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Abstract—Teleoperation is emerging as a key enabler for de-
ploying automated vehicles in safety-critical environments where
full autonomy is not yet feasible. Ensuring safety in such systems
is challenging due to their reliance on, for example, human
operators, wireless communication networks, mixed-traffic inter-
actions, and onboard automated systems, as well as the interde-
pendencies among these components that can trigger cascading
failures. To address this, we present a case study on the safety
analysis of teleoperated driving in underground mines. We model
the teleoperation architecture using a Dynamic Fault Tree (DFT),
an extension of traditional static fault trees with explicit modeling
support for functional dependencies, order-dependent failures,
and redundancy mechanisms. The DFT model is rigorously
evaluated through probabilistic model checking across a broad
range of system-wide metrics, including degradation behavior
and criticality of components. The results provide insights into
system reliability, the sensitivity of failure probabilities with
respect to different component failure rates, and the behavior
of the system in fully functional, fail-operational, and degraded
modes. Overall, the findings highlight the critical components that
dictate system dependability and establish a structured basis for
enhancing the safety of teleoperated vehicle systems to comply
with industrial safety standards.

Index Terms—Dynamic fault trees, Fault tree analysis, Model
checking, Teleoperation, Remote Driving, Automated driving.

I. INTRODUCTION

Fully autonomous vehicles (SAE J3016 Level 5 autonomy
[1]) that can operate in all scenarios without human interven-
tion remain a long-term research challenge [2]. Teleoperation
serves as a middle ground between autonomous and human-
driven vehicles, where remote vehicles are supervised or
directly driven by humans from a Remote Operation Station
(ROS). In particular, the teleoperation of heavy vehicles is
increasingly adopted in confined areas such as mines, quarries,
construction zones, forestry, and agriculture. By combining
remote driving or tele-supervision with vehicle autonomy, tele-
operation enables unmanned operation in hazardous or inac-
cessible environments. This approach enhances both safety and
efficiency but also introduces complex interactions between
human operators, communication networks, and automated
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vehicles [3]. Failures in communication links, perception sys-
tems, operator inputs, or vehicle control units may compromise
safe operation, potentially leading to hazardous situations.

Ensuring safety in this context is challenging because heavy
vehicles must comply not only with performance requirements
but also with stringent safety standards for machinery. ISO
12100 [4] provides a general framework for risk assessment
and risk reduction in machinery, while ISO 3849-1 [5] extends
these principles to functional safety, in alignment with IEC
61508 [6]. Unlike ISO 26262 [7], which is tailored for
passenger vehicles, these standards are specifically relevant for
off-road and industrial vehicles, where teleoperation and au-
tomation are increasingly deployed. A rigorous safety analysis
approach is therefore required to provide systematic evidence
of compliance and to quantify residual risks in such safety-
critical systems.

Fault Tree Analysis (FTA) [8], [9] is widely used for
safety evaluations in industrial systems. However, classical
(static) fault trees cannot adequately capture the dynamic
dependencies typical of teleoperation architectures, such as
failures induced by communication latency, fail-operational
safety mechanisms, or sequential interactions between op-
erators and vehicles. To address these limitations, Dynamic
Fault Trees (DFTs) [10] extend FTA with constructs for
order-dependent failures, standby components, and functional
dependencies. DFTs have demonstrated strong potential for
analyzing safety-critical systems in domains such as automated
vehicle guidance [11], nuclear power plants [12], and high-
speed rail [13]. In teleoperation, although safety assessments
have been performed using System-Theoretic Process Analysis
(STPA) [14], [15], an in-depth safety analysis using DFTs
remains missing in the literature. Teleoperation introduces
unique challenges, including the interplay between remote
operators, wireless communication networks, onboard safety
modules, and autonomous driving functions, which require
both quantitative safety assurance and explicit consideration
of degraded operation modes.

