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Abstract—In resource-constrained Internet of Things environ-
ments, reducing data transmissions is essential for minimizing
energy consumption, network load, and operational costs. Overly
aggressive reduction may compromise accuracy, a critical factor
in applications such as industrial control. This paper aims to
offer practical guidance for selecting suitable data reduction
techniques by experimentally evaluating three promising meth-
ods from common reduction categories: Data Filtering, Data
Aggregation, and Data Prediction. We perform a parameter
sweep for each algorithm across three real-world temperature
scenarios: stable, rising, and fluctuating. Each configuration is
evaluated in terms of data reduction percentage and accuracy,
using Total Accumulated Deviation, Mean Absolute Deviation,
and Maximum Deviation. Results show that Data Prediction
generally achieves the highest accuracy across all scenarios, while
Data Filtering tends to yield the greatest reduction at the expense
of accuracy. However, all algorithms can be tuned to meet specific
scenario demands or accuracy criteria, underscoring that no
one-size-fits-all solution exists. We conclude that context-aware
algorithm selection and parameter tuning are critical for effective
Internet of Things data management.

Index Terms—Internet of Things, Data Reduction, Edge, Fog,
Big Data

I. INTRODUCTION

The Internet of Things (IoT) consists of connected het-
erogeneous devices equipped with sensors and actuators that
are distributed across the globe, continuously generating vast
amounts of data [1], [2]. Many of these systems rely on
cloud computing for centralized processing and storage of
the data, which in turn, can provide valuable insights and
support automated decision-making across a wide range of
domains. As the IoT market continues to grow, the volume
of generated data is expected to increase significantly. Real-
world applications include smart home systems that monitor
and adjust indoor temperature, and agricultural deployments
that use environmental data to automate crop irrigation.

A key challenge in IoT systems is the inefficiency, cost, and
privacy concerns associated with transmitting large volumes of
data to potentially expensive cloud services [1]. Meanwhile,
there is also a conflicting need to maintain an acceptable level
of accuracy in the transmitted data. The cumulative effect of
the challenges presents a significant obstacle to the scalability
and sustainability of IoT deployments.
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To address these challenges, data reduction techniques play
a critical role by minimizing the volume of transmitted data
while aiming to preserve essential information. Commonly,
such techniques are applied in a geographically closer edge or
fog computing layer, prior to the cloud.

There exists a wide range of data reduction techniques appli-
cable in edge/fog computing, many of which vary significantly
in terms of operational logic, computational cost, and suitabil-
ity for resource-constrained environments [1], [2]. Kreković et
al. [1] identify three broad groups of data reduction methods,
while Pioli et al. [2] extend this to 14 distinct categories.
Among these, Data Filtering (DF) is the most frequently used,
followed by Data Compression (DC), with Data Aggregation
(DA) and Data Prediction (DP) occupying third and fourth
places, respectively.

In this study, we experimentally evaluate three data re-
duction techniques: DF, DA, and DP, to investigate which
technique most effectively reduces data transmissions without
compromising accuracy. DC was excluded as it fundamentally
reduces payload size rather than transmission frequency.We
focus on lightweight, resource-constrained IoT scenarios, as
exemplified by temperature monitoring in different scenarios,
employing algorithms that embody operationally distinct prin-
ciples.

An experimental evaluation was conducted by implement-
ing the three data reduction algorithms on a Raspberry Pi
(RPi) configured as an edge/fog device. Real sensor data
was collected using a temperature sensor across three con-
trolled scenarios: stable, rising, and fluctuating temperature
patterns. Each algorithm’s accuracy was compared against a
baseline that transmits all data, using standard metrics: Total
Absolute Deviation (TAD), Mean Absolute Deviation (MAD),
and Maximum Deviation (MD). Lower values indicate higher
accuracy, each of which may be more critical depending on the
application scenario. Additionally, we conducted a parameter
sweep for each algorithm across each scenario, showcasing
their behavior in terms of data reduction vs. accuracy.

The goal is to provide practical guidance for selecting
appropriate reduction methods in resource-constrained IoT
deployments. The contributions of this work are:

• Implementation of three representative data reduction
techniques based on filtering, aggregation, and prediction
principles.

• A comparative benchmark of these techniques using real-
world sensor data across multiple conditions.



• Insight into trade-offs between transmission reduction and
data fidelity for edge-based IoT applications.

