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 A B S T R A C T

Climate change and increasing water scarcity demand innovative irrigation strategies, especially for high-value 
crops like kiwifruit that require precise water management. Traditional irrigation systems often fail to address 
the spatial and temporal variability of soil moisture in orchards, where factors like canopy coverage and 
localized watering patterns complicate remote monitoring. This paper introduces SMARTER, a soil-agnostic, 
prescriptive irrigation system designed specifically for kiwifruit orchards. It uses a two-dimensional grid of 
sensors to construct detailed, real-time soil moisture profiles, which are then processed to recommend irrigation 
volumes. SMARTER operates in two phases: an offline phase, where agronomists define optimal soil moisture 
targets, and an online phase, where data-driven monitoring and Proportional–Integral control algorithms guide 
irrigation decisions. Field evaluations during the 2023 and 2024 irrigation seasons in two commercial kiwifruit 
orchards in Italy demonstrated water savings of up to 40% compared to traditional irrigation practices, without 
compromising fruit quality and with a break-even point of two years. Unlike traditional simulators or data-
hungry machine learning models, SMARTER does not require complex parameter calibration, soil-specific 
tuning, or historical data, making it deployable and actionable as soon as sensors are deployed. Furthermore,
SMARTER effectively adapts to events like rainfall and irrigation deviations.
1. Introduction

Agriculture constitutes one of the foundational pillars of human so-
ciety. Throughout its evolution, closely intertwined with humankind’s 
anthropological and economic development, agriculture has periodi-
cally faced challenges that undermine its efficiency and create imper-
ative demands for innovative solutions. Climate change, along with 
the steady increase in the world’s population and water scarcity, now 
represents the most compelling factor driving the need for innovation 
in the agricultural industry (Calzadilla et al., 2013). Numerous re-
search papers have studied how the increase in temperatures, frequency 
of drought periods (Leng et al., 2015), and severity of atmospheric 
events (Cogato et al., 2019) will impact agriculture (Calzadilla et al., 
2013), particularly in developing countries whose economy heavily 
relies on the primary sector (Maja and Ayano, 2021). According to 
estimates presented in 2020 (D’Odorico et al., 2020), agriculture con-
sumes up to 70% of the available freshwater, underscoring the need for 
optimized usage.
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For instance, kiwifruit (actinidia chinensis) is a woody vine native 
to southern China, where in most production zones the annual pre-
cipitation is sufficient to provide the ideal environment for kiwifruit 
plants to thrive, even considering their high water requirements (He 
et al., 2023) which must be meticulously managed to achieve optimal 
fruit yield and quality. Over the past decade, kiwifruit production in 
Italy has increased significantly, making it the world’s third-largest 
exporter. Despite the warm and moderate climate, the annual precip-
itation in Italy is insufficient to meet the water needs of kiwifruit, 
making irrigation crucial for this crop; additionally, predictions of a 
10% increase in irrigation requirements due to the increasing frequency 
of drought periods (Villani et al., 2011) make the optimization of 
irrigation practices vital for the sustainability and productivity of the 
agricultural sector.

To optimize water use, we present SMARTER, a SMART watERing 
system that utilizes near real-time data to manage orchards’ irrigation 
efficiently. We focus on orchards (and not open fields) as (i) they cannot 
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Fig. 1. Overview of SMARTER. In the offline phase, agronomists set the desired moisture state of the field. In the online phase, SMARTER monitors and 
transforms sensor data into a detailed profile that, coupled with past irrigation and the optimal state set by agronomists, is used to calculate watering advice.
be effectively monitored using remote sensors (e.g., satellites) since 
canopies or nets hinder precise measurements, and (ii) irrigation is 
usually organized in pipelines of drippers that cause heterogeneous soil 
moisture (which is higher close to plants and gradually lower between 
rows of plants).

The overall flow of the system is illustrated in Fig.  1. SMARTER
involves two main phases. In the offline phase (e.g., monthly or for each 
fruit growth stage), agronomists define an optimal soil-moisture state 
depending on the characteristics of fruits, plants, and soil. In the online
phase, SMARTER samples the current state of soil moisture through in-
field sensors, models, and builds soil moisture profiles using artificial 
intelligence (Monitoring), and calculates how much water is necessary 
to keep the soil moisture as close as possible to the optimal state 
(Prescriptive Watering). We conducted an empirical evaluation during 
the 2023 and 2024 irrigation seasons (from June to October) in two 
kiwifruit orchards, achieving water savings of up to 40% and compa-
rable fruit quality to that of traditional irrigation practices. SMARTER
adapts to different fields, is deployable without prior historical data, 
and its adoption is calibration-free.  In other words, SMARTER can be 
adopted immediately (from day 0, once sensors are installed), as it is 
independent of soil properties (e.g., soil texture is not an input) and 
requires no prior training or calibration. 

The paper is organized as follows. Section 2 provides a literature 
overview on smart irrigation systems, while Section 3 describes the ma-
terials and methods leveraged in this approach. Finally, the evaluation 
(including two case studies in real fields) is presented in Section 4, and 
conclusions are drawn in Section 5.

2. Related work

The approaches to monitor and estimate the irrigation requirements 
of fruit orchards can be classified based on the strategies they adopt 
for: (i) modeling the physiological and environmental conditions of 
the orchards, and (ii) determining the optimal irrigation volumes. 
We recall that we focus on orchards rather than open-field crops, as 
irrigation management strategies differ significantly between these two
contexts.
2 
2.1. Physically-based simulators

A common approach for modeling plant–soil–water dynamics in-
volves the application of physical models and numerical simulators, 
such as HYDRUS (Simunek et al., 2009) and CRITERIA (Bittelli et al., 
2015). These tools simulate water flow and solute transport in vari-
ably saturated porous media across one-, two-, and three-dimensional 
spatial domains and have been extensively applied to estimate soil–
plant–water dynamics (Barezzi et al., 2024; Delgoda et al., 2016) and 
irrigation requirements (Bittelli et al., 2025; Barezzi et al., 2024) under 
various scenarios. IRRINET and IRRIFRAME (Mannini et al., 2013) are 
decision support systems developed by the Consorzio Canale Emiliano 
Romagnolo (Italy) for irrigation management. These tools leverage 
meteorological data and detailed soil maps to provide irrigation rec-
ommendations based on user-inputted information concerning crop 
type and growing conditions. However, they require users to supply 
a substantial amount (around 30 parameters) of detailed and dynamic 
information (e.g., phenological stage, canopy coverage periods). Their 
estimations of water requirements are based on large-scale water bal-
ance models, which, despite being informative, may not always yield 
optimal irrigation outcomes, particularly in complex systems such as 
orchards, where spatial and temporal heterogeneity play a significant 
role.

Overall, the adoption of simulators has the following issues.

• They require an intensive parameter calibration phase, which can 
involve iterative simulations on data collected from in-situ sensors 
to optimize the set of soil/crop parameters that best describe the 
observed soil–plant interactions (Bittelli et al., 2025). Moreover, 
certain parameters required for tuning these simulation models 
are derived from detailed laboratory analyses, which can be both 
resource and time-intensive.

• Although a tuned simulator may perform well within the specific 
conditions for which it was tuned, its ability to generalize to 
unseen scenarios is frequently limited, posing significant chal-
lenges to scalability and broader adoption in diverse agricultural 
contexts.

• Water demand is heavily dependent on several exogenous factors 
affecting the decision-making process (e.g., weather conditions, 
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ridge tillages, and soil cracking), but integrating them into sim-
ulators amplifies the complexity of the problem we want to 
solve.

2.2. Sensor-based approaches

An alternative to crop simulation models for monitoring plant–
soil–water dynamics is the direct monitoring through sensing tech-
nologies. Within this approach, two primary categories can be distin-
guished: remote and in-situ sensing.

2.2.1. Remote sensing
Satellite imagery (e.g., Sentinel and Landsat) offers a cost-effective 

and widely accessible solution for monitoring agricultural landscapes
(Huang et al., 2024; Velazquez-Chavez et al., 2024). Studies in the 
literature evaluate the effectiveness of these data sources. Meier et al. 
(2020) underscore the challenges posed by the spatial resolution of 
satellite imagery, specifically for orchard monitoring. Their findings 
indicate that to capture meaningful spatial variability and derive useful 
insights, a bare minimum resolution of 10 m is required, with an 
optimal resolution of 5 m suggested for future advancements in remote 
sensing technologies. The analysis further demonstrates that, within 
the studied agricultural landscapes, nearly 20% of orchard fields are 
entirely unrepresented (with one pixel at most covering them) when 
using imagery with a spatial resolution of 20 m, while approximately 
80% of orchards are covered by less than 50 pixels at the same 
resolution. This sparse pixel representation significantly constrains the 
precision and reliability of satellite-derived data, highlighting the need 
for higher resolution remote sensing tools to improve orchard water 
management strategies. Furthermore, the presence of protective nets 
commonly employed in orchards to shield crops from adverse weather 
conditions, such as hailstorms or excessive sunlight, further complicates 
satellite-based monitoring by altering surface reflectance properties and 
possibly obscuring key spectral signatures, reducing the accuracy of 
remote sensing data used to assess crop health and soil moisture status. 
Deng et al. (2023) highlight additional limitations of satellite-based 
monitoring, noting that adverse weather conditions compromise the 
reliability of images, especially for small-scale farms. To address these 
challenges, the authors suggest that unmanned aerial vehicles (UAVs) 
offer a promising alternative, providing higher spatial resolution and 
greater flexibility than satellite platforms (Deng et al., 2023; Peeters 
et al., 2024; Zhang et al., 2023).

