Modelling and Verification of Dependable Component-Based
Vehicular Control-System Architectures

lan Peake Anders Mollet? Heinz Schmidt

!Monash University, Melbourne, Australia
MRTC, Malardalen University, Vasteras, Sweden
3CC Systems, Uppsala, Sweden

E-mail: | an. Peake@ nf ot ech. nbpnash. edu. au

May 30, 2005

(Research Paper)

Abstract

Domains such as vehicular control system design illustteeeed for component-based development methods
based on architectural component models, and formal, midisige verification of extra-functional requirements such
as schedulability. However, methods for verification anebprtion of component-based systems are still impragctical
requiring improved performance and accuracy.

We show how usingependent finite state machin@~SMs) enables practical property prediction, througasec
study illustration of an automotive cruise control systerith varying behaviour depending on configuration choices,
represented in the SaveComp component model (SaveCCMabildy is a hallmark of component-based design,
in particular of product line architectures in automotivantrol. The parameterised component protocol types in
DFSMs permit analysis of behaviour dependencies and aéfiwad predictions for improved accuracy in worst-case
execution time (WCET) bounds for particular configuratioBsce task schedulability critically depends on WCET,
schedulability can be predicted more accurately. Manyradpperoaches take a whole-of-system analysis approach,
requiring computation of a detailed behavioural model eféntire system. In contrast, hierarchical DFSMs permit
propagation of behaviour constraints through networks wfually dependent state machine behaviour models. The
propagation operates on hybrids of protocol state machkindssimplified "property” models — such as formulae or
table representations for WCET properties of state mashine

Combining SaveCCM and schedulability analysis with DFSkaetics and dependency analysis allows scalable
and accurate analysis of SaveCCM systems and extends tfeabrompositional extra-functional properties studied
and analysed in the context of DFSMs.

Keywords: Software quality, Evaluation of software products and congnts, Applications (component-based
systems), Modelling

1 Introduction

Developers of embedded vehicular control systems facéettugs of {) high demands on reliability and performance
(i) requirements on lowered product cost, aiiig upporting many configurations, variants and suppliecsméet
these requirements, more and more electronics and sofasaiatroduced. In, e.g., BMW's new 7-series luxury cars
there are more then 65 electronic control units (ECUs), e&alich includes its own CPU, RAM and communication
devices. In the Volvo XC90, the maximum configuration camaabout 40 ECUs connected via two Controller Area
Networks [1], one MOST ring [2] and a set of Local Interconréetworks [3].

However, whilst computer systems offer the performanceleédor the functions requested, they also add new
sources of failures that might jeopardise product religbiind safety. Also, in order to keep the software develop-
ment costs within budget, more and more Original Equipmeanidacturers (OEMSs) use sub-contractors (and/or

Commercial-Off-The-Shelf (COTS) components) to develapous parts of their computer system. This further in-
creases complexity of system analysis and jeopardisesa@fsystem trust, and due to the potentially high (economic
and/or safety) impact of software failures (e.g., passesafety in a car) — predictable software becomes increbsing
important.

This calls for new systematic engineering approaches tigiedevelop, and maintain vehicular control-system
software. Component-Based Software Engineering (CBSEudh a technique, successfully used in many Inter-
net/office applications. However, in order to be as sucaégsthe area of dependable and safety-critical embedded
vehicular control-systems, CBSE must be equipped withstaold methods tmode| predict andverify both core
software functionality and extra-functional propertiasis as real-timeliness, reliability, and safety.

In this paper we combine a component model custom-made fietyseritical embedded control-systems [4] with
novel methods for architecture-based reasoning, modelénd prediction [5, 6, 7]. We show how our approach,
based on dependent finite state machines (DFSMs), may béargedctical verification of extra-functional properties
expressed in the SaveComp component model.

By doing this we can, e.g., guide software system develdpgrst focus on the part of the application that is most
crucial in terms of extra-functional system propertieshsas real-timeliness or reliability.

We employ dependent finite state machines (DFSMs) [7] tditiake in turn the modelling of protocols at compo-
nent interfaces, practical composable models of extratfonal properties, and, e.g., verification of system saked
bility under real-time constraints in distributed embedideal-time control-systems.

The distributed vehicular control-systems of interest $oreiquire dealing with parallel behaviour (or at least
communication of a sequential component with parallel congmts in its deployment environment). However, our
work focuses initially on the sequential components and#teviour of multiple components executing on the same
embedded controller. Therefore asynchrony and schedigkngs are inside the boundaries of our project, whilst true
(distributed) parallelism is outside.

The paper is outlined as follows. Section 2 introduces theeh8aveCCM, and in Section 2.1 we present an
industrial prototype implementation of an adaptive cruisetroller (implemented in SaveCCM). Section 3 presents
the scheduling analysis performed using a novel technigugbining elements of SaveCCM and extended DFSMs.
Section 4 discusses related work.

2 The SaveComp Component Model

The SaveComp Component Model (SaveCCM) is for developniesufoware for vehicular systems. The model is
restrictive compared to commercial component models ftergrise systems, like, e.g., Microsoft's .NET or SUN'’s
EJB. SaveCCM provides three main mechanisms for desigmplications: (i) components which are encapsulated
units of behaviour, (ii) component interconnections whitdly contain data, triggering for invocation of components,
or a combination of both data and triggering, and (iii) siés which allow static and dynamic reconfiguration of
component interconnections.

The main architectural elements in SaveCCM are comporemitshes, and component assemblies. The interface
of an architectural element is defined by a set of ports, whighpoints of interaction between the element and
its external environment. SaveCCM distinguish betweenitinand output ports, and there are two complementary
aspects of ports: the data that can be transferred via thegrat the triggering of component executions (for more
details, see [8]).

Components are the basic units of encapsulated behavialigra defined by an entry function, input and output
ports, and extra-functional properties. A component isatiotved to have any dependencies to other components, or
other external software (e.g. the operating system), @xtleisible dependencies through its input- and outputspo
A switch provides means for conditional transfer of data/anttiggering between components. A switch specifies
a set of connection patterns, each defining a specific way mfiexing the input and output ports of the switch.
Component assemblies allow composite objects to be defaretimake it possible to form aggregate components
from groups of components, switches, and assemblies.

The graphical syntax of SaveCCM, derived from UML 2.0 synshimlit with additions to distinguish between
the different types of ports, is available in [4]. The textsgntax is XML-based, and available in [8]. The XML-
description, which contain no dependencies to the undeylgystem software or hardware, is used as input to the
compiler. The compilation is performed in four stages, akmgd below.

Task-allocation. During the task-allocation step, components are assignegédrating-system tasks (independently
of the execution platform). The algorithm strives to redtimnumber of tasks by allocating components to the
same task whenever possible, i.e. (i) when the componeatsiexwith the same period-time, or are triggered
by the same event, and, (ii) when all precedence relatiotvedem interacting components are preserved. A
description of the algorithm is available in [8].

Attribute Assignment. Assigning attributes is dependent on the underlying ptatfand on the analysis goals. In the
current implementation, the task attributes greriod-time priority, worst-case execution-tim®/CET), and
(iv) deadline The period time, deadline, and WCET are derived from thepmments included in each task.
Priority is assigned in deadline monotonic order, i.e.r&raleadline gives higher priority.

Analysis. The analysis step is dependent on the underlying platforga, schedulability analysis is limited to the
algorithms available in the OS used. However, in the cumpestiotype implementation, schedulability analysis
according to FPS theory is performed.

Code Generation. The code generation module of the compile-time activitiexsegates all source code that is depen-
dent on the underlying operating system.

2.1 An Adaptive Cruise Controller Application

To evaluate our ideas, we use a SaveCCM prototype impletimmiaf an Adaptive Cruise Controller (ACC), first
presented in [8]. The ACC extends the regular cruise cdetritlypically used to keep a desired speed) in that it (i)
helps the driver keep a safe distance to a preceding vefii¢lautonomously changes the speed depending on the
speed limit regulations, and (iii) helps the driver to sldra brake in extreme situations.

When implementing the ACC application using SaveCCM (seeiféi 1), we distinguish between three different
sources of input to the ACC application: (i) the Human Maehimterface (HMI), (ii) the vehicular internal sensors,
and, (iii) the vehicular external sensors. The outputs canlibided in two categories, the HMI outputs, and the
vehicular actuators for controlling the speed of the vehidrurthermore, the application has two different trigger
frequencies, 10 Hz and 50 Hz. Logging and HMI output actgitexecute with the lower rate, and control related
functionality at the higher rate.

The application has three different operational modeff; ACC EnabledandBrake Assist In the Off mode,
none of the control related functionality is activated. iDgrthe ACC enablednode the control related functionality
is active. In theBrake Assistmnode, braking support for extreme situations is enable@ ABC system (Figure 1 a)
is built-up from four basic components, one switch, and areassembly. The sub-assembly (ACC Controller) is in
turn implemented as shown in Figure 1 b.

ACC Max SpeedO
Road Sign Spee

<<Assembly>>
ACC Application

Distance

Current SpeedO

ACC Enabled O
Brake Pedal UsedQ

v
<<SaveComp>>
Object

Recognition

]—(Throttle

(010 Hz

Max Speed
Brake Assist

ACC

Brake Signal

The Speed Limittcomponent calculates the maximum speed, based on inputtfreraehicle sensors and the
maximum speed of the vehicle (speed-limit regulation depat). The component runs with 50 Hz and triggers the

Relative
Speed Distance
@ @

Max Current
Speed Speed
o O

Relative
Speed
@)

Distance
@]

<<Assembly >>
Distance
Q controller ¢

Calc Output

0
<<Assembly>>
Speed
Q Controller Q
- =
<<SaveComp>>
OtD I

Speed

Control

K

(b)

Figure 1: Adaptive Cruise Controller (ACC) application

Object Recognitioeomponent. Th®bject Recognitiomomponent, in turn, is used to decide whether or not there is

a car in front of the vehicle. In case there is, it calculatesrelative speed to this car. The component is also used to

triggerMode Switchand to provideMode Switctwith information indicating if there is a need to use the leraksist

functionality or not.Mode Switchis used to trigger the execution of tA€C Controllerassembly and thBrake Assist

component, based on the current system mode and infornfegimrObject RecognitionTheBrake Assistomponent

is used to assist the driver, by slamming the brakes if trees@ dangerous obstacle in front of the vehicle. Ibgger

HMI Outputscomponent is used to communicate the ACC status to the drime¢he HMI, and to log the internal

settings of the ACC. ThACC Controllerassembly is built up of two cascaded controllers (see Figjure managing

the throttle lever of the vehicle. This assembly has twolswkt assemblies, the Distance Controller assembly and the

Speed Controller assembly. A control feedback solutiorsedibetween these two controllers, see [8] for details.
Figure 2 illustrates how the components in the ACC applicedire allocated to operating system (OS) tasksk

Alis triggered at 50 Hz and, hence, executes every 20 riissk.Atriggers tasklask B Task G a combination of both,

or neither of these depending on the system mddsk Dis triggered at a frequency of 10 Hz, hence executes every

100 msec.

Task B

[e<savecomp> [e<savecomp> <SaveComp> [e<savecomp>

H>{ Distance >—(O—i> Speed >‘(O“> Update D‘(O_D Update
o]

Output Output Speed Distance

Task A
[c<SaveComp>: [c<SaveComp>>{ <<Switch>> >_
50Hz O™ speed O object O Mode

Limit Recogn Switch >-(O—L
[e<savecomp>
>

Brake
Assist

<SaveComp>;

10z Oy Task C

Logger

Task D

Figure 2: A control flow graph, including an illustration dfet operating system tasks, of the ACC application
described in SaveCCM graphical syntax

3 Modéling and Analysing Schedulability

To illustrate how the ACC application can be used in analg§isming properties (schedulability), for the sake of
brevity in this paper, we assume that the application exsscoim a single ECU and that the components are allocated
to operating system tasks as shown in Figure 2. We furthenasshat the tasks are executing under a fixed priority
real-time kernel, with zero execution time overhead. InuFég3 we show how the extra-functional properties (only
WCET in this specific example) of the components are summed oggler to get the schedulability attributesTalisk

A - Task D The WCET's are obtained using the framework-based rue-timonitoring technique described in [9].

3.1 Context-free Schedulability Analysis

If we model or analyse extra-functional properties of a comgnt-based system without regard to the deployment
context, we call this model (or the analysis, respectivety)text-free Context-free schedulability analysis typically
follows the hierarchical composition structure or the dicyatata-flow structure between components to assign WCET
and solve the schedulability problem utilisation this toeelag structure.

For a set of independent periodic tasks, with deadlinedmvitte period — the Deadline Monotonic priority assign-
ment model is optimal. However, for simplicity, we assumat ttheadlines equal the period. Hence, we use the Rate
Monotonic (RM) priority ordering, where tasks get pricggiaccording to their periods. The task with the shortest
period gets the highest priority, and the task with longestqul gets the lowest. Tasks with higher priority can pre-
empt lower priority tasks. Given this, together with the@xton time attributes of the components, we can derive the
following tasks for the ACC application:

Component WCET (ms) {Tasks i Period (ms) i WCET (ms) | Deadline (ms) { Priority

o iTask A~ 1} 20 ! 6 ! 20 ! 4 !
Speed Limit 2 iTaskB | 20 i 8 i 20 | 3 |
Object Recogn 3 iTaskC | 20 ; 2 i 20 ; 2 i
Mode Switch 1 iTask D} 100 ! 4 | 100 ! 1 !
Distance Output 3
Speed Output 3
Update Speed 1
Update Distance 1
Brake Assist 2
Logger 4

Figure 3: Component attributes and task set informatiothierACC application

By applying, e.g., response-time analysis [10], it is easshiow that this task-set is schedulable.

R;
Rz—cz+z I—TJ~|C7 (1)
JE€Rp(i)

Solving the recurrences in Equation 1 on the task-set destiin Figure 3 gives uskRr, = 6, Ry, = 14,
Ry, =16, andRr,, = 20. Since the conditio®Ry, < D; is fulfilled for all tasks in the task-set, the ACC applicatio
is schedulable. In the upcomming versions of the SaveConmppBaent Technology, we will deploy more advanced
schedulability tests, such as response-time analysiaststwith offsets [11], which will allow high utilisation dn
can cater for real-world phenomena such as jitter and O#heaels.

ACC Application

Speed Limit Object Mode Brake ACC Logger
Recogn Switch Assist Controller
Distance Speed
Controller Controller
Distance Speed
Output Output
Update Update
Distance Speed

Figure 4: A component-wise hierarchical decompositiorhefdadaptive cruise controller

3.2 Context-dependent Schedulability

Component-based control systems architectures —andiakpecoduct-line architectures— aim at maximising reuse
The units of reuse in this approach are software componentdinary deployable, independently developed, black-
box entities (see e.g., [12]) and variable configurationisuwihere variation point specifications describe dependent
behaviour or component choices. Design-for-reuse maesrtise flexibility and reuse of such units, howewatithe
price of including behaviours in most configurations tha ased only in a few of thertnlike dead-code elimination,
these behaviours cannot be removed because they are dffemstirfaces to the given deployment context of those
components - an intrinsic by-product of the openness of corapts.

Even if these behaviours remain unexecuted in all execeatoexts, or unexecuted with a very high probability,
they contribute to the WCET prediction, all adding up to WCEdunds that are deviating significantly from any
WCET observed in practice. Thus design-for-reuse tendsaik w&gainst accurate WCET prediction in existing
WCET models and approaches, because theycamntext-fregi.e., defacto do not or cannot take into account the
deployment context of a set of components.

For example the ACC Controller in the Cruise Control casesiancludes four components: Distance Output,
Speed Output, Update Speed and Update Distance, eachtmdéveral different behaviours. A configuration
which selects the regular ACC Control (non-adaptive behayicorresponds to a variation point choice that selects
mutually dependent component behaviours for all four camepts. Let us abbreviate the relevant WCETSs of the
corresponding component behaviours by the componerdlmtrefixed by ‘r’ for ‘regular’ and ‘a’ for ‘adaptive’. Let
us also assume the regular WCET of these componentstars, 0.5ms, lms and1lms respectively and the adaptive
WCETSs are8ms, 3ms, 0.5ms and0.5ms, respectively. Then implicitly the context-free schedhility analysis above
(cf. Sec. 3.1) uses the maximum of regular and adaptive tfioreall four ACC subcomponents and sums them to
arrive at the ACC component WCET.

WCETAcc = maz(aDO,rDO) + max(aSO,rSO) + max(aUS,rUS) + max(aUD,rUD) = 8ms.
However, clearly
8ms = WCETxcc > max(aDO +aSO + aUS + aUD,rDO +rSO +rUS + rUD) = Tms.

I.e. the maximum of the modelled regular and adaptive behnsvs actually smaller. Moreover in a deployment
context selecting the regular behaviour only, the reletiare is considerably smaller:

WCET, =rDO +rSO +rUS +rUD = 3ms.

In large-scale control systems such differences are ceradity more pronounced. Thus, a refined analysis is
necessary to arrive at accurate WCET predictions at thé édwtasks to which several hierarchical components are
allocated. Furthermore, such a refined analysis requirggxbdependent reasoning.

Some approaches to WCET prediction propose such contgerdent analysis using data flow techniques known
from compiler construction. By means of so-called scopestréhey incorporate the subcomponent models, flatten
the hierarchy and then analyse the compound model of theegmibduct bottom-up (see for example, [13]). This
white-box approach to components, obviously does not stadealso requires access to the complete source code,
which is not always available. Small incremental extensiofra product by a single component may require repeated
full flattening, expansion and recalculation of the WCET,akhcan be prohibitive in large-scale component-based
software development.

3.3 Dependency networ ks of component protocol types

Elsewhere we have described an alternative architectuserigéon language RADL [refs], and a semantics for
RADL expressed in terms of Dependent Finite State MachiDESMs) allowing a compositional approach to extra-
functional properties such as WCET, reliability and othepsovided the properties themselves or approximate and
still accurate models are reasonably compositional.

DFSMs provide a formal mechanism for describing the allowreractions between a given component and its
environment, i.e., protocols, and provide ways of talkibguat the structure of and relationships between protobgls,
modelling a network of interface protocol dependenciesowimusage profiles and deployment environment models
can be modeled as protocol types themselves, then fed iafgitbn network as constraints which propagate through
the network and (conceptually) eliminate non-executirfigvéural alternatives. The process can be likened to dead-
code elimination, except that it is performed at the levehef property model, and the component code itself is not
affected at all.

DFSMs are defined in terms of finite state machines extendgdrterate trace languages, which capture notions
of true concurrency. A (regular) trace language, analoigaosa regular language, gives a set of traces. A trace
is a set of strings, which are equivalent up to arbitrary peation of pairs of symbols which are not ordered with
respect to each other. A core notion provided by DFSMs isghatcomponent'abstract machingthat is, a model
of the component that expresses how it implements its ictierss with its environment. (The abstract machine is a
white-box notion: it may reveal internal structure of thengmonent, i.e., dependence on subcomponents through the
use ofhidden symbols the language it generates.)

3.3.1 Towards DFSM semanticsfor SAVECOMP

Below we give a simple semantics for SaveCCM in the form ofjalar trace language. We restrict ourselves, without
loss of generality, to modelling features which impact aktassignment and schedulability, by modelling contral, bu
not data, signals. The goal is to give a compositional seicgnthere models of component assemblies are derivable
from models of subcomponent assemblies via “simple” (beal) composition.

For the sake of simplicity, we consider only tasks to be “tm@mponents, and we assume that the assignment of
components to tasks (based on inter-component triggerdatadlow) has been performed already by the SaveCCM
compiler. Ideally, an extension to the semantics would destrate how the task assignment algorithm could itself be
specified and implemented compositionally.

The semantics is defined as follows:

e An entire system has a protocol which accepts a “tickingfjlaage. The system accepts repeated “system tick”
symbols in the trace language corresponding to triggertevaturing at the greatest common multiple of all
trigger frequencies;

¢ Individual trigger frequencies have their own protocoldahhaccept (hidden) repeated “trigger tick” symbols
corresponding to their own trigger frequency;

¢ A system synchronisation protocol accepts both repeatdisyticks and various trigger ticks, and restricts both
the rate and ordering of the trigger ticks with respect taeaydticks, so that trigger ticks occur at the appropriate
integral fractