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Abstract

In this paper, we discuss how the evolution of embedded
systems has impacted on the design and usage of Real-Time
Operating Systems (RTOS). Specifically, we consider issues
that result from the integration of complex requirements for
embedded systems. Integration has been identified as a
complex issue in various fields such as automotive, critical
systems (aerospace, nuclear etc) and consumer electronics.
In addition, the pressure on time-to-market, the emergence
of multi-site development, and the ever-increasing size of
software stacks are driving radical changes in the develop-
ment approaches of modern applications. These complex
requirements have placed greater requirements on Operat-
ing Systems with respect to how interfaces are defined and
how resources are managed. These requirements are ex-
panded and justified through the course of this paper. The
requirements are then discussed in the context of emerging
solutions from a number of domains.

1 Introduction

The demand for increased levels of functionality and de-
pendability within small, lightweight embedded and real
time systems has been steadily increasing for a number
of years. While practitioners (academic and industrial)
have been attempting to manage and deal with the com-
plexity of modern embedded systems, the open issues are
slowly becoming apparent to the average user. There have
been numerous examples of projects not being fielded (e.g.
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Nimrod Early Warning aircraft) or fielded systems with
problems arising associated with the interdependencies of
complex requirements (e.g. Ariane 501, Mars Pathfinder).
In the consumer electronics domain, integration problems
have led to longer time-to-market and unresolved issues be-
coming visible for the end consumer (TV resetting, DVD
recorders hanging). A common characteristic of all these
examples are that they are the result of emergent properties
resulting from integration and that are difficult to identify
and verify under sterile laboratory conditions. An example
of an emergent property related to real-time is deadlock and
priority inversion when blocking on shared resources. This
puts stringent requirements on the RTOS to provide better
mechanisms for supporting integration in complex architec-
tures and infrastructures using well defined abstractions and
interfaces.

In this paper discuss open challenges for run time kernels
(Section 2) and implications and limitations on Operating
Systems (Section 3) and then discuss proposed solutions in
the context of three applications domains: avionics, auto-
motive, and consumer electronics (Section 4). Finally, the
paper discusses some potential ways forward (Section 5).

2 Embedded systems development

Although embedded real time (RT) systems platforms
and software are tailored for specific application domains
such as consumer electronics, automotive and avionics
they all share common problems. Problem examples in-
clude timing overruns due to effects such as blocking, un-
expected time dependent calculations, and difficulties in un-
derstanding the implications of changes. These and other
issues can be traced to conflicts in functional decomposi-
tion of high level requirements into the existing capabilities
of desktop operating system semantics adopted for the em-
bedded systems domain.

The existing open problems are a concern as greater and
greater demands are being placed on precision and relia-
bility in the growing breadth of application domains within
systems that are becoming larger and more complex. Some
of the challenging new trends in designing embedded sys-
tems are:
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• Complexity - Greater levels of functionality together
with legacy code and lack of abstractions. The com-
plexity of these issues is derived from:

– Consumer electronics systems with the conver-
gence of storage requirements, connectivity, and
increased integration of functionality (camera,
mp3, connectivity for consumer electronics).

– Automotive systems that are integrating more
functionality to decrease cabling and numbers of
processors.

– Avionics sector weight is a major issue. Size
and weight issues are driving the movement away
from federated systems to integrating functional-
ity on fewer units.

• Flexibility - late changes, software download, reuse.

• Dependability - the level of integrity required in both
failure and non-failure cases have increased. This has
been brought about not just due to the fear of los-
ing valuable sales (e.g., Intel adopted more formal ap-
proaches after their floating point unit problems on the
early version of the Pentium processor) but also be-
cause of legislative pressure.

• Connectivity - on the systems level we have system in-
tegration where there is greater pressure on systems
to work together, e.g., mobile phones to communicate
with laptop computers etc..

• Modularity - needed to help provide maintainability
(see below) but also to support concurrent and multi-
site development of systems and subsystems. Con-
current and multi-site development is exacerbated as
more projects are managed as partnerships and/or us-
ing global software development teams.

• Maintainability - there is a move away from mono-
lithic development as it makes change difficult and
does not support reuse strategies such as Product Line
Architectures.

• Upgradeability - there is a need to be able to upgrade
systems in the field. The upgrades need to be per-
formed by both experts and naive users.

• Size and power - there is pressure towards smaller de-
vices that can run over batteries for longer periods of
times.