Wang et al. (2025) leverage UAV-based multispectral data combined 
with machine learning to estimate soil moisture in kiwi orchards. 
Although their results show promising accuracy for moisture prediction 
at 20 cm depth under ideal conditions, this depth may be insufficient 
for precise irrigation guidance, given that the main root system of 
kiwifruit extends deeper in the soil. Moreover, the responsiveness of 
their approach is inherently constrained by the UAV flight schedule. 
Furthermore, the widespread adoption of UAVs remains limited by their 
elevated costs, operational complexity, and required expertise, making 
them less accessible to smallholder farmers. These constraints con-
tinue to hinder their scalability and wider use in precision agriculture, 
particularly in orchards and resource-limited contexts.

2.2.2. In-situ sensing
In-situ sensors represent a promising alternative for orchard mon-

itoring. Such sensors come in various types, mostly soil moisture sen-
sors, weather monitoring devices, and phytosensors designed to assess 
plant physiological conditions. Phytosensors remain prohibitively ex-
pensive at present, whereas weather and soil moisture sensors have 
proven to be accessible and cost-effective tools for irrigation manage-
ment.

In the following, we focus on real applications to orchards (rather 
than solutions applied in more experimental settings, such as Cáceres 
et al. (2007) and Miranda et al. (2005)) and we distinguish such 
applications based on the family of techniques used to compute the 
watering advice given sensor data.
3 
Rule based. Osroosh et al. (2015) propose a rule-based irrigation 
framework for apple orchards that uses data from a sensor network 
that monitors weather conditions and soil moisture levels. Imple-
menting this system requires numerous parameters, both field-specific 
and research-derived, necessitating extensive site-specific calibration 
and posing challenges to scalability across diverse orchards and cli-
mates. Hamouda et al. (2024) introduce an irrigation management 
system for pear orchards based on soil water content (SWC) thresholds. 
SWC sensors require detailed calibration tailored to the specific soil 
properties of the monitored site. The calibration process typically 
involves laboratory analysis of the hydraulic characteristics of the soil, 
which limits the widespread and efficient adoption of such a system. 
Barezzi et al. (2024) adopt a soil matric potential-based approach to 
estimate irrigation requirements in apple and kiwifruit orchards. In 
their methodology, matric potential thresholds are determined using 
HYDRUS-1D simulations, and matric potential data is collected by one 
sensor placed at a 20 cm depth for kiwifruit orchards and two sensors 
positioned at 20 cm and 40 cm depths for apple orchards. An irrigation 
control algorithm then applies predefined rules to maintain the moni-
tored matric potential values within the computed thresholds. While 
this approach benefits from the lack of scenario-specific calibration 
requirements, the reliance on a single sensor in kiwifruit orchards as-
sumes a uniform soil moisture distribution, which may not adequately 
capture spatial variability within the root zone. Zheng et al. (2025) 
propose a multi-objective optimization framework balancing yield, fruit 
quality, and water productivity through the different fruit’s growth 
stages. However, the approach depends on long-term forecasts, expert-
driven parameter calibration, and process-based simulators, limiting its 
practical applicability and interpretability. Moreover, the evaluation 
primarily relies on simulated rather than field data.
Machine-learning based. Numerous studies in the literature have ex-
plored the application of artificial intelligence techniques to deter-
mine irrigation requirements in orchards. Goldstein et al. (2017) and 
Navarro-Hellín et al. (2016) analyze and compare various machine 
learning models for orchard irrigation, utilizing both weather forecasts 
and an extensive set of measured variables. Artificial Neural Networks 
(ANNs) have been studied for irrigation management. Kang et al. 
(2023) present two ANN models: the first predicts soil moisture levels 
for the upcoming week based on current moisture level, weather data, 
and crop coefficients, while the second leverages the output of the 
first model to estimate the optimal irrigation volumes. Likewise, Ding 
and Du (2022) propose a reinforcement learning approach for irriga-
tion management. Their method combines in-situ measurements with 
weather forecasts and soil water content data to train an agent that 
mimics agronomic expertise, aiming to maintain soil water content 
within the range defined by permanent wilting point and field capacity.

The main challenges associated with machine learning, and even 
more so with ANNs, include the requirement for large amounts of high-
quality data to train the models, along with the risk of overfitting 
to specific scenarios influenced by environmental variables that sig-
nificantly affect sensor measurements, such as soil texture and ridge 
tillage (Umutoni and Samadi, 2024; Sharma et al., 2025). While this 
issue can be alleviated by training models on data from heterogeneous 
scenarios, it further underscores the generalization challenge faced 
by learning models, as it demands an even broader range of high-
quality data. This indicates that a model performing well on a particular 
crop at a specific growth stage, cultivated on a field with distinct 
pedological characteristics, might perform poorly when applied in a 
different scenario (Umutoni and Samadi, 2024). This also entails a cold 
start problem: due to their limited generalization capabilities, learning 
models must first be trained on data specific to a scenario before they 
can effectively be deployed in it. Umutoni and Samadi (2024) highlight 
the limitations of black-box machine learning solutions that operate 
without human oversight in the decision-making process. Although 
these techniques show potential in supporting irrigation management, 
further research is required to establish them as transparent decision 
support tools for domain experts rather than fully autonomous and 
opaque systems.
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Control-theory based. A controller processes the measured system out-
put and computes corrective actions to minimize deviations from a 
desired set point. Some approaches are documented in literature, rang-
ing from proportional derivative controllers (Goodchild et al., 2015) 
to more advanced model predictive controllers (Lozoya et al., 2016; 
Garcia et al., 2025). Goodchild et al. (2015) carried out their eval-
uation within a controlled polytunnel environment, whereas Lozoya 
et al. (2016) implemented their approach in an open-field pepper crop. 
However, the latter approach is built upon oversimplified assumptions 
that are often invalid in real-world orchards’ conditions, such as plain 
land, absence of surface runoff, no rainfall, and no capillary rise. In 
contrast, Garcia et al. (2025) conducted their MPC-based approach 
evaluation in a pecan orchard. Nevertheless, as acknowledged by the 
authors, a key limitation of their model-based strategy is the need to 
experimentally determine system parameters for each specific crop, soil 
type, and irrigation system.

2.3. Distinguishing features

With respect to the cited works, SMARTER:

• is designed to control irrigation of orchards through a controller 
that solely relies on soil water potential measurements and recent 
irrigation data as inputs. Using a small number of input variables 
enhances the explainability of SMARTER’s decisions, distinguish-
ing it from black-box models such as ANNs. Also, since we operate 
in orchards where frequent monitoring and irrigation are usually 
possible, there is no need to build complex forecast models with 
many exogenous variables.

• employs a 2D grid of gypsum block sensors, which enables a 
precise monitoring of the spatial dynamics of water movement 
within the soil. We choose to employ soil water potential sensors, 
which, unlike soil water content sensors, do not require labor-
intensive calibration tailored to the specific soil properties of the 
deployment site.

3. Materials and methods

SMARTER (Fig.  1) is an automatic system for the irrigation of 
orchards that optimizes water consumption while achieving high fruit 
quality. The offline phase includes the deployment of sensors (see 
Section 3.2) and the definition of the optimal soil-moisture state by
agronomists depending on the characteristics of fruits, plants, and soils; 
the optimal state can be changed during the watering season. Dur-
ing the online phase, sensor data are continuously collected. Moisture 
variability is due to both the irrigation system (e.g., single or double 
lines of drippers) and plant transpiration; SMARTER uses a 2D grid of 
sensors to get a better understanding of the water dynamics. Sensor 
data fuels the Monitoring module (Section 3.3), which models the 
current state of soil moisture in the field through artificial intelligence. 
Then, the Prescriptive Watering module (Section 3.4) recommends 
a water advice given the current state of soil moisture and the past 
advice. The water advice represents how much water is necessary to 
keep the soil moisture as close as possible to an optimal state.

3.1. Assumptions

SMARTER takes decisions based on ‘‘certain’’ data: 2D grids of 
soil moisture sensors (e.g., gypsum block sensors1) and past irrigation. 

1 Gypsum-block sensors use two electrodes placed into a small block of 
gypsum to measure soil water tension. Wires connected to the electrodes are 
connected to either a portable hand-held reader or a data logger. The amount 
of water in the soil is determined by the electrical resistance between the two 
electrodes within the gypsum block. The presence of more water in the soil 
will reduce resistance, while less water will increase it.
4 
The underlying assumption is that past sensor-based measurements 
provide a good combination of simplicity, robustness, and precision. 
This statement is supported by the following considerations.

Soil moisture changes gradually, so it is usually sufficient to make 
irrigation adjustments afterward to keep it within the optimal range.

External events affecting soil moisture (e.g., heavy rains) can be de-
tected through frequent, precise sensor measurements. Other ‘‘certain’’ 
events (e.g., fertigation) can be manually accounted for in advance, 
keeping SMARTER both simple and adaptable.

