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Climate change and increasing water scarcity demand innovative irrigation strategies, especially for high-value
crops like kiwifruit that require precise water management. Traditional irrigation systems often fail to address
the spatial and temporal variability of soil moisture in orchards, where factors like canopy coverage and
localized watering patterns complicate remote monitoring. This paper introduces SMARTER, a soil-agnostic,
prescriptive irrigation system designed specifically for kiwifruit orchards. It uses a two-dimensional grid of
sensors to construct detailed, real-time soil moisture profiles, which are then processed to recommend irrigation
volumes. SMARTER operates in two phases: an offline phase, where agronomists define optimal soil moisture
targets, and an online phase, where data-driven monitoring and Proportional-Integral control algorithms guide
irrigation decisions. Field evaluations during the 2023 and 2024 irrigation seasons in two commercial kiwifruit
orchards in Italy demonstrated water savings of up to 40% compared to traditional irrigation practices, without
compromising fruit quality and with a break-even point of two years. Unlike traditional simulators or data-
hungry machine learning models, SMARTER does not require complex parameter calibration, soil-specific
tuning, or historical data, making it deployable and actionable as soon as sensors are deployed. Furthermore,
SMARTER effectively adapts to events like rainfall and irrigation deviations.

1. Introduction For instance, kiwifruit (actinidia chinensis) is a woody vine native

to southern China, where in most production zones the annual pre-

Agriculture constitutes one of the foundational pillars of human so-
ciety. Throughout its evolution, closely intertwined with humankind’s
anthropological and economic development, agriculture has periodi-
cally faced challenges that undermine its efficiency and create imper-
ative demands for innovative solutions. Climate change, along with
the steady increase in the world’s population and water scarcity, now
represents the most compelling factor driving the need for innovation
in the agricultural industry (Calzadilla et al., 2013). Numerous re-
search papers have studied how the increase in temperatures, frequency
of drought periods (Leng et al., 2015), and severity of atmospheric
events (Cogato et al., 2019) will impact agriculture (Calzadilla et al.,
2013), particularly in developing countries whose economy heavily
relies on the primary sector (Maja and Ayano, 2021). According to
estimates presented in 2020 (D’Odorico et al., 2020), agriculture con-
sumes up to 70% of the available freshwater, underscoring the need for
optimized usage.

* Corresponding author.

cipitation is sufficient to provide the ideal environment for kiwifruit
plants to thrive, even considering their high water requirements (He
et al., 2023) which must be meticulously managed to achieve optimal
fruit yield and quality. Over the past decade, kiwifruit production in
Italy has increased significantly, making it the world’s third-largest
exporter. Despite the warm and moderate climate, the annual precip-
itation in Italy is insufficient to meet the water needs of kiwifruit,
making irrigation crucial for this crop; additionally, predictions of a
10% increase in irrigation requirements due to the increasing frequency
of drought periods (Villani et al., 2011) make the optimization of
irrigation practices vital for the sustainability and productivity of the
agricultural sector.

To optimize water use, we present SMARTER, a SMART watERing
system that utilizes near real-time data to manage orchards’ irrigation
efficiently. We focus on orchards (and not open fields) as (i) they cannot
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Fig. 1. Overview of SMARTER. In the offline phase, agronomists set the desired moisture state of the field. In the online phase, SMARTER monitors and
transforms sensor data into a detailed profile that, coupled with past irrigation and the optimal state set by agronomists, is used to calculate watering advice.

be effectively monitored using remote sensors (e.g., satellites) since
canopies or nets hinder precise measurements, and (ii) irrigation is
usually organized in pipelines of drippers that cause heterogeneous soil
moisture (which is higher close to plants and gradually lower between
rows of plants).

The overall flow of the system is illustrated in Fig. 1. SMARTER
involves two main phases. In the offline phase (e.g., monthly or for each
fruit growth stage), agronomists define an optimal soil-moisture state
depending on the characteristics of fruits, plants, and soil. In the online
phase, SMARTER samples the current state of soil moisture through in-
field sensors, models, and builds soil moisture profiles using artificial
intelligence (Monitoring), and calculates how much water is necessary
to keep the soil moisture as close as possible to the optimal state
(Prescriptive Watering). We conducted an empirical evaluation during
the 2023 and 2024 irrigation seasons (from June to October) in two
kiwifruit orchards, achieving water savings of up to 40% and compa-
rable fruit quality to that of traditional irrigation practices. SMARTER
adapts to different fields, is deployable without prior historical data,
and its adoption is calibration-free. In other words, SMARTER can be
adopted immediately (from day O, once sensors are installed), as it is
independent of soil properties (e.g., soil texture is not an input) and
requires no prior training or calibration.

The paper is organized as follows. Section 2 provides a literature
overview on smart irrigation systems, while Section 3 describes the ma-
terials and methods leveraged in this approach. Finally, the evaluation
(including two case studies in real fields) is presented in Section 4, and
conclusions are drawn in Section 5.

2. Related work

The approaches to monitor and estimate the irrigation requirements
of fruit orchards can be classified based on the strategies they adopt
for: (i) modeling the physiological and environmental conditions of
the orchards, and (ii) determining the optimal irrigation volumes.
We recall that we focus on orchards rather than open-field crops, as
irrigation management strategies differ significantly between these two
contexts.

2.1. Physically-based simulators

A common approach for modeling plant-soil-water dynamics in-
volves the application of physical models and numerical simulators,
such as HYDRUS (Simunek et al., 2009) and CRITERIA (Bittelli et al.,
2015). These tools simulate water flow and solute transport in vari-
ably saturated porous media across one-, two-, and three-dimensional
spatial domains and have been extensively applied to estimate soil—
plant-water dynamics (Barezzi et al., 2024; Delgoda et al., 2016) and
irrigation requirements (Bittelli et al., 2025; Barezzi et al., 2024) under
various scenarios. IRRINET and IRRIFRAME (Mannini et al., 2013) are
decision support systems developed by the Consorzio Canale Emiliano
Romagnolo (Italy) for irrigation management. These tools leverage
meteorological data and detailed soil maps to provide irrigation rec-
ommendations based on user-inputted information concerning crop
type and growing conditions. However, they require users to supply
a substantial amount (around 30 parameters) of detailed and dynamic
information (e.g., phenological stage, canopy coverage periods). Their
estimations of water requirements are based on large-scale water bal-
ance models, which, despite being informative, may not always yield
optimal irrigation outcomes, particularly in complex systems such as
orchards, where spatial and temporal heterogeneity play a significant
role.

Overall, the adoption of simulators has the following issues.

+ They require an intensive parameter calibration phase, which can
involve iterative simulations on data collected from in-situ sensors
to optimize the set of soil/crop parameters that best describe the
observed soil-plant interactions (Bittelli et al., 2025). Moreover,
certain parameters required for tuning these simulation models
are derived from detailed laboratory analyses, which can be both
resource and time-intensive.

Although a tuned simulator may perform well within the specific
conditions for which it was tuned, its ability to generalize to
unseen scenarios is frequently limited, posing significant chal-
lenges to scalability and broader adoption in diverse agricultural
contexts.

Water demand is heavily dependent on several exogenous factors
affecting the decision-making process (e.g., weather conditions,
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ridge tillages, and soil cracking), but integrating them into sim-
ulators amplifies the complexity of the problem we want to
solve.

2.2. Sensor-based approaches

An alternative to crop simulation models for monitoring plant—
soil-water dynamics is the direct monitoring through sensing tech-
nologies. Within this approach, two primary categories can be distin-
guished: remote and in-situ sensing.

2.2.1. Remote sensing

Satellite imagery (e.g., Sentinel and Landsat) offers a cost-effective
and widely accessible solution for monitoring agricultural landscapes
(Huang et al., 2024; Velazquez-Chavez et al., 2024). Studies in the
literature evaluate the effectiveness of these data sources. Meier et al.
(2020) underscore the challenges posed by the spatial resolution of
satellite imagery, specifically for orchard monitoring. Their findings
indicate that to capture meaningful spatial variability and derive useful
insights, a bare minimum resolution of 10 m is required, with an
optimal resolution of 5 m suggested for future advancements in remote
sensing technologies. The analysis further demonstrates that, within
the studied agricultural landscapes, nearly 20% of orchard fields are
entirely unrepresented (with one pixel at most covering them) when
using imagery with a spatial resolution of 20 m, while approximately
80% of orchards are covered by less than 50 pixels at the same
resolution. This sparse pixel representation significantly constrains the
precision and reliability of satellite-derived data, highlighting the need
for higher resolution remote sensing tools to improve orchard water
management strategies. Furthermore, the presence of protective nets
commonly employed in orchards to shield crops from adverse weather
conditions, such as hailstorms or excessive sunlight, further complicates
satellite-based monitoring by altering surface reflectance properties and
possibly obscuring key spectral signatures, reducing the accuracy of
remote sensing data used to assess crop health and soil moisture status.
Deng et al. (2023) highlight additional limitations of satellite-based
monitoring, noting that adverse weather conditions compromise the
reliability of images, especially for small-scale farms. To address these
challenges, the authors suggest that unmanned aerial vehicles (UAVs)
offer a promising alternative, providing higher spatial resolution and
greater flexibility than satellite platforms (Deng et al., 2023; Peeters
et al., 2024; Zhang et al., 2023).

Wang et al. (2025) leverage UAV-based multispectral data combined
with machine learning to estimate soil moisture in kiwi orchards.
Although their results show promising accuracy for moisture prediction
at 20 cm depth under ideal conditions, this depth may be insufficient
for precise irrigation guidance, given that the main root system of
kiwifruit extends deeper in the soil. Moreover, the responsiveness of
their approach is inherently constrained by the UAV flight schedule.
Furthermore, the widespread adoption of UAVs remains limited by their
elevated costs, operational complexity, and required expertise, making
them less accessible to smallholder farmers. These constraints con-
tinue to hinder their scalability and wider use in precision agriculture,
particularly in orchards and resource-limited contexts.

2.2.2. In-situ sensing

In-situ sensors represent a promising alternative for orchard mon-
itoring. Such sensors come in various types, mostly soil moisture sen-
sors, weather monitoring devices, and phytosensors designed to assess
plant physiological conditions. Phytosensors remain prohibitively ex-
pensive at present, whereas weather and soil moisture sensors have
proven to be accessible and cost-effective tools for irrigation manage-
ment.

In the following, we focus on real applications to orchards (rather
than solutions applied in more experimental settings, such as Caceres
et al. (2007) and Miranda et al. (2005)) and we distinguish such
applications based on the family of techniques used to compute the
watering advice given sensor data.
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Rule based. Osroosh et al. (2015) propose a rule-based irrigation
framework for apple orchards that uses data from a sensor network
that monitors weather conditions and soil moisture levels. Imple-
menting this system requires numerous parameters, both field-specific
and research-derived, necessitating extensive site-specific calibration
and posing challenges to scalability across diverse orchards and cli-
mates. Hamouda et al. (2024) introduce an irrigation management
system for pear orchards based on soil water content (SWC) thresholds.
SWC sensors require detailed calibration tailored to the specific soil
properties of the monitored site. The calibration process typically
involves laboratory analysis of the hydraulic characteristics of the soil,
which limits the widespread and efficient adoption of such a system.
Barezzi et al. (2024) adopt a soil matric potential-based approach to
estimate irrigation requirements in apple and kiwifruit orchards. In
their methodology, matric potential thresholds are determined using
HYDRUS-1D simulations, and matric potential data is collected by one
sensor placed at a 20 cm depth for kiwifruit orchards and two sensors
positioned at 20 cm and 40 cm depths for apple orchards. An irrigation
control algorithm then applies predefined rules to maintain the moni-
tored matric potential values within the computed thresholds. While
this approach benefits from the lack of scenario-specific calibration
requirements, the reliance on a single sensor in kiwifruit orchards as-
sumes a uniform soil moisture distribution, which may not adequately
capture spatial variability within the root zone. Zheng et al. (2025)
propose a multi-objective optimization framework balancing yield, fruit
quality, and water productivity through the different fruit’s growth
stages. However, the approach depends on long-term forecasts, expert-
driven parameter calibration, and process-based simulators, limiting its
practical applicability and interpretability. Moreover, the evaluation
primarily relies on simulated rather than field data.

Machine-learning based. Numerous studies in the literature have ex-
plored the application of artificial intelligence techniques to deter-
mine irrigation requirements in orchards. Goldstein et al. (2017) and
Navarro-Hellin et al. (2016) analyze and compare various machine
learning models for orchard irrigation, utilizing both weather forecasts
and an extensive set of measured variables. Artificial Neural Networks
(ANNs) have been studied for irrigation management. Kang et al.
(2023) present two ANN models: the first predicts soil moisture levels
for the upcoming week based on current moisture level, weather data,
and crop coefficients, while the second leverages the output of the
first model to estimate the optimal irrigation volumes. Likewise, Ding
and Du (2022) propose a reinforcement learning approach for irriga-
tion management. Their method combines in-situ measurements with
weather forecasts and soil water content data to train an agent that
mimics agronomic expertise, aiming to maintain soil water content
within the range defined by permanent wilting point and field capacity.

The main challenges associated with machine learning, and even
more so with ANNs, include the requirement for large amounts of high-
quality data to train the models, along with the risk of overfitting
to specific scenarios influenced by environmental variables that sig-
nificantly affect sensor measurements, such as soil texture and ridge
tillage (Umutoni and Samadi, 2024; Sharma et al., 2025). While this
issue can be alleviated by training models on data from heterogeneous
scenarios, it further underscores the generalization challenge faced
by learning models, as it demands an even broader range of high-
quality data. This indicates that a model performing well on a particular
crop at a specific growth stage, cultivated on a field with distinct
pedological characteristics, might perform poorly when applied in a
different scenario (Umutoni and Samadi, 2024). This also entails a cold
start problem: due to their limited generalization capabilities, learning
models must first be trained on data specific to a scenario before they
can effectively be deployed in it. Umutoni and Samadi (2024) highlight
the limitations of black-box machine learning solutions that operate
without human oversight in the decision-making process. Although
these techniques show potential in supporting irrigation management,
further research is required to establish them as transparent decision
support tools for domain experts rather than fully autonomous and
opaque systems.
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Control-theory based. A controller processes the measured system out-
put and computes corrective actions to minimize deviations from a
desired set point. Some approaches are documented in literature, rang-
ing from proportional derivative controllers (Goodchild et al., 2015)
to more advanced model predictive controllers (Lozoya et al., 2016;
Garcia et al., 2025). Goodchild et al. (2015) carried out their eval-
uation within a controlled polytunnel environment, whereas Lozoya
et al. (2016) implemented their approach in an open-field pepper crop.
However, the latter approach is built upon oversimplified assumptions
that are often invalid in real-world orchards’ conditions, such as plain
land, absence of surface runoff, no rainfall, and no capillary rise. In
contrast, Garcia et al. (2025) conducted their MPC-based approach
evaluation in a pecan orchard. Nevertheless, as acknowledged by the
authors, a key limitation of their model-based strategy is the need to
experimentally determine system parameters for each specific crop, soil
type, and irrigation system.

2.3. Distinguishing features

With respect to the cited works, SMARTER:

» is designed to control irrigation of orchards through a controller
that solely relies on soil water potential measurements and recent
irrigation data as inputs. Using a small number of input variables
enhances the explainability of SMARTER’s decisions, distinguish-
ing it from black-box models such as ANNs. Also, since we operate
in orchards where frequent monitoring and irrigation are usually
possible, there is no need to build complex forecast models with
many exogenous variables.

employs a 2D grid of gypsum block sensors, which enables a
precise monitoring of the spatial dynamics of water movement
within the soil. We choose to employ soil water potential sensors,
which, unlike soil water content sensors, do not require labor-
intensive calibration tailored to the specific soil properties of the
deployment site.