In this work, we present a case study of automated vehicle
teleoperation in underground mines and perform a DFT-based
safety analysis. The functional architecture of the teleoperation
system, including the ROS, human operator, communication



networks, safety systems, Advanced Driver-Assistance System
(ADAS), sensors, and actuators, is systematically modeled
and transformed into a multi-layer DFT. To conduct the
analysis, we employ the SAFEST tool [16], which supports
the modeling and probabilistic model checking of DFTs by au-
tomatically transforming them into Continuous-Time Markov
Chains (CTMCs) for scalable evaluation [17]. Through prob-
abilistic model checking, the resulting models are analyzed to
obtain precise quantitative safety and reliability measures. In
particular, model checking allows for analyzing a broad range
of metrics on the CTMC state space. This facilitates a rigorous
assessment of the complete teleoperation system, its degraded
performance modes, and various importance measures, which
are crucial for meeting the requirements of ISO 12100 and
ISO 23849.

The remainder of the paper is structured as follows. Section
II introduces the technical background on dynamic fault trees,
and Section III reviews relevant studies on DFTs and teleoper-
ation. Section IV then presents the teleoperation system model,
while Section V outlines the corresponding DFT developed
from this model. Section VI presents the evaluation metrics
and analysis of the results. Finally, Section VII summarizes
the main conclusions and outlines directions for future work.

II. BACKGROUND

A. Dynamic fault trees

Fault trees model how component failures propagate
through a system and lead to a system failure [9]. Dynamic
fault trees (DFT) [9], [10] extend (static) fault trees by
dynamic gates which model order-dependent failures, func-
tional dependencies, and spare management. Fig. 1 depicts
the relevant elements in (dynamic) fault trees. We introduce
the DFT elements in the following and refer to [18] for further
details.

Basic Events (BE), the leaves of the fault tree, represent
atomic components which are not further subdivided. BE fail
according to an exponential distribution with a failure rate.

Static gates are the gates of static fault trees and represent
Boolean failure conditions over the state of the gate inputs. An
AND-gate fails if all its inputs are failed. An OR-gate fails
if at least one input is failed. The voting gate VOTk is the
generalization of both gates and fails if at least k out of n
inputs are failed.

The Priority-AND (PAND) represents order-dependent fail-
ures. The PAND-gate fails if all inputs fail in order from left
to right. If an input fails out of order, the PAND becomes
fail-safe and can never fail.

The Probabilistic dependency (PDEPp) allows failures to
be forwarded. If the first input (the trigger) is failed, then,
with probability p, all other inputs (the dependent events) are
immediately rendered failed as well. A PDEP can for instance
model common-cause failure.

The SPARE-gate models spare management. Initially, the
leftmost input is actively used and can fail according to its
associated failure rate. All other inputs are not in use and fail
according to their passive failure rate which is typically lower
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Fig. 1: Node types in static (top) and dynamic (all) fault trees.

than the active failure rate—or even zero in case of a cold
SPARE-gate. If the currently used input fails, the next input
is claimed and starts to be actively used. The SPARE-gate
fails if all inputs are failed.

The sequence enforcer (SEQ) requires that all inputs fail
in order from left to right. In contrast to a PAND, the SEQ
does not allow failures out of order.

B. Fault tree analysis

Dynamic fault trees can be analyzed via probabilistic model
checking [17], [19]. The DFT is translated into a CTMC where
states represent the current status of DFT elements and transi-
tions correspond to BE failures governed by the corresponding
failure rate. The translation from DFT to CTMC makes use of
several optimizations, such as exploiting independent modules
and symmetries [17].

The CTMC can be effectively analyzed by model checking
techniques [20]. The state-based model allows the calculation
of metrics expressed in mathematical logic such as continuous
stochastic logic (CSL) [20]. This expressiveness combined
with extensive tool support, e.g., SAFEST [16] and Storm [21],
allows for computing a broad range of metrics on a DFT, such
as overall system reliability, mean-time-to-failure (MTTF),
importance metrics of sub-components, and the probability to
encounter degraded states.