Forecasting typically requires training and tuning in the specific 
field, thus increasing complexity and preventing fast adoption. Al-
though future weather forecasts (e.g., precipitation and temperature) 
can provide useful insights, their inherent uncertainty often limits their 
practical value. On the one hand, if an orchard can be frequently irri-
gated (e.g., every 1–2 days), there is no point in integrating predictions 
on uncertain events since field conditions do not change abruptly from 
one day to the next. On the other hand, field conditions are more 
dynamic for low-frequency irrigation (e.g., every 5–7 days). However, 
the longer the time interval, the lower the trustworthiness of future 
forecasts. For instance, a forecast predicting heavy rainfall in the next 
7 days might induce a predictive system to reduce irrigation. If the 
rainfall does not occur, plants would face water stress for longer 
irrigation intervals, and failed predictions would require even more 
drastic corrective actions.

Following these considerations, we assume that it is simpler and 
more interpretable to make decisions based on actual data than to 
integrate predictive strategies that accumulate errors from uncertain 
events.

3.2. Setup of sensors

Fruit orchards are usually organized in sectors: areas irrigated with 
the same irrigation system. Each sector is further decomposed into rows 
of fruit plants. A grid of sensors is deployed for each sector and is 
assumed to be representative of the whole sector. In case of intra-sector 
heterogeneity (Hamouda et al., 2024), it is possible to install multiple 
grids to represent different homogeneous sub-areas and to compose 
their prescriptions (e.g., by averaging the amount of water necessary 
in each sub-area).

The setup of the sensors follows these steps.

1. Determine the soil volume: the portion of the soil occupied by 
most of a plant’s roots (Fig.  2(a)).

2. Determine the watered volume. Different irrigation systems can 
be adopted, such as drippers or sprinklers located along the tree 
lines. The choice of the irrigation method determines the watered 
volume: the portion of the soil that the irrigation system can 
effectively moisten (Fig.  2(a)). While sprinklers cover a wide 
area and produce uniform irrigation, drippers cover narrower 
areas where moisture is not uniform and decreases with the 
distance from the dripper.

3. Determine the monitored volume. The sensor grid should be ar-
ranged to capture moisture variability caused by both the irriga-
tion system and plant transpiration. Consequently, it must cover
at least the watered volume and, ideally, the entire soil volume. 
In practice, however, covering the entire soil volume is rarely 
feasible, both for logistical reasons (e.g., avoiding damage from 
vehicle passage) and for economic reasons (i.e., the substantial 
amount of sensors required). Moreover, since prescriptive irri-
gation can only influence the watered volume, monitoring the 
entire soil volume would provide only limited additional value. 
The most effective setup is to place one column of sensors as 
close as possible to a plant and another column just beyond 
the boundary separating watered and unwatered zones; this 
boundary can be identified empirically through simple field 
observations. The remaining sensor columns can then be dis-
tributed at equal intervals. In sprinkler irrigation, where no clear 
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(a) Relevant elements in an orchard.

  
(b) Monitored soil volume.

 

Fig. 2. Simplified representations of a kiwifruit orchard and the deployed sensors. Sensors (circles) are deployed orthogonally to the dripper/tree line to capture 
the spatial variability of soil moisture that is typical of fruit orchards.
 
(a) 

  
(b) 

 

Fig. 3.  A sensor grid (left) monitoring soil moisture close to a kiwi tree in a commercial orchard located in Faenza, Italy (right). The watering system is composed 
of single-pipeline drippers.
boundary exists between watered and unwatered zones, the grid 
can instead be positioned to encompass the primary root mass.

The grid size is a trade-off between robustness and cost. On the one 
hand, the more sensors, the better the accuracy of representing soil 
moisture dynamics and the greater the robustness of SMARTER to 
hardware faults. On the other hand, too many sensors are not deploy-
able due to economic and (spatial) field constraints. In Francia et al. 
(2022), we studied the trade-off between accuracy for grids including 
from 4 (i.e., 2 columns with 2 sensors at different depths; the minimum 
number of sensors for a regular grid) to 12 sensors (i.e., 4 ⋅ 3; the grids 
we leverage for research purposes), and we demonstrated that grids of 
9 (i.e., 3 ⋅ 3) or 6 (i.e., 3 ⋅ 2) sensors provide an accurate representation 
of soil moisture dynamics. 

Example 1.  In an orchard in a flat region, single pipelines of drip-
pers moisten ‘‘circles’’ with a radius of around 50 cm. To control 
the monitored volume, we use four columns of three sensors at dif-
ferent distances (e.g., 0 cm, 25 cm, 50 cm, and 75 cm) and depths 
(e.g., −20 cm, −40 cm, and −60 cm for kiwifruit); see Fig.  3. The 
maximum distance from the tree (75 cm) is determined by the area 
moistened by drippers (75 cm > 50 cm), while depths are determined 
by the shape of the roots of the kiwifruit plant.

3.3. The Monitoring module

The goal of this module is to approximate the actual soil moisture 
(Fig.  4(a)) with a soil moisture profile (Fig.  4(c)) using a grid of sensors 
(Fig.  4(b)).
5 
Definition 1 (Sensor Grid). A sensor grid 𝑆 = {𝑠1,… , 𝑠|𝑆|} is a 2-
dimensional layout of |𝑆| sensors installed in a soil volume. Each sensor
𝑠𝑖 is defined by a 2-dimensional displacement (𝑠𝑖.𝑥1, 𝑠𝑖.𝑥2) with respect 
to the plant, and by a soil moisture value 𝑠𝑖.𝑣.

After sampling the data, we interpolate a soil moisture profile (Fig. 
4(c)).

Definition 2 (Moisture Profile). Given a 2-dimensional sensor grid 𝑆, the
moisture profile is a 2-dimensional grid 𝑃 = {𝑝1,… , 𝑝|𝑃 |} that approxi-
mates, in each 𝑝𝑖, the soil moisture measured by 𝑆. 𝑃  is fine-grained
with respect to 𝑆 since |𝑃 | > |𝑆|.

The approximation 𝑝𝑖.𝑣 is assumed to be constant in the region 
surrounding 𝑝𝑖, whose granularity (i.e., the covered area of the order 
of cm2) depends on |𝑃 |.

Soil moisture profiles can be obtained using statistical techniques 
such as bilinear interpolation or machine learning (Francia et al., 
2022). In this work, SMARTER uses bilinear interpolation to create 
soil moisture profiles based on sensor data.

3.4. The Prescriptive Watering module

For each monitored field, agronomists specify the optimal soil mois-
ture profile (i.e., the optimal soil moisture distribution for a given 
plant in a given field) and the preferred irrigation time 𝑡; the optimal 
profile can be manually defined or selected from those collected by the
Monitoring module. Choosing the optimal moisture level in orchards 
is a common task even in traditional farming: agronomists control irri-
gation by looking at the state of the orchard and other relevant factors, 
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Fig. 4. Computing a fine-grained soil moisture profile from a grid of sensors. Starting from a continuum of soil moisture (a), the sensor grid samples soil moisture 
(b) out of which SMARTER builds a detailed soil moisture profile (c).
(a) Current soil moisture profile.

(b) Optimal soil moisture profile.

Fig. 5. Examples of soil moisture profiles from the Ancarani orchard. The goal 
of Prescriptive Watering is to bring the current soil moisture (a) as close 
as possible to the optimal profile (b) by providing the minimal amount of 
necessary water.

and they even do that ‘‘blindly’’ without quantitative information from 
the field since this decision is often left to their expertise alone. The 
added value of SMARTER is leveraging sensors to understand the soil-
moisture dynamics and reach an optimal level specific to that orchard 
(and phenological state, etc.) through data-driven decisions.

For the sake of clarity, with agronomist we refer to people with a 
‘‘scholar’’ background as well as a good understanding of the orchard 
and its dynamics, and with farmer we refer to people using traditional 
irrigation techniques. Nonetheless, in real orchards, SMARTER has 
been used by both agronomists and farmers with agronomic knowledge 
about the crop, the capability to map a qualitative optimal moisture 
profile to a quantitative measure of soil moisture potential, and min-
imum digital skills. Noticeably, none of the farmers had problems in 
defining the conversion from qualitative profile to quantitative soil 
moisture potential.
6 
Definition 3 (Optimal Moisture Profile). The optimal moisture profile 𝑃  is 
a target moisture profile that indicates the soil moisture distribution 
(of the monitored volume) that should be achieved and maintained 
through irrigations to optimize orchard production.

Prescriptive Watering brings the current soil moisture profile (Fig. 
5(a)) as close as possible to the optimal soil moisture profile (Fig.  5(b)). 
Converging towards the optimal profile ensures that soil moisture is 
kept in equilibrium during the irrigation season.

Example 2 (Prescriptive Watering). Fig.  6 shows the behavior of
SMARTER on a real kiwifruit orchard. The average soil moisture of 
the sensed profile (blue line) is kept close to the optimal state (green 
line) by controlling daily irrigations (purple bars). Divergence is due 
to weather and soil dynamics, and is automatically corrected by the 
prescriptive algorithm. The significant divergence since September 7th 
is due to heavy precipitation (red bars). SMARTER becomes aware of 
these events from the sensors and stops the irrigation.