Early embedded systems were mostly uni-application,
uni-processor systems point designs developed by teams
co-located and targeted for systems with available power.
In contrast, embedded systems are being developed to sup-
port more than one application domain and must support

the upgrages and the addition of new applications in the
field. This increases the need for standards and compo-
nentization within the solution requiring more abstract in-
terfaces. Initially the need for greater flexibility implied ad-
ditional functionality within software, e.g., engine control
systems were converted from hydro-mechanical systems to
computer-based systems. Now, with reconfigurable logic
components, additional functionality is being specified at
the hardware level.

At the same time there has been a great deal of tech-
nology improvements such as the availability of practi-
cal Real-Time Operating Systems (RTOS), ’novel’ devices
such as Field Programmable Gate Arrays (FPGA) or hyper-
threading processors, Systems on Chip (SoC), Network on
Chip (NoC), middleware etc.. These trends lead to novel ap-
proaches for both hardware and software. These type of so-
lutions support a number of processors, which are often not
uniform (e.g., general purpose and signal processing pro-
cessors). These multiprocessor SoCs are deployed to cope
with the market demand for high performance, flexibility,
and low cost. NoCs are similarly used. A comparably new
trend is the use of asynchronous logic in FPGAs. This is
mainly driven to speed up the operation. However, this re-
quires very detailed models on timing behaviour.

To achieve a cost effective solution, expensive resources,
such as memory and processor time, are shared among con-
current applications. In the consumer electronics domain,
given the dynamic load fluctuations of these applications,
worst case resource allocation becomes prohibitive. The
allocation of resources below average needs implies that
applications have to get by with occasional overloads, re-
ducing system reliability. In the automotive domain, the
number of Electronic Control Units (ECUs) is high, driving
costs, power usage and integration complexity up, propos-
ing a new era of sharing of ECUs between several subsys-
tems. More powerful, but fewer ECUs allow for automotive
subsystems to share an architecture of ECUs. Due to the
safety-critical nature of many automotive and avionic appli-
cations resource allocation are still based on worst case sce-
narios. However, integration problems emerge that needs to
be treated, i.e., subsystem integration issues.

Component based technology is considered a prime ap-
proach to address the problem of time to market and the
perceived advantage of reusing code and hardware regard-
ing cost and reliability. The call for increased functional
integration on fewer units leads to RT and non RT parts
working side by side on the same hardware. This adds com-
plexity in the timely delivery of results, and the security and
reliability of operation. The emerging of standards based on
collaborations between competitors in the respective area is
something, which is now commonly deployed in hardware
and software. The standards are used to encourage com-
petition between suppliers, or at least provide means for a
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second source and hence reduce cost. Instead of traditional
top-down development, systems are built bottom-up from a
collection of independently developed components and sub-
systems.

Industrial development has changed to address this com-
plexity. Development happens not any more in a single of-
fice but is spread around the world to make effective use of
capabilities within a company, multi-site development. This
requires different means of development as this obviously
has an impact on communication. In order to reuse existing
developments legacy hardware and software are deployed.
Thus the effort is shifted from the development of new sub-
systems into the integration and support of legacy subsys-
tems. The use of Commercial Off The Shelf (COTS) com-
ponents and the outsourcing of well defined components to
subcontractors is an attractive means to reduce the in-house
development effort. Recently some industries have moved
to open source developments. The public scrutiny by enthu-
siasts is considered a good way of making software reliable.

3 Implications and limitations on Operating
Systems

The recent developments on embedded systems intro-
duce new requirements on the infrastructures and conse-
quently on the RTOS. Current RTOS techniques suffer from
a number of limitations that have to be addressed.

Developing and testing system components and subsys-
tems is a complex task in itself. However the main chal-
lenge appears at integration time, where emergent prop-
erties arise as resource sharing causes unpredictable be-
haviour. A system could potentially consist of a wide di-
verse of subsystems where the system integrator has vary-
ing possibility of control of function, reliability, resource
usage, performance and so on. However, there are a number
of legal and policy issues. One example is the potential in-
fection of in-house code with public licenses like the GNU
Public License (GPL). However the added complexity has
meant that the problem of understanding basic components
has increased dramatically, never mind the problems of un-
derstanding how they might be integrated and the resulting
emergent properties.

