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Abstract

We live in a world that depends on software. From the moment we log in to a banking system or when
we take the bus to work, we are surrounded by software-intensive systems. These systems are often
not built from scratch, but as further iterations of existing systems, adapted for different customers and
market segments.

The development of such complex software and variant-intensive systems is centered around customer
needs that are usually described in long documents, full of detail, and written in natural language.
Companies must read through, interpret, and extract the relevant requirements, decide which teams
should develop and test them, and simultaneously identify what can be reused from earlier projects.
This process is often manual, carries a risk of mistakes, and demands great experience and precision.

This thesis explores how Artificial Intelligence (Al), and in particular natural language processing
(NLP), can help make the process both faster and more reliable. The work is based on six scientific
articles, which make four contributions, as follows. First, we study how requirements management and
reuse are handled today to identify opportunities for enhancement. Next, we focus on automating the
identification and allocation of requirements, so that correct requirements are identified and directed to
the right teams from the start. We also develop methods for discovering which parts of previous projects
can be reused, to avoid redundant development efforts. Finally, we create a pedagogical resource that
enables teachers, students, and professionals to apply the technical solutions in practice.

Through these contributions, the thesis demonstrates how Al can become a powerful support in
processing requirements and supporting reuse in complex software development.

ISBN 978-91-7485-715-3
ISSN 1651-4238



Sammanfattning

Vi lever i en virld som &r beroende av programvara. Fran det att vi loggar in pa
banken eller att vi tar bussen till jobbet &r vi omgivna av programvaruintensiva
system. Ofta byggs dessa system inte fran grunden, utan som vidareutvecklin-
gar av redan befintliga 16sningar, anpassade for olika kunder och marknader.

Kundernas behov beskrivs vanligen i langa dokument, fulla av detaljer och
skrivna pa vanligt sprak. Foretagen maste 14sa igenom, tolka och plocka ut de
relevanta kraven, bestimma vilka team som ska utveckla och testa dem, och
samtidigt se vad som kan ateranvindas fran tidigare projekt. Det sparar tid och
pengar, men 4r ocksa ett pussel som kriver stor erfarenhet och noggrannhet. I
praktiken tar det ofta lang tid, innebir risk for misstag och dr beroende av ett
fatal experter.

Den hir avhandlingen undersoker hur artificiell intelligens (AI), och i syn-
nerhet naturlig sprakbehandling (NLP), kan hjilpa till att gora processen bade
snabbare och mer tillforlitlig.

Arbetet bygger pa sex vetenskapliga artiklar och bidrar inom fyra omraden:
Forst kartldgger vi hur arbetet med kravhantering och ateranviandning gér till
idag, och var det finns storst potential till forbittring. Dérefter fokuserar vi pa
att automatisera sjilva identifieringen och férdelningen av krav, s att de ham-
nar hos rétt team fran borjan. Vi utvecklar ocksa metoder for att upptécka vilka
delar av tidigare projekt som kan éteranvindas, for att undvika att uppfinna
hjulet pa nytt. Slutligen skapar vi en pedagogisk resurs som gor det mojligt
for larare, studenter och yrkesverksamma att anvidnda de tekniska 16sningarna
i praktiken.

Med hjélp av dessa insatser visar avhandlingen hur Al kan bli ett kraftfullt
stod i arbetet med att forstd, organisera och ateranvéinda den kunskap som ryms
i komplex programvaruutveckling.






Abstract

We live in a world that depends on software. From the moment we log in
to a banking system or when we take the bus to work, we are surrounded by
software-intensive systems. These systems are often not built from scratch, but
as further iterations of existing systems, adapted for different customers and
market segments.

The development of such complex software and variant-intensive systems
is centered around customer needs that are usually described in long docu-
ments, full of detail, and written in natural language. Companies must read
through, interpret, and extract the relevant requirements, decide which teams
should develop and test them, and simultaneously identify what can be reused
from earlier projects. This process is often manual, carries a risk of mistakes,
and demands great experience and precision.

This thesis explores how Artificial Intelligence (Al), and in particular natu-
ral language processing (NLP), can help make the process both faster and more
reliable. The work is based on six scientific articles, which make four contri-
butions, as follows. First, we study how requirements management and reuse
are handled today to identify opportunities for enhancement. Next, we focus
on automating the identification and allocation of requirements, so that cor-
rect requirements are identified and directed to the right teams from the start.
We also develop methods for discovering which parts of previous projects can
be reused, to avoid redundant development efforts. Finally, we create a peda-
gogical resource that enables teachers, students, and professionals to apply the
technical solutions in practice.

Through these contributions, the thesis demonstrates how Al can become a
powerful support in processing requirements and supporting reuse in complex
software development.
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Chapter 1

Introduction

The continuous reliance of society on software-intensive systems necessitates
efficient software development processes to enable quick and quality delivery
of such products. These systems are not often built from scratch, but rather
as an increment or variant of an existing product platform. This approach to
development avoids redundant efforts and can help improve product quality
over time.

Software Product Line Engineering (SPLE) is a process that enables the
engineering of product families, allowing for the customization and configura-
tion of products as variants for various market segments [1]]. SPLE is based on
the reuse rationale, which enables the engineering of common domain require-
ments, assets, and components that can be later used and adapted in future sim-
ilar products. In practice, the SPLE adoption varies with respect to reuse prac-
tices, i.e., from opportunistic reuse to engineered reuse [2]. While the former
employs ad-hoc reuse practices, the latter promotes engineered reuse through
systematic variation points and configurations. However, the upfront invest-
ment in engineering for reuse hinders the adoption of SPLE processes with
systematic engineered reuse. Therefore, in practice, SPLE is often adopted in
an evolutionary manner with opportunistic reuse also commonly referred to as
clone-and-own reuse.

The manufacturing industry often benefits from such engineering practices.
Like many other industries, the manufacturing industry (such as the railway
industry) also relies on acquiring projects from external customers through a
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call for tender [3]. Vendors often have to respond to a call for tender with
a proposal that competes with other proposals from other vendorﬂ In such
project-based setups, enabling a quick response to a call for tender and then
meeting legally binding delivery timelines requires effective processing and
delivery of customer requirements.

Processing requirements in such setups involve understanding and extract-
ing technical customer requirements that can be agreed upon. Additionally,
systems in such industries are highly complex and are driven by software. The
safety-critical nature of the systems in the area necessitates effective software
development and a rigorous system testing process. Therefore, companies of-
ten structure their teams into sub-teams responsible for the development of var-
ious system functions, as the components can be independently implemented,
tested, certified for safety, and incrementally integrated [4]. In such cases, the
allocation of requirements for development and testing also becomes crucial
for project resource planning and development.

In a typical project-based SPLE setup, assets and artifacts from existing
projects and products are reused and adapted in a clone-and-own manner to
address the slightly varying requirements of a new customer. This results in
companies having to maintain various versions of the systems, along with com-
mon domain assets, that cater to different customer needs in different market
segments. In many cases, the product should also comply with varying regional
standards and regulations, resulting in more product variants. Therefore, be-
fore starting the development of systems for a new customer, a reuse analysis
must be conducted to identify reuse opportunities for existing product variants
and versions, thereby avoiding redundant development efforts and reducing
development lead time.

Problem. This thesis is motivated by practical problems in a project-based
industrial setup at Alstonﬂ in Sweden, yet relevant for many industries. In the
studied context, requirements are identified from large tender documents and
then assigned to various teams for development, as is common in many other
industries. We refer to requirements identification and allocation as require-
ments processing. Additionally, in the studied context, the SPLE process is
employed, which facilitates the opportunistic reuse of domain assets and assets

'We refer to such a way of working as project-based setup.
2Alstom is a French multinational rail transport systems manufacturer, available online,
https://www.alstom.com/alstom-sweden.
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from existing projects. This necessitates an analysis process to identify poten-
tial opportunities for reuse. While the current reuse analysis and requirements
processing processes in the studied context have shown significant improve-
ments in lead time reduction, they are still primarily manual and lack scala-
bility. A fully manual requirements processing and reuse analysis makes the
process dependent on the engineer’s experience, is time-consuming, and can
be prone to human error.

Summary of the Contributions. This thesis is focused on improving and
supporting the requirements processing and reuse analysis processes in the
studied project-based settings. We make four research contributions, which
are documented in six peer-reviewed papers included in this thesis. In the rest
of this thesis, we will refer to the contributions as ‘C’ followed by a number.

First, to identify the needs of our industrial partner, we document current
practices and identify opportunities for enhancement in the current state of
practice within the studied context (Cy). Out of many identified challenges,
we initially focused on addressing the challenge of identifying reuse opportu-
nities. While working towards supporting the reuse analysis process, we found
that identifying requirements and allocating them to various teams are also two
preliminary steps that are considered challenging in the studied setting. There-
fore, we proposed two solutions based on natural language processing (NLP)
and machine learning (ML) to identify requirements and allocate them to var-
ious teams for implementation and testing (Cs). As discussed, in a project-
based setup, supporting reuse at the requirements level also becomes crucial.
This thesis presents a solution for requirements-driven software reuse recom-
mendation (Cg) that helps avoid redundant development efforts. In the process
of augmenting the existing requirements processing and reuse analysis process
in the studied setting, requirements similarity computation and retrieval play a
crucial role. C4 synthesizes the technical knowledge on similarity and retrieval
into a pedagogical resource to support educators, students, and practitioners in
applying the concepts.

QOutline. This thesis is divided into two parts. Part I gives an overview of
the thesis and is organized as follows. Chapter 2 provides an overview of the
context and the research process followed. We briefly discuss the state-of-the-
art and the preliminary concepts in Chapter 3. Chapter 4 presents the thesis
contributions and the included papers. Chapter 5 concludes the thesis with a
discussion on future work. Part II outlines the collection of included papers.






Chapter 2

Research Overview

In this chapter, we present the overall goals of the thesis and the research pro-
cess used to realize the research goals.

2.1 Context & Research Goals

Software-intensive cyber-physical systems, such as railway vehicles and cars,
often come as variants of existing products to address varying customer needs
with minimal effort. When a customer requests a new product, it is often devel-
oped as an iteration or an increment over existing products. In the rail industry,
a common practice is for customers to publish a call for tender, to which ven-
dors respond with a proposal. During the acquisition phase of new projects,
requirements analysts must extract, understand, and analyze the product re-
quirements for a bid proposal. If a tender is to be granted, the supplier and
vendor agree upon high-level requirements and a legally binding timeline for
delivery of the product. Late deliveries of the products often result in heavy
penalties|'| Therefore, reducing product development lead time plays a crucial
role in avoiding penalties and meeting the agreed-upon timeline. On the soft-
ware development side of the rail industry, it is common to document a set of
common high-level system functions (domain requirements) and their imple-

1“Alstom has already paid €80 million in fines for delaying the delivery of electric trains to
Belgium” Accessed Jul 31, 2025. https://www.railway.supply/en/...
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mentation to encourage reuse across projects, speed up software development,
and, in turn, reduce the lead time to product development. This way of working
loosely resembles what is described as SPLE in the literature [1].