3.4.1. The prescriptive watering algorithm
At the designated irrigation time 𝑡 (e.g., every day at 9:00), the 

system computes the distance between the sensed and the optimal soil 
moisture profiles. Such distance and the past irrigation are the inputs 
necessary to compute the new irrigation. The distance between the 
current (Fig.  5(a)) and optimal (Fig.  5(b)) profiles at time 𝑡 is computed 
cell-wise. 

𝑒𝑡 =
∑

|𝑃 |
𝑖=1(ln(|𝑃

𝑡
𝑖 |) − ln(|𝑃𝑖|)) ⋅𝑊𝑖
∑

|𝑃 |
𝑖=1 𝑊𝑖

(1)

We weight the distance calculation with a matrix 𝑊  of |𝑃 | weights, 
where each cell is a weight 𝑊𝑖 ∈ [0, 1]. Weights can be tuned by 
agronomists (if unspecified, weights are set to 1 by default) and de-
termine the degree to which each cell contributes to the distance from 
the optimal soil moisture profile. If the given irrigation system cannot 
directly water a portion of the soil volume, such a portion should be 
assigned lower weights compared to cells within the watered volume 
(Fig.  7(a)). This prevents inefficiencies in water management: without 
a weight matrix, if the chosen optimal profile suggests high moisture 
levels in areas that the irrigation system cannot reach, the system may 
waste water to erroneously attempt to achieve unattainable moisture 
levels in those areas. Since gypsum block moisture sensors measure soil 
water potential (which ranges from values ranging in the orders of −103
to −101), a logarithm is applied to the absolute value of each moisture 
value. The cell-wise distances are depicted in Fig.  7(b), and they are 
finally averaged into 𝑒𝑡.

The computed distance 𝑒𝑡 is fed to a Proportional–Integrative (PI) 
controller that determines the recommended irrigation amount to bring 
the distance from the optimal state as close to zero as possible. A PI 
controller is a widely utilized feedback control mechanism, particularly 
in managing dynamic systems where achieving precision and stability 
is essential. The controller regulates and maintains a process variable 
as close as possible to a desired output by combining two different 
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Fig. 6. Comparison of SMARTER (blue line) and optimal (dotted green line) average soil moisture levels on a logarithmic scale (where higher/lower values 
indicate drier/wetter conditions) in the Ancarani orchard (Faenza, Italy) during 2024. Bars represent the recommended irrigation (in blue, liters per dripper) and 
the precipitation events (in red, liters per m2).
(a) Weights set by agronomists.

(b) Cell-wise distances.

Fig. 7. Examples of cell-wise (a) weights (b) and distances from the Ancarani 
orchard. Cell-wise distances are computed between Figs.  5(a) and 5(b).

control actions: a proportional control, which produces an output that 
is directly proportional to the current error, and an integral control, 
which allows the controller to account for the cumulative error over 
time. Combining these two effects allows a PI controller to respond to 
both current deviation and accumulated errors.

𝛥𝑢𝑡 = 𝐾𝑃 ⋅
(

𝑒𝑡 − 𝑒𝑡−𝛥𝑡
)

+𝐾𝐼 ⋅ 𝑒
𝑡 (2)

𝑢𝑡 = 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 + 𝛥𝑢𝑡 (3)

𝑎𝑑𝑣𝑖𝑐𝑒𝑡 = min
{

max
(

𝑢𝑡, 0
)

, 𝑎𝑑𝑣𝑖𝑐𝑒max

}

(4)

where 𝛥𝑢𝑡 is the proportional–integrative correction, 𝑒𝑡−𝛥𝑡 is the previ-
ous error (e.g., 24 h before), 𝐾𝑃  and 𝐾𝐼  are hyperparameters that are 
automatically set in Section 3.4.4.
7 
Algorithm 1 SMARTER 
Require: 𝑆: sensor grid, 𝑃 : optimal soil moisture, 𝑊 : weight grid, advice0: 

baseline irrigation (liters), advicemax: maximum irrigation (liters), first: 
first irrigation, 𝛥𝑡: time period, 𝐾𝑃 : proportional constant, 𝐾𝐼 : integrative 
constant

Monitoring module
1: 𝑆 𝑡 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝑆) ⊳ Read the sensor data 
2: 𝑃 𝑡 ← profile(𝑆 𝑡) ⊳ Compute the current soil moisture profile 

Prescriptive Watering module
3: if first then ⊳ If it is the first advice
4:  advice𝑡 ← advice0 ⊳ Recommend the baseline irrigation 
5: else ⊳ If it is not the first advice
6:  𝑒𝑡 =

∑

|𝑃 |
𝑖=1(ln(|𝑃

𝑡
𝑖 |)−ln(|𝑃𝑖 |))⋅𝑊𝑖

∑

|𝑃 |
𝑖=1 𝑊𝑖

⊳ Distance between current & optimal profiles 
7:  𝑢𝑡 = advice𝑡−𝛥𝑡 + 𝛥𝑢𝑡 ⊳ Compute the irrigation amount 
8:  advice𝑡 = min

{

max
(

𝑢𝑡, 0
)

, advicemax

}

⊳ ... and bound it 

𝐾𝑃  and 𝐾𝐼  represent proportional and integral gains, respectively, 
and 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 is the previous recommendation. While the 𝐾𝑃  compo-
nent defines how heavily the controller should react to changes in error, 
𝐾𝐼  defines how heavily the controller should adjust the output based 
on the history of the error, addressing any steady-state error. When 
𝑒𝑡 − 𝑒𝑡−𝛥𝑡 tends to 0, the error is stable and the contribution of the 
proportional component is almost null.

Finally, 𝑢𝑡 is capped between 0 (no irrigation should be provided) 
and 𝑎𝑑𝑣𝑖𝑐𝑒max (the maximum allowed irrigation) to get the final 𝑎𝑑𝑣𝑖𝑐𝑒𝑡. 
Planned events (e.g., fertigations manually scheduled by farmers) can 
be directly subtracted from 𝑢𝑡; if the difference is zero or negative, no 
irrigation is recommended.

Example 3 (Calculating 𝑒𝑡 and 𝑎𝑑𝑣𝑖𝑐𝑒𝑡). With reference to Figs.  5(a) and
5(b), the value of 𝑒𝑡 is 0.06. Given 𝑒𝑡−𝛥𝑡 = 0.44 and 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 = 9.58, 
and assuming 𝐾𝑃 = 1 and 𝐾𝐼 = 0.25, it follows that 𝑎𝑑𝑣𝑖𝑐𝑒𝑡 = 9.22.

SMARTER is summarized in Algorithm 1. The algorithm runs at 
the scheduled irrigation time 𝑡, samples the sensor grid (Line 1), and 
computes the soil moisture profile out of the sensor data (Line 2). For 
the first irrigation (Line 3) it recommends the baseline as the irrigation 
amount (Line 4). Otherwise, it computes the distance 𝑒𝑡 (Line 6), applies 
the PI controller (Line 7), and computes the watering amount 𝑎𝑑𝑣𝑖𝑐𝑒𝑡
(Line 8).

We emphasize that SMARTER is independent of specific soil char-
acteristics, as it makes decisions based on (i) current and past soil 
moisture states, (ii) previous recommendations, and (iii) the desired 
optimal state.  To simplify decision-making, our system does not use 
weather forecasts as inputs because soil moisture reflects them: past 
rainfall affects the current moisture measured by sensors, while the 
impact of future (uncertain) rain will be captured at the next irrigation. 
For example, if rain and irrigation occur on the same day, the soil will 
be wetter, making SMARTER less likely to irrigate the following day.
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Fig. 8. Comparing recommended (blue bars) and actual irrigation (orange bars) volumes (liters per dripper) in two commercial orchards (Ancarani and Errano). 
In green, the fertigations that farmers manually schedule.
Fig. 9. Feed-forward correction: at time 𝑡, the recommended water is the 
sum of the previous irrigation (𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡) and the proportional–integrative 
correction (𝛥𝑢𝑡).

3.4.2. Robust handling of irrigation deviations
The amount of water recommended by SMARTER may not pre-

cisely match the quantity actually delivered by the irrigation system 
(which could be measured by a flow sensor, see Fig.  8). For example, 
some water pumps operate based on activation time rather than water 
volume. Therefore, a conversion factor is needed to translate the rec-
ommended volume (in liters) into the corresponding pump activation 
time (in hours). Since this is an estimation, the conversion may not be 
perfectly accurate. Furthermore, pump pressure can vary over time and 
typically requires some time to stabilize at the desired level.

To address deviations between the recommended and delivered 
water volumes (𝑎𝑑𝑣𝑖𝑐𝑒𝑡 and 𝑤𝑎𝑡𝑒𝑟𝑡, respectively), if a sensor is available 
to measure the delivered quantity 𝑤𝑎𝑡𝑒𝑟𝑡, when calculating 𝑢𝑡, we can 
apply the following feed-forward correction 
𝛥𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 = 𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡 − 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 (5)

so that Eq. (3) changes to 
𝑢𝑡 = 𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡

⏟⏞⏞⏟⏞⏞⏟
measured actuation at 𝑡−𝛥𝑡

+𝛥𝑢𝑡
(6)

For details, see Appendix. 