The remainder of this paper is structured as follows. Sec-
tion II presents background information and reviews related
work. Section III details the experimental methodology, in-
cluding the implementation, algorithms, and comparison of
the chosen data reduction techniques. Section IV reports the
results of the evaluation. Section V analyzes the findings and
discusses potential threats to validity. Section VI concludes
the paper and outlines directions for future work. Finally,
Section VII addresses the data availability.

II. BACKGROUND AND RELATED WORK

The heterogeneity of IoT systems has led to the devel-
opment of various reference architectures tailored to specific
application domains [3], [4]. These range from simple three-
layer and middleware-based models to extended five-layer
architectures, often augmented with fog and edge computing
components to support low-latency, localized data processing.
Placing data reduction closer to the data source improves
efficiency and responsiveness, particularly in systems with
real-time constraints [2], [5], [6].

Data reduction strategies are typically categorized as single-
point or multi-point, depending on whether they are applied
at one or multiple system layers [2]. Single-point approaches
are more prevalent, especially at the edge or fog layer. Some
techniques include a reconstruction phase to recover or approx-
imate the original data, often leveraging predictive models or
Machine Learning (ML)-based trend estimation [7].

A wide range of data reduction techniques has been pro-
posed [1]. In this work, we focus on three representative cate-
gories of fundamentally different data reduction approaches
for resource-constrained IoT: DF, DA, and DP, which are
described in the following. DF applies a threshold to filter
out minor variations in sensor readings, transmitting only
values that differ significantly from the last reported one.
This simple yet effective approach is particularly suitable for
constrained devices operating on stable data streams. DA com-
bines multiple sensor readings into a single, summarized value
to reduce the data volume prior to transmission. Aggregation
functions (e.g., average, min, max, sum) are commonly used
to eliminate redundancy and reduce communication overhead.
DP leverages historical data patterns to forecast future values
using analytics or ML models, where the former typically
requires fewer computational resources than the latter. This
predictive capability enables IoT systems to manage transmis-
sion schedules more efficiently by only sending data when
predictions diverge significantly from actual readings. It is
worth noting that all of the above techniques are inherently
lossy, as they discard some data in the reduction process.
In contrast, DC techniques may be lossless, allowing exact
reconstruction of the original data, but typically require greater
computational resources.

Several surveys have examined data reduction strategies in
edge and fog contexts. Pioli et al. [2] systematically map
techniques such as DF and DC, noting that temperature data

is the most commonly used type in evaluations. They identify
DF (18.8%) and DC (16.7%) as the most frequently used
techniques for reducing data volume at the edge. However,
most implementations are simulated or conceptual; our work
differs by conducting real-world experiments and comparing
methods side by side under controlled conditions. Kreković et
al.’s [1] survey categorizes reduction methods into compres-
sion, prediction, and aggregation, and evaluate them by energy,
accuracy, processing, and data volume. Our implementations
of DA and DP align with their general categories, but we
deploy them at the edge/fog layer and use consistent datasets
and metrics for comparison. In contrast, our DF approach is
simpler and targets constrained devices, which their taxonomy
does not explicitly include.

Other works propose adaptive or hybrid techniques. Zhang
et al. [7] explores a dual-point-based data reduction and recon-
struction approach that dynamically adjusts DF thresholds us-
ing concept drift detection to balance accuracy and reduction,
but does not evaluate deployment feasibility. Papageorgiou et
al. [5] propose a switching mechanism among DC strategies
to reduce delays, evaluated in a simulated environment only.

While most related works focus on individual techniques,
simulations, or high-level surveys, the contributions in this
paper lie in a practical, comparative evaluation of DF, DA,
and DP under real deployment conditions with consistent
performance metrics.

III. FRAMEWORK FOR COMPARING DATA REDUCTION
TECHNIQUES IN THE EDGE

In the following, Section III-A outlines the methodology
used to compare the different data reduction algorithms, in-
cluding the experimental design and evaluation procedure. We
then describe the experimental setup and the implementation,
covering both hardware and software aspects in Section III-B.
Finally, Section III-C explains how each algorithm operates,
highlighting their core logic and behavior in the context of the
experimental scenarios.