III. RELATED WORKS

Due to the limitations of static fault trees in modeling capa-
bilities and capturing functional dependencies, safety analysis
using DFTs is gaining increasing interest in complex industrial
and automotive systems. For instance, Ghadhab et al. [11]
applied DFTs to the safety analysis of automated vehicle
guidance systems and carried out a quantitative evaluation of
various system-wide and degraded metrics. Rao et al. [12] pro-
posed a Monte Carlo simulation–based approach for DFT anal-
ysis to overcome the limitations of traditional Markov models,
which often suffer from state-space explosion and restrictive
assumptions of exponential failure/repair distributions. Their
method, validated on nuclear power plant case studies, demon-
strated the ability to realistically capture sequence-dependent
failures, spare management, and testing effects in large-scale
probabilistic safety assessments. In [17], Volk et al. introduced
model-checking–based techniques to accelerate DFT analysis.
By exploiting structural reductions such as symmetry, partial-
order reduction, and don’t-care detection, along with partial
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Fig. 2: Functional block diagram of automated vehicle teleoperation.

state-space generation for approximations, they achieved sig-
nificant performance gains. Wang et al. [13] combined DFTs
with Bayesian Networks to address fault diagnosis challenges
in the train control and management system of high-speed rail.
By transforming DFT models into BNs, their approach enabled
probabilistic reasoning under uncertainty and bidirectional
inference, supporting both predictive reliability analysis and
root-cause diagnosis.

In the context of teleoperation, Hoffmann and Diermeyer
[14] employed STPA for the safety assessment of remotely
operated road vehicles. Their work systematically analyzed
the teleoperation control structure to identify unsafe control
actions and their causal factors, identifying a broad range of
risks related to human operators, communication networks,
and sensory perception faults. Similarly, Kamaraj et al. [15]
considered the complexities of control loops between the
remote vehicle dispatcher and driver to perform STPA anal-
ysis, identifying system-level hazards in automated vehicle
teleoperation. They highlighted the lack of situational aware-
ness and the mismatched mental models between drivers and
dispatchers as key contributors to unsafe vehicle control. While
the studies in [14] and [15] provide valuable hazard identifica-
tion frameworks for teleoperated driving, they lack executable
models, model-checking capabilities, and simulation-based
performance evaluation, which limits their applicability for
quantitative safety assurance. In contrast, our work develops a
comprehensive DFT model of automated vehicle teleoperation
and carries out an extensive quantitative evaluation, providing
novel insights into system-level behavior, degraded-mode per-
formance, and component importance measures.

IV. TELEOPERATION SYSTEM MODEL

Automated vehicle teleoperation can be broadly classified
into remote driving and remote assistance [2]. In remote
driving, a human operator directly controls the vehicle from
a Remote Operation Station (ROS), whereas in remote assis-
tance, the vehicle operates autonomously and requests human
intervention only when it cannot resolve a situation on its own.
In this case study, we focus on the remote driving of heavy
machinery in underground mines, where the vehicle operates
within the mine while the driver remains at the ROS and has
full control of the vehicle.

The ROS is equipped with a complete driving interface,
including brake and accelerator pedals, joystick or steering
controls, a speedometer, and a console panel for auxiliary func-
tions, as shown in Fig. 2. In addition, the ROS is connected to
a teleoperation server that hosts a safety layer, ensuring that all
outgoing commands pass through safety checks before being
transmitted downstream to the vehicle.

In the uplink direction, the remote vehicle is equipped
with multiple sensors such as radar, LiDAR, cameras, and an
Inertial Measurement Unit (IMU). These sensors collect a wide
range of telemetry data, including video streams, acceleration,
position, velocity, orientation, system health, and diagnostic
logs. The data is transmitted to the ROS through the Telematics
Control Unit (TCU). The communication infrastructure may
combine Ethernet with wireless technologies such as Wi-Fi,
private 5G networks, or a hybrid solution to balance low
latency, high bandwidth, and reliable connectivity.

In addition to teleoperation, the vehicles are equipped with
ADAS that can execute fallback maneuvers such as emergency
braking or lane keeping in the event of, e.g., a communication
outage with the ROS. This ADAS acts as a redundancy layer
to ensure minimal safe operation. A command arbitration
module selects between teleoperation commands and ADAS
commands based on factors such as information freshness and
situational context, as depicted in Fig. 2. Final actuation com-
mands are transmitted via the in-vehicle bus to the respective
Electronic Control Units (ECUs), which carry out the required
actions.