Example 4.  Let us consider two irrigation schedules 𝑡 and 𝑡′, with 𝑡 =
𝑡′−𝛥𝑡 (Fig.  9). As of 𝑡, the recommended water was 10 l (𝑎𝑑𝑣𝑖𝑐𝑒𝑡 = 10), 
but the actual water delivered to the field was only 8 l (𝑤𝑎𝑡𝑒𝑟𝑡 = 8). As 
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of 𝑡′, when computing the 𝑎𝑑𝑣𝑖𝑐𝑒𝑡′ , we consider 𝑤𝑎𝑡𝑒𝑟𝑡 = 8 rather than 
𝑎𝑑𝑣𝑖𝑐𝑒𝑡 = 10. This ensures that SMARTER is aware of the actual water 
delivered to the field.

If a sensor measuring 𝑤𝑎𝑡𝑒𝑟𝑡 is available, we consider Eq. (6) rather 
than Eq. (4) in Algorithm 1 Line 7.

Henceforth, the recommended irrigation volume is represented per 
single dripper.

3.4.3. Alerting
The optimal soil moisture profile may not always be physically 

achievable. For example, suppose a uniform moisture level is set as the 
target for a soil volume irrigated with drippers. In that case, SMARTER
will attempt to reach a moisture distribution that is inherently unattain-
able due to system constraints. Indeed, drippers produce localized, 
narrow wetting patterns. As a result, the system may overestimate the 
required irrigation, leading to inefficient water use and unnecessary 
waste in pursuit of an unrealistic goal.

This issue is mitigated by continuously monitoring the soil moisture 
profile and refining the target moisture distribution based on historical 
soil moisture dynamics. Additionally, suppose irrigation requirements 
change due to evolving plant growth stages. In that case, a new suitable 
optimal soil moisture profile can be selected to reflect those changes, 
allowing for more precise and adaptive water management.

To help agronomists, we automatically alert them when SMARTER
recognizes plateaus. Given the history of the last ℎ errors 𝐻 = [𝑒𝑡−ℎ,… ,
𝑒𝑡], if past errors are all above the threshold 𝜖 (formally, |{𝑒𝑖 ∶ 𝑒𝑖 ∈ 𝐻,
|𝑒𝑖| > 𝜖}| = ℎ; i.e., we are far from the optimum state) and the 
derivative is close to 0 (formally, 𝑒𝑡−𝑒𝑡−ℎℎ < 0.1), then we alert farmers 
and agronomists since the system is stuck away from the optimal state 
(Fig.  10). For instance, the alert is raised when the optimal state is too 
wet and unachievable due to high evapotranspiration or to exogenous 
factors that affect the irrigation system.

In our implementation, we consider ℎ = 5 days and 𝜖 as the 10% of 
the average humidity of the optimal soil moisture profile (dotted line 
in Fig.  10).

3.4.4. Reference values for 𝐾𝑃  and 𝐾𝐼
The parameters necessary to run SMARTER are 𝐾𝑃  and 𝐾𝐼  (i.e.,

how fast the system should respond to current and past errors).2 To 
adopt SMARTER in a real orchard, we provide the initial setup of 
𝐾𝑃  and 𝐾𝐼 . Then, agronomists observe how the system operates and 

2 The optimal soil moisture profile, weight grids, and maximum irrigation 
are parameters set based on the experience of the agronomist.
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Fig. 10. Examples of soil moisture plateaus causing alerts in SMARTER. For 
instance, the alert is raised when soil moisture is stable and stuck in the ‘‘dry 
region’’ (in red) for several consecutive days; this condition could be caused 
by limited water delivery due to faults in the irrigation system.

Algorithm 2 Tuning 𝐾𝑃  and 𝐾𝐼

Require: Soil textures 𝑿, weather scenarios 𝑾 , range 𝑲𝑷 , range 𝑲𝑰 , budget 
𝑏

1: (𝐾𝑃 , 𝐾𝐼 )∗ ← ∅ ⊳ Initialize the best configuration 
2: error∗ ← +∞ ⊳ Initialize the best error 
3: 𝑖 ← 0 ⊳ Initialize the current iteration 
4: while 𝑖 < 𝑏 do ⊳ While the budget is not expired 
5:  error ← 0 ⊳ Initialize the total error 
6:  (𝐾𝑃 , 𝐾𝐼 ) ← AutoML(𝑲𝑷 ,𝑲𝑰 ) ⊳ Choose the next configuration 
7:  for each soil texture 𝑋 ∈ 𝑿 do ⊳ For each soil texture 
8:  for each weather condition 𝑊 ∈ 𝑾  do ⊳ For each weather 
condition 

⊳ Simulate & get the error
9:  RMSE← Orchard3D-Lab(𝑋,𝑊 ,SMARTER(𝐾𝑃 , 𝐾𝐼 ))
10:  error← error + 𝑅𝑀𝑆𝐸 ⊳ Accumulate the error 
11:  if error < error∗ then ⊳ If the simulation improves the error 
12:  (𝐾𝑃 , 𝐾𝐼 )∗ ← (𝐾𝑃 , 𝐾𝐼 ) ⊳ Set the best configuration 
13:  error∗ ← error ⊳ Set the new error 
14:  𝑖 ← 𝑖 + 1 ⊳ Increase the iterations 
15: return (𝐾𝑃 , 𝐾𝐼 )∗ ⊳ Return the best configuration 

can manually fine-tune it (this may be necessary since fields can have 
different behaviors).

To define the initial setup, we carried out an extensive set of simula-
tions in a range of feasible values for 𝐾𝑃  and 𝐾𝐼 , i.e., 𝑲𝑷 = [0, 30] and 
𝑲𝑰 = [0, 30] (we denote with bold symbols domains or set of values); 0 
represents no reactivity to errors, while the upper bound represents the 
highest reactivity. We leverage Orchard3D-Lab (Bittelli et al., 2025), a 
field simulator based on physical equations that computes soil moisture 
dynamics. Orchard3D-Lab is a three-dimensional, process-based simu-
lator that computes the soil water balance in orchards, with a focus on 
fruit trees. It integrates detailed representations of evapotranspiration, 
root system architecture, and soil–water dynamics under drip irrigation 
and sloped land conditions. Each simulation of Orchard3D-Lab over 
a period 𝑇  requires a time series of weather conditions (including 
precipitation, solar radiation, wind speed, air temperature, etc.), a soil 
texture, and the irrigation strategy (i.e., both the irrigation interval 
and the algorithm determining the irrigation recommendation) — in 
our implementation Eq. (4). Out of a simulation, we compute the 
Root Mean Squared Error (RMSE), i.e., how far SMARTER is from the 
optimal state indicated by the agronomist over the period 𝑇 . 

𝑅𝑀𝑆𝐸 =

√

∑

𝑡∈𝑇 (𝑒𝑡)2

|𝑇 |
(7)

We recall that 𝑒𝑡 (Eq. (1)) already represents the distance between the 
optimal and current state.

Algorithm 2 outlines how the reference values of 𝐾𝑃  and 𝐾𝐼  are 
computed, representing the best configuration for different soil textures 
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Table 1
Reference values of 𝐾𝑃  and 𝐾𝐼 for different soil textures.
 Name Sand (%) Silt (%) Clay (%) 𝐾𝑃 𝐾𝐼 
 Clay Loam 30 30 40 12 3  
 Sandy Loam 60 30 10 7 3  
 Silt Loam 30 60 10 10 3  

and weather conditions simulated with Orchard3D-Lab. Given a config-
uration 𝐾𝑃  and 𝐾𝐼  (Line 6), to assess its stability, for each texture 𝑋
(Line 7) and for each weather condition 𝑊  (Line 8) we run a simulation 
with Orchard3D-Lab and get the RMSE (Line 9). The performance of 
each configuration is obtained by summing the RMSE (Line 10) for the 
different soil textures and weather conditions.

If the configuration is better than the previous ones (Line 11), we 
store it (Line 12) along with its error (Line 13). Our tuning approach 
selects the next promising configuration (Line 6) of 𝐾𝑃  and 𝐾𝐼  to 
explore using AutoML (He et al., 2021) until a budget of iterations is 
reached (Line 4); the first configuration is extracted at random. Finally, 
the best configuration of 𝐾𝑃  and 𝐾𝐼  is returned (Line 15).

We choose a simulation period of one month, a limited number of 
iterations 𝑏 = 100 (i.e., a constrained budget), four weather conditions 
from a weather station in Emilia-Romagna (Italy) between 2021 and 
2024, and as soil textures we consider 𝑿 = {𝐶𝑙𝑎𝑦 𝐿𝑜𝑎𝑚, 𝑆𝑎𝑛𝑑𝑦 𝐿𝑜𝑎𝑚,
𝑆𝑖𝑙𝑡 𝐿𝑜𝑎𝑚} (Table  1). Overall, the reference parameters for SMARTER
are 𝐾𝑃 = 12 and 𝐾𝐼 = 3.

Example 5.  Given a Clay Loam soil, Fig.  11 depicts four simulations 
with different weather conditions and how SMARTER converges to the 
optimal state with optimal values 𝐾𝑃 = 12 and 𝐾𝐼 = 3. Precipitations 
are represented in red; the complete weather conditions (including 
temperature, humidity, etc.) can be found in our repository (see Section 
‘‘Software and data availability’’).