In this thesis, we focus on improving the requirements processing and reuse
in project-based setups— specifically in the railway industry. The main objec-
tive of the thesis is to reduce product development lead time by augmenting
existing project-based software development processes with semi-automated
approaches. To achieve the main objective, we first document current prac-
tices to identify challenges perceived by practitioners and opportunities for re-
search. We aim to study current practices to guide the thesis toward practical,
real-world challenges whose solutions would impact product development lead
time. To this end, we define the first research goal of the thesis as follows.

m RG;: To study the current practices, challenges, and enhancement
opportunities in project-based software product development processes.

In the journey towards achieving RG, we first selected a representative in-
dustrial case, following similar project-based practices with customer require-
ments at the center of the development process. In particular, we chose Al-
stom as a representative industrial partner for this thesis. We started to study
RG1 through document analysis [5], participant observation [6l], and focus
groups [7] with one team at Alstom. We documented the team’s current work-

Yes—{
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Requirements
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Figure 2.1: Typical flow of project acquisition and development in the studied settings
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ing practices and identified several challenges that required further investiga-
tion [8].

We derive a typical overall process for the studied setting as follows. As
shown in step (1) of Figure a bidding team analyses the tender document
to identify technical requirements in the large tender documents. They anno-
tate the document to highlight potential contractual agreements, information,
and requirements within the text of the document, step (2) of Figure [2.1] The
annotated document is sent to the requirements engineering (RE) team for risk
assessment and feasibility analysis of the project. The requirements manager
relies on common requirements in the domain and existing projects to compare
the project with what the company has done before. Leveraging similarities
between the requirements in the tender document and the existing projects, the
risk associated with the project and a tentative time plan are computed and
reported to the bidding team, step (3) of Figure The bidding team then
bid for the project with a proposal based on the risk assessment. As shown
in step (4) of Figure [2.1] if the company acquires the project, the agreed-upon
requirements are then allocated for implementation and testing to more than
twenty teams at the company. The teams can either accept the requirements or
reject them based on the relevance of the requirements to their sub-systems or
functions. Rejection of the allocation of requirements leads to reassignment to
other teams, impacting the lead time of product development. In addition, the
teams also make use of existing projects and domain assets for reuse during
implementation and verification of the new project, step (5) of Figure

From the identified challenges, we select “identifying reuse opportunities”
for implementation assets to be a relevant and promising direction. Particularly
when new project requirements are received, some key engineers rely on their
experience to recall existing projects and domain assets and identify potential
reuse opportunities. This is also seen as a challenging problem in other setups
where products are derived from an existing product line [9].

While investigating solutions for semi-automated reuse identification, we
found that internalized requirements documents received by technical teams at
Alstom were allocated by the bidding team. The bidding team faces additional
unique challenges in requirements processing. For example, identifying tech-
nical specifications in large tender documents is a preliminary step that is often
manual and time-consuming, impacting project acquisition delays. In addition,
if the project is acquired after bidding, the correct allocation of requirements
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as work items to the technical teams plays a crucial role in reducing work allo-
cation rejections that cause unnecessary delays.

Focusing on the above-mentioned challenges and practical problems,
we defined our second research goal as reducing product development lead
time by improving requirements processing and reuse identification with
semi-automated approaches, as follows.

m RG;: To investigate the augmentation of requirement processing and
reuse in a project-based software product development environment with
semi-automated approaches.

RGs, is realized through empirical studies and semi-automated approaches at
the textual requirements level, where the computation of requirements simi-
larity plays a crucial role. Therefore, RGs also focuses on synthesizing tech-
nical knowledge on requirement similarity and retrieval to help practitioners
apply the concepts to improve their processes in similar setups. The techni-
cal knowledge resource, a pedagogical book chapter supplemented with a code
repository, is useful for educators and students in relevant fields.

2.2 Research Process

Software engineering research has struggled with practical relevance, of-
ten producing research that is difficult to apply in real-world industrial
settings [10]. In addition, user perceptions and qualitative evaluations are
often under-reported, limiting the understanding of how proposals perform
in practice. Literature in the area recommends strong collaboration-driven
co-production research processes to produce relevant research [11]. This
doctoral thesis adopts a technology transfer model [12]], emphasizing close
collaboration between academia and industry with a strong focus on relevant
problem identification, solution development & refinement, and solution
deployment. The technology transfer model can be viewed as a structured
extension of the broader constructive research methodology. While con-
structive research focuses on building and evaluating innovative artifacts to
address identified problems and contribute to theoretical knowledge [13], the
technology transfer model adds a practical dimension by explicitly guiding
how such artifacts are developed in collaboration with industry and introduced
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Figure 2.2: Research process followed in this thesis for technology transfer to industry.
* Tteration 1 (supporting step 5 of the process presented in Figure [2.1)), # Iteration 2,
(supporting steps 2 and 4 of the process presented in Figure .

into real-world contexts. It extends constructive research by incorporating
iterative validation and refinement steps, ensuring that the solutions are not
only theoretically sound but also meet practical needs.

Beyond technical solutions, our research process also emphasizes the
importance of understanding engineers’ perceptions in the studied context.
Through document analysis, participant observations, and focus groups,
qualitative data is collected to understand and identify real-world problems
(RG1), propose relevant solutions, and assess the usability of the proposed so-
lutions (RG2). This approach ensures that the research outcomes are not only
technically sound but also align with practitioners’ needs and expectations.

We summarized each step of our collaborative research process below,
shown in Figure[2.2] Figure[2.2]also maps the supported steps of Figure2.T|and
the included published papers produced from the steps of the research process.

Review of Industrial Needs. We started with RGy in order to review the cur-
rent practices in the studied setting with the goal of identifying real challenges
and practical problems. In Paper A, we started with the state-of-the-art (SoA)
in similar contexts where products are developed as iterations over an existing
product line to address varying customer requirements. We supplemented doc-
ument analysis with around twelve months of participant observation to report
the state of practice in the team developing safety-critical software systems in
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the studied context. In addition, we conducted a focus group session with ex-
perts to identify key challenges and practical problems in the studied context.
We recorded the focus group and performed a thematic analysis to obtain re-
sults relevant to RG;. In the first iteration, upon agreement with the industrial
partner, we focused on requirements-driven retrieval of assets for reuse, sup-
porting step (5) of Figure[2.1} After several iterations of solution development,
refinement, and validation, in the following iteration, we focused on require-
ments processing, supporting steps (2) and (4) of Figure[2.1

Problem formulation. The results of Paper A inspired the initial problem
formulation. One of the identified challenges (reuse identification) in Paper A
was considered for further investigation in the first iteration after agreement
with our industrial partner. In the second iteration, the challenges related to
requirements processing were considered (requirements identification and al-
location). The problems were formulated after analysis of state-of-practice
(SoP) and SoA under the supervision of the researchers and the industrial part-
ner involved. An early version of the problem related to reuse also resulted in a
doctoral symposium publication [[14]]. This motivated the formulation of RGs,
which was realized in two iterations of the research process.

Propose Solutions & Evaluation. During the two iterations of our research
process, three solutions were proposed, refined, and evaluated. In the first
iteration (step *5 in Figure which supports step 5 of Figure [2.1), we hy-
pothesize that semantic similarity among requirements can be used to identify
reuse opportunities for existing implementation assets. In Paper D, we test this
hypothesis by reporting on the moderate positive association between require-
ments and implementation similarity. In Paper E, we proposed a solution based
on requirement similarity and clustering to aid the reuse identification process
in the studied context.

The execution of the first iteration of the research process led to the identi-
fication of additional challenges in requirements processing in the studied set-
tings. In the second iteration, we focused on requirements identification (Paper
B) and allocation (Paper C) to support the bidding and project management
teams in the studied context.
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Deploy Solution(s). The thesis resulted in three solutions over two iterations
of the research process. We proposed and deployed VARA (Variability-Aware
requirements Reuse Analysis), REQ-I (Requirements Identification) and
REQA (smart REQuirements Allocator). VARA is deployed at the company’s
propulsion control and brake divisions and is frequently used in reuse identifi-
cation. On the other hand, REQ-]E] and REQA are in experimental use in the
company and will be deployed in the production setup shortly.

Throughout the two iterations of our research process, requirements simi-
larity and retrieval were central to solving practical, industry-relevant problems
addressed in this thesis. This experience underscored the need for technical
knowledge that is both practically grounded and accessible to educators and
practitioners operating in similar contexts. To address this, Paper F closes the
research process’s feedback loop by consolidating the technical, methodolog-
ical, and implementation insights on requirements similarity and retrieval into
a pedagogical book chapter.

Practical Relevance. The proposed solutions aim to facilitate well-informed
decision-making during the requirements engineering and reuse processes in
project-based setups. This thesis provides a tool to support step (2) of the pro-
cess in Figure enabling requirements extraction from large tender docu-
ments with an average accuracy of 82%. This solution resulted in an estimated
80% reduction in manual efforts of requirements identification as per the eval-
uation conducted by Alstom in the Al-augmented Automation for DevOps, a
model-based framework for continuous development in Cyber—Physical Sys-
tems (AIDOaRT) EU project [[15)]. Furthermore, we augment steps (4) and (5)
of the process, outlined in Figure by providing support for well-informed
requirements allocation during implementation and enabling automated reuse
identification. For requirements allocation, as per the company’s evaluation in
the AIDOaRT project, an overall 80% decrease in project efforts was seen. For
reuse identification, we improved the solution and achieved an average accu-
racy of more than 82% in the SmartDelta project [16]. Initial estimates in the
XIVT - eXcellence in Variant Testing project [17] suggest that the approach
can reduce the delivery time of the propulsion sub-system by at least 20 daysﬂ

2REQ-I: https://github.com/a66as/REFSQ2023-ReqORNot
3ITEA News about VARA, Accessed 31 Jul, 2025. https://itead.org/news/...


https://itea4.org/news/promising-results-using-nlp-and-machine-learning-to-automate-variability-and-reuse-analysis-at-bombardier-transportation.html
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Disclaimer: The numbers and results presented in the “Practical Relevance” sub-
section are based on our industrial partner’s estimates. The numbers are computed by a
few experts who used the tools and made estimates based on experience.



Chapter 3

Background & Related Work

As mentioned in Chapter 2} the project-based setting studied in the thesis re-
sembles the SPLE processes described in the literature. Section [3.1]covers the
general SPLE process. Furthermore, the thesis’s contributions build on exist-
ing algorithms and approaches from information retrieval (IR), ML, and NLP.
Therefore, this chaptelﬂ provides a brief overview of typical text processing ac-
tivities, text embeddings, and related downstream tasks in Section [3.2] Finally,
Section B3] briefs the related work to the thesis’s contributions.