In the teleoperation of heavy machinery, the communication
network is a key enabler. Reliable and low-latency data trans-
mission is essential for maintaining situational awareness at
the ROS and ensuring timely control of the remote vehicle.
Network performance directly influences the freshness of
information and, by extension, the safety of real-time remote
driving. Additional challenges arise in mixed-traffic scenarios,
particularly in narrow mine tunnels where vehicles may need
to coordinate at stop points to allow passage. On the ROS
side, performance is also constrained by the cognitive load,
situational awareness, and skill of the remote driver, which
differ considerably from those of an onboard operator. Finally,
the security and resilience of the communication network must
be taken into account, as cyberattacks or system vulnerabilities
could lead to catastrophic outcomes.



V. DFT MODEL FOR TELEOPERATION SYSTEM

The DFT of the teleoperation system in Fig. 2 is shown
in Fig. 3, combining both static and dynamic fault tree gates.
Overall, the system includes components such as the remote
operator, ROS, safety system, communication unit, mixed
traffic interaction, and control commands. Failure of the top-
level event can either happen due to actuator failures of the
remote vehicle, or due to failure of a component and the ADAS
system which acts as a redundancy.

In modeling the remote operator failure, factors such as
loss of situational awareness due to delays in video feeds and
telemetry data, as well as the cognitive load of the operator,
are considered, as illustrated in Fig. 3. This loss of situational
awareness can lead to command misselection by the operator.
The PDEP gate IncorrectOperatorInput models how a loss of
situational awareness can lead to, e.g., command misselection.
This misselection may ultimately result in incorrect control
inputs and failures in steering or braking. To capture delayed
reactions caused by sensor perception latency, a SEQ gate is
employed. The SEQ ensures that first perception latency oc-
curs, then a delay in the decision is possible which ultimately
can lead to incorrect control inputs. In addition, incorrect
control inputs under poor visibility conditions are modeled
using a SPARE gate, where the failure of the leftmost child
sequentially activates the subsequent events.

For the ROS, console and software crash failures are rep-
resented using VOTk gates, which can behave as an OR or
AND gate depending on the threshold value k. Downstream
actuation command loss failures are mitigated by a redundant
command channel, modeled using a SPARE gate. Finally,
mixed traffic interaction failures are modeled by considering
delays in commands transmitted from the ROS to the vehicle,
the uncertainties associated with human-driven vehicle maneu-
vers in the narrow mine tunnels and sensor fusion issues.

VI. PERFORMANCE MEASURES AND RESULTS ANALYSIS

The SAFEST tool [16] is employed for analyzing the DFT
modeled for the Teleoperation use case in this paper. This
section first defines some of the performance metrics utilized
for the analysis and then presents the results analysis. Note
that we carry out the analysis employing over 20 different
performance metrics, partially based on [11]. It is beyond the
scope of this paper to define all performance metrics for the
sake of conciseness; hence, we refer to the SAFEST Manual1

for detailed explanations.

A. Performance Metrics

The metrics are based on two standard queries in CSL which
make use of the time-bounded reachability (F≤t) and time-
bounded until (U [0,t]), c.f. [20].
• Event Probability within a Time-Bound: Probability of a

specific event occurring within the time t.

Pevent(t) = P
(
F≤tevent

)
1https://www.safest.dgbtek.com/src/components/installation/installation.html

• Time-Bounded Reach-Avoid Probability: Probability that
event2 occurs within t while event1 does not occur before.

PRA(t) = P
(
¬event1 U[0,t] event2

)
The performance metrics are formulated using these metrics.
• Unreliability: Probability of system failure within time t.

Punrel(t) = P
(
F≤t sys failed

)
• Average Failure Probability per Hour (AFH): The average

probability of system failure per time unit within [0, t];
computed as the unreliability at operational lifetime t,
normalized by t.

AFH(t) =
1

t
P
(
F≤t sys failed

)
• Mean Time to Failure (MTTF): The expected time to system

failure, obtained as the integral of the reliability function
over time.

MTTF = E[Tsys failed] =

∫ ∞

0

(1− Punrel(t)) dt

The following metrics consider the behavior in degraded mode,
where specific components have already failed, but the overall
system is still operational.
• Full Function Availability (FFA): Probability that the system

remains fully operational within time t, i.e., it is neither
failed nor degraded.

FFA(t) = 1− P
(
F≤t (sys failed ∨ degraded)

)
• Failure Without Degradation (FWD): Probability that the

system fails directly without first entering a degraded state
within time t.

FWD(t) = P
(
(¬degraded) U [0,t] (sys failed∧¬degraded)

)
• Mean Time from Degradation to Failure (MTDF): The ex-

pected time of system operation upon entering the degraded
state before reaching complete failure.

MTDF =
∑

s∈degraded

(
P (¬degraded U s) · E[T s

sys failed]
)

• Failure under Limited Operation in Degradation (FLOD):
FLOD quantifies the probability that the system, after en-
tering a degraded state, fails within a time bound (the
drive cycle) while still being in that degraded mode. It is
calculated by multiplying the probability of reaching the
degraded state and the probability of subsequently reaching
the system failure within the drive cycle.

FLOD(t) =
∑

s∈degraded

(
P ((¬degraded) U [0,t] s)·

P s(F≤drive cycle sys failed)
)

• System Integrity under Limited Fail-Operation (SILFO):
Probability the system avoids both direct failure (FWD) and
failure from a degraded state within a drive cycle (FLOD).

SILFO(t) = 1−
(
FWD(t) + FLOD(t)

)
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Importance metrics compute the criticality of specific compo-
nent failures w.r.t. the overall system failure [22], [23].
• Birnbaum Importance (BI): Sensitivity of the system unreli-

ability to the unreliability of component i, quantifying how
critical component i is to the overall reliability.

BIi(t) =
∂ Punrel(t)

∂ Pcomponenti failed(t)

• Risk Achievement Worth (RAW): The impact on the system
unreliability of making the component always failed.

RAWi(t) =
P

componenti failed
unrel (t)

Punrel(t)

• Risk Reduction Worth (RRW): The impact on the system
unreliability of making the component fully reliable.

RRWi(t) =
Punrel(t)

P
¬componenti failed
unrel (t)

• BAGT+ (Before-After Guided Test, upper bound): The
change in the system’s MTTF when a component is forced
to fail.

BAGT+
i =

∣∣∣MTTF − MTTFcomponenti failed)
∣∣∣

• BAGT- (Before-After Guided Test, lower bound): The change
in the system’s MTTF when a component is assumed to be
fully reliable.

BAGT−
i =

∣∣∣MTTF − MTTF¬componenti failed
∣∣∣

We analyze the performance of the teleoperation system
using metrics from three different categories: system-wide
safety performance, performance under degradation, and the
importance of system components for safety. For instance,
the unreliability, AFH, and event probability metrics are used
with model checking to capture the system-wide safety per-
formance, while the FFA, FWD, MTDF, FLOD, and SILFO
metrics are used to analyze the system under degraded states.
We also analyze the importance metrics, such as BI, RAW,
and BAGT, to obtain a holistic understanding of the system
components contributing to system safety.

B. Results Analysis

This section first presents the system-wide performance,
followed by the performance under degraded conditions and
the importance measures. To this end, experiments are con-
ducted to evaluate the system’s performance across all metrics,
considering an operational lifetime of 10,000 hours and a 1-
hour driving cycle. Subsequently, selected metrics are analyzed
in greater detail through a sensitivity analysis by varying
the failure rates. It should be noted that the failure rates of
certain basic events are taken from available literature, while
the remaining rates are assumed for the purpose of analysis.
These assumptions do not necessarily represent the actual
failure rates of a real teleoperation system. Nevertheless, the
in-depth sensitivity analysis presented here provides valuable
insights for industry, both in understanding the impact of

TABLE I: System-wide performance with 10k h of operational
lifetime (#CTMC States: 21610; #Transitions: 178219).

Metrics Results Analysis
duration (s)

Unreliability 9.97E-02 3.44
Average failure probability/hour (AFH) 9.97E-06 3.43
Mean time to failure (MTTF) 9.52E+4 3.45
Event probability 1 3.49

TABLE II: Event probability within 20k h time-bound.