3. Materials and methods

SMARTER (Fig. 1) is an automatic system for the irrigation of
orchards that optimizes water consumption while achieving high fruit
quality. The offline phase includes the deployment of sensors (see
Section 3.2) and the definition of the optimal soil-moisture state by
agronomists depending on the characteristics of fruits, plants, and soils;
the optimal state can be changed during the watering season. Dur-
ing the online phase, sensor data are continuously collected. Moisture
variability is due to both the irrigation system (e.g., single or double
lines of drippers) and plant transpiration; SMARTER uses a 2D grid of
sensors to get a better understanding of the water dynamics. Sensor
data fuels the Monitoring module (Section 3.3), which models the
current state of soil moisture in the field through artificial intelligence.
Then, the Prescriptive Watering module (Section 3.4) recommends
a water advice given the current state of soil moisture and the past
advice. The water advice represents how much water is necessary to
keep the soil moisture as close as possible to an optimal state.

3.1. Assumptions

SMARTER takes decisions based on “certain” data: 2D grids of
soil moisture sensors (e.g., gypsum block sensors') and past irrigation.

1 Gypsum-block sensors use two electrodes placed into a small block of
gypsum to measure soil water tension. Wires connected to the electrodes are
connected to either a portable hand-held reader or a data logger. The amount
of water in the soil is determined by the electrical resistance between the two
electrodes within the gypsum block. The presence of more water in the soil
will reduce resistance, while less water will increase it.

Computers and Electronics in Agriculture 243 (2026) 111306

The underlying assumption is that past sensor-based measurements
provide a good combination of simplicity, robustness, and precision.
This statement is supported by the following considerations.

Soil moisture changes gradually, so it is usually sufficient to make
irrigation adjustments afterward to keep it within the optimal range.

External events affecting soil moisture (e.g., heavy rains) can be de-
tected through frequent, precise sensor measurements. Other “certain”
events (e.g., fertigation) can be manually accounted for in advance,
keeping SMARTER both simple and adaptable.

Forecasting typically requires training and tuning in the specific
field, thus increasing complexity and preventing fast adoption. Al-
though future weather forecasts (e.g., precipitation and temperature)
can provide useful insights, their inherent uncertainty often limits their
practical value. On the one hand, if an orchard can be frequently irri-
gated (e.g., every 1-2 days), there is no point in integrating predictions
on uncertain events since field conditions do not change abruptly from
one day to the next. On the other hand, field conditions are more
dynamic for low-frequency irrigation (e.g., every 5-7 days). However,
the longer the time interval, the lower the trustworthiness of future
forecasts. For instance, a forecast predicting heavy rainfall in the next
7 days might induce a predictive system to reduce irrigation. If the
rainfall does not occur, plants would face water stress for longer
irrigation intervals, and failed predictions would require even more
drastic corrective actions.

Following these considerations, we assume that it is simpler and
more interpretable to make decisions based on actual data than to
integrate predictive strategies that accumulate errors from uncertain
events.

3.2. Setup of sensors

Fruit orchards are usually organized in sectors: areas irrigated with
the same irrigation system. Each sector is further decomposed into rows
of fruit plants. A grid of sensors is deployed for each sector and is
assumed to be representative of the whole sector. In case of intra-sector
heterogeneity (Hamouda et al., 2024), it is possible to install multiple
grids to represent different homogeneous sub-areas and to compose
their prescriptions (e.g., by averaging the amount of water necessary
in each sub-area).

The setup of the sensors follows these steps.

1. Determine the soil volume: the portion of the soil occupied by
most of a plant’s roots (Fig. 2(a)).

2. Determine the watered volume. Different irrigation systems can
be adopted, such as drippers or sprinklers located along the tree
lines. The choice of the irrigation method determines the watered
volume: the portion of the soil that the irrigation system can
effectively moisten (Fig. 2(a)). While sprinklers cover a wide
area and produce uniform irrigation, drippers cover narrower
areas where moisture is not uniform and decreases with the
distance from the dripper.

3. Determine the monitored volume. The sensor grid should be ar-
ranged to capture moisture variability caused by both the irriga-
tion system and plant transpiration. Consequently, it must cover
at least the watered volume and, ideally, the entire soil volume.
In practice, however, covering the entire soil volume is rarely
feasible, both for logistical reasons (e.g., avoiding damage from
vehicle passage) and for economic reasons (i.e., the substantial
amount of sensors required). Moreover, since prescriptive irri-
gation can only influence the watered volume, monitoring the
entire soil volume would provide only limited additional value.
The most effective setup is to place one column of sensors as
close as possible to a plant and another column just beyond
the boundary separating watered and unwatered zones; this
boundary can be identified empirically through simple field
observations. The remaining sensor columns can then be dis-
tributed at equal intervals. In sprinkler irrigation, where no clear
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Fig. 2. Simplified representations of a kiwifruit orchard and the deployed sensors. Sensors (circles) are deployed orthogonally to the dripper/tree line to capture

the spatial variability of soil moisture that is typical of fruit orchards.
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Fig. 3. A sensor grid (left) monitoring soil moisture close to a kiwi tree in a commercial orchard located in Faenza, Italy (right). The watering system is composed

of single-pipeline drippers.

boundary exists between watered and unwatered zones, the grid
can instead be positioned to encompass the primary root mass.

The grid size is a trade-off between robustness and cost. On the one
hand, the more sensors, the better the accuracy of representing soil
moisture dynamics and the greater the robustness of SMARTER to
hardware faults. On the other hand, too many sensors are not deploy-
able due to economic and (spatial) field constraints. In Francia et al.
(2022), we studied the trade-off between accuracy for grids including
from 4 (i.e., 2 columns with 2 sensors at different depths; the minimum
number of sensors for a regular grid) to 12 sensors (i.e., 4 - 3; the grids
we leverage for research purposes), and we demonstrated that grids of
9 (i.e,, 3-3) or 6 (i.e., 3-2) sensors provide an accurate representation
of soil moisture dynamics.

Example 1. In an orchard in a flat region, single pipelines of drip-
pers moisten “circles” with a radius of around 50 cm. To control
the monitored volume, we use four columns of three sensors at dif-
ferent distances (e.g., 0 cm, 25 cm, 50 cm, and 75 cm) and depths
(e.g., —20 cm, —40 cm, and —60 cm for kiwifruit); see Fig. 3. The
maximum distance from the tree (75 cm) is determined by the area
moistened by drippers (75 cm > 50 cm), while depths are determined
by the shape of the roots of the kiwifruit plant.

3.3. The Monitoring module

The goal of this module is to approximate the actual soil moisture
(Fig. 4(a)) with a soil moisture profile (Fig. 4(c)) using a grid of sensors
(Fig. 4(b)).

Definition 1 (Sensor Grid). A sensor grid S = {s!,...,sI5l} is a 2-
dimensional layout of |.S| sensors installed in a soil volume. Each sensor
s’ is defined by a 2-dimensional displacement (s’.x,, s".x,) with respect
to the plant, and by a soil moisture value s'.v.

After sampling the data, we interpolate a soil moisture profile (Fig.

4(c)).

Definition 2 (Moisture Profile). Given a 2-dimensional sensor grid S, the
moisture profile is a 2-dimensional grid P = {p', ..., p/Pl} that approxi-
mates, in each p/, the soil moisture measured by S. P is fine-grained
with respect to S since |P| > |.S|.

The approximation p'.v is assumed to be constant in the region
surrounding p’, whose granularity (i.e., the covered area of the order
of cm?) depends on |P|.

Soil moisture profiles can be obtained using statistical techniques
such as bilinear interpolation or machine learning (Francia et al.,
2022). In this work, SMARTER uses bilinear interpolation to create
soil moisture profiles based on sensor data.

