software Architecture, Springer, 2021, pp. 22–44.

[33] S. Sen, N. Moha, B. Baudry, J.-M. Jézéquel, Meta-model pruning, in: International
Conference on Model Driven Engineering Languages and Systems, Springer, 2009,
pp. 32–46.

[34] M. Sharbaf, B. Zamani, G. Sunyé, Conflict management techniques for model merg-
ing: a systematic mapping review, Software and Systems Modeling 22 (3) (2023)
1031–1079.

[35] C. Wohlin, Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering, in: Proceedings of the 18th international conference
on evaluation and assessment in software engineering, 2014, pp. 1–10.

44

	Introduction
	Background
	Eclipse Modeling Framework and Ecore
	Multi-View Modeling
	Access Control

	Related Work
	Running Example
	User Roles
	Views

	Proposed Approach
	Setting Up the Multi-View Modeling Environment
	Role and User Management
	View Metamodel Definition
	View Metamodel Generation
	Synchronization Infrastructure

	Access Permissions Definition
	Wizard for Access Permissions Definition
	Consistency Rules

	Access Permissions Enforcement
	Generation of EMF Tree-Based Model Editors
	Customization of EMF Tree-Based Model Editors
	Role-Based Access Control DSML
	Dynamic Templates

	Illustrative Example
	Evaluation
	Defining the Behavioral View
	Role and Permission Definition
	Generation of Artifacts

	Discussion
	Conclusions and Future Work