Scheduling techniques tend to only concentrate on the
timing aspects of systems. Although it is acknowledged
that in recent years there has been some work on expand-
ing scheduling to deal with other properties such as power.
The key problem though is the majority of systems have
a large number of properties and objectives to be satisfied.
Some of the interactions between properties and objectives
can be quite subtle, which means they are often over looked.
For instance, in the design of avionics systems there is a
link between the variations in when tasks execute and me-
chanical stress. The reason being is variations in timing

lead to errors in data, causing noise and instability on sig-
nals, which leads to the moving surfaces of the aircraft (e.g.,
flaps) being moved more than necessary and hence mechan-
ical stress. To date, little work has been done on truly multi-
disciplinary design, which has lead to a lack of available
analysis techniques. Even if appropriate techniques were
available, it is questionable how flexible and scalable the
analysis would be for larger, different or more complex sys-
tems. The need to support multiple properties suggests that
techniques and need to be more aware of the overall system
problem and the environment that it is operating in. At the
same time there is still a need for the RTOS to have appro-
priate abstractions from the rest of the system.

Furthermore, in order to cope with maintanance, bug
fixes, and system extensions during the life time of an em-
bedded system, these systems provide interfaces for inter-
operation. These interfaces may be maintanance ports in a
car or specific command sequences issued to a sattelite. Fur-
thermore some of these interfaces are an essential part of the
functionality of systems, like networking in mobile phones
or sattelites. These interfaces can be misused either delib-
erate maliciously or accidental and thus raise issues in the
area of security and possibly safety. One scenario in the mo-
bile phone industry, for example, is a reprogramming of the
radio modem of a phone. This could lead a mobile phone to
be used as a cell jammer. Paired with a clever written virus
to distribute the code, similar to the recent attacks via blue-
tooth, this can produce serious damage to the mobile phone
infrastructure.

Many of the techniques are biased to the worst-case
’hard’ real-time systems. However a great deal of systems
only have a few hard real-time requirements. Therefore
designing the system for the absolute worst case is often
un-realistic and results in fragile solutions that are prone to
change. A key issue is designing for the worst case wastes
valuable resources most of the time, which with current
market pressures is not practical. Again, components and
techniques need to be designed with QoS in mind whilst
not disregarding the importance of selective rigidity. Some
kind of Quality of Service (QoS) support might be required.

Finally, there is a lack of first principles/guidelines
to build embedded systems and how the functionality is
mapped to software tasks or hardware blocks. There is no
structural way, no rule of thumb and often, the reasons for
certain mapping are not understood.

In the next section, we will consider what some of the
key requirements are and which emerging techniques are
suited to meeting the requirements.

4 Emerging solutions

The problems can be distilled into the following require-
ments placed on the way systems are developed and in par-
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ticular the infrastructures:

• Provide appropriate well-defined abstractions and in-
terfaces.

• Provide design and analysis techniques to account for
the complex interactions.

• Support flexible and robust execution. This is from two
perspectives; change and failure.

• Partitioning is an essential ingredient to support in-
tegrity in systems and fault containment.

• Reduce the trusted computing base, which is the
amount of code, which needs to be trusted to keep the
system operational.

• Appropriate means for deciding whether components
are mapped onto either hardware, software or a mix of
the two (i.e., IP cores hosted on FPGAs).

The above is now discussed in the context of three ap-
plication domains, namely avionics, automotive, and con-
sumer electronics.

4.1 Avionics

Significant work has been performed within the avionics
domain to achieve the stated objectives. The main body of
work has been performed under the banner Integrated Mod-
ular Avionics (IMA) [1, 6, 7]. This work has been driven
by the need to support incremental certification and tech-
nology transparency. Figure 1, which is based on the civil
IMA standard (ARINC 653 [1]), shows the typical structure
of an IMA architecture.

Application
partition 1

Application
partition 2

Application
partition N

API Layer

Operation System

Hardware

CO-EX

Data
Flow

Figure 1. A typical structure of an IMA archi-
tecture.

The architecture features two key abstractions / interface
layers, which are between the applications and the operat-
ing systems (APEX), and then the operating system and the
hardware (COEX). Other key components of this architec-
ture is that it represents a move away from federated sys-
tems (where a single computing device supports a single ap-
plication) to modular systems where multiple applications
may be supported on a single device. However more than
that, the IMA architectures are being developed to support
multiple criticality applications on a single device, which
means there is a strong requirements for both temporal and
spatial partitioning. Thie requirement is resolved through
a mix of hardware support and the OS (by checking vir-
tual memory look ups). Other complexities related to the
operating system is the use of ”blueprints” that provide lo-
cation transparency between communicating applications.
The blueprints have to provide fast reliable resolution of ref-
erences and be alterable to support reconfiguration. Other
key initiatives related to IMA is the need for modular timing
analysis to help support change. One solution proposed to
this is the adoption of Reservation-Based Analysis (RBA)
[9]. More recently work has commenced on assessing the
parts of the hardware infrastructure that can be mapped onto
Programmable Logic Devices, e.g., FPGAs. The aim of this
work is to reduce chip counts and allow functional to be
customised so that it can be made dependable. The IMA
OS work represents a good example of work that fits with
the requirements that have been identified during this paper.
A number of IMA OS are in development and production
but there are some key challenges still including making the
OS calls more efficient and providing better support for dy-
namic reconfiguration.