Example 6.  Given the 2021 scenario from Fig.  11, Fig.  12 shows 
the effects of different values for 𝐾𝑃  and 𝐾𝐼  by comparing the best 
(𝐾𝑃 = 12 and 𝐾𝐼 = 3) and worst (𝐾𝑃 = 22 and 𝐾𝐼 = 29) configurations 
explored by Algorithm 2. Noticeably, higher values of 𝐾𝑃  and 𝐾𝐼  cause 
abrupt changes in the irrigation (blue bars), keeping SMARTER farther 
from the optimal state.

We also tested how 𝐾𝑃  and 𝐾𝐼  can be fine-tuned with respect to 
each single soil type (𝐶𝑙𝑎𝑦 𝐿𝑜𝑎𝑚, 𝑆𝑎𝑛𝑑𝑦 𝐿𝑜𝑎𝑚, 𝑆𝑖𝑙𝑡 𝐿𝑜𝑎𝑚). In other 
words, we consider the reference values for specific soil textures. To 
do so, we run Algorithm 2 by considering one texture at a time. 
Table  1 reports the texture-specific reference values of 𝐾𝑃  and 𝐾𝐼 . 
On the one hand, the value of 𝐾𝑃  ranges from 7 for Sandy Loam to 
12 for Clay Loam. Because Sandy Loam soils respond more quickly 
to variations in soil moisture, the proportional correction is smaller 
compared to soils like Clay Loam, where moisture levels change more 
gradually. On the other hand, 𝐾𝐼 = 3 in all soil textures, meaning 
that past discrepancies from the optimal state do not depend on the 
soil texture. Overall, SMARTER provides stable results even across 
different textures, meaning that soil moisture converges to the optimal 
state by adapting and reacting to the heterogeneous soil characteristics.

4. Evaluation

We start by evaluating SMARTER based on field experiments in two 
commercial orchards. Then, we provide the economic evaluation of its 
adoption in these fields. Finally, we test its robustness for different soil 
textures and irrigation intervals in a simulated environment, also with 
respect to existing approaches for automatic irrigation control.
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Fig. 11. Behavior of SMARTER (with reference values 𝐾𝑃 = 12 and 𝐾𝐼 = 3) along four irrigation seasons with different precipitation events and weather 
conditions.
Fig. 12. Comparing the best (left) and worst (right) configuration values of 𝐾𝑃  and 𝐾𝐼 . Higher values of 𝐾𝑃  and 𝐾𝐼 cause stronger watering corrections and, 
consequently, higher soil moisture variations.
4.1. Field experiments

SMARTER is implemented as a cloud-based application that collects 
sensor data from different orchards to make data-driven decisions on 
their irrigation. We tested SMARTER from June to October in two 
commercial kiwifruit orchards in Italy: Errano (located in Ravenna; Fig. 
13(a)) since 2023 and Ancarani (located in Faenza; Fig.  13(b)) since 
2024. The two orchards have different soil textures, dripper densities, 
flow rates, plant densities, and sensor layouts. Their distinguishing 
characteristics are summarized in Table  2.

Irrigation can be scheduled every day at noon (formally, 𝑡 represents 
the timestamp for irrigation—such as 𝑡 = ‘2025-05-15 12:00:00’–and 
𝛥𝑡 = 24 h).

Soil moisture is monitored using 2D grids of gypsum block sensors 
(Fig.  14) that cover portions of the soil volume. We employ gypsum 
block sensors because they measure water potential rather than water 
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content. Water potential measures how freely water can move from 
areas of high water potential to low water potential (i.e., how difficult 
it is for a plant to extract water) and allows agronomists to define 
reference scales for different stress levels. In contrast, water content is 
strongly dependent on the specific characteristics of the soil. A soil with 
relatively low volumetric water content may still provide abundant 
plant-available water, while a soil with high water content may offer 
almost none.

Two grids were deployed in each orchard to monitor and compare 
irrigation sectors managed by SMARTER and the farmer. Every 15 min, 
irrigation quantities are sampled via a drip flow meter, and weather 
data is collected via on-site weather stations. Data is sent to the 
cloud through the SIGFOX protocol. Farmers attended dissemination 
events where agronomists showed and explained to them the optimal 
moisture target for kiwifruit; then farmers controlled irrigation with 
their traditional approaches to reach the target.
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(a) Errano.

  
(b) Ancarani.

 

Fig. 13. Settings of the field experiments in two commercial orchards. Two-dimensional grids of gypsum block sensors are deployed to measure soil moisture, 
and drippers are automatically controlled by SMARTER: (a) a grid of 4 columns of 3 sensors has been installed, and (b) a grid of 3 columns of 3 sensors has 
been installed.
Fig. 14. Gypsum block sensors installed in a grid.
Table 2
Characteristics of the two commercial orchards used for the field evaluation.
 Field Errano Ancarani  
 Test seasons 2023/24 2024  
 Area 10 ha 15 ha  
 Plant distance 2 m 2.5 m  
 Row distance 4.5 m 4.5 m  
 Irrigation Single wing Single wing  
 Dripper flow rate 4 l

h 2 l
h  

 Dripper distance 0.66 m 0.5 m  
 #Drippers per ha 3367 4444  
 Soil texture Clay Loam Clay Loam  
 Sand (%) 30 20  
 Silt (%) 30 47  
 Clay (%) 40 33  
 #Sensors 12 9  
 Grid layout (columns × rows) 4 × 3 3 × 3  
 Grid coverage (width × depth) 0.8 m × 0.6 m 0.6 m × 0.6 m 
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Farmers provided us remote control of their (electric) water pumps, 
allowing SMARTER to control irrigation automatically. To do so, 
knowing the capacity of each dripper (watering sectors have homoge-
neous irrigation systems), we can simply turn on water pumps for an 
amount of time equal to the ratio of water advice and dripper capacity. 
We also asked farmers the maximum time span for irrigation (𝑎𝑑𝑣𝑖𝑐𝑒max
in Algorithm 1) to ensure that our water management is compliant with 
their energy and irrigation policies.

Fig.  15 compares the performance of farmers’ and SMARTER’s 
managements of two commercial orchards. Tables  3 and 4 summarize 
statistics on irrigation and fruit quality, respectively. We recall that, at 
time 𝑡, 𝑎𝑑𝑣𝑖𝑐𝑒𝑡 is the water recommended by SMARTER, 𝑤𝑎𝑡𝑒𝑟𝑡 is the 
water actually delivered to the field, and 𝛥𝑎𝑑𝑣𝑖𝑐𝑒𝑡 is the discrepancy 
between them. Given a temporal span 𝑇 , with 𝑎𝑑𝑣𝑖𝑐𝑒 we refer to 
∑

𝑡∈𝑇 𝑎𝑑𝑣𝑖𝑐𝑒𝑡, the same goes for 𝑤𝑎𝑡𝑒𝑟 and 𝛥𝑎𝑑𝑣𝑖𝑐𝑒.
The main insights are discussed below.

Convergence to the optimal state. SMARTER keeps soil moisture closer 
to the optimal state set by agronomists than expert farmers (the blue 
line is closer to the optimal green line than the purple one in Fig.  15) 
while also saving water. Noticeably, (i) the RMSE error (see Eq. (7)) 
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Fig. 15. SMARTER vs. farmer: comparing watering performance from Jun 15th to Sep 15th in two commercial orchards (Ancarani and Errano). Average soil 
moisture is represented on a logarithmic scale. SMARTER proves to be closer to the optimal state.
Table 3
Summary of water consumption (liters per dripper) and RMSE with respect to 
the optimal soil moisture state for the farmers’ and SMARTER’s management 
strategies.
 Field Year 𝑤𝑎𝑡𝑒𝑟 ↓ RMSE ↓
 Farmer SMARTER Saving Farmer SMARTER 
 Ancarani 2024 410 339 −17.32% 1.24 0.22  
 Errano 2023 883 522 −40.88% 0.43 0.31  
 2024 787 670 −14.87% 0.47 0.21  

over 92 days (from Jun 15th to Sep 15th) is higher for the farmer’s 
management (Table  3), and (ii) SMARTER is in the optimal range 
(i.e., within a distance of ±10% of the optimal state) in 80% of the 
days of the irrigation season, while for the farmer’s management it is 
only 50%. Divergence from the optimal state is due to environment 
and weather conditions (e.g., significant precipitation), but the system 
reacts to and eventually recovers from them.

In SMARTER, the amount of applied water is adjusted automati-
cally using a PI control system. The proportional part of the controller 
reacts to the difference between the desired soil moisture and the actual 
moisture. The integral part looks at how long this difference has existed, 
and reacts to the cumulative difference that adds over time. Together, 
they correct both immediate and long-term changes in soil moisture.

During an extreme drought, the proportional part reacts strongly 
because the difference is large, and the integral part increasingly reacts 
because the soil has been dry for a prolonged period of time. As a 
result, both parts push the system to apply a large amount of water. 
The delay between the irrigation event and the change in soil moisture 
is responsible for a response lag that could lead to an overshoot: the 
soil becomes too wet and, as soon as this change is detected by sensors,
SMARTER decreases the amount of irrigation once again.