A. Experimental Design and Methodology

The goal of this work is to provide practical guidance for
selecting data reduction methods in resource-constrained IoT
deployments by experimentally comparing three techniques:
DF, DA, and DP, in terms of data reduction and accuracy. To
ensure consistency across methods, the same recorded temper-
ature data streams were used for all algorithms, eliminating
variability from live sensor input. Data was collected under
three representative scenarios:

• Stable: minimal temperature variation in a controlled
environment

• Rising: gradual temperature increase, simulating heating
conditions

• Fluctuating: irregular changes introduced by alternating
heat/cool sources

Each algorithm was tested via a parameter sweep, more
thoroughly detailed in Section III-C:



• DF: δ swept from 0.001 to 1.0 (10 logarithmically spaced
values)

• DA: N swept from 5 to 50 (10 approximately log-spaced
values)

• DP: ε swept from 0.001 to 1.0 (10 logarithmically spaced
values)

Filtering and prediction algorithms were constrained to
transmit at least once every 30 data points to avoid indefinite
silence, while aggregation used fixed intervals of N . The best
case corresponds to one transmission every N or 30 points;
the worst case is transmitting every N or every point. This
ensures comparability across varying configurations.

For each setting and scenario, the reduced stream was
compared against the full-resolution baseline. Accuracy was
measured using TAD, MAD, and MD, while reduction was
expressed as the percentage of the reduced dataset. The final
sensor value was not forcibly included to reflect realistic, non-
anticipatory conditions.

B. Implementation and Experimental Setup

The physical setup is illustrated in Fig. 1. A BMP2801

temperature sensor is connected to an ESP32-D0WDQ5-V3
microcontroller running ESPEasy2, configured as an Message
Queuing Telemetry Transport (MQTT) client publishing data
at approximately 2 s intervals over default ports without
Transport Layer Security (TLS). A RPi running RPi OS serves
as the edge/fog node, acting as a local MQTT broker using
Eclipse Mosquitto3. Communication between the sensor and
the RPi occurs over a Wi-Fi Protected Access 2 (WPA2)-
secured Wi-Fi (802.11n) network, with the RPi functioning as
a hotspot. To isolate and evaluate edge/fog-layer performance,
only a single sensor and edge/fog device were used, and
data was processed and stored locally on the RPi, excluding
any cloud components and spatial/multi-sensor techniques.
The data reduction algorithms were implemented in Python
(≥ 3.13) to ensure reproducibility and portability across
typical edge/fog computing environments.

Fig. 1. Physical setup of the experimental system, showing the ESP32
microcontroller with an attached temperature sensor (positioned be-
hind the board) and the Raspberry Pi configured as the edge/fog node.

1https://espeasy.readthedocs.io/en/latest/Plugin/P028.html
2https://github.com/letscontrolit/ESPEasy
3https://github.com/eclipse-mosquitto/mosquitto

C. Overview and Visualization of Data Reduction Algorithms
This section outlines the specific implementations of the

three data reduction algorithms evaluated in this study: DF,
DA, and DP. The selected algorithms represent operationally
distinct principles: selective transmission, data summarization,
and trend extrapolation. We illustrate their behavior using a
representative temperature dataset to demonstrate how each
method reduces the number of transmissions while attempting
to preserve data fidelity.

DF: This method uses an adaptive threshold mechanism [7].
The filtering algorithm dynamically adjusts the threshold
(e.g., δ = ±0.05 ◦C) based on recent sensor values. A new
data point is transmitted if it either exceeds the threshold
deviation from the last sent value, is the first data point, or if a
transmission interval limit is reached. Fig. 2 demonstrates how
the algorithm suppresses transmissions during stable periods
and increases transmission frequency during fluctuations to
preserve accuracy.
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Fig. 2. Transmission behavior of DF algorithm.

DA: This method applies fixed-interval temporal
averaging [1]. The aggregation algorithm divides incoming
sensor readings into fixed-size groups (e.g., N = 15) data
points and transmits the arithmetic mean of each complete
group. Fig. 3 shows how averaging is performed over fixed
intervals (indicated by vertical orange lines). Beyond the
first data point, a single value is transmitted per interval.
Remaining incomplete intervals are omitted.

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

Time (s)

Te
m

p
(°

C
)

Unreduced Data
DA Reduced Data

Fig. 3. Transmission behavior of DA algorithm.



DP: This technique uses linear prediction [8]. A predicted
value (x̂t) is generated based on a previously transmitted point
and the linear slope calculated from the last observed change.
If the real-time reading deviates from the prediction beyond
a defined error margin (e.g., ε = ±0.05 ◦C), a new point is
transmitted and the prediction line is updated. Fig. 4 illustrates
how the algorithm reduces transmissions by sending updates
only when the prediction error exceeds the allowed margin.
Alternating line colors mark different prediction phases, and
shaded regions indicate the tolerated error margin. Color
transitions denote recalibrations of the predictive model. For
instance, from 0 to 20 s there is one (yellow) prediction phase
with a tolerated error margin between 0 and 1 ◦C.
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Fig. 4. Transmission behavior of DP algorithm.