3.1 Software Product Line Engineering (SPLE) in
practice

SPLE is based on the rationale of engineered reuse. The SPLE development
process is divided into two larger engineering phases: domain and applica-
tion engineering. As shown in Figure [3.1] (inspired by Pohl et al. [1]]), in do-
main engineering, experts start by scoping the domain with clearly defined
requirements, which are often elicited through multiple iterations. The do-
main requirements are used to scope a standard architecture by allocating var-
ious common requirements to various architecture components. The standard
architecture and common requirements are realized by a set of implemented
reusable domain assets.

IThis chapter borrows some concepts and parts from the licentiate thesis of the author [18].

15
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Figure 3.1: A typical software product line engineering process

When a new product (new project) is to be developed, application engi-
neering takes over. Application engineering has its own dedicated phases for
application requirements engineering, design, and implementation. The activi-
ties in application engineering often reuse existing domain assets to address the
new customer’s requirements. This phase could also result in “owning” the do-
main assets by adapting them to the new customers’ requirements. Further, the
phase must also consider existing application assets developed in other projects
for reuse. Therefore, it is common to include reuse analysis in application en-
gineering to find reuse opportunities across product variants (existing projects)
and domain assets.

In the studied project-based development setting, SPLE is used to enable
the quick and high-quality delivery of products. In such project-based setups,
product-oriented thinking (like SPLE) often clashes, resulting in loosely fol-
lowed SPLE processes with projects as the main focus [19]]. In addition to sev-
eral other organizational factors and high upfront investment in SPLE adoption,
companies often opt for incremental adoption of SPLE processes with oppor-
tunistic reuse. In practice, it is common to develop domain requirements and
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assets iteratively and adopt ad-hoc reuse practices [9]. This ad-hoc reuse pro-
cess often relies on reusing assets across the domain and project, which leads
to cloning existing assets and adapting them to meet new requirements. This
way of reuse is known as clone-and-own reuse. While clone-and-own reuse is
easy to implement and can result in quick product deliveries, it is unstructured
and requires knowledge of existing projects and domain assets. Therefore, a
reuse analysis must be done to identify existing domain and project assets that
are often scattered across various repositories.

Natural language (NL) is the de facto standard for eliciting and docu-
menting customer and domain requirements in industrial software develop-
ment [20]. This widespread use extends to SPLE in practice, where organi-
zations often rely on NL requirements to capture both commonalities and vari-
abilities across products. However, such project-based SPLE setups frequently
involve ad-hoc reuse, making the reuse and decision-making processes around
requirements reuse time-consuming and error-prone. This impacts product de-
livery schedules. To enable efficient requirements processing and reuse, both
across projects and within product lines, automation at the NL requirements
level becomes essential. Such automation can reduce reliance on key experts
and make the process less prone to errors.

The remainder of this chapter provides a brief overview of the background
and related work in the areas related to NL requirements processing and reuse.

3.2 Text Processing & Representation

3.2.1 Pre-processing

Pre-processing of NL requirements is a preliminary step in preparing textual
requirements for downstream NLP tasks. It involves changing raw and unstruc-
tured text into a clean and consistent format suitable for linguistic analysis and
machine-learning approaches. This step is especially critical for requirements
that often include domain-specific terms, math symbols, and inconsistent for-
matting.

While the specific pre-processing steps can vary based on the downstream
task and the selected NLP approach, the core techniques typically include text
cleaning, tokenization, part-of-speech (POS) tagging, and text normalization,
as briefed below.
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Text cleaning. Before analyzing requirement texts, it is important to clean
them by removing unnecessary formatting noise and supporting information
that may not be useful for automated analysis. This includes textual elements
such as double spaces, tabs, punctuation, special characters, capitalization, and
numbers. These parts often enhance requirements’ readability and formatting,
but are not helpful for NLP approaches and, in turn, can make it harder for tra-
ditional NLP approaches to understand the text correctly. An example require-
ment from the rail domain is shown below, both before and after cleaning.

Original: In the event that the 25kV AC supply is lost, either unexpectedly, or
due to traversing a neutral section, then the ACM 400V 3 phase output shall not
be interrupted while the train is moving. Any minimum operating speed that ap-
plies to this requirement shall be stated.

Cleaned: in the event that the ac supply is lost either unexpectedly or due to
traversing a neutral section then the acm phase output shall not be interrupted
while the train is moving any minimum operating speed that applies to this re-
quirement shall be stated

©This listing is a property of Alstom.

Another important step is tokenization, which means breaking the text into
smaller pieces like sentences or individual words. This makes the text easier to
work with and helps prepare it for further analysis. For example, tokenization
supports tasks like part-of-speech (POS) tagging, where each word is labeled
with its grammatical role (like noun or verb), enabling text normalization by
making it more consistent for machine learning or other NLP tasks. The ex-
ample requirement in this case would be broken into two sentences and the
following example word tokens.

[“in”, “the”, “event”, “that”, “the”, “ac”, “Sllpply”, “iS”, “IOSt”, - “l’l’lOVil’lg”]

This allows for syntactic parsing and enables downstream tasks like semantic
role labeling or clause identification.

POS tagging labels each word with its grammatical role, helping to distin-
guish components such as conditions, actions, and entities in the text. In the
context of requirements, this helps distinguish between actions (verbs), entities
(nouns), descriptors (adjectives), and logical connectors (conjunctions, prepo-
sitions). Accurate tagging allows for better pattern recognition in requirement
statements, such as conditional phrases, system behaviors, and constraints.
Further, it supports a more accurate text normalization. Below, we provide
an excerpt of the POS tagging for the example requirement.
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[in:IN the:DT event:NN that:IN the:DT ac:NN supply:NN is:VBZ lost: VBN ei-
ther:CC unexpectedly:RB or:CC due:IN to:TO traversing:VBG a:DT neutral:JJ
section:NN ...]

Key: IN: Preposition or subordinating conjunction - DT: Determiner - NN: Noun, singular or mass
- VBZ: Verb, singular present - VBN: Verb, past participle - CC: Coordinating conjunction - RB:
Adverb - TO: preposition or infinitive marker - VBG: Verb, present participle - JJ: Adjective

This facilitates rule-based pattern recognition (e.g., identifying condition-
action structures) and supports later steps like lemmatization and entity
recognition.

Text Normalization converts text into a consistent format for machine inter-
pretation. It avoids different interpretations of the same word used in other con-
texts. Common approaches utilize lowercase conversion, stop-word removal,
and lemmatization, as briefed below.

Lemmatization utilizes the POS tags to reduce the words of the require-
ments to their roots, called lemmas. This is to avoid different interpretations
of the same word in different language forms. This step of lemmatization is
crucial when analyzing requirements, as the same concept may be expressed in
different grammatical forms, such as “interrupted”, “interrupts”, or “interrupt-
ing”. Converting all variants to a single, normalized form (e.g., “interrupt’)
ensures semantic consistency and reduces sparsity in textual representations.

Lemmas are computed using either stemming or lemmatization algorithms.
While both stemming and lemmatization aim to simplify word forms, they op-
erate in different ways. Stemming applies crude heuristics to chop off word
endings (e.g., “ed”, “ing”, “s”) without considering the syntactic correctness of
the result. In contrast, lemmatization uses morphological analysis and linguis-
tic knowledge (often via lexical databases) to reduce words to a valid lemma in
the same language. For example, the Porter stemming algorithm [21] is one of
the earliest and most widely used stemmers in the field, known for its speed and
simplicity. However, it often leads to non-word stems (e.g., “traversing” may
become “travers”). Therefore, lemmatization is generally preferred, especially
in formal contexts like RE, because it preserves grammatical correctness and
contextual meaning [22]]. A common lemmatization approach is the WordNet
lemmatizer, which performs a database lookup to determine the correct lemma
based on a word’s POS tag. This ensures that different grammatical forms of
a word are grouped under a common root, improving the consistency of repre-
sentation in downstream tasks. Table 3.1 shows a set of words, their POS tags,
the stemmed word using the Porter stemmer, and their lemmatized form using
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the WordNet lemmatizer. As seen from the results in Table 3.1} lemmatization
algorithms produce readable lemmas that improve consistency.

Table 3.1: Comparison of Stemming and Lemmatization on Requirement Text

Original Word | POS Tag | Stemmed (Porter) | Lemmatized (WordNet)

lost VBN lost lose

interrupted VBN interrupt interrupt

moving VBG move move

traversing VBG travers traverse

unexpectedly RB unexpect unexpectedly

supply NN suppli supply

neutral 1 neutral neutral

POS Key VBN: Verb, past participle - VBG: Verb, present participle -
RB: Adverb - NN: Noun, singular or mass - JJ: Adjective

Stop-word removal is used to omit words like “the”, “that”, and ‘“‘shall”
depending on task context. These words serve grammatical and structural pur-
poses in a natural language but contribute less to the meaning or intent of a
requirement when performing automated analysis. Stop-word removal can re-
duce the noise in data and steer automated analysis toward more informative
terms.

This cleaned and normalized form is suitable for representing requirements,
enabling downstream tasks (particularly, the ones based on traditional NLP)
based on classification, clustering, generation, or rule-based analysis. Below,
we show the text of the example requirement being replaced with the cleaned
and lemmatized text for further downstream tasks.

Cleaned and normalized example requirement: event ac supply lose unexpect-
edly traverse neutral acm phase output interrupt train any minimum operating
speed apply requirement

3.2.2 Text Representation

Textual requirements are often the primary means of documenting system
needs, user expectations, and functional specifications. To enable automated
analysis, reasoning, and other downstream tasks, these NL requirements must
be transformed into structured, machine-interpretable forms. One common
approach is to represent each requirement as a numerical vector, which
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captures its linguistic and semantic properties in a form interpretable for
machine learning and NLP techniques. These approaches are commonly
referred to as word embedding approaches. The goal of word embedding
approaches is to produce embeddings that capture both surface-level lexical
features (e.g., specific terminology or term frequency) and deeper semantic
relationships (e.g., intent, constraints, and dependencies) of the text. That way,
the representation of similar words and requirements will also be geometrically
similar, enabling more effective downstream learning tasks. Representation
learning approaches range from basic lexical representations based on lexical
features of the text to contextual embeddings derived from large language
models (LLMs), which often capture the probabilistic distribution and latent
semantic nuances. We briefly discuss some of the commonly used embedding
approaches as follows.

Frequency-based representation. Due to the limited and common vocab-
ulary used in industrial requirements [23]], simple representation techniques
based on word frequency and co-occurrence can sometimes yield effective re-
sults. These methods typically rely on the presence or absence of terms to
construct a term-document matrix, from which numerical vectors for individ-
ual requirements are derived.

One of the most widely used approaches in this category is the Bag-of-
Words (BoW) model. It generates a term-document matrix by counting how
often each word appears in a requirement, disregarding word order, syntax, and
grammar [24]]. Despite its simplicity, BoW can be helpful when working with
well-structured and domain-specific requirement texts.