3.4. The Prescriptive Watering module

For each monitored field, agronomists specify the optimal soil mois-
ture profile (i.e., the optimal soil moisture distribution for a given
plant in a given field) and the preferred irrigation time ¢#; the optimal
profile can be manually defined or selected from those collected by the
Monitoring module. Choosing the optimal moisture level in orchards
is a common task even in traditional farming: agronomists control irri-
gation by looking at the state of the orchard and other relevant factors,
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Fig. 5. Examples of soil moisture profiles from the Ancarani orchard. The goal
of Prescriptive Watering is to bring the current soil moisture (a) as close
as possible to the optimal profile (b) by providing the minimal amount of
necessary water.

and they even do that “blindly” without quantitative information from
the field since this decision is often left to their expertise alone. The
added value of SMARTER is leveraging sensors to understand the soil-
moisture dynamics and reach an optimal level specific to that orchard
(and phenological state, etc.) through data-driven decisions.

For the sake of clarity, with agronomist we refer to people with a
“scholar” background as well as a good understanding of the orchard
and its dynamics, and with farmer we refer to people using traditional
irrigation techniques. Nonetheless, in real orchards, SMARTER has
been used by both agronomists and farmers with agronomic knowledge
about the crop, the capability to map a qualitative optimal moisture
profile to a quantitative measure of soil moisture potential, and min-
imum digital skills. Noticeably, none of the farmers had problems in
defining the conversion from qualitative profile to quantitative soil
moisture potential.

Definition 3 (Optimal Moisture Profile). The optimal moisture profile P is
a target moisture profile that indicates the soil moisture distribution
(of the monitored volume) that should be achieved and maintained
through irrigations to optimize orchard production.

Prescriptive Watering brings the current soil moisture profile (Fig.
5(a)) as close as possible to the optimal soil moisture profile (Fig. 5(b)).
Converging towards the optimal profile ensures that soil moisture is
kept in equilibrium during the irrigation season.

Example 2 (Prescriptive Watering). Fig. 6 shows the behavior of
SMARTER on a real kiwifruit orchard. The average soil moisture of
the sensed profile (blue line) is kept close to the optimal state (green
line) by controlling daily irrigations (purple bars). Divergence is due
to weather and soil dynamics, and is automatically corrected by the
prescriptive algorithm. The significant divergence since September 7th
is due to heavy precipitation (red bars). SMARTER becomes aware of
these events from the sensors and stops the irrigation.

3.4.1. The prescriptive watering algorithm

At the designated irrigation time ¢ (e.g., every day at 9:00), the
system computes the distance between the sensed and the optimal soil
moisture profiles. Such distance and the past irrigation are the inputs
necessary to compute the new irrigation. The distance between the
current (Fig. 5(a)) and optimal (Fig. 5(b)) profiles at time ¢ is computed
cell-wise.

v Pl an( Bl ) - n( B - W
4w

We weight the distance calculation with a matrix W of | P| weights,
where each cell is a weight W, € [0,1]. Weights can be tuned by
agronomists (if unspecified, weights are set to 1 by default) and de-
termine the degree to which each cell contributes to the distance from
the optimal soil moisture profile. If the given irrigation system cannot
directly water a portion of the soil volume, such a portion should be
assigned lower weights compared to cells within the watered volume
(Fig. 7(a)). This prevents inefficiencies in water management: without
a weight matrix, if the chosen optimal profile suggests high moisture
levels in areas that the irrigation system cannot reach, the system may
waste water to erroneously attempt to achieve unattainable moisture
levels in those areas. Since gypsum block moisture sensors measure soil
water potential (which ranges from values ranging in the orders of —10°
to —10"), a logarithm is applied to the absolute value of each moisture
value. The cell-wise distances are depicted in Fig. 7(b), and they are
finally averaged into e'.

The computed distance ¢’ is fed to a Proportional-Integrative (PI)
controller that determines the recommended irrigation amount to bring
the distance from the optimal state as close to zero as possible. A PI
controller is a widely utilized feedback control mechanism, particularly
in managing dynamic systems where achieving precision and stability
is essential. The controller regulates and maintains a process variable
as close as possible to a desired output by combining two different

€9)
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Fig. 6. Comparison of SMARTER (blue line) and optimal (dotted green line) average soil moisture levels on a logarithmic scale (where higher/lower values
indicate drier/wetter conditions) in the Ancarani orchard (Faenza, Italy) during 2024. Bars represent the recommended irrigation (in blue, liters per dripper) and

the precipitation events (in red, liters per m?).

0 T

20 04 04 04 06 05 04 03 03 02 02 02 02 01 005 005 005 0.05

03 015 0.1 0.1 0.1 0.1 005 0.05 005 0.05

02 015 0.1 0.1 0.1 0.05 005 0.05 0.05 0.05
_

g 02 015 01 01 01 0.05 005 0.05 0.05 0.05
2
<

‘a 02 015 041 0.1 0.1 0.05 005 0.05 0.05 0.05
53

Q 02 015 041 0.1 0.1 0.1 0.1 0.1 0.1 0.1

02 01 01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01 01 01

02 01 0.1 0.1 0.1 0.1 005 0.05 0.05 0.05

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Distance from the dripper (cm)
(a) Weights set by agronomists.

<2 O -

20 -0.05 -0.03 -0.01 0.02 0.04 005 024 028 019 02 02 0.14 006 003 002 0.02 0.02

25 -0.03 -0.02 -0.01 -0.01 001 023 041 021 0.15 0.15 0.11 0.08 0.03 0.03 0.03 0.02

30 -0.01 -0.02 -0.06 -0.07 -0.09 03 035 028 019 02 0.14 0.06 005 0.04 0.03 0.03
_

g 35 0.06 -0.05 -0.1 -0.14 -0.19 0.36 043 035 025 025 0.19 007 0.06 0.05 004 0.04
2

g 40 0.12 0.03 -0.05 -0.13 -0.21 -029 042 053 044 031 033 024 01 008 0.07 0.06 005
j53

Q 45 -036 -03 -0.27 -0.25 -0.23 -0.17 022 03 026 019 02 0.17 015 0.13 012 0.1 0.09

50 -0.68 -0.46 -0.35 -0.28 -0.23 -0.14 0.12 0.19 0.12 0.13 0.14 0.13 0.12 0.11 0.1 0.09 0.08

55 -0.55 -0.39 -0.3 -0.24 -0.06 0.07 0.06 0.07 0.09 0.09 0.09 0.09 008 0.08 0.07 0.07

60 -061 -041 -0.31 -0.24 -0.06 0.02 0.06 0.04 0.05 006 006 0.06 0.03 0.03 0.03 0.03

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Distance from the dripper (cm)

(b) Cell-wise distances.

Fig. 7. Examples of cell-wise (a) weights (b) and distances from the Ancarani
orchard. Cell-wise distances are computed between Figs. 5(a) and 5(b).

control actions: a proportional control, which produces an output that
is directly proportional to the current error, and an integral control,
which allows the controller to account for the cumulative error over
time. Combining these two effects allows a PI controller to respond to
both current deviation and accumulated errors.

Al = Kp- (e —e™)+ K)o @

W = advice™ + A 3)
advice' = min{max(u’, 0), aduicemax} 4
where Au' is the proportional-integrative correction, ¢/~ is the previ-

ous error (e.g., 24 h before), Kp and K; are hyperparameters that are
automatically set in Section 3.4.4.

Algorithm 1 SMARTER

Require: S: sensor grid, P: optimal soil moisture, W: weight grid, advice":
baseline irrigation (liters), advice, : maximum irrigation (liters), first:
first irrigation, Ar: time period, Kp: proportional constant, K,: integrative
constant

Monitoring module
. S" < sample(S)
1 P' « profile(S")

=

> Read the sensor data
> Compute the current soil moisture profile

N

Prescriptive Watering module
. if first then
advice' — advice”
: else X

- W,
u' = advice™ + Au'
advice' = min{max(u’, 0), advicemux}

> If it is the first advice

> Recommend the baseline irrigation

> If it is not the first advice

> Distance between current & optimal profiles

> Compute the irrigation amount
> ... and bound it

Kp and K, represent proportional and integral gains, respectively,
and advice'™*' is the previous recommendation. While the K, compo-
nent defines how heavily the controller should react to changes in error,
K; defines how heavily the controller should adjust the output based
on the history of the error, addressing any steady-state error. When
el — ¢4 tends to 0, the error is stable and the contribution of the
proportional component is almost null.