Event Name Probability

Remote operator station (ROS) failure 7.10E-01
Permanent communication failure 5.52E-01
Actuator failure 9.95E-03
ADAS Failure 8.65E-01
Safety system failure 3.92E-02
Situational awareness loss due to poor visibility 2.00E-03
Actuation command loss 1.97E-04
Primary command channel 1.98E-02
Emergency stop command lost 1.98E-02
Attacks (DOS, spoofing or jamming) 1.81E-01
Control console failure 3.30E-01
Software system crash due to bugs or OS freeze 2.07E-01
Signal lost due to persistent blockage 3.96E-05
Video feed failed due to outage 3.00E-01
Incorrect control input due to high-latency perception 1.25E-01
Incorrect control input due to poor visibility 2.00E-03
Braking system failure 2.00E-03
Top-level event failure 8.66E-01
Control command delay 1.98E-02
Sensor perception error 2.00E-03
Sensor fusion failure 7.90E-08
Human operator failure 1
All components failure 1
Mixed traffic interaction failure 1

different failure rates on system performance and in identifying
the maximum allowable failure rates required to achieve a
desired level of dependability and safety. The initial failure
rates assumed for the ADAS system, hardware, software,
human operator, security, communication, and control inputs
are 1 × 10−5, 1 × 10−7, 3.03 × 10−5, 1 × 10−3, 1 × 10−5,
1× 10−6, and 4.86× 10−5, respectively.

1) Performance of the Complete Teleoperation System:
Table I presents the overall system performance for an op-
erational lifetime of 10,000 hours. When performing model
checking of the DFT with the system-wide metrics, the
SAFEST tool generated a CTMC with 21,610 states and
178,219 transitions. The corresponding analysis durations for
each metric are reported in Table I. The results show that
the teleoperation system has an unreliability of approximately
10−1 within 10,000 hours, with a MTTF of roughly 105 hours.
While the average failure probability per hour (AFH ≈ 10−5)
is relatively low, it accumulates to a significant value over
long operational lifetimes. Furthermore, the event probability
of 1 in Table I signifies the eventual system failure probability
under unbounded time, reflecting the fact that any system will
ultimately fail if operated indefinitely.

We also analyzed the event probabilities at the component
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Fig. 4: Sensitivity analysis of system unreliability with varying failure rates for 20,000 hours of operational lifetime.

or basic event level of the fault tree over a 20,000-hour oper-
ational lifetime, as shown in Table II. The higher probabilities
can be explained by either the position of the basic events
higher up in the fault tree (e.g., ADAS failure), higher assigned
failure rates (e.g., human failure in the ROS), or OR gates with
a large number of children (e.g., permanent communication
failure). By contrast, hardware failures exhibit comparatively
lower probabilities due to their lower failure rates, even when
located high in the fault tree and in the absence of explicit
redundancy. Events such as sensor fusion failure, actuation
command loss, or signal loss due to persistent blockage remain
comparatively rare, since their propagation to the top event
depends on combinations of AND or SPARE gates. From
a teleoperation perspective, one of the main dependability
bottlenecks arises from the human driver (event probability of
1 in Table II), who is constrained by physiological limitations,
as well as from the delivery of video feeds with low latency
through the communication system. Another critical challenge
is the interaction between remotely driven and human-driven
vehicles, which also reaches an event probability of 1 within
the 20k-hour time bound. Ultimately, under this time bound,
all components fail with probability 1, and the ADAS system
serves as the only redundancy prior to top-level failure, playing
a crucial role in determining the overall system reliability.

As failures of the ADAS system and hardware are critical
contributors to overall system failure, we performed a sensi-
tivity analysis by varying their failure rates. Fig. 4 illustrates
the system unreliability for ADAS and hardware systems with
different failure rates over a 20k-hour operational lifetime. As
expected, higher ADAS failure rates lead to a significantly
steeper growth in system unreliability, as shown in Fig. 4a.
For the lowest rate (1 × 10−5), unreliability remains below
0.2, whereas at a failure rate of 1 × 10−4, system unreli-
ability exceeds 0.85. This demonstrates that even a modest
increase in the ADAS failure rate drastically reduces overall
system dependability and emphasizes the importance of a
reliable ADAS. In comparison, hardware failures produce a

TABLE III: Results of degraded metrics with 10k h opera-
tional lifetime and 1 h driving cycle (#CTMC States: 85968;
#Transitions: 998284).