Building upon BoW, the Term Frequency—Inverse Document Frequency
(TFIDF) model introduces a more refined way of capturing the lexical signif-
icance of the requirement’s terms. It enriches the traditional term-document
matrix by weighting terms based on their importance across the entire corpus
of requirements. As the name suggests, term frequencies (TF) are calculated
by dividing the frequency of each term by the total number of terms in the re-
quirements. Inverse frequencies (IDF) consider how common or rare a word
is across the entire corpus (collection of requirements) and are calculated as
follows.

IDF(term) = log(# of regs. / (# of regs. containing the term))

Together, TF and IDF scores are multiplied to produce the final TFIDF score
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for each term, forming a weighted term-document matrix that reflects the rele-
vance of each term in the context of the collection of requirements.

To further enrich the representation, the term co-occurrences (n-gram) can
be considered. That way, sequences of n terms could be added as single fea-
tures, enriching the term-document matrix. For example, the terms “AC” and
“supply” can be combined to form the bigram “AC supply”, which may carry
more semantic weight than the individual terms alone. However, incorporating
n-grams significantly increases feature space, resulting in a high-dimensional
matrix with many sparse entries (i.e., containing many zeros). To address
this, dimensionality reduction approaches, such as principal component anal-
ysis (PCA) [25]], are often employed. These approaches reduce the number
of features while preserving the most informative features of the data, thereby
enabling the construction of lower-dimensional, dense vectors that are more
efficient for machine learning tasks.

Static Embeddings. Dense and semantically enriched vector representa-
tions can be generated using machine learning models designed for represen-
tation learning. Among these, neural network—based word embedding models
have become prominent in recent years. This part of the subsection briefs the
most commonly used models that generate fixed (static) embeddings. Such
static embedding approaches associate a particular word with a single vector,
which remains static regardless of the word’s context in a requirement. While
these embeddings do not adapt vectors to context for the same word, they can
capture general semantic relationships by leveraging statistical features such as
global word co-occurrence.

One of the most well-known families of static word embedding models is
based on the Word2Vec architecture [26]. Word2Vec is designed to learn vec-
tor representations by capturing the local context of words within a predefined
sliding window over a text corpus. This model predicts surrounding context
words given a target word (or vice versa), using positive examples such as
(“AC”, “supply”) that occur together in natural text. To improve learning and
reduce overfitting, the model also generates negative examples by randomly
pairing unrelated words, such as (“lost”, “moving”). For vector inference, the
values from the output layer serve as the vector embeddings for each word in
a high-dimensional space. Doc2Vec, an extension of Word2Vec, is designed
to generate embeddings for the entire document (requirement) rather than indi-
vidual words [27]. It adds unique document identifiers into the training process



3.2 Text Processing & Representation 23

Avg./
Concat.
Word
[
T < Vectors
D \Word \Word \Word

R1 event ac supply

Figure 3.2: The architecture of Doc2Vec

to capture document-level semantics. The resulting document vectors are ob-
tained by averaging or concatenating the word vectors, as shown in Figure[3.2]
allowing each document to be represented as a single dense vector.

Another prominent static embedding model is GloVe (Global Vectors
for Word Representation) [28]], which takes a different approach by focus-
ing on global co-occurrence statistics across the entire corpus. Instead of
relying solely on local context windows, GloVe constructs a word-to-word
co-occurrence matrix and uses matrix factorization techniques to learn embed-
dings that capture semantic relationships. For example, the vector difference
between “king” and “queen” reflects latent gender distinctions. This property
may not be explicitly apparent from the corpus but can be learned through
global patterns.

FastText is another static embedding model developed by Facebook [29].
It builds on Word2Vec with additional subword (character-level n-grams) in-
formation, allowing the model to learn more robust representations at the char-
acter level. This subword-level modeling helps generalize better across vo-
cabulary, especially in technical or domain-specific texts. Further, it can easily
deal with out-of-vocabulary (OOV) words during inference due to its sub-word
level training.

Contextual (dynamic) Embeddings. For a deeper automated understand-
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ing of text, it is required to understand the context in which a words are used.
For instance, the word “supply” has different contextual meanings in “power
supply” and “The company supplies components...”. To capture this nuance
semantics, contextual embedding models are trained to produce different vec-
tor representations for the same word based on their surrounding words. We
briefly present some of the notable contextual embedding approaches in the
area that rely on bi-directional Long Short-Term Memory (bi-LSTM) [30] and
transformer [31]] architectures.

ELMo (Embeddings from Language Models) [32] is a contextual embed-
ding model that processes input text using both forward and backward two-
layer LSTMs [30]]. The outputs from all layers are concatenated and reflected
into a 512-dimensional dense embedding for each token. Simply put, dur-
ing training, it takes the words before and after the target word as input and
attempts to guess the missing word (the target). ELMo is pre-trained on a 1-
billion-word corpus using language modeling objectives: predicting the next
word in the forward direction and the previous word in the backward direction.
After pretraining, only the projection layer is fine-tuned for downstream NLP
tasks, allowing for transfer learning to other domains.

Another set of contextual models, trained on the same principle of next-
word prediction, is based on the Transformer architecture. Notable families of
models include the Bidirectional Encoder Representations from Transformers
(BERT) [33]], Universal Sentence Encoder (USE) [34], and Generative Pre-
trained Transformer (GPT) [35]. These models are also trained in the self-
supervised learning environment, often leveraging variations of the next-word
prediction or masked token prediction objectives to learn contextual represen-
tations. At the core of the Transformer architecture is the attention mechanism,
which enables the model to dynamically weigh the importance of different
words in a sequence relative to one another. However, unlike ELMo, which
processes text sequentially and is unable to capture long-range token depen-
dencies, self-attention enables each word in a sentence to directly attend to all
other words in parallel. This design enables Transformers to capture both lo-
cal and global context in the text effectively. For example, in a requirement
such as “If the power supply is lost unexpectedly, the system shall enter safe
mode”, the self-attention mechanism allows the model to learn that “lost” is
semantically linked to “power supply” and that “safe mode” is a resulting ac-
tion, even though these terms are separated by several tokens. Such flexible
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and holistic context modeling is particularly valuable in RE, where terms can
be domain-specific, technical, and context-sensitive.

BERT is designed to generate deeply bidirectional representations by con-
sidering both left and right contexts. It is trained using a masked language
modeling (MLM) objective, where a certain portion of input tokens are ran-
domly masked, and the model is tasked with predicting the original tokens.
This approach enables BERT to capture nuanced contextual information from
both directions.

In contrast, GPT follows a unidirectional (left-to-right) approach, predict-
ing the next token in a sequence given all previous ones. This setup is effective
for generative tasks such as text completion, summarization, or dialogue gen-
eration. While the original GPT model was primarily focused on language
generation, later versions (e.g., GPT-4) have demonstrated strong performance
in a wide range of NLP and RE tasks through few-shot or zero-shot learning
without requiring task-specific fine-tuning (e.g., [36]).

Depending on the specific BERT and GPT variant and the downstream task,
the requirement embedding can be derived in different ways. A common ap-
proach is to use the representation of the [CLS] token for BERT and the final
hidden state of the last token for GPT, which captures an aggregate represen-
tation of the entire input sequence (e.g., a sentence or a requirement). Other
methods for deriving embeddings include averaging all token embeddings from
the final hidden layer, which is used to obtain a more evenly distributed repre-
sentation of the input text.

Note that for most transformer-based models, it is often not necessary to
pre-process the requirements. In addition, these models can be fine-tuned on
domain-specific corpora, such as industrial requirements, to enhance perfor-
mance on specialized tasks, including classification, requirement clustering, or
semantic similarity.

Downstream tasks and Evaluation: Numerical multi-dimensional repre-
sentation of requirements enables various downstream processing tasks. Most
software and requirements engineering problems can be formulated as a down-
stream NLP task [37,138]], as briefed below.

» Text similarity: Duplicate or similar requirement detection is essential
for reuse and quality assurance. The problem can be formulated as a
text similarity problem to quantify the semantic closeness between their
vector representations (e.g., [39]).
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» Text clustering: The grouping of related requirements for allocation or
domain requirements analysis becomes feasible through the application
of clustering algorithms to embeddings (e.g., [40Q]).

* Recommendation and retrieval: Suggesting related requirements for
reuse, linking stakeholders, retrieving relevant context, or identifying
missing requirements aligns with problems in recommender systems and
information retrieval, most of which rely on vector-based comparisons
(e.g., [41,142]).

» Text classification: Automatically identifying or categorizing require-
ments by type, quality attribute, or priority helps in the organization,
traceability, and task allocation. This can be formulated as a text classi-
fication problem (e.g, [43]).

* Auto-completion and text generation: Automatically completing re-
quirements and generating new ones based on context can be formulated
as a classic text generation problem [44}45]).

To measure the effectiveness and performance of these approaches on the
tasks, a variety of standard evaluation metrics are used. Similarity-based tasks
often use correlation coefficients such as Pearson or Spearman rank correlation
to assess how well the model’s predicted similarity scores are associated with
human judgment or labeled ground truth. In ranking or recommendation tasks,
metrics such as Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR) are commonly used to evaluate how effectively a model retrieves rele-
vant items from a larger set. For classification tasks, precision, recall, and F1-
score are widely used. Precision reflects how many of the predicted labels are
correct, recall measures how many of the actual relevant items were retrieved,
and the Fl-score provides a harmonic mean of the two, offering a balanced
view of performance. Finally, for generation tasks, the semantic alignment of
the generated text and the reference text is quantified using metrics such as the
BLEU (Bilingual Evaluation Understudy) score.

3.3 Al for RE and SPLE downstream tasks

The body of related work relevant to this thesis primarily explores the use of
ML, NLP, artificial intelligence (Al), and IR approaches to support downstream
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Figure 3.3: Themes in related work to this thesis

tasks in RE and SPLE. As presented in Figure[3.3] this literature can be broadly
categorized into two themes: requirements processing and studies on aiding
reuse.

In requirements processing, we focus on literature that often categorizes
or classifies requirements to aid various RE tasks, such as allocation or iden-
tification. A closely related line of work to requirements classification is the
work on automating the issue triage process. Therefore, we also include is-
sue assignment as a related thread of work. On the other hand, studies that aid
reuse include those that explore requirement reuse through automated analysis.
This theme of related work sees traceability link recovery as a crucial enabler
for requirements-driven software reuse. Further, another line of related work
focuses on extracting and locating features to aid engineered reuse within a
software product line. We provide a brief overview of the above-mentioned
related areas of research as follows.

3.3.1 Requirements identification, assignment and classifi-
cation

Requirements identification problem is typically formulated as a binary text
classification problem in the literature. Typically, approaches in this area use
various NLP and ML pipelines to classify a given text into either a require-
ment or information. This helps in identifying requirements in larger textual
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documents, reviews, and public texts. Furthermore, work within RE also fo-
cuses on using binary classification to distinguish between functional and non-
functional requirements automatically.