IV. RESULTS

The results from all the experiments are presented in
Figs. 5, 6, and 7. Each symbol (circle for DP, square for
DA, or diamond for DF) represents a distinct algorithm
configuration. The leftmost points correspond to the highest
tested parameter values (i.e., 1 for DP and DF or 50 for
DA), while the rightmost represent the lowest (i.e., 0.001 or
5). Note that some configurations yielded identical results, so
not all 10 points may be visible in every case. This typically
occurs when the data does not deviate beyond the algorithm’s
sensitivity threshold, or when extreme parameter settings lead
to convergence in accuracy outcomes. The y-axes show the
accuracy metrics (TAD, MAD, and MD), where lower is better.
Because the experiments involved temperature data, all three
metrics are reported in degrees Celsius relative to the baseline
to directly reflect the real-world measurement error. The x-axis
shows data reduction percentage, where higher is better.

Overall, DP demonstrated the best accuracy (i.e., lowest de-
viations) across all three scenarios with the tested parameters,
achieving an average seen in Table I. This was particularly
true when high data retention was acceptable. Its performance
was comparable to DF in most cases, with DP outperforming
especially in terms of MD. For instance, in the rising scenario
(Fig. 6c), a high value of ε = 1.000 resulted in ≈ 93%
data reduction with a MD of ≈ 0.14◦C. Similar patterns are
observed in the fluctuating scenario (Fig. 7c).

DA consistently achieved the highest data reduction across
all scenarios, averaging ≥ 91.37%, but at the cost of lower
accuracy. In Figs. 7a and 7b, both TAD and MAD increased

exponentially as N increased. As shown in these figures, with
N = 5, DA achieved an ≈ 80% reduction, resulting in a TAD
of ≈ 60◦C and a MAD of ≈ 0.04◦C. Although the MD was
consistently much higher, e.g., ≥ 5.88◦C in Fig. 7c, which is
not suitable for sensitive applications.

DF can be considered a low-tier algorithm, slightly better
than DP in terms of data reduction when using higher δ values,
but trailing in accuracy. Compared to DA, DF with δ = 1
offered similar reduction (≈ 97%) but with significantly better
accuracy (e.g., TAD ≈ 84◦C in Fig. 6a). Our results, using our
temperature data, indicate that δ = 0.0215 is a favorable set-
ting for DF, balancing low MD and respectable data reduction
(≥65%) across all scenarios as seen in Figs. 5c, 6c, and 7c.

The overall average data reduction and accuracy metrics
across all scenarios are summarized in Table I with the best
performance highlighted in green. A clear inverse relationship
was observed between data reduction and accuracy for all
algorithms.

TABLE I
OVERALL AVERAGE DATA REDUCTION AND ACCURACY.

Algorithm Reduction (%) TAD (°C) MAD (°C) MD (°C)
DF 56.751% 23.449 0.015 1.462
DA 91.37% 154.070 0.095 3.345
DP 53.99% 17.760 0.012 0.142

V. DISCUSSION

In this section, we reflect on the experimental results and
their implications for selecting data reduction techniques in
resource-constrained IoT environments. Section V-A examines
the performance of DF, DA, and DP in terms of accuracy
and reduction efficiency, highlighting key trends and trade-
offs observed across scenarios. Section V-B then considers
threats to validity, discussing factors that may have influenced
the outcomes and the extent to which the findings can be
generalized to other contexts.

A. Choosing Data Reduction Methods: Accuracy vs. Efficiency

Based on the results presented in Table I, our findings
show that DA provides the highest data reduction, albeit at
the expense of accuracy. In scenarios where precision is less
critical, this trade-off makes DA a suitable choice. Conversely,
when accuracy is paramount, DP consistently outperforms the
other techniques across all metrics, though it also incurs higher
computational cost. DF, by contrast, demonstrated suboptimal
overall performance but exhibited competitive results under
specific configurations.