Metrics Results Analysis
duration (s)

Full function availability (FFA) 6.31E-01 16.72
Failure without degradation (FWD) 3.69E-01 16.7
Mean time from degradation to failure (MTDF) 7.35E+4 37.88
Minimal degraded reliability (MDR) 0 17.68
Failure under limited operation in degradation (FLOD) 7.98E-02 26.86
System integrity under limited fail-operation (SILFO) 5.52E-01 43.33
Reach-avoid probability 9.89E-01 16.81
Reach-avoid probability (time-bounded) 3.65E-01 16.86
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Degradation (FWD) over 20k hours of operational lifetime.

much steeper unreliability curve (Fig. 4b), primarily because
actuator-related hardware lies high in the fault tree and failures
propagate directly to the system level.

2) System Performance in Degradation: Table III presents
the results for the degraded metrics, considering an operational
lifetime of 10k hours and a 1-hour driving cycle. In this
analysis, 11 states in the DFT (Fig. 3) were treated as degraded
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(b) System Integrity under Limited Fail-Operation (SILFO)

Fig. 6: Analysis of FLOD and SILFO metrics assuming various degraded components.

states: camera data loss, primary command channel failure,
emergency stop command loss, high-latency perception, poor
visibility, video feed loss, telemetry delay, display screen mal-
function, communication outage, persistent signal blockage,
and ADAS failure.

The analysis generated a CTMC with 85,968 states and
approximately 1 million transitions. The results show that the
system remains fully functional without degrading or failing
first (i.e., FFA) in about 63% of the cases, while the FWD
metric indicates that nearly 37% of failures occur without
the system entering degraded states first. Fig. 5 illustrates
the evolution of FFA and FWD over a 20k-hour lifetime.
At the start of operation, the system is almost certainly fully
functional, and the probability of failure without degradation is
negligible. Over time, however, FFA gradually declines while
the probability of direct failure (FWD) increases. The two
curves intersect at around 5k hours, after which direct failure
without degradation becomes more likely than continued full
functionality.

The MTDF metric in Table III shows that once the system
enters a degraded state, it can on average remain in that
state for about 73,500 hours before failing. By contrast, the
minimal degraded reliability (MDR = 0) indicates that certain
degraded states (e.g., ADAS) cannot sustain operation at all
and immediately lead to failure. The probability that the
system first reaches a degraded state and then fails within the
1-hour driving cycle is approximately 0.0798 (FLOD). Adding
this to the probability of failure without degradation (FWD)
yields 0.448, implying that the system avoids both FWD and
FLOD, i.e., maintains SILFO, with a probability of 0.552. This
means the system remains either fully functional or degraded
without failure about 55% of the time.

To better understand FLOD behavior for different teleoper-
ation components, Fig. 6a presents FLOD curves for different
degraded components over a 20k-hour operational lifetime and
a 1-hour driving cycle. The results show that when a 1-hour
time limit is imposed on actuators in degraded mode, the sys-

tem failure probability remains very low. In contrast, operating
ADAS in degraded mode results in significantly higher failure
probabilities, especially as the overall operational lifetime
increases. Similarly, degraded operation of the remote operator
station and communication also substantially increases the
likelihood of system failure over time. The SILFO curves in
Fig. 6b confirm this trend, showing that the probability of
avoiding both FLOD and FWD gradually decreases as the
operational time grows.

The unbounded reach–avoid probability in Table III consid-
ers 11 different basic events or components that constitute
the degraded states as the reference event to be avoided
(event2). The result shows that the likelihood of eventually
seeing a system failure without encountering any degraded
event first is 0.989 (almost certain). This probability drops
sharply to 0.365 when a realistic operational time limit of
10k hours is imposed. When only ADAS is considered as the
reference failure component and its failure rates are varied,
the resulting reach–avoid probability curves are shown in Fig.
7a. As the ADAS failure rate increases, the probability of
system failure occurring before ADAS failure decreases over
time, since ADAS is more likely to fail first. At lower ADAS
failure rates, the probability of reaching system failure without
ADAS failing first becomes much more pronounced. In either
case, the results demonstrate that ADAS reliability strongly
influences whether failures bypass ADAS or not, making it a
critical factor in the teleoperation system.