Abualhaija et al. [46] investigate the problem of automatically identifying
and extracting requirements from large-scale tender documents, which often
contain heterogeneous and unstructured text. Their approach involves con-
structing a feature matrix from the text of the documents and applying a range
of machine-learning classification techniques to determine which segments of
the text may contain potential requirements. In a comprehensive evaluation,
involving 30 industrial requirements documents, their approach demonstrated
a high level of effectiveness, achieving an average recall of 95%. Among the
classifiers tested, a traditional Support Vector Machine (SVM)-based model
consistently outperformed the others, yielding the best average performance in
terms of recall. Winkler and Vogelsang [47] explore the application of deep
learning for the task of requirements identification in the automotive industry.
Their approach leverages word embeddings as input features to train a Con-
volutional Neural Network (CNN) aimed at distinguishing requirements from
non-requirement text. The evaluation results indicate that the model achieved
an average recall of 89%. Further analysis in their follow-up study [48]] reveals
that, depending on the accuracy, such automated tools can effectively reduce
misclassifications, introduce fewer errors into the classification process, and
accelerate the overall requirements identification process. Falkner et al. [49]]
address the challenge of requirements identification within the context of rail-
way domain request-for-proposal (RFP) documents. They employ a traditional
Naive Bayes (NB) classifier, trained on features extracted from the textual con-
tent of RFPs, to classify sentences as requirements or non-requirements. Their
preliminary evaluation, conducted on six real-world project documents, reports
an average recall of 85%, demonstrating the feasibility of lightweight machine
learning approaches for requirement demarcation.

Other related work in the area often focuses on different use cases, such as
identifying functional and non-functional requirements or distinguishing be-
tween privacy and usability requirements. For example, Herwanto et al. [50]
uses the Named Entity Recognition (NER) model, trained on bi-LSTM with
the conditional random field, to identify privacy requirements in user stories.
More recently, Alhoshan et al. [S1] experimented with a Zero-Shot Learning
(ZSL) technique on a subset of a public dataset to distinguish between usability
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and security requirements.

Requirements classification and Issue assignment. Within requirements
processing, requirements allocation to various teams for implementation is an
essential phase for project and resource planning. The problem of requirements
allocation can be formulated as a multi-class classification problem. Work in
this area often uses multi-class classification for assigning requirements to var-
ious architectural elements and classification of requirements into various sub-
functional and non-functional classes. Additionally, multi-class classification
is also used for assigning bugs and issues. This is a slightly different use case,
but issues are also typically viewed as requirements for enhancing a product
under development.

Cleland-Huang ef al. [52| 53] uses keywords to group requirements into
various non-functional classes. Their approach first identifies a set of key-
words in annotated requirements and then uses this set of keywords to classify
new requirements. This study introduces the classic PROMISE dataset [54],
which has since become a widely adopted benchmark in RE research for eval-
uating classification approaches. Similar to binary classification, work in this
area also typically goes beyond keywords, employing pre-processing and rep-
resenting the input in the shape of feature vectors or embeddings. In this re-
gard, Shafiq et al. [55] proposed the TaskAllocator that uses word embedding
together with LSTM to allocate tasks in an agile setup based on roles. Their
results from evaluating TaskAllocator on a public dataset show that TaskAllo-
cator achieved an average accuracy of around 69%. Furthermore, Casamayor
et al. [56] combines binary classification with clustering to group requirements
based on functionality and to enable allocation of them to design concerns of
the architecture. Their results from evaluating the approach on three sample
case studies show an average accuracy of around 74%.

With the recent emergence of large language models and their applica-
tions in software engineering research [37, I57)], many works have utilized
transformer-based models [31] for representing and then classifying require-
ments using transfer learning. A widely used model is the one proposed by
Devlin et al. [33]] called BERT. Varenov et al. [58] utilizes a variant of the
BERT language model for the representation of requirements to classify re-
quirements into various sub-classes of security. They use a sentence-level clas-
sifier based on fine-tuned DistilBERT [59] to allocate security requirements
into predefined groups. The work experiments with public datasets and shows
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that the DistilBERT-based classifier achieved an average F1 score of 78%. Fur-
thermore, a comparison by Hey et al. [43] compares language model-based
classification with traditional approaches on publicly available datasets. They
achieved an average F1 score of 87% for selected frequent classes with trans-
fer learning. More recently, classification problems have been formulated as
generative problems. In requirements classification, Alhoshan ef al. [60] ex-
plores the use of generative LLMs for binary and multi-class classification.
They compare the performance results of generative and non-generative mod-
els on three public datasets. Their results indicate that, on average, Llama
performs better in the generative LLMs for classification, showing less sensi-
tivity to dataset changes. On the other hand, non-generative models showed
better performance in multi-class requirements classification tasks.

Another group of related work focuses on issues assignment. The focus of
this group of related work is often to assign a feature request or bug report to de-
velopers or teams. For example, Aktas and Yilmaz reported their experience of
automating issue assignments at a Turkish company called Softech [61]. They
proposed an approach called IssueTAG, which uses the traditional TFIDF-
based classification for issue assignment. Their approach achieved an accuracy
of 83%, which is around 3% lower than the manual issue assignment in their
context. However, due to the automation of the process, a significant reduction
in issue assignment efforts has been seen. A similar work by Jonsson et al. [62]]
used an ensemble learner called Stacked Generalization (SG) on data from two
different companies, achieving an accuracy of 89%. Furthermore, the work of
Batista [[63]] uses sub-word level word embeddings for the representation of the
issues as vectors. The work then uses a hierarchical classification layer based
on Softmax for issue classification. Their evaluation of the approach using in-
dustrial data, in comparison with an approach from the literature, shows a 7
percent gain in accuracy.

3.3.2 Requirements reuse, feature extraction and traceabil-
ity

Requirements reuse is often enabled with recommender systems. These ap-

proaches are typically based on the assumption that requirements similarity

could be used as a proxy for similarity in other artifacts, such as software.
Leveraging similarity in the requirements domain, the recommender systems
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make cross-domain recommendations to aid various tasks within software en-
gineering.

In the context of requirements reuse, a seminal contribution to recom-
mender systems in RE uses TFIDF and cosine similarity to retrieve past
requirements from a large industrial dataset [64]]. Their tool, ReqSimile,
achieved approximately 50% recall for the top 10 recommended requirements,
offering significant time savings compared to traditional keyword-based
searches. SoCer is another software reuse approach that focuses on recom-
mending the reuse of Python code based on natural language input query [63].
The SoCer approach relies on an abstract syntax tree and code comments to
index existing Python software that is later used to retrieve relevant code for
reuse based on a user query. Recent work from Limaylla ef al. [66] proposes
the SimRE tool to recommend similar requirements in SPLE setup. They
utilize and compare word embedding and sentence BERT (SBERT) models
for identifying similar requirements written in Spanish. The OpenReq EU
project [67, 168]] offers recommendations for various stages of the RE process,
including bid management, elicitation, specification, and analysis. The project
employs content-based recommender systems to support various RE activities,
utilizing vector-space language models for representation and similarity
computation. The project’s results include a service that provides means for
measuring similarity between requirements using the TFIDF model.

Another group of related studies focuses on developing and structuring
generic and reusable requirements tailored to aid reuse. In this regard, mod-
eling has been employed to support this structuring, reuse, and configuration
at the requirements level [[69]]. For example, Zen-ReqConf constructs require-
ments hierarchies using similarity measures, such as Jaro and Jaccard, to sup-
port automated requirements structuring and reuse in a software product line.
Moon et al. [70] proposed a systematic approach known as DREAM, which
derives core reusable domain requirements by analyzing legacy requirements.
Further evidence of effective reuse practices is found in the work of Niu et
al. [71], who combined IR and NLP with Fillmore’s case grammar theory to
extract functional requirement profiles and model them using the Orthogonal
Variability Model (OVM). Their approach utilizes lexical affinity to extract
requirements profiles, aiding in reuse. Arias et al.[72] introduced a frame-
work for managing requirements reuse within software product lines, rely-
ing on a well-defined taxonomy to facilitate the reuse process. Similarly, a
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multi-ontology-based approach [73] has been proposed to enable reuse. The
domain expert is tasked with constructing domain and task-specific ontolo-
gies, while CASE tools and questionnaires are used to guide analysts in de-
riving and eliciting application-specific requirements, enabling reuse. Finally,
catalog-based approaches have also proven valuable for reusing functional re-
quirements across similar existing projects [74, [75, [76]]. This includes map-
ping new project requirements into an existing catalog based on similarities to
identify reusable candidates. These methods are particularly useful for small
companies that do not maintain formal product line models and documentation.

Feature extraction approaches look for commonalities (similarity in arti-
facts), and variabilities to suggest features, extract feature diagrams, and detect
redundancy or duplicates. This could be particularly useful for domain engi-
neering and scoping product platforms. Schulze et al. [77]] details the feature
model extraction approaches that use both syntactic and semantic features to
extract features and other relationships. We briefly introduce some of the ap-
proaches below.

Domain analysis can require domain knowledge and common requirements
that are often extracted from publicly available documents. In this regard, on-
line product reviews have been used for the extraction of features for reuse.
Bakwr et al. [[78] lemmatizes the input reviews and uses TFIDF to derive a
term-document matrix. Based on the TFIDF scores, the approach identifies
domain features. Further public documents, such as brochures, can be used to
mine common domain terminologies and their variations. Ferrari et al. [79]
use public vendor documents to identify domain-generic and domain-specific
terminologies using contrastive analysis on ranked terms. These terms can
help in domain analysis and feature model construction. Similarly, Zhang et
al. [80] extracts high-level terms from requirements to support feature mod-
eling. Their work utilizes lexical features to extract noun phrases and then
adapts the TextRank algorithm to rank terms that can support domain analysts
in feature modeling.

Other work in the area uses natural language requirements for system fea-
ture extraction. Sree-Kumar et al. [81] proposed the FeatureX framework for
features and other relationship extraction to aid feature modeling. The frame-
work utilizes lexical features to identify subject-object and noun phrases in
requirements, which are then used to identify root features using TFIDF. The
relationships between extracted features are then extracted using rule-based
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heuristics. VIBE is another feature model extraction tool that explores ambi-
guity classes, such as vagueness and weakness, in requirements for detecting
potential variability [82]. Together with other variability indicators, VIBE uses
ambiguity indicators to extract fragments of feature models that can later be
combined into a system feature model by domain experts. Maazouner al. [83]]
compares the application of TFIDF, PCA, Latent Semantic Indexing (LSI), and
clustering for feature model extraction. Their comparison considers TFIDF,
PCA, and LSI for representing input requirements for clustering to extract fea-
ture models. Results show that LSI outperforms other methods in terms of
recall. Fantechi et al. [84] explored conversational LLMs for the task of ex-
tracting variability in requirements. Their work compares the performance of
LLMs in feature and variation point detection across two cases, with human
judgment and other rule-based approaches for variability extraction. Evalua-
tion shows comparable performance of the LLMs in feature and variation point
detection, with the Bing LLM performing better than ChatGPT 3.5.