The optimal choice of reduction method ultimately depends
on the deployment context. IoT developers must make in-
formed, context-aware design decisions based on factors such
as data characteristics, expected variability, and the accept-
able balance between transmission efficiency and accuracy.
Notably, both DA and DF showed cases where, with careful
parameter tuning, they outperformed DP in individual metrics,
e.g., one DF configuration achieved competitive reduction
with improved accuracy (Figs. 5c and 6c). This suggests



(a) TAD (b) MAD (c) MD
Fig. 5. Stable scenario – Comparison of TAD, MAD, and MD.

(a) TAD (b) MAD (c) MD
Fig. 6. Rising scenario – Comparison of TAD, MAD, and MD.

(a) TAD (b) MAD (c) MD
Fig. 7. Fluctuating scenario – Comparison of TAD, MAD, and MD.

that adaptive or scenario-specific tuning may be advantageous
when system resources permit.

The significance of these trade-offs is best illustrated
through the lens of the accuracy metrics. A lower TAD is
critical in applications like water flow monitoring, where
cumulative error affects resource management. MAD is more
relevant in stable environments (e.g., indoor climate control),
while MD reflects resilience to outliers, vital in safety-critical

or industrial systems. In this respect, DP stood out with the
lowest maximum deviations.

In summary, our results highlight the need to tailor both
algorithm selection and configuration to the application do-
main, balancing performance with computational constraints
and operational goals.



B. Threats to Validity

We categorize the threats to validity according to the
framework by Wohlin et al. [9], covering construct, internal,
external, and conclusion validity.

Construct validity refers to whether the evaluation metrics
accurately capture the phenomena under investigation. In this
study, we used point-wise accuracy metrics: TAD, MAD,
and MD, to quantify deviations between the reduced and
baseline streams. While appropriate for assessing transmission
fidelity, these metrics do not account for higher-level temporal
structures such as trends or event patterns, which may be
critical in domains like anomaly detection or forecasting.
Furthermore, our assumption that these metrics fully represent
data quality may not hold in all use cases.

Internal validity concerns whether the observed outcomes
are caused by the applied techniques and not by confounding
factors. To control variability, all reduction algorithms were
applied to the same pre-recorded data streams, ensuring a con-
sistent input baseline. However, the specific implementations
likely influenced results. Our DF method used an adaptive
thresholding mechanism based on recent values, while DA
applied fixed-interval temporal averaging, and DP used lin-
ear prediction. These were selected for their practicality in
resource-constrained environments but do not represent the full
range of available strategies. More advanced methods, such as
dynamic aggregation windows, higher-order models, or ML-
based predictors, may yield different performance profiles.
Additionally, while our parameter sweep covered a broad
range of values, it did not include extreme edge cases or
adaptive tuning.

External validity relates to the generalizability of the re-
sults. Our evaluation used only temperature data, which is
characterized by low variability and gradual changes. As such,
the findings may not transfer directly to domains with higher
volatility (e.g., vibration or audio data). Moreover, the system
was tested using a single sensor and edge/fog device setup.
Real-world IoT systems often involve distributed deployments,
heterogeneous hardware, and dynamic network conditions, all
of which could impact algorithm behavior.

Conclusion validity addresses whether the data supports
the conclusions. Our results showed consistent trends across
scenarios and metrics, supporting comparative claims. How-
ever, no statistical hypothesis testing was performed, limiting
the formal strength of these inferences. Additionally, while
reduced transmissions suggest lower energy use, we did not
directly measure power consumption. Future work should
include such measurements to better quantify efficiency trade-
offs considering the power consumption as well.

VI. CONCLUSIONS

This work provided a practical comparison of three data re-
duction techniques: DF, DA, and DP, in resource-constrained
IoT settings. We evaluated their performance across three
temperature-based scenarios using standard accuracy and re-
duction metrics. The results show that DP consistently offered
the best accuracy, while DA achieved the highest reduction,

albeit with greater loss in precision. Although DF under-
performed in most cases, it demonstrated competitive per-
formance under specific parameter settings. These outcomes
highlight that no single technique is optimal across all metrics,
and that context-aware tuning remains essential, aligning algo-
rithm choice with application-specific needs, particularly data
variability, tolerance for error, and reduction. The differing
performance across TAD, MAD, and MD also illustrates
the value of multi-metric evaluation. Future work aims at
exploring additional reduction strategies, including adaptive
and lightweight learning-based methods. Further evaluation on
high-frequency data types, multi-sensor systems, and measure-
ments of computational and energy overhead will strengthen
the applicability of these results to real-world deployments.

VII. DATA AVAILABILITY

For transparency and reproducibility, we provide full
datasets, source code, and evaluation scripts4.
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