Finally, ' is capped between 0 (no irrigation should be provided)
and advice,,, (the maximum allowed irrigation) to get the final advice'.
Planned events (e.g., fertigations manually scheduled by farmers) can
be directly subtracted from u'; if the difference is zero or negative, no
irrigation is recommended.

Example 3 (Calculating e’ and advice'). With reference to Figs. 5(a) and
5(b), the value of ¢’ is 0.06. Given ¢'~4' = 0.44 and advice'™*" = 9.58,
and assuming K, = 1 and K; = 0.25, it follows that advice' =9.22.

SMARTER is summarized in Algorithm 1. The algorithm runs at
the scheduled irrigation time ¢, samples the sensor grid (Line 1), and
computes the soil moisture profile out of the sensor data (Line 2). For
the first irrigation (Line 3) it recommends the baseline as the irrigation
amount (Line 4). Otherwise, it computes the distance ¢’ (Line 6), applies
the PI controller (Line 7), and computes the watering amount advice’
(Line 8).

We emphasize that SMARTER is independent of specific soil char-
acteristics, as it makes decisions based on (i) current and past soil
moisture states, (ii) previous recommendations, and (iii) the desired
optimal state. To simplify decision-making, our system does not use
weather forecasts as inputs because soil moisture reflects them: past
rainfall affects the current moisture measured by sensors, while the
impact of future (uncertain) rain will be captured at the next irrigation.
For example, if rain and irrigation occur on the same day, the soil will
be wetter, making SMARTER less likely to irrigate the following day.
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Fig. 8. Comparing recommended (blue bars) and actual irrigation (orange bars) volumes (liters per dripper) in two commercial orchards (Ancarani and Errano).

In green, the fertigations that farmers manually schedule.
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Fig. 9. Feed-forward correction: at time ¢, the recommended water is the
sum of the previous irrigation (water'™4) and the proportional-integrative
correction (4u').

3.4.2. Robust handling of irrigation deviations

The amount of water recommended by SMARTER may not pre-
cisely match the quantity actually delivered by the irrigation system
(which could be measured by a flow sensor, see Fig. 8). For example,
some water pumps operate based on activation time rather than water
volume. Therefore, a conversion factor is needed to translate the rec-
ommended volume (in liters) into the corresponding pump activation
time (in hours). Since this is an estimation, the conversion may not be
perfectly accurate. Furthermore, pump pressure can vary over time and
typically requires some time to stabilize at the desired level.

To address deviations between the recommended and delivered
water volumes (advice' and water’, respectively), if a sensor is available
to measure the delivered quantity water’, when calculating ', we can
apply the following feed-forward correction

At t

Aadvice'™" = water'4" — advice'™4 (5)

so that Eq. (3) changes to

1

u = water' 4!

t
+A4u ©

measured actuation at r—Ar

For details, see Appendix.

Example 4. Let us consider two irrigation schedules ¢ and ¢/, with t =
' — At (Fig. 9). As of ¢, the recommended water was 10 1 (advice’ = 10),
but the actual water delivered to the field was only 8 1 (water’ = 8). As

of ¢, when computing the advice’/, we consider water’ = 8 rather than
advice' = 10. This ensures that SMARTER is aware of the actual water
delivered to the field.

If a sensor measuring water' is available, we consider Eq. (6) rather
than Eq. (4) in Algorithm 1 Line 7.

Henceforth, the recommended irrigation volume is represented per
single dripper.

3.4.3. Alerting

The optimal soil moisture profile may not always be physically
achievable. For example, suppose a uniform moisture level is set as the
target for a soil volume irrigated with drippers. In that case, SMARTER
will attempt to reach a moisture distribution that is inherently unattain-
able due to system constraints. Indeed, drippers produce localized,
narrow wetting patterns. As a result, the system may overestimate the
required irrigation, leading to inefficient water use and unnecessary
waste in pursuit of an unrealistic goal.

This issue is mitigated by continuously monitoring the soil moisture
profile and refining the target moisture distribution based on historical
soil moisture dynamics. Additionally, suppose irrigation requirements
change due to evolving plant growth stages. In that case, a new suitable
optimal soil moisture profile can be selected to reflect those changes,
allowing for more precise and adaptive water management.

To help agronomists, we automatically alert them when SMARTER
recognizes plateaus. Given the history of the last & errors H = [¢™", ...,
e'], if past errors are all above the threshold ¢ (formally, |{¢' : ¢ € H,
lef| > €}| = h; i.e.,, we are far from the optimum state) and the
derivative is close to 0 (formally, "Y—ZF < 0.1), then we alert farmers
and agronomists since the system is stuck away from the optimal state
(Fig. 10). For instance, the alert is raised when the optimal state is too
wet and unachievable due to high evapotranspiration or to exogenous
factors that affect the irrigation system.

In our implementation, we consider 4 =5 days and ¢ as the 10% of
the average humidity of the optimal soil moisture profile (dotted line
in Fig. 10).

3.4.4. Reference values for Kp and K;

The parameters necessary to run SMARTER are K, and K; (i.e.,
how fast the system should respond to current and past errors).” To
adopt SMARTER in a real orchard, we provide the initial setup of
Kp and K;. Then, agronomists observe how the system operates and

2 The optimal soil moisture profile, weight grids, and maximum irrigation
are parameters set based on the experience of the agronomist.
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Fig. 10. Examples of soil moisture plateaus causing alerts in SMARTER. For
instance, the alert is raised when soil moisture is stable and stuck in the “dry
region” (in red) for several consecutive days; this condition could be caused
by limited water delivery due to faults in the irrigation system.

Algorithm 2 Tuning Kp and K;

Require: Soil textures X, weather scenarios W, range K,, range K;, budget
b

1: (Kp,K))" <@ > Initialize the best configuration
2: error* « +oo > Initialize the best error
3:i<0 > Initialize the current iteration
4: while i < b do > While the budget is not expired
5: error < 0 > Initialize the total error
6: (Kp, K;) < AutoML(Kp, K;) > Choose the next configuration
7: for each soil texture X € X do > For each soil texture
8: for each weather condition W € W do > For each weather
condition

> Simulate & get the error
9: RMSE « Orchard3D-Lab(X, W,SMARTER(K, K))
10: error < error+ RMSE > Accumulate the error
11: if error < error* then > If the simulation improves the error
12: (Kp,K;)* < (Kp,K}) > Set the best configuration
13: error* « error > Set the new error
14: i—i+1 > Increase the iterations

15: return (Kp, K;)* > Return the best configuration

can manually fine-tune it (this may be necessary since fields can have
different behaviors).

To define the initial setup, we carried out an extensive set of simula-
tions in a range of feasible values for Kp and Ky, i.e., Kp = [0,30] and
K =[0,30] (we denote with bold symbols domains or set of values); 0
represents no reactivity to errors, while the upper bound represents the
highest reactivity. We leverage Orchard3D-Lab (Bittelli et al., 2025), a
field simulator based on physical equations that computes soil moisture
dynamics. Orchard3D-Lab is a three-dimensional, process-based simu-
lator that computes the soil water balance in orchards, with a focus on
fruit trees. It integrates detailed representations of evapotranspiration,
root system architecture, and soil-water dynamics under drip irrigation
and sloped land conditions. Each simulation of Orchard3D-Lab over
a period T requires a time series of weather conditions (including
precipitation, solar radiation, wind speed, air temperature, etc.), a soil
texture, and the irrigation strategy (i.e., both the irrigation interval
and the algorithm determining the irrigation recommendation) — in
our implementation Eq. (4). Out of a simulation, we compute the
Root Mean Squared Error (RMSE), i.e., how far SMARTER is from the
optimal state indicated by the agronomist over the period T.

1)2
RMSE = ﬂerlr% @]

We recall that ¢’ (Eq. (1)) already represents the distance between the
optimal and current state.