The reach–avoid probability with other components treated
as the reference failure event (event2) is presented in Fig. 7b.
When mixed traffic interaction is used as the reference event,
the probability of system failure occurring before mixed traffic
interaction is almost certain. This is because mixed traffic
interaction lies deeper in the fault tree and its occurrence
depends on combinations of AND and VOTk gates, making
it far less likely than other failure pathways. By contrast,
components such as communication, ROS, actuators, or ADAS
fail with comparatively higher probability, which reduces the
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Fig. 7: Time-bounded reach–avoid probability within 20k hours of operational lifetime: (a) probability of occurring system
failure without occurring ADAS failure before with varying failure rates, and (b) probability of occurring system failure without
occurring various other component failures before.

reach–avoid probability of direct system failure.
3) Importance Evaluation of System Components: Table IV

presents the results of various importance metrics for the tele-
operation system and ranks the four most critical components.
The BI results show that ADAS and actuator failures rank the
highest among all components, indicating that the reliability
of these two subsystems strongly influences the overall system
reliability. This is in line with the previous results which
showed especially the influence of ADAS. The CI, RAW, and
RRW metrics yield consistent results, with failures such as
those of the remote station, communication, human operator,
or safety system having only marginal impacts. The rationale
is that ADAS serves as redundancy for most components,
except actuators; hence, while other teleoperation components
are important for system dependability, their failures can often
be compensated for by ADAS.

The DIF metric highlights that human operator, mixed traffic
interaction, and command loss failures return values close
to 1, demonstrating a strong correlation with system failure.
ADAS also shows high importance with a DIF value of 0.955,
albeit being ranked fourth. Finally, the BAGT+ (upper bound)
results indicate that eliminating actuator and ADAS failures
can significantly increase the mean time to failure (MTTF
≈ 105 hours). Conversely, the BAGT− (lower bound) results
show that forcing ADAS failure leads to the shortest MTTF
(≈ 1.9×106 hours lost), underscoring its role as a single point
of failure.

VII. CONCLUSION AND FUTURE WORK

This work presents a case study of teleoperation in un-
derground mines by modeling the teleoperation system and
constructing a DFT that captures conditional dependencies,
order-dependent failures, and redundancies. The DFT is rig-
orously analyzed using probabilistic model checking across
a broad set of system-wide, degradation, and importance
metrics. Evaluation results show that the system is highly

TABLE IV: Results of importance metrics.

Importance metric Component Result Rank

Birnbaum Index (BI)

ADAS failure 9.95E-01 1
Actuator failure 9.05E-01 2
Human operator failure 3.40E-04 3
Mixed traffic interaction failure 2.15E-04 4

Criticality Importance (CI)

ADAS failure 9.52E-01 1
Actuator failure 4.74E-02 2
Remote station failure 1.24E-05 3
Communication failure 9.63E-06 4

Risk Achievement Worth (RAW)

ADAS failure 1.00E+01 1
Actuator failure 1.00E+01 2
Human operator failure 1.00E+00 3
Mixed traffic interaction failure 1.00E+00 4

Risk Reduction Worth (RRW)

ADAS failure 2.00E+01 1
Actuator failure 1.05E+00 2
Human operator failure 1.00E+00 3
Safety system failure 1.00E+00 4

Diagnostics Importance Factor (DIF)

Human operator failure 1.00E+00 1
Mixed traffic interaction failure 1.00E+00 2
Command loss failure 1.00E+00 3
ADAS failure 9.55E-01 4

Before–After Guided Test,
upper bound (BAGT+)

Actuator failure 9.52E+04 1
ADAS failure 9.51E+04 2
Mixed traffic interaction failure 1.38E-01 3
Safety system failure 1.38E-01 4

Before–After Guided Test,
lower bound (BAGT–)

ADAS failure 1.90E+06 1
Actuator failure 4.76E+03 2
Human operator failure 2.47E-01 3
Mixed traffic interaction failure 2.00E-01 4

sensitive to ADAS and actuator failures. Nevertheless, once
the system enters a degraded state, it can continue operating
for a considerable period before eventual failure. The impor-
tance metrics further reveal that components such as ADAS,
actuators, communication, the human operator, and the ROS
play pivotal roles in determining overall system reliability.

Although the case study is focused on remote driving in
underground mines, the proposed model can be generalized to
remote assistance of Level-4 automated vehicles and applied
beyond mining to road vehicle teleoperation. Future work will
focus on more realistic modeling of conditional dependencies
introduced by wireless communication outages, enabling a
deeper understanding of their impact on system safety.
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