During heavy rainfall, the following considerations are necessary. 
First, the correction applied by SMARTER is asymmetric (we can wet 
dry soils, but we cannot dry wet soils). Second, the correction depends 
on the soil conditions over time. If the soil has already been saturated 
(e.g., due to prolonged rainfall), the proportional and integral terms 
provide no contributions (the soil has been wetter than the optimal 
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state for some time). If rainfall occurs when the soil is drier than 
the optimal, the proportional term provides no water, but the integral 
term may still be adding water because it has not yet adjusted from 
earlier dry conditions. This could cause the system to keep irrigating 
longer than needed, showing a form of response lag as the integral part 
incrementally corrects itself.

Overall, our tests over four years with different weather conditions 
in two different locations showed that when outside the optimal range,
SMARTER recovers in 1.5 days in dry conditions and 3 days in wet con-
ditions. In case of extreme/outlier events, the farmer can compensate 
with manual corrections to SMARTER. This would act as a feed-
forward signal to the decision provided by the PI controller, including 
additional information on weather or environmental conditions. 
Water saving. An excerpt comparing the daily irrigation provided by
SMARTER and farmers is shown in Fig.  16. For example, in Ancar-
ani, farmers maintain a constant level of irrigation, even when it is 
unnecessary, whereas SMARTER continuously adapts irrigation to the 
monitored soil moisture profile.

Table  3 presents the total volume of water supplied by SMARTER
and the farmers, the overall water savings achieved, and the deviation 
of both SMARTER’s and the farmers’ management from the optimal 
soil moisture profile, measured by RMSE. SMARTER achieves savings 
of up to 40% (where 𝑊 𝑎𝑡𝑒𝑟 𝑆𝑎𝑣𝑖𝑛𝑔 =

𝑤𝑎𝑡𝑒𝑟𝖲𝖬𝖠𝖱𝖳𝖤𝖱 −𝑤𝑎𝑡𝑒𝑟𝐹𝑎𝑟𝑚𝑒𝑟
𝑤𝑎𝑡𝑒𝑟𝖲𝖬𝖠𝖱𝖳𝖤𝖱

), 
with the greatest reductions occurring in June and September. During 
these months, farmers often struggle to assess soil moisture levels ac-
curately and tend to over-irrigate. On the other hand, July and August 
are hotter months and higher water volumes are genuinely needed, 
leading to a smaller gap between the irrigation patterns of farmers and
SMARTER. The lower water savings observed in 2024 compared to 
2023 can be primarily attributed to differences in precipitation during 
June, July, and September (Fig.  6). In 2024, increased rainfall reduced 
irrigation needs during the months when SMARTER typically yields 
the highest savings.
Fruit quality. Table  4 presents a comparison of kiwifruit production 
and quality. Overall, enhancements in fruit quality are evident, re-
flected by a lower proportion of overripe fruits, higher sugar content 
(RSR), and increased dry matter percentage, all contributing to a longer 
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Table 4
Summary of kiwifruit quality analysis: overripe fruits were assessed after two months of cold storage, while all other samples 
were evaluated at harvest.
 Field Year Management Size Firmness RSR Dry mass Color Overripe 
 (g/fruit) ↑ (Kg) ↑ (◦Brix) ↑ (%) ↑ (◦Hue) ↓ (%) ↓  
 Errano 23 Farmer 143 5.50 10.10 17.40 104.60 8.0  
 SMARTER 143 5.20 11.60 18.20 102.90 2.0  
 24 Farmer 142 6.00 8.88 18.10 104.80 1.4  
 SMARTER 150 5.90 9.50 18.40 104.90 0.0  
 Ancarani 24 Farmer 149 4.94 10.50 17.60 102.40 0.0  
 SMARTER 140 4.86 12.30 18.60 100.80 0.0  
Fig. 16. SMARTER vs. farmer: comparison of daily irrigation per dripper in liters. Farmers tend to have constant watering amounts, providing water even when 
it is not necessary.
Table 5
Relative difference between the 𝑤𝑎𝑡𝑒𝑟 delivered to the field and the 𝑎𝑑𝑣𝑖𝑐𝑒 by
SMARTER. 𝑤𝑎𝑡𝑒𝑟 and 𝑎𝑑𝑣𝑖𝑐𝑒 represent liters per dripper.
 Field Year 𝑤𝑎𝑡𝑒𝑟 𝑎𝑑𝑣𝑖𝑐𝑒 𝛥𝑎𝑑𝑣𝑖𝑐𝑒 
 Ancarani 2024 339 370 −8.38% 
 Errano 2023 522 477 9.43%  
 2024 670 557 20.29% 

shelf life. A more detailed analysis of kiwifruit quality is provided 
in Baldi et al. (2023).
Deviations in the watering system. Table  5 summarizes the deviations 
between the amount of water recommended by SMARTER (𝑎𝑑𝑣𝑖𝑐𝑒𝑡 in 
Eq. (4)) and the amount actually delivered to the field (𝑤𝑎𝑡𝑒𝑟𝑡) over the 
entire irrigation season 𝑇 . Deviations may be positive or negative and 
vary in magnitude, underscoring the need for SMARTER to account for 
them; see Eq. (6).

4.2. Economical impact

We provide a cost analysis for our pilot studies, where we com-
pare the energy and water costs by operating manual irrigation and
SMARTER (note that this is not a generic, all-encompassing cost–
benefit analysis for commercial applications). SMARTER is based on 
commercial hardware provided, installed, and maintained by an Italian 
IoT service provider.

Table  6 details the capital and operational costs. Electricity and 
water costs are averaged to 0.5 e

kWh  and 0.4 
e
m3 . Both orchards rely on 

water pumps that can supply water to the entire field simultaneously 
with a power consumption of 10 kW. Based on the orchards’ character-
istics and the water consumption reported in Tables  2 and 3, Table  7 
13 
Table 6
Capital and operational costs details. Capital costs refer to a complete grid 
installation, whereas operational costs refer to maintenance and electricity and 
water costs (averaged over two years and across the two orchards).
 Capital costs Operational costs
 HW Installation SW licenses HW maintenancea Water Electricity 
 1600 e 500 e 250 e

year 200 e

year 0.4 e

m3 0.5 e

kWh  
a It includes periodic system checks and replacements in case of breakage; the most 
vulnerable component is the gypsum block sensor, which costs 50 e.

Table 7
Comparison between the farmer and SMARTER management: yearly costs and 
savings for the two orchards.
 Field Size Management Consumption Cost Saving

 (ha) Water Electr. Water Electr. per ha Total  
 (m3) (kW) ( e

year ) ( e

year ) ( e

year ha
) ( e

year ) 
 Errano 10 Farmer 27 831 2088 11132 1044 – –  
 SMARTER 19865 1490 7946 745 349 3485  
 Ancarani 15 Farmer 27 330 2050 10930 1025 – –  
 SMARTER 22600 1698 9080 848 138 2071  
 Average 243 2778

summarizes the yearly costs and savings per hectare. Assuming a three-
year depreciation period for the system, the annual cost amounts to 
1150 e

year . Under this assumption, the break-even point for SMARTER
(considering a single sensor grid) exceeds one year only for orchards 
smaller than 5 ha. For larger orchards, the break-even point is reached 
within one year, even when accounting solely for water and electricity 
savings.
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Table 8
Comparison of RMSE and irrigation amounts (liters per dripper) across soil 
textures, irrigation intervals, and strategies. SMARTER consistently provides 
the best performance with respect to its competitors.
 Soil 
texture

Irrigation
interval

RMSE ↓ 𝑤𝑎𝑡𝑒𝑟 ↓

 ET0 GBRT SMARTER ET0 GBRT SMARTER 
 

Clay Loam

1 67.17 46.43 17.16 776 725 528  
 2 63.18 66.41 18.99 769 878 523  
 3 58.57 71.54 21.40 741 901 490  
 5 81.21 68.99 26.26 655 864 453  
 7 42.22 79.47 32.01 769 955 586  
 

Sandy Loam

1 65.47 38.87 23.17 777 658 501  
 2 61.40 58.73 26.36 769 787 481  
 3 58.90 55.65 28.21 741 737 440  
 5 76.47 67.19 35.42 655 662 396  
 7 56.30 78.35 42.53 769 1009 481  
 

Silt Loam

1 93.71 35.90 18.75 777 730 610  
 2 42.43 60.68 22.96 769 928 599  
 3 38.04 61.03 25.98 741 891 550  
 5 58.94 61.65 31.65 655 849 521  
 7 41.57 74.74 39.68 769 1084 637  

4.3. Robustness of  SMARTER and comparison with existing approaches

To assess the robustness of SMARTER, we simulate three dis-
tinct orchards with different soil textures (loamy, sandy, and silty 
soils), irrigated at different intervals (from 1 to 7 days), and with four 
different weather conditions between 2021 and 2024. In this setup, 
we compare SMARTER against an evapotranspiration-based baseline 
(ET0), which follows the method proposed by Zheng et al. (2025), and 
against Gradient Boosted Regression Trees (GBRT), a machine learning 
model employed by Goldstein et al. (2017) for predicting irrigation 
requirements. The complete experimental setup and implementation 
are publicly available for reproducibility at https://github.com/big-
unibo/smarter.