Algorithm 2 outlines how the reference values of K, and K, are
computed, representing the best configuration for different soil textures
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Table 1

Reference values of K, and K, for different soil textures.
Name Sand (%) Silt (%) Clay (%) K, K,
Clay Loam 30 30 40 12 3
Sandy Loam 60 30 10 7 3
Silt Loam 30 60 10 10 3

and weather conditions simulated with Orchard3D-Lab. Given a config-
uration Kp and K; (Line 6), to assess its stability, for each texture X
(Line 7) and for each weather condition W (Line 8) we run a simulation
with Orchard3D-Lab and get the RMSE (Line 9). The performance of
each configuration is obtained by summing the RMSE (Line 10) for the
different soil textures and weather conditions.

If the configuration is better than the previous ones (Line 11), we
store it (Line 12) along with its error (Line 13). Our tuning approach
selects the next promising configuration (Line 6) of Kp and K; to
explore using AutoML (He et al., 2021) until a budget of iterations is
reached (Line 4); the first configuration is extracted at random. Finally,
the best configuration of K, and K| is returned (Line 15).

We choose a simulation period of one month, a limited number of
iterations b = 100 (i.e., a constrained budget), four weather conditions
from a weather station in Emilia-Romagna (Italy) between 2021 and
2024, and as soil textures we consider X = {Clay Loam, Sandy Loam,
Silt Loam} (Table 1). Overall, the reference parameters for SMARTER
are Kp =12 and K; =3.

Example 5. Given a Clay Loam soil, Fig. 11 depicts four simulations
with different weather conditions and how SMARTER converges to the
optimal state with optimal values K, = 12 and K; = 3. Precipitations
are represented in red; the complete weather conditions (including
temperature, humidity, etc.) can be found in our repository (see Section
“Software and data availability”).

Example 6. Given the 2021 scenario from Fig. 11, Fig. 12 shows
the effects of different values for Kp and K; by comparing the best
(Kp =12 and K; = 3) and worst (Kp =22 and K; = 29) configurations
explored by Algorithm 2. Noticeably, higher values of K, and K; cause
abrupt changes in the irrigation (blue bars), keeping SMARTER farther
from the optimal state.

We also tested how Kp and K; can be fine-tuned with respect to
each single soil type (Clay Loam,Sandy Loam,Silt Loam). In other
words, we consider the reference values for specific soil textures. To
do so, we run Algorithm 2 by considering one texture at a time.
Table 1 reports the texture-specific reference values of Kp and K;.
On the one hand, the value of K, ranges from 7 for Sandy Loam to
12 for Clay Loam. Because Sandy Loam soils respond more quickly
to variations in soil moisture, the proportional correction is smaller
compared to soils like Clay Loam, where moisture levels change more
gradually. On the other hand, K; = 3 in all soil textures, meaning
that past discrepancies from the optimal state do not depend on the
soil texture. Overall, SMARTER provides stable results even across
different textures, meaning that soil moisture converges to the optimal
state by adapting and reacting to the heterogeneous soil characteristics.

4. Evaluation

We start by evaluating SMARTER based on field experiments in two
commercial orchards. Then, we provide the economic evaluation of its
adoption in these fields. Finally, we test its robustness for different soil
textures and irrigation intervals in a simulated environment, also with
respect to existing approaches for automatic irrigation control.
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“Clay-Loam” soil with Kp =12, K; =3
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Fig. 11. Behavior of SMARTER (with reference values K,
conditions.

12 and K; = 3) along four irrigation seasons

with different precipitation events and weather
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Fig. 12. Comparing the best (left) and worst (right) configuration
consequently, higher soil moisture variations.

4.1. Field experiments

SMARTER is implemented as a cloud-based application that collects
sensor data from different orchards to make data-driven decisions on
their irrigation. We tested SMARTER from June to October in two
commercial kiwifruit orchards in Italy: Errano (located in Ravenna; Fig.
13(a)) since 2023 and Ancarani (located in Faenza; Fig. 13(b)) since
2024. The two orchards have different soil textures, dripper densities,
flow rates, plant densities, and sensor layouts. Their distinguishing
characteristics are summarized in Table 2.

Irrigation can be scheduled every day at noon (formally, 7 represents
the timestamp for irrigation—such as t+ = ‘2025-05-15 12:00:00’-and
At = 24 h).

Soil moisture is monitored using 2D grids of gypsum block sensors
(Fig. 14) that cover portions of the soil volume. We employ gypsum
block sensors because they measure water potential rather than water

values of K, and K,

10

. Higher values of K, and K, cause stronger watering corrections and,

content. Water potential measures how freely water can move from
areas of high water potential to low water potential (i.e., how difficult
it is for a plant to extract water) and allows agronomists to define
reference scales for different stress levels. In contrast, water content is
strongly dependent on the specific characteristics of the soil. A soil with
relatively low volumetric water content may still provide abundant
plant-available water, while a soil with high water content may offer
almost none.

Two grids were deployed in each orchard to monitor and compare
irrigation sectors managed by SMARTER and the farmer. Every 15 min,
irrigation quantities are sampled via a drip flow meter, and weather
data is collected via on-site weather stations. Data is sent to the
cloud through the SIGFOX protocol. Farmers attended dissemination
events where agronomists showed and explained to them the optimal
moisture target for kiwifruit; then farmers controlled irrigation with
their traditional approaches to reach the target.
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(a) Errano.

(b) Ancarani.

Fig. 13. Settings of the field experiments in two commercial orchards. Two-dimensional grids of gypsum block sensors are deployed to measure soil moisture,
and drippers are automatically controlled by SMARTER: (a) a grid of 4 columns of 3 sensors has been installed, and (b) a grid of 3 columns of 3 sensors has

been installed.

Fig. 14. Gypsum block sensors installed in a grid.

Table 2
Characteristics of the two commercial orchards used for the field evaluation.
Field Errano Ancarani
Test seasons 2023/24 2024
Area 10 ha 15 ha
Plant distance 2m 2.5 m
Row distance 4.5 m 4.5 m

Irrigation Single wing Single wing
Dripper flow rate 4 % 2 111
Dripper distance 0.66 m 0.5 m
#Drippers per ha 3367 4444

Soil texture Clay Loam Clay Loam
Sand (%) 30 20

Silt (%) 30 47

Clay (%) 40 33
#Sensors 12 9

Grid layout (columns x rows) 4x3 3x3

Grid coverage (width x depth) 0.8 m x 0.6 m 0.6 m X 0.6 m

11

Farmers provided us remote control of their (electric) water pumps,
allowing SMARTER to control irrigation automatically. To do so,
knowing the capacity of each dripper (watering sectors have homoge-
neous irrigation systems), we can simply turn on water pumps for an
amount of time equal to the ratio of water advice and dripper capacity.
We also asked farmers the maximum time span for irrigation (advice,,,
in Algorithm 1) to ensure that our water management is compliant with
their energy and irrigation policies.

Fig. 15 compares the performance of farmers’ and SMARTER’s
managements of two commercial orchards. Tables 3 and 4 summarize
statistics on irrigation and fruit quality, respectively. We recall that, at
time 1, advice' is the water recommended by SMARTER, water' is the
water actually delivered to the field, and Aadvice' is the discrepancy
between them. Given a temporal span T, with advice we refer to
> advice', the same goes for water and Aadvice.

The main insights are discussed below.

Convergence to the optimal state. SMARTER keeps soil moisture closer
to the optimal state set by agronomists than expert farmers (the blue
line is closer to the optimal green line than the purple one in Fig. 15)
while also saving water. Noticeably, (i) the RMSE error (see Eq. (7))
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Fig. 15. SMARTER vs. farmer: comparing watering performance from Jun 15th to Sep 15th in two commercial orchards (Ancarani and Errano). Average soil
moisture is represented on a logarithmic scale. SMARTER proves to be closer to the optimal state.