Traceability and feature location. Trace link recovery is closely related to
requirements retrieval and plays a crucial role in enabling software reuse. This
task typically involves recovering links between development artifacts, such as
requirements and source code. Common approaches for trace link recovery
employ the application of IR methods, such as TFIDF and LSTI 85,186} 87, 88]],
as well as ontology-based approaches [89, 90, 91]. IR-based methods often
rely on the Vector Space Model (VSM) to compute textual similarity between
artifacts, utilizing term extraction and LSI to identify potential traceability
links. Ontology-based approaches provide an alternative that requires less la-
beled data, which can lower the barrier to adopting traceability in practice [92].
For example, Assawamekin ef al.[91] and Mosquera et al.[89] proposed Onto-
Trace, a tracing tool that combines textual similarity and domain ontologies to
enable reasoning-based trace link recovery.

With recent advances in NLP, studies have increasingly utilized LLMs for
trace link recovery. For example, Hey et al. [93] first fine-tunes a variant of
BERT for identifying parts of requirements that are irrelevant to trace link
recovery. They then use the classification results as a filter for a fine-grained
traceability link recovery between requirements and code. Lin er al. [94]
proposed a BERT-based framework for traceability link recovery between
code and requirements, called T-BERT. The framework utilizes a pre-trained
BERT model trained on source code to train a relation classifier between
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source code and requirements, incorporating additional code search data. The
relation classifier is then fine-tuned on data from an open-source project for
code-to-requirements traceability, enabling transfer learning. Evaluation of
T-BERT in three open-source projects with three BERT architectures shows
that it outperformed classic IR-based traceability approaches.

More recently, larger generative LLMs and Retrieval Augmented Gen-
eration (RAG) have also seen applications in traceability link recovery. Ge
et al. proposed a method for trace link recovery between high and low-level
requirements [95[]. They fine-tuned three varying sizes of the LLaMA model
with three fine-tuning strategies and compared the results with other pre-
trained LLMs, traditional IR-based approaches, and machine learning-based
approaches for trace link recovery. Their results show that their approach
outperformed traditional IR and ML-based methods for trace link recovery.
Additionally, the evaluation shows that the approach outperforms the GPT4o0
and DeepSeekR1 models in the task of trace link recovery between high-level
and low-level requirements. Hey et al. [96] augment pretrained LLMs with
in-context retrieval for prompt creation to recover traceability links between
requirements. Their analysis on six datasets shows GPT4o performs better
than other open-source LLMs in terms of F1 score. Evaluation also shows
that RAG combined with LLMs outperforms traditional IR-based trace link
recovery approaches.

A related area of research is feature location, which aims to identify where
product features are implemented in the source code, particularly useful in the
context of reverse engineering or re-engineering for SPLE. These approaches
often assume that feature descriptions and code share similar terms, allowing
textual similarity methods to be effective. For instance, But4Reuse is a semi-
nal reverse engineering tool that utilizes LSI to identify features across product
variants and provides real-world benchmarks for evaluation of new feature re-
location approaches [97]. Similarly, Zhao et al.[98]] combine IR with branch re-
verse call graphs to trace features back to their implementation, filtering initial
matches through graph analysis. Andam et al.[99] propose FLOrIDA, which
utilizes TFIDF and the Apache Lucene indexing library to locate features. It
ranks source files based on their similarity to feature descriptions and then uses
the PageRank algorithm to prioritize likely matches for feature location.
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3.4 Reflection on the Related Work

This thesis addresses gaps in requirements processing by leveraging text clas-
sification to support the identification and allocation of requirements. While
existing studies have explored classification for requirements engineering, the
use of transformer-based models and few-shot learning in the context of iden-
tification remains underexplored. Additionally, most research on requirements
allocation relies on benchmark datasets, lacking validation in practical, indus-
trial settings. These studies often focus solely on predicting the responsible
team without providing case-based explanations to support informed alloca-
tions. In contrast, our contribution emphasizes the importance of augmenting
predictions with case-based explanations to improve interpretability and sup-
port well-informed requirements allocation.

Prior work on requirements retrieval and reuse varies in scope. Although
recommender systems have been applied to various requirements engineering
tasks, their use in project-based environments with SPLE remains underex-
plored. In addition, the key underlying assumptiorﬂ of requirements-driven
retrieval for reuse recommendation largely remains untested. Moreover, there
is limited qualitative evidence on the practical effectiveness of such solutions
for reuse in real-world settings.

This thesis addresses these gaps by empirically validating the typical as-
sumption that requirements similarity can be used as a proxy for software sim-
ilarity in the context of retrieval for software reuse. It also gathers engineers’
perspectives on the assumption and introduces a reuse recommender system
to enable cross-project reuse recommendations. In addition, the thesis syn-
thesizes technical knowledge on similarity computation methods relevant to
retrieval and reuse.

ZReuse recommenders typically assume that requirements similarity can serve as a proxy for
software similarity.






Chapter 4

Research Results

This chapter briefly recaps the thesis goals and objectives. It then presents our
results and a summary of the contributions. We highlight the specific contribu-
tions of the included papers and discuss the validity of the results.

4.1 Thesis Contributions

In this thesis, we focus on improving the processing of industrial requirements
and reuse in project-based setups. We first identify enhancement opportuni-
ties and then present proposals targeted at improving industrial requirements
engineering processes. We found that similarity in requirements in a retrieval
context plays a vital role in requirements processing and reuse. Therefore, the
thesis synthesizes technical knowledge of requirements similarity and retrieval
into an accessible resource, helping educators teach and practitioners apply the
concepts to improve their processes. We summarize the research goals of this
thesis as follows:

RG1: To study the current practices, challenges, and enhancement op-
portunities in project-based software product development processes.
RG;: To investigate the augmentation of requirement processing and
reuse in a project-based software product development environment with
semi-automated approaches.

The goals of this thesis are realized by four key contributions as follows.
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Table 4.1: Mapping of contributions to the research goals

RG; | RG2
Cy X
Cy X
Cs X X
Cy X X

* C;: Practices and Challenges:

This initial contribution examines current practices in a project-based
software development setup, documenting the perceived challenges and
identifying opportunities for improvement. This contribution is essential
in guiding the doctoral project towards real-world problems.

Caz: Requirements Extraction and Allocation:

Among the many identified challenges and opportunities, Co focuses on
aiding the bidding and requirements allocation phases. This contribution
is two-fold. First, it proposes an approach to extract technical require-
ments from tender documents, aiding the bidding phase in project-based
setups. Then, after acquisition, the contribution proposes an approach
for allocating the extracted and improved requirements to teams as work
items.

C; Retrieval for Reuse:

This contribution explores requirements-driven software reuse across
projects. Cg first studies— both qualitatively and quantitatively— the
typical assumption of content-based recommender systems that simi-
larity in the abstracted domain (requirements) can be used as a proxy
for similarity in the detailed domain (software). Cg then leverages this
tested assumption and proposes a recommender system called VARA
that recommends the reuse of software components across projects to
reduce the lead time of projects. C3 also contributes to the identification
of additional enhancement opportunities for our first research goal.

C, Consolidated knowledge on similarity:
Computing requirements similarity is central in enabling semi-
automated requirements processing and reuse. C,4 puts together a
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pedagogical book chapter with supplementary implementations and data
to help educators, researchers, and practitioners implement the technical
concepts in similar settings.

Table presents a mapping of the contributions to our research goals. We
detail the contributions as follows.

4.1.1 C1: Practices and Challenges

C; is mainly realized by Paper A [8] and partly by Paper D [100]. Paper A
outlines the current practices of a project-based setup at a company. It presents
how an evolutionary SPLE process is used to enable quick and quality delivery
of new projects. Further, it presents the perceived benefits of an SPLE-based
development process, its perceived challenges, areas of improvement, and the
company’s future vision regarding its development process. The finding shows
that the company achieved significant improvements through ad-hoc manual
reuse in a project-based setup. In particular, development and testing time
were significantly reduced. In addition, new projects derived from domain
assets experienced a confidence boost.

Several challenges and improvement opportunities were identified. The
challenges were divided into three themes: Product Derivation (new project
development), Automation, and SPLE Awareness. In the product derivation
theme of challenges, among several concrete challenges, the identification of
reuse opportunities was one of them. In the automation theme of challenges, it
was observed that configuring general supporting tools for SPLE is challeng-
ing. Besides, it was also observed that the lack of SPLE awareness leads to
architectural decisions that negatively impact reuse.

We initially focused on identifying reuse opportunities by retrieving simi-
lar requirements to enable reuse (C3). While addressing the retrieval and reuse
problem, we also identified more challenges related to requirements identifica-
tion and allocation (Cs). Furthermore, Paper D adds additional challenges to
the identification of similar requirements in the context of retrieval for reuse. In
particular, Paper D highlights challenges in the standardization of component
interfaces, dependencies-aware reuse, and traceability that can hinder reuse.

Validity: The papers realizing this contribution employ focus group research
combined with thematic analysis of the transcripts to explore the research ques-
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tions in depth. To enhance the validity of the findings, several methodological
strategies were implemented to mitigate potential threats. First, the study ad-
hered to well-established qualitative research protocols, ensuring systematic
data collection and analysis. A diverse set of participants was selected from
different roles and departments within the company, allowing for a broad range
of perspectives and reducing the risk of bias. Further, the study design and in-
terpretation of findings involved multiple researchers and practitioners, reduc-
ing individual bias. Beyond the focus groups, data triangulation was further
achieved (in Paper A) through supplementary methods, including document
analysis and participant observation. These additional sources of data pro-
vided contextual grounding and helped validate the themes identified in the
focus group discussions, contributing to the overall robustness and credibility
of this contribution.

Nevertheless, it is worth noting that the studies were conducted within a
limited scope, focusing on a single company. While this context-specific ap-
proach restricts broad generalization, in line with the principles of case-based
generalization [[101]], the insights derived from this research can still apply to
similar organizational contexts that follow similar practices.

4.1.2 C2: Requirements Extraction and Allocation

Paper B [102] and Paper C [[103] serve as the primary realizations of this the-
sis’s contribution, both focusing on overall requirements processing. C2 is
structured around two interrelated objectives: extracting requirements from
large tender documents and effectively allocating these requirements to ap-
propriate technical teams for implementation.

The first proposal, realizing this contribution, introduces an approach for
extracting technical requirements from large documents. These documents,
which typically define the scope, constraints, and objectives of large-scale
projects, are often unstructured and written in natural language, making the
task of extracting relevant technical requirements non-trivial and laborious.
The proposed method leverages natural language processing techniques to
identify and extract these technical requirements, enabling early-stage project
acquisition activities.