4.2 Automotive

In the automotive domain, the embedded systems are
distributed; hence the communications play a key role in
the development process all the way from the design, to im-
plementation and integration.

Traditionally, many OEMs have their own standard plat-
forms for developing their embedded computer systems.
This is not good from an integration point of view, when
several subcontractors are required to adopt platform de-
pending on which OEM that currently is its customer. The
solution here is the effort towards standardization of non
competitive elements by the initiation of several large con-
sortia in order to agree on a common scalable electric /
electronic architecture (e.g., AUTOSAR [2]) and a common
scalable communication system (relying on FlexRay [8] to-
gether with existing standards such as CAN [10], LIN [11]
and MOST [12]).

Looking at communications, automotive systems dis-
tribute data over fieldbuses. One way to do this is, e.g.,
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based on specifications of how specific messages are to be
used and what data and signals they are to contain (e.g., the
J1939 [17] used in the truck and bus applications). This
specification is then respected throughout the automotive
system lifetime, resulting in a clear but somewhat inflexi-
ble networking interface.

Opposite to this early and static specification, the Vol-
cano system [4], currently used by Volvo Car, provides tools
for packaging data (signals) into message frames, both for
CAN and other networks possibly interconnected with gate-
ways. On top of this specification and signal packaging, it
is possible to perform timing analysis of the system from a
network point of view, and code can be generated for easy
interfacing to data and signals. The Volcano approach al-
lows for a greater degree of flexibility, compared to fixed
specification of how data and signals are packed into mes-
sage.

OSEK/VDX [13], which is a collection of widely used
standards for automotive systems, specifies a scalable real-
time operating system OSEK/VDX OS [16], communica-
tions with transparent communication services OSEK/VDX
COM [14], and a network manager OSEK/VDX NM [15]
allowing for easy integration of subsystems developed by
different OEMs. OSEK/VDX provides reusability and
portability of software by using abstract high level inter-
faces. OSEK/VDX COM allows for communications on a
high level abstraction, without detailed knowledge on com-
munication transmitters and recipients locations.

The latest automotive software standard is AUTOSAR,
by the AUTOSAR consortia, scheduled to be complete in
2006. The goal of AUTOSAR is to create a global standard
for basic software functions such as communications and
diagnostics. From an integration point of view, AUTOSAR
provides a Run-Time Environment (RTE) routing commu-
nications between software components regardless of their
locations, both within a node and over networks. Tools al-
lows for easy mapping of software onto the existing archi-
tecture of nodes (Electronic Control Units (ECUs)). This
mapping is depicted in Figure 2. AUTOSAR is working
towards integration of standardized tools relying on, e.g.,
operating system standards such as, e.g., OSEK/VDX OS,
and various communication standards as, e.g., OSEK/VDX
COM, FlexRay, CAN, LIN and MOST.

The function integration over the network is a less com-
plex task compared to the integration at the application
level. Looking at application level, while designing and
specifying the automotive system, model based develop-
ment is used by some OEMs. Component based develop-
ment is not used systematically, however, possibly by sub-
contractors of specific subsystems. Also, the introduction
of AUTOSAR will increase the usage of component based
software development.

To further increase the flexibility of the development pro-

Figure 2. AUTOSAR Virtual Functional Bus
and ECU mapping [3].

cess, some OEMs use a physical model at an early stage for
implementation, integration and testing of parts and subsys-
tems. This physical model is used together with modelling
tools, such as Statemate and MATLAB/Simulink, to sim-
ulate parts and subsystems, environments and specific run-
time scenarios. Models of subsystems allows for integration
at an early stage in the development process. However, an
issue is the exchanging of models between subcontractors
and OEMs since these models need to have proper abstrac-
tions, not revealing too little or too much information.

Furthermore, there are the issue of litigation, if subsys-
tems of different subcontractors are integrated onto a single
ECU. In the case of a major, but isolated fault it is important
to clearly identify the faulty component. Compartemental-
isation of applications serves on one hand to isolate faults
and on the other hand allows an easier identification of the
faulty application.