Table  8 summarizes the results: each cell represents the cumulative 
RMSE error across four periods of simulation in different years and un-
der different weather conditions. We recall that the RMSE is computed 
for each scenario as the daily deviation from the optimal state at the 
decision-making time and then accumulated across each scenario.
Inputs. The evaluated irrigation strategies differ in the input data they 
require to make their recommendations.

• ET0 is computed using the Penman–Monteith equation that ap-
proximates net evapotranspiration (ET) from meteorological data, 
as a replacement for direct measurement of evapotranspiration. 
ET0 serves as a baseline for estimating the water needs of other 
crops. To find the water needs for kiwifruit, we multiply ET0 by 
an average crop coefficient (Kc) equal to 13; i.e., 𝐸𝑇 𝑐 = 𝐸𝑇 0 ∗ 1.

• GBRT (Goldstein et al., 2017) is built on 16 features (including 
current/past soil moisture at different depths and past/future 
weather conditions) and learns to relate them to the irrigation 
manually applied by the farmer. In other words, it emulates what 
a farmer would do in different scenarios.

• SMARTER is based on the sensor grid and determines the irri-
gation amount based on the distance between the current and 
optimal states.

Training and tuning. The approaches also differ in how they need to be 
adapted to different scenarios.

• ET0 does not require adjustments through different soil textures 
(Penman–Monteith is computed from meteorological data) nor 

3 https://www.fao.org/4/x0490e/x0490e0b.htm.
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for different irrigation intervals (evapotranspiration is aggregated 
over time).

• GBRT (Goldstein et al., 2017) must be retrained for different 
soil textures and different irrigation intervals since farmers’ deci-
sions change in different conditions. Before being applied, GBRT 
requires collecting manual irrigation data under many differ-
ent weather and soil conditions, and a full retraining for each 
irrigation interval and soil texture.

• SMARTER can be applied to different soil textures by using its 
reference parameters 𝐾𝑟𝑒𝑓

𝑃 = 12 and 𝐾𝑟𝑒𝑓
𝐼 = 3 (see Section 3.4.4). 

Using SMARTER with different irrigation intervals benefits from 
tuning the values of 𝐾𝑃  and 𝐾𝐼 : longer intervals require bigger 
corrections proportionally to the days elapsing between irriga-
tions: 𝐾∗ = 𝐾ref

∗ ⋅
(

1 + days−1
2

)

. For instance, given 𝐾𝑟𝑒𝑓
𝑃 = 12 and 

𝐾𝑟𝑒𝑓
𝐼 = 3 and an irrigation interval of 2 days, it is 𝐾𝑃 = 12⋅1.5 = 18

and 𝐾𝐼 = 3 ⋅ 1.5 = 4.5.

Results. SMARTER consistently maintains soil moisture closer to the 
optimal state across all soil textures and irrigation intervals, while 
simultaneously reducing the total water applied to the field. This 
improvement can be attributed to SMARTER’s capacity to limit over-
irrigation, which typically occurs during early and late irrigation sea-
sons, after heavy rainfall events, and in the case of low-frequency 
irrigation (ET0 and GBRT tend to result in frequent over-irrigation). 
While ET0 is a baseline solution that requires no maintenance and no 
cold start, its applicability to decision-making is too simplistic to repre-
sent the ongoing dynamics of a real orchard. Conversely, the primary 
limitation of machine learning solutions is the substantial amount of 
real-world quality and heterogeneous data required for training. Data 
can only be collected during irrigation seasons, which usually span from 
June to October in Italy, complicating the development and validation 
of robust models.

Finally, a proportional relationship can be observed between RMSE 
and irrigation interval, highlighting the importance of the trade-off 
between longer irrigation intervals and the regulation of hydric stress.

5. Conclusions

This paper introduces SMARTER, a control theory-based smart 
irrigation system that relies on a fine-grained soil moisture profile to 
determine the irrigation needs of kiwifruit orchards. Given data from 
in-situ sensors, SMARTER models the current state of soil moisture and 
computes the amount of water necessary to reach an optimal state set 
by agronomists. The main advantages of the proposed approach are 
its simplicity and transparency in the decision-making process (e.g., no 
weather forecasting models or training data are necessary) and robust-
ness to its adoption in different weather, soil, and irrigation conditions.
SMARTER smoothens the problems related to point measurements by 
applying a grid of soil moisture sensors; in the case of heterogeneous 
orchards, multiple grids could be installed, and their recommendations 
aggregated to derive an averaged irrigation recommendation.

Empirical results in two commercial kiwifruit orchards over two 
years show that SMARTER saved up to 40% of water while maintaining 
comparable (or better) fruit quality with respect to farmers’ irrigation 
practices. With respect to farmers’ water management, the break-even 
point is one year for orchards bigger than 5 ha, even by considering 
only water and electricity savings. During the two years of experi-
mentation and in the dissemination events where we demonstrated
SMARTER, no agronomist reported problems in interpreting the data 
and data-driven decisions.

Future works include (i) applying this approach to different crops 
such as grapes and pears to further evaluate its robustness across crop 
varieties, (ii) incorporating annual water budget constraints (e.g., lim-
iting irrigation to a maximum of 2000 liters per hectare per watering 
season), and (iii) the integration of remote-sensing data for a better 
management of orchard heterogeneity (e.g., satellite images could pro-
vide aggregated – but less accurate – information that is complementary 
to spot measurements).

https://github.com/big-unibo/smarter
https://github.com/big-unibo/smarter
https://github.com/big-unibo/smarter
https://www.fao.org/4/x0490e/x0490e0b.htm
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Fig. 17. Behavior of a PI controller, where 𝑒 is the error function, and 𝛥𝑢𝑃  and 𝛥𝑢𝐼 are the contributions of the proportional and integral components. 𝑎𝑑𝑣𝑖𝑐𝑒
incrementally increases until the error stabilizes to 0.
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Appendix. PI controller implementation with actuator compensa-
tion

This appendix summarizes the discrete-time PI control laws dis-
cussed above, including:

1. The standard velocity-form PI.
2. Replacing the internal ‘‘old advice’’ term with the measured 
actuator output (water) to achieve built-in anti-windup.

https://github.com/big-unibo/smarter
https://big.csr.unibo.it/projects/smarter/
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A.1. Velocity-form PI (Baseline)

A textbook discrete-time PI controller in velocity form is written as 
𝛥𝑢𝑡 = 𝐾𝑃 ⋅

(

𝑒𝑡 − 𝑒𝑡−𝛥𝑡
)

+𝐾𝐼 ⋅ 𝑒
𝑡, (A.1)

𝑢𝑡 = 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 + 𝛥𝑢𝑡, (A.2)

𝑎𝑑𝑣𝑖𝑐𝑒𝑡 = min
{

max
(

𝑢𝑡, 0
)

, 𝑎𝑑𝑣𝑖𝑐𝑒max

}

, (A.3)

where:

• 𝑒𝑡 is the control error at time 𝑡.
• 𝑢𝑡 is the (unsaturated) PI output at time 𝑡.
• 𝑎𝑑𝑣𝑖𝑐𝑒𝑡 is the saturation of 𝑢𝑡 between 0 and 𝑎𝑑𝑣𝑖𝑐𝑒max.
• 𝐾𝑃  and 𝐾𝐼  are the proportional and integral gains, respectively.

Eq.  (A.1) computes the incremental change in the controller output, 
and (A.2) accumulates that change. When 𝑎𝑑𝑣𝑖𝑐𝑒𝑡 saturates, the in-
tegrator in effect winds up if nothing corrects it. Fig.  17 shows how 
the proportional and integral components of a PI system behave given 
𝐾𝑃 = 12, 𝐾𝐼 = 3, and the error function 𝑒𝑡.

A.2. Using measured actuator output (𝑤𝑎𝑡𝑒𝑟) to replace old advice

To prevent windup when 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 differs from what the actuator 
actually delivered (denoted 𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡), one replaces the ‘‘old’’ term 𝑢𝑡−𝛥𝑡
in (A.2) with 𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡. Define 
𝛥𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 = (𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡 − 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡), (A.4)

Then, the modified equations become:
𝛥𝑢𝑡 = 𝐾𝑃 ⋅

(

𝑒𝑡 − 𝑒𝑡−𝛥𝑡
)

+𝐾𝐼 ⋅ 𝑒
𝑡, (A.5)

𝑢𝑡 = 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 + 𝛥𝑢𝑡 + 𝛥𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 (A.6)

= 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 + 𝛥𝑢𝑡 +𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡 − 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡 (A.7)

= 𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡
⏟⏞⏞⏟⏞⏞⏟

measured actuation at 𝑡−𝛥𝑡
+𝛥𝑢𝑡, (A.8)

𝑎𝑑𝑣𝑖𝑐𝑒𝑡 = min
{

max
(

𝑢𝑡, 0
)

, 𝑎𝑑𝑣𝑖𝑐𝑒max

}

. (A.9)

By feeding in 𝑤𝑎𝑡𝑒𝑟𝑡−𝛥𝑡 instead of 𝑎𝑑𝑣𝑖𝑐𝑒𝑡−𝛥𝑡, any mismatch due to 
saturation or nonideal actuator behavior is immediately ‘‘seen’’ by the 
integrator. In effect, this yields built-in anti-windup.

Data availability

Data will be made available on request.
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