The second proposal proposes an approach for allocating the extracted
technical requirements to the correct implementation teams. The approach
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defines requirements allocation as a classification problem and supplements
classification output with case-based explanations. This smart requirements al-
location approach with case-based explanations supports project managers in
making well-informed allocations, ultimately improving requirements process-
ing efficiency.

Together, these approaches enhance the overall requirements processing
in the studied settings by embedding intelligence and automation in the early
phases of project acquisition and help in resource planning.

Validity: The validity of the results presented in this contribution has been
carefully considered from multiple dimensions to ensure the soundness of the
evaluation. We formulated the problems of requirements extraction and alloca-
tion as text classification tasks, aligning with established methods in the field.
Performance was assessed using widely accepted metrics such as precision,
recall, F1-score, and accuracy. In the allocation task, although certain require-
ments in the original dataset were linked to multiple teams, the decision to
restrict the model to single-team allocations was made in consultation with the
industry partner. This simplification was appropriate due to the infrequency of
multi-team allocations, which hinders training reliable multi-label classifiers
under such a data-scarce environment.

To mitigate threats related to results credibility, model fine-tuning followed
recommended practices in pipeline configuration, leveraging standard, open-
source tools, and pre-trained models. Multiple configurations were explored,
and their performance was evaluated using five-fold cross-validation.

The empirical evaluation was conducted using data from a single company.
We don’t claim a broader generalization. However, in light of case-based gen-
eralization guidelines, the findings are likely transferable to similar project-
based engineering contexts, particularly within domains such as railway and
automotive systems, where comparable practices and organizational structures
are observed [101]].

4.1.3 C3: Retrieval for Reuse

This thesis contribution is focused on supporting reuse analysis at the require-
ments level, addressing one of the key challenges identified in C;. This con-
tribution is primarily realized by Paper D [[100] and Paper E [[104], with Paper
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F [105] offering additional technical insights related to retrieval and similarity
for reuse.

To address the challenge of reuse in requirements engineering, we inves-
tigated using requirements similarity as a proxy for software similarity in the
context of reuse recommendation. The underlying assumption is that software
components implementing similar requirements are themselves likely to be
similar and, hence, reusable. However, this assumption that ”similar require-
ments imply similar software” has not been rigorously validated in the existing
literature. To address this gap, Paper D investigates the relationship between re-
quirements similarity and software similarity. We conducted a mixed-methods
study that combines both quantitative analysis and qualitative insights from
practitioners. The findings reveal a moderate positive correlation between re-
quirements similarity and the similarity of the corresponding software imple-
mentations. Additionally, engineers expressed the intuitive belief that require-
ments similarity should align with software similarity in practice.

These results provide supporting empirical evidence on the fundamental as-
sumption of content-based recommender systems in our case. In Paper E [[104]],
we introduced a content-based recommender system to enable cross-project
software reuse recommendations based on customer requirements. This ap-
proach leverages word embedding techniques combined with clustering algo-
rithms to identify and recommend reusable domain and project assets that can
be tailored to address new customer needs. Our experimental results demon-
strate that the approach achieves reasonable performance in recommending rel-
evant assets for reuse. Further, the qualitative feedback from practitioners in-
dicates that the reuse recommendations provide valuable insights that support
engineers during reuse analysis.

Validity: To ensure the robustness of the results, we validated the assumption
and considered various semantic models for the recommender system. In test-
ing the assumption, the study acknowledges the implications of using automat-
ically generated code (a standard practice in the studied settings) for measuring
software similarity, noting that this could influence the observed correlations
and suggesting further validation of manually written code.

Standardized, open-source implementations were used throughout, and the
study designs were reviewed by both academic researchers and industry practi-
tioners. Practitioner involvement in qualitative data collection and in the study
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designs extended to data validation and thematic analysis, adding credibility
to the findings. Further, we followed standard focus group protocols to reduce
potential bias.

Again, while the data originates from a single company, the results and
data are likely representative of similar structured project-based engineering
environments, such as railway, automotive, and aerospace. The inclusion of
expert perspectives from diverse teams using different requirements engineer-
ing practices further enriches the contextual diversity of the findings. Finally,
the studies ensure reliability by providing detailed discussions of the experi-
mental setup and procedures, including replication artifacts (for papers D and
F).

4.1.4 C4: Consolidated knowledge on similarity

Paper F [[105] realizes this thesis contribution and is motivated by C,, C3, and
an earlier tutorial on similarity-driven software reuse recommendation [106].
The contribution focuses on consolidating a technical knowledge resource for
requirements similarity computation and retrieval. Recognizing requirements
similarity as a critical enabler for a wide range of RE activities—including
recommendation systems, traceability link recovery, and reuse—the contribu-
tion provides a structured and comprehensive technical resource that discusses
linguistic similarity, data representation strategies, evaluation, and similarity
metrics.

Further, the contribution unifies diverse NLP-based techniques—spanning
from traditional lexical approaches to deep learning models—into a pedagogi-
cal book chapter accompanied by a code repository, enabling RE educators and
practitioners to apply the concepts. Concrete cases, such as requirements reuse
and requirements-driven software retrieval, are demonstrated, both on public
and industrial data, to show the practical relevance of similarity computation
pipelines.

In addition to synthesizing relevant technical knowledge on similarity, the
contribution also identifies key research gaps and outlines future directions for
advancing similarity computation and retrieval in RE. This work thereby serves
both as a technical reference and a guide for researchers and practitioners aim-
ing to enhance RE practices.
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Validity: The validity of the results presented in this contribution is sup-
ported by the application of multiple similarity computation pipelines across
real-world industrial and public cases in requirements reuse and requirements-
driven software retrieval. Further, we provide comprehensive supplementary
software artifacts for reproducibility.

4.2 Paper Contributions

This section presents a mapping of the included papers to the thesis contribu-
tions, the individual contributions, and brief abstracts of the included papers.
Each thesis contribution is mapped to at least one included paper, as shown in

Table[d2

Table 4.2: Mapping of contributions to the included papers

Paper A | Paper B | Paper C | Paper D | Paper E | Paper F
C X X
Cs X X
Cs X X X
Cy X

4.2.1 Individual Contributions

I am the primary driving researcher and author for the included papers A, D,
E, and F. For Paper B and Paper C, the first author and I were both co-driving
researchers and authors with equal contributions. In particular, we both drove
the whole research from conception to implementation. Note that other co-
authors and the supervision team participated in the brainstorming and plan-
ning sessions for the research and provided useful feedback on the drafts of
the included papers. Further, they also partly contributed to various supporting
sections, such as related work and background.

4.2.2 Included Papers

Paper A: Product Line Adoption in Industry: An Experience Report from
the Railway Domain
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Authors: Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul
Enoiu, Mehrdad Saadatmand, Daniel Sundmark.

Published in: the 24th International Systems and Software Product Line Con-
ference (SPLC 2020).

Abstract: The software system controlling a train is typically deployed on var-
ious hardware architectures and is required to process various signals across
those deployments. Increases of such customization scenarios, as well as the
needed adherence of the software to various safety standards in different appli-
cation domains, has led to the adoption of product line engineering within the
railway domain. This paper explores the current state-of-practice of software
product line development within a team developing industrial embedded soft-
ware for a train propulsion control system. Evidence is collected by means of a
focus group session with several engineers and through inspection of archival
data. We report several benefits and challenges experienced during product
line adoption and deployment. Furthermore, we identify and discuss research
opportunities, focusing in particular on the areas of product line evolution and
test automation.

Paper B: Requirement or Not, That is the Question: A Case from the Rail-
way Industry

Authors: Sarmad Bashir, Muhammad Abbas, Mehrdad Saadatmand, Eduard
Paul Enoiu, Markus Bohlin, Pernilla Lindberg.

Published in: the 29th International Working Conference on Requirement En-
gineering: Foundation for Software Quality (REFSQ 2023).

Abstract: [Context and Motivation] Requirements in tender documents are
often mixed with other supporting information. Identifying requirements in
large tender documents could aid the bidding process and help estimate the
risk associated with the project. [Question/problem] Manual identification of
requirements in large documents is a resource-intensive activity that is prone
to human error and limits scalability. This study compares various state-of-
the-art approaches for requirements identification in an industrial context. For
generalizability, we also present an evaluation on a real-world public dataset.
[Principal ideas/results] We formulate the requirement identification prob-
lem as a binary text classification problem. Various state-of-the-art classifiers
based on traditional machine learning, deep learning, and few-shot learning
are evaluated for requirements identification based on accuracy, precision, re-
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call, and F1 score. Results from the evaluation show that the transformer-based
BERT classifier performs the best, with an average F1 score of 0.82 and 0.87
on industrial and public datasets, respectively. Our results also confirm that
few-shot classifiers can achieve comparable results with an average F1 score
of 0.76 on significantly lower samples, i.e., only 20% of the data. [Contribu-
tion] There is little empirical evidence on the use of large language models and
few-shots classifiers for requirements identification. This paper fills this gap by
presenting an industrial empirical evaluation of the state-of-the-art approaches
for requirements identification in large tender documents. We also provide a
running tool and a replication package for further experimentation to support
future research in this area.

Paper C: Requirements Classification for Smart Allocation: A Case Study
in the Railway Industry

Authors: Sarmad Bashir, Muhammad Abbas, Alessio Ferrari, Mehrdad Saa-
datmand, Pernilla Lindberg.

Published in: the 31st International Requirements Engineering Conference
(RE 2023).

Abstract: Allocation of requirements to different teams is a typical preliminary
task in large-scale system development projects. This critical activity is often
performed manually and can benefit from automated requirements classifica-
tion techniques. To date, limited evidence is available about the effectiveness
of existing machine learning (ML) approaches for requirements classification
in industrial cases. This paper aims to fill this gap by evaluating state-of-the-art
language models and ML algorithms for classification in the railway industry.
Since the interpretation of the results of ML systems is particularly relevant
in the studied context, we also provide an information augmentation approach
to complement the output of the ML-based classification. Our results show
that the BERT uncased language model with the softmax classifier can allocate
the requirements to different teams with a 76% F1 score when considering re-
quirements allocation to the most frequent teams. Information augmentation
provides potentially useful indications in 76% of the cases. The results con-
firm that currently available techniques can be applied to real-world cases, thus
enabling the first step for technology transfer of automated requirements clas-
sification. The study can be useful to practitioners operating in requirements-
centered contexts such as railways, where accurate requirements classification
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becomes crucial for better allocation of requirements to various teams.

Paper D: On the relationship between similar requirements and similar soft-
ware

Authors: Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul
Enoiu, Mehrdad Saadatmand, Daniel Sundmark.

Published in: Requirements Engineering 28, 23-47 (2023).