Table 3
Summary of water consumption (liters per dripper) and RMSE with respect to
the optimal soil moisture state for the farmers’ and SMARTER’s management

strategies.
Field Year water | RMSE |
Farmer SMARTER Saving Farmer SMARTER
Ancarani 2024 410 339 -17.32%  1.24 0.22
Errano 2023 883 522 —40.88% 0.43 0.31
2024 787 670 -14.87%  0.47 0.21

over 92 days (from Jun 15th to Sep 15th) is higher for the farmer’s
management (Table 3), and (ii) SMARTER is in the optimal range
(i.e., within a distance of +10% of the optimal state) in 80% of the
days of the irrigation season, while for the farmer’s management it is
only 50%. Divergence from the optimal state is due to environment
and weather conditions (e.g., significant precipitation), but the system
reacts to and eventually recovers from them.

In SMARTER, the amount of applied water is adjusted automati-
cally using a PI control system. The proportional part of the controller
reacts to the difference between the desired soil moisture and the actual
moisture. The integral part looks at how long this difference has existed,
and reacts to the cumulative difference that adds over time. Together,
they correct both immediate and long-term changes in soil moisture.

During an extreme drought, the proportional part reacts strongly
because the difference is large, and the integral part increasingly reacts
because the soil has been dry for a prolonged period of time. As a
result, both parts push the system to apply a large amount of water.
The delay between the irrigation event and the change in soil moisture
is responsible for a response lag that could lead to an overshoot: the
soil becomes too wet and, as soon as this change is detected by sensors,
SMARTER decreases the amount of irrigation once again.

During heavy rainfall, the following considerations are necessary.
First, the correction applied by SMARTER is asymmetric (we can wet
dry soils, but we cannot dry wet soils). Second, the correction depends
on the soil conditions over time. If the soil has already been saturated
(e.g., due to prolonged rainfall), the proportional and integral terms
provide no contributions (the soil has been wetter than the optimal
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state for some time). If rainfall occurs when the soil is drier than
the optimal, the proportional term provides no water, but the integral
term may still be adding water because it has not yet adjusted from
earlier dry conditions. This could cause the system to keep irrigating
longer than needed, showing a form of response lag as the integral part
incrementally corrects itself.

Overall, our tests over four years with different weather conditions
in two different locations showed that when outside the optimal range,
SMARTER recovers in 1.5 days in dry conditions and 3 days in wet con-
ditions. In case of extreme/outlier events, the farmer can compensate
with manual corrections to SMARTER. This would act as a feed-
forward signal to the decision provided by the PI controller, including
additional information on weather or environmental conditions.

Water saving. An excerpt comparing the daily irrigation provided by
SMARTER and farmers is shown in Fig. 16. For example, in Ancar-
ani, farmers maintain a constant level of irrigation, even when it is
unnecessary, whereas SMARTER continuously adapts irrigation to the
monitored soil moisture profile.

Table 3 presents the total volume of water supplied by SMARTER
and the farmers, the overall water savings achieved, and the deviation
of both SMARTER’s and the farmers’ management from the optimal

soil moisture profile, measured by RMSE. SMARTER achieves savings
watersmarTer ~ Waler paymer )

of up to 40% (where Water Saving =

E]

WwatersmaRTER
with the greatest reductions occurring in June and September. During

these months, farmers often struggle to assess soil moisture levels ac-
curately and tend to over-irrigate. On the other hand, July and August
are hotter months and higher water volumes are genuinely needed,
leading to a smaller gap between the irrigation patterns of farmers and
SMARTER. The lower water savings observed in 2024 compared to
2023 can be primarily attributed to differences in precipitation during
June, July, and September (Fig. 6). In 2024, increased rainfall reduced
irrigation needs during the months when SMARTER typically yields
the highest savings.

Fruit quality. Table 4 presents a comparison of kiwifruit production
and quality. Overall, enhancements in fruit quality are evident, re-
flected by a lower proportion of overripe fruits, higher sugar content
(RSR), and increased dry matter percentage, all contributing to a longer
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Summary of kiwifruit quality analysis: overripe fruits were assessed after two months of cold storage, while all other samples

were evaluated at harvest.

Field

Year Management Size Firmness RSR Dry mass Color Overripe
(g/fruit) 1 (Kg) 1 (°Brix) 1 (%) 1 (°Hue) | (%) |
Errano 23 Farmer 143 5.50 10.10 17.40 104.60 8.0
SMARTER 143 5.20 11.60 18.20 102.90 2.0
24 Farmer 142 6.00 8.88 18.10 104.80 1.4
SMARTER 150 5.90 9.50 18.40 104.90 0.0
Ancarani 24 Farmer 149 4.94 10.50 17.60 102.40 0.0
SMARTER 140 4.86 12.30 18.60 100.80 0.0
I Farmer N SMARTER
Ancarani (2024)
10l 1l |
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S
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Fig. 16. SMARTER vs. farmer: comparison of daily irrigation per dripper in liters. Farmers tend to have constant watering amounts, providing water even when

it is not necessary.

Table 5
Relative difference between the water delivered to the field and the advice by
SMARTER. water and advice represent liters per dripper.

Field Year water advice Aadvice

Ancarani 2024 339 370 -8.38%

Errano 2023 522 477 9.43%
2024 670 557 20.29%

shelf life. A more detailed analysis of kiwifruit quality is provided
in Baldi et al. (2023).

Deviations in the watering system. Table 5 summarizes the deviations
between the amount of water recommended by SMARTER (advice' in
Eq. (4)) and the amount actually delivered to the field (water’) over the
entire irrigation season 7. Deviations may be positive or negative and
vary in magnitude, underscoring the need for SMARTER to account for
them; see Eq. (6).

4.2. Economical impact

We provide a cost analysis for our pilot studies, where we com-
pare the energy and water costs by operating manual irrigation and
SMARTER (note that this is not a generic, all-encompassing cost—
benefit analysis for commercial applications). SMARTER is based on
commercial hardware provided, installed, and maintained by an Italian
IoT service provider.

Table 6 details the capital and operational costs. Electricity and
water costs are averaged to 0.5 % and 0.4 % Both orchards rely on
water pumps that can supply water to the entire field simultaneously
with a power consumption of 10 kW. Based on the orchards’ character-
istics and the water consumption reported in Tables 2 and 3, Table 7
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Table 6

Capital and operational costs details. Capital costs refer to a complete grid
installation, whereas operational costs refer to maintenance and electricity and
water costs (averaged over two years and across the two orchards).

Capital costs
HW
1600 €

Operational costs

Installation ~ SW licenses =~ HW maintenance®

200 =

year

Water
€
0.4 =

Electricity

250 =

year

B
500 € 0.5 o

a It includes periodic system checks and replacements in case of breakage; the most
vulnerable component is the gypsum block sensor, which costs 50 €.

Table 7
Comparison between the farmer and SMARTER management: yearly costs and
savings for the two orchards.

Field Size Management Consumption Cost Saving
(ha) Water Electr. Water Electr. per ha  Total
3 € € € €
(m?) kw) (;g;;) (§E£;) (;;;;‘E;) (;g;;)
Errano 10  Farmer 27831 2088 11132 1044 - -
SMARTER 19865 1490 7946 745 349 3485
Ancarani 15  Farmer 27330 2050 10930 1025 - -
SMARTER 22600 1698 9080 848 138 2071
Average 243 2778

summarizes the yearly costs and savings per hectare. Assuming a three-
year depreciation period for the system, the annual cost amounts to
1150 % Under this assumption, the break-even point for SMARTER
(considering a single sensor grid) exceeds one year only for orchards
smaller than 5 ha. For larger orchards, the break-even point is reached
within one year, even when accounting solely for water and electricity
savings.
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Table 8

Comparison of RMSE and irrigation amounts (liters per dripper) across soil
textures, irrigation intervals, and strategies. SMARTER consistently provides
the best performance with respect to its competitors.