4.3 Consumer electronics

The consumer electronics companies start to recognize
the need for industrial standards to cope with the new trends
in software and hardware. Mastering system complexity is

5



not any more the task of a single engineer or a single com-
pany. A number of initiatives have been initiated that bring
together various CE companies in an attempt to achieve
industry-wide standards that benefit all. In this spirit, the
Universal Home API (UHAPI) [18] is a hardware inde-
pendent API that aims at developing and maintaining sus-
tainable CE products. This API favourers the growth of
the ecosystem around the products by enabling independent
software vendors (ISVs) to create middleware and applica-
tions components that easily interact.

Another initiative that directly relates to the OS is the
Consumer Electronics Linux Forum (CELF) [5], which ad-
vocates for a open source platform for consumer electronics
(CE) devices. CELF intends to leverage the benefits of the
open source community and process to maximize the re-use
of common solutions to common problems.

On the other hand the use of commodity operating sys-
tems on embedded devices introduces the problem of mil-
lions of lines of code needed to be trusted not to be break-
able via denial of service attacks or spreading viruses. This
calls for removing any functionality, which does not need to
be priviled from the kernel and moved into the user space,
supported by proper partitioning.

5 Way forward

Surely, the current challenges facing real time operat-
ing systems within these and other embedded applications
domains are challenging at best, and will only continue to
grow. How should developers and designers of RTOS’s pro-
ceed to meet the growing challenges? Several issues are
clear and must be considered immediately for inclusion in
next generation RTOS’s.

First, RTOS designers should consider meeting the
growing requirements provided in technology growth by
exploiting and not fighting Moore’s. Hardware/software
co-design of RTOS’s have historically provided increased
scheduling precision. As Moore’s law provides a doubling
of transistor capabilities every three years, this can be ex-
ploited to offer a scaled increase in RTOS performance and
capability that cannot be equaled in pure software solutions.
With current software based RTOS’s, increased function-
ality requires more lines of sequential code exacerbating
already difficult maintenance of critical sections and addi-
tional timing overhead in context switching and operating
system processing. By migrating portions of the operat-
ing system into hardware, Moore’s law enables a migration
from the temporal to the spatial domain, and enables func-
tionality to increase concurrenty within the transistors.

Second, appropriate abstract interfaces must be formal-
ized to support the rapid seamless insertion of additional
hardware and software application components within a
system centric framework. This capability is foundational

to many of the existing issues, including dealing with in-
creased complexity through higher level abstractions and
supporting component reuse to increase times to market
for hardware as well as software components. A higher
level abstract interface also brings the benefits of abstract
type checking into the hardware/software co-design do-
main, which provides additional dependability, modularity,
and maintainability.

Third, security must be elevated to a first class design
constraint for RTOS’s. Fundamental issues of atomic se-
quencing between secure states should be considered as
both a hardware and software issue in order to eliminate
classic time of check to time of access breeches. Cur-
rent monolithic operating system organizations have also
shown the vulnerability of single supervisor mode, unlim-
ited access to global state information. Thus next generation
RTOS development should consider built in compartmen-
talization of operating system functionality, and provide a
framework for the development of both soft and hard se-
cure IP within systems that support unsecure components.
However, this can not be solved by the RTOS alone. Re-
stricting access to global states inevitably means memory
and device access protection. This requires processors to be
equipped with memory management units.

Fourth, scheduling should be expanded to include sys-
tem resource utilization in meeting application timing dead-
lines. To support expanded schedulability, RTOS’s will be
required to perform fast non-invasive resource monitoring
and scheduling of dynamically time varying reconfigurable
resources to meet more complex and interdependent func-
tional requirements.

6 Summary

In this paper we have collected some of the main de-
velopment trends in embedded systems for the automtive,
avionics and consumer electronics domains. Increasing
complexity require new approaches to system composition
for both hardware and software. In the hardware side, flex-
ibility is enabled by the use of heterogeneaous Systems on
Chip, Networks on Chip and FPGAs. For the software,
components are beeing developed multi-site and multi ven-
dor. For cost-efficiency reasons, the system resources are
being shared introducing unpredictability in the integrated
system. To still maintain the traditional “-ilities” some of
the limitations on current RTOS have to be addressed. Some
of this limitations include

• Lack of first principles

• Interference due to resource sharing not explicitly con-
sidered by analisys techniques

• Security
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• Lack of QoS support

Finally, emerging solutions for the application domains
were discussed.
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