Abstract: Recommender systems for requirements are typically built on the
assumption that similar requirements can be used as proxies to retrieve similar
software. When a stakeholder proposes a new requirement, natural language
processing (NLP)-based similarity metrics can be exploited to retrieve exist-
ing requirements, and in turn, identify previously developed code. Several
NLP approaches for similarity computation between requirements are avail-
able. However, there is little empirical evidence on their effectiveness for code
retrieval. This study compares different NLP approaches, from lexical ones
to semantic, deep-learning techniques, and correlates the similarity among re-
quirements with the similarity of their associated software. The evaluation
is conducted on real-world requirements from two industrial projects from a
railway company. Specifically, the most similar pairs of requirements across
two industrial projects are automatically identified using six language models.
Then, the trace links between requirements and software are used to identify
the software pairs associated with each requirements pair. The software sim-
ilarity between pairs is then automatically computed with JPLag. Finally, the
correlation between requirements similarity and software similarity is evalu-
ated to see which language model shows the highest correlation and is thus
more appropriate for code retrieval. In addition, we perform a focus group
with members of the company to collect qualitative data. Results show a mod-
erately positive correlation between requirements similarity and software sim-
ilarity, with the pre-trained deep learning-based BERT language model with
preprocessing outperforming the other models. Practitioners confirm that re-
quirements similarity is generally regarded as a proxy for software similarity.
However, they also highlight that additional aspect come into play when decid-
ing software reuse, e.g., domain/project knowledge, information coming from
test cases, and trace links. Our work is among the first ones to explore the rela-
tionship between requirements and software similarity from a quantitative and
qualitative standpoint. This can be useful not only in recommender systems but
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also in other requirements engineering tasks in which similarity computation
is relevant, such as tracing and change impact analysis.

Paper E: Automated Reuse Recommendation of Product Line Assets based
on Natural Language Requirements

Authors: Muhammad Abbas, Mehrdad Saadatmand, Eduard Paul Enoiu,
Daniel Sundmark, Claes Lindskog

Published in: the 19th International Conference on Software and Systems
Reuse (ICSR 2020).

Abstract: Software product lines (SPLs) are based on reuse rationale to aid
quick and quality delivery of complex products at scale. Deriving a new
product from a product line requires reuse analysis to avoid redundancy and
support a high degree of asset reuse. In this paper, we propose and evaluate
automated support for recommending SPL assets that can be reused to realize
new customer requirements. Using the existing customer requirements as
input, the approach applies natural language processing and clustering to
generate reuse recommendations for unseen customer requirements in new
projects. The approach is evaluated both quantitatively and qualitatively in the
railway industry. Results show that our approach can recommend reuse with
74% accuracy and 57.4% exact match. The evaluation further indicates that
the recommendations are relevant to engineers and can support the product
derivation and feasibility analysis phase of the projects. The results encourage
further study on automated reuse analysis on other levels of abstractions.

Paper F: Requirements Similarity and Retrieval

Authors: Muhammad Abbas, Sarmad Bashir, Mehrdad Saadatmand, Eduard
Paul Enoiu, Daniel Sundmark.

Published in: Ferrari, A., Ginde, G. (eds), Handbook on Natural Language
Processing for Requirements Engineering. Springer, Cham (2025).

Abstract: Requirement Engineering (RE) is crucial for identifying, analyzing,
and documenting stakeholders’ needs and constraints for developing software
systems. In most safety-critical domains, maintaining requirements and their
links to other artifacts is also often required by regulatory bodies. Further-
more, in such contexts, requirements for new products often share similarities
with previous existing projects performed by the company. Therefore, simi-
lar requirements can be retrieved to facilitate the feasibility analysis of new
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projects. In addition, when a new customer requests a new product, retrieval of
similar requirements can enable requirements-driven software reuse and avoid
redundant development efforts. Manually retrieving similar requirements for
reuse is typically dependent on the engineer’s experience and is not scalable,
as the set could be quite large. In this regard, applying Natural Language Pro-
cessing (NLP) techniques for automated similarity computation and retrieval
ensures the independence of the process from the human experience and makes
the process scalable. This chapter introduces linguistic similarity and several
NLP-based similarity computation techniques that leverage linguistic features
for similarity computation. Specifically, we cover techniques for computing
similarity ranging from lexical to state-of-the-art deep neural network-based
methods. We demonstrate their application in two example cases: a) require-
ments reuse and b) requirements-driven software retrieval. The practical guid-
ance and example cases presented in the chapter can help practitioners apply
the concepts to improve their processes where similarity computation is rele-
vant.






Chapter 5

Conclusion & Future Work

5.1 Conclusion & Summary

The continued reliance of society on software-intensive systems necessitates
the use of high-quality and efficient development processes. In domains such as
rail transportation, where software plays a critical role in enabling sustainable
mobility, projects often face strict delivery deadlines. Vendors failing to meet
these strict delivery timelines may result in significant penalties. As a result,
there is a strong demand for development approaches that support the quick
and quality delivery of such systems.

To meet these demands, many organizations turn to engineering practices
that prioritize systematic reuse, such as Software Product Line Engineering
(SPLE). However, due to the high upfront investment of systematic reuse and
SPLE adoption, companies often tend to adapt the processes to their practices,
which results in ad-hoc reuse. While reusing well-defined and verified existing
requirements, along with tested components, helps ensure quick and quality
delivery, the process is experience-dependent and labor-intensive.

This thesis focuses on two research goals: 1) identifying enhancement op-
portunities in such complex processes and 2) exploring the augmentation of the
existing processes with semi-automated approaches to enable quick and qual-
ity delivery of software-intensive products. The goals are realized by the six
included papers, as briefly summarized below.

In Paper A, we identify opportunities for enhancement in a project-based
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development environment within the context of SPLE adoption. The paper
highlights the benefits of opportunistic reuse in the SPLE process. In partic-
ular, a significant reduction in time-to-market for the sub-system is observed.
Furthermore, the opportunistic reuse allows incremental safety assessment and
results in a confidence boost in the new projects. However, several challenges
arise during new project development for new customers. Primarily, maintain-
ing a high degree of asset reuse, the evolution of assets, and change impact
analysis is seen to be challenging.

Further analysis of the process reveals additional challenges related to
project acquisition and planning. In particular, manual identification and
allocation of technical requirements from the tender documents are perceived
to be challenging and might impact project acquisition and product delivery
timelines. In this regard, Paper B supports project acquisition with automated
tools based on large language models to automatically identify technical
specifications from tender documents. As per the company’s estimate, the
solutions resulted in an estimated 80% reduction of manual efforts required
for requirements identification. We are also looking into quality aspects of the
extracted specifications [107]. Further support for project planning is achieved
in Paper C with the intelligent allocation of requirements as work items to
various technical teams. We fine-tune a variety of language models for require-
ments allocation and augment the predictions with case-based explanations to
support a well-informed allocation of requirements for implementation and
testing. The company’s internal evaluations revealed that the requirements
allocation solution could reduce the manual effort of allocating requirements
by 80%.

We then focused on reducing redundant development efforts by identifying
opportunities for cross-project and platform reuse of implementation assets
based on customer requirements. We hypothesized that similarity among re-
quirements could be used to recommend the reuse of implementation assets.
In Paper D, we empirically test this hypothesis with additional qualitative in-
sights. In particular, we applied correlation analysis to study the relationship
between requirements similarity and software similarity. We found a moderate
positive correlation between the two variables. Exploiting this correlation, in
Paper E, we developed and evaluated a reuse recommender system. Results
show that we are able to recommend the reuse of implementation assets with
around 74% average accuracy. Qualitative results indicate that the reuse recom-
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mendations generated by our approach are useful to engineers and can support
reuse analysis activities in the studied settings. Furthermore, the company’s
internal estimates indicate that the approach can reduce the system’s delivery
time by at least 20 days.

Highlighting the importance of technical concepts in requirements similar-
ity and retrieval for reuse, Paper F synthesizes the technical implementation
knowledge on the topic to support further research. We demonstrate various
similarity computation pipelines for requirements reuse and software retrieval
on two example cases, providing a supplementary repository for replication.
This knowledge resource facilitates the transfer of technical knowledge on sim-
ilarity and retrieval, equipping both students and practitioners with the tools to
apply these concepts effectively in real-world scenarios.

5.2 Discussion and Future Work

This section provides a brief on the possible extensions of the included papers
and other future directions.

Risk assessment. While this thesis enhances the existing processes for re-
quirements processing and reuse, it still does not target the entire process. In
terms of project acquisition, the process also includes risk assessment for the
upcoming project. Well-informed risk assessment processes could be enabled
based on customer requirements. Novelty in new requirements in relation to
existing ones can serve as an indicator for estimating risk and delivery time-
lines. Such an approach can utilize requirements similarity, as well as other
historical indicators, such as the time required to implement similar require-
ments, to estimate the novelty and delivery time of the requirements. Addi-
tionally, the current backlog of the teams could be considered in the process of
risk estimation to quantify and visualize the deviations from requested delivery
timelines.

Requirements allocation to multiple teams and atomicity. The require-
ments allocation contribution of the thesis currently does not support allo-
cating requirements to multiple teams. Hierarchical and multi-label classifi-
cation approaches could be explored for this task, which involves first tag-
ging requirements that require allocation to multiple teams and then allocat-
ing them accordingly. Further, requirements that need allocation to multiple
teams may also mean that the requirements are non-atomic. Classifiers can
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also help in flagging non-atomic requirements first, so that the quality can be
improved [108]].

Automated generation of implementation assets. Once requirements are
correctly allocated, our reuse recommender enables the identification of reuse
opportunities for implementation assets. The recommended implementation
assets and artifacts often need to be tailored to address the new customer re-
quirements. While question-answering support for release management is ex-
plored to guide releases [42], the adaptation of assets for future releases is yet
to be automated. With recent advances in generative language models, reuse
candidates can be automatically tailored for the new customer requirements.
Such an approach can utilize the existing requirements, their implementation,
and the new requirements as input to generate a new implementation that ad-
dresses the new customer requirement.

Multi-modality in requirements. The current approaches we use do not
consider relevant information in other modalities. For example, requirements
documents can contain figures and tables. Additional referenced documents
may also contain architectural diagrams and other formal and informal design
diagrams. However, typical automated RE approaches often remove this in-
formation during pre-processing. Approaches that consider tabular data, di-
agrams, implementation models, and design diagrams, along with textual re-
quirements, can significantly enhance the representation and learning of multi-
modal requirements [109]]. This can enable a variety of multi-modal tasks, such
as design generation based on requirements.

More evaluation in organizational and human-in-the-loop context. While
automated tools have demonstrated potential to enhance the software develop-
ment process, future work should focus on evaluating these tools within real-
world organizational and human-in-the-loop contexts. The adoption of such
approaches is often hindered not only by technical shortcomings but also by
organizational culture, existing workflows, and dependency on existing legacy
tool-chains. Therefore, deeper empirical studies are needed to understand how
automation can be effectively integrated into existing software development
processes and how it may impact human decision-making. Examining socio-
technical barriers, such as tool transparency, accountability, and trust, will be
crucial for aligning automated tools with organizational context.
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