Soil Irrigation RMSE | water |
texture interval
ETO GBRT SMARTER ETO GBRT SMARTER

1 67.17 46.43 17.16 776 725 528
2 63.18 66.41 18.99 769 878 523

Clay Loam 3 58.57 71.54 21.40 741 901 490
5 81.21 68.99 26.26 655 864 453
7 42.22  79.47 32.01 769 955 586
1 65.47 38.87 23.17 777 658 501
2 61.40 58.73 26.36 769 787 481

Sandy Loam 3 58.90 55.65 28.21 741 737 440
5 76.47 67.19 35.42 655 662 396
7 56.30 78.35 42.53 769 1009 481
1 93.71 35.90 18.75 777 730 610
2 42.43 60.68 22.96 769 928 599

Silt Loam 3 38.04 61.03 25.98 741 891 550
5 58.94 61.65 31.65 655 849 521
7 41.57 74.74 39.68 769 1084 637

4.3. Robustness of SMARTER and comparison with existing approaches

To assess the robustness of SMARTER, we simulate three dis-
tinct orchards with different soil textures (loamy, sandy, and silty
soils), irrigated at different intervals (from 1 to 7 days), and with four
different weather conditions between 2021 and 2024. In this setup,
we compare SMARTER against an evapotranspiration-based baseline
(ETO0), which follows the method proposed by Zheng et al. (2025), and
against Gradient Boosted Regression Trees (GBRT), a machine learning
model employed by Goldstein et al. (2017) for predicting irrigation
requirements. The complete experimental setup and implementation
are publicly available for reproducibility at https://github.com/big-
unibo/smarter.

Table 8 summarizes the results: each cell represents the cumulative
RMSE error across four periods of simulation in different years and un-
der different weather conditions. We recall that the RMSE is computed
for each scenario as the daily deviation from the optimal state at the
decision-making time and then accumulated across each scenario.

Inputs. The evaluated irrigation strategies differ in the input data they
require to make their recommendations.

+ ETO is computed using the Penman-Monteith equation that ap-
proximates net evapotranspiration (ET) from meteorological data,
as a replacement for direct measurement of evapotranspiration.
ETO serves as a baseline for estimating the water needs of other
crops. To find the water needs for kiwifruit, we multiply ETO by
an average crop coefficient (Kc) equal to 1°%; i.e., ETc = ETO * 1.
GBRT (Goldstein et al., 2017) is built on 16 features (including
current/past soil moisture at different depths and past/future
weather conditions) and learns to relate them to the irrigation
manually applied by the farmer. In other words, it emulates what
a farmer would do in different scenarios.

SMARTER is based on the sensor grid and determines the irri-
gation amount based on the distance between the current and
optimal states.

Training and tuning. The approaches also differ in how they need to be
adapted to different scenarios.

» ETO does not require adjustments through different soil textures
(Penman-Monteith is computed from meteorological data) nor

3 https://www.fao.org/4/x0490e/x0490e0b.htm.
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for different irrigation intervals (evapotranspiration is aggregated
over time).

GBRT (Goldstein et al., 2017) must be retrained for different
soil textures and different irrigation intervals since farmers’ deci-
sions change in different conditions. Before being applied, GBRT
requires collecting manual irrigation data under many differ-
ent weather and soil conditions, and a full retraining for each
irrigation interval and soil texture.

SMARTER can be applied to different soil textures by using its
reference parameters K;ff =12 and K;ef =3 (see Section 3.4.4).
Using SMARTER with different irrigation intervals benefits from
tuning the values of K, and K;: longer intervals require bigger
corrections proportionally to the days elapsing between irriga-
tions: K, = K™f . (1 + day—;fl ) For instance, given Ky/ = 12 and
K;cf = 3 and an irrigation interval of 2 days, itis Kp = 12-1.5 = 18
and K; =3-1.5=4.5.

Results. SMARTER consistently maintains soil moisture closer to the
optimal state across all soil textures and irrigation intervals, while
simultaneously reducing the total water applied to the field. This
improvement can be attributed to SMARTER’s capacity to limit over-
irrigation, which typically occurs during early and late irrigation sea-
sons, after heavy rainfall events, and in the case of low-frequency
irrigation (ETO and GBRT tend to result in frequent over-irrigation).
While ETO is a baseline solution that requires no maintenance and no
cold start, its applicability to decision-making is too simplistic to repre-
sent the ongoing dynamics of a real orchard. Conversely, the primary
limitation of machine learning solutions is the substantial amount of
real-world quality and heterogeneous data required for training. Data
can only be collected during irrigation seasons, which usually span from
June to October in Italy, complicating the development and validation
of robust models.

Finally, a proportional relationship can be observed between RMSE
and irrigation interval, highlighting the importance of the trade-off
between longer irrigation intervals and the regulation of hydric stress.

5. Conclusions

This paper introduces SMARTER, a control theory-based smart
irrigation system that relies on a fine-grained soil moisture profile to
determine the irrigation needs of kiwifruit orchards. Given data from
in-situ sensors, SMARTER models the current state of soil moisture and
computes the amount of water necessary to reach an optimal state set
by agronomists. The main advantages of the proposed approach are
its simplicity and transparency in the decision-making process (e.g., no
weather forecasting models or training data are necessary) and robust-
ness to its adoption in different weather, soil, and irrigation conditions.
SMARTER smoothens the problems related to point measurements by
applying a grid of soil moisture sensors; in the case of heterogeneous
orchards, multiple grids could be installed, and their recommendations
aggregated to derive an averaged irrigation recommendation.

Empirical results in two commercial kiwifruit orchards over two
years show that SMARTER saved up to 40% of water while maintaining
comparable (or better) fruit quality with respect to farmers’ irrigation
practices. With respect to farmers’ water management, the break-even
point is one year for orchards bigger than 5 ha, even by considering
only water and electricity savings. During the two years of experi-
mentation and in the dissemination events where we demonstrated
SMARTER, no agronomist reported problems in interpreting the data
and data-driven decisions.

Future works include (i) applying this approach to different crops
such as grapes and pears to further evaluate its robustness across crop
varieties, (ii) incorporating annual water budget constraints (e.g., lim-
iting irrigation to a maximum of 2000 liters per hectare per watering
season), and (iii) the integration of remote-sensing data for a better
management of orchard heterogeneity (e.g., satellite images could pro-
vide aggregated — but less accurate — information that is complementary
to spot measurements).
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Fig. 17. Behavior of a PI controller, where e is the error function, and Au, and Au, are the contributions of the proportional and integral components. advice

incrementally increases until the error stabilizes to 0.
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Appendix. PI controller implementation with actuator compensa-
tion

This appendix summarizes the discrete-time PI control laws dis-
cussed above, including:

1. The standard velocity-form PI.
2. Replacing the internal “old advice” term with the measured
actuator output (water) to achieve built-in anti-windup.


https://github.com/big-unibo/smarter
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A. Baiardi et al.
A.1. Velocity-form PI (Baseline)

A textbook discrete-time PI controller in velocity form is written as

Al = Kp- (e - e”A’) +K; e, (A1)
U = advice™ + A, (A.2)
advice' = min{max(u', 0), aduicemax}, (A.3)
where:
+ ¢' is the control error at time 7.
+ u' is the (unsaturated) PI output at time 7.

* advice' is the saturation of u' between 0 and advice,,,,.
» Kp and K| are the proportional and integral gains, respectively.

Eq. (A.1) computes the incremental change in the controller output,
and (A.2) accumulates that change. When advice' saturates, the in-
tegrator in effect winds up if nothing corrects it. Fig. 17 shows how
the proportional and integral components of a PI system behave given
Kp =12, K; =3, and the error function ¢'.

A.2. Using measured actuator output (water) to replace old advice
To prevent windup when advice’4" differs from what the actuator

actually delivered (denoted water'~4"), one replaces the “old” term u'~4/
in (A.2) with water'=4!. Define

Aadvice™ " = (water'™ — advice'™), (A4
Then, the modified equations become:
Al = Kp- (e’—e’_A’)+KI~e', (A.5)
W = advice™ + A’ + Aadvice™ (A.6)
= advice’™ + A’ + water'™" — advice'™ 4 (A7)
= water' ™4 +Au', (A.8)
measured actuation at 1—At
advice' = min{max(u', 0), aduicemax}. (A.9)

By feeding in water'™#" instead of advice’™%, any mismatch due to

saturation or nonideal actuator behavior is immediately “seen” by the
integrator. In effect, this yields built-in anti-windup.

Data availability

Data will be made available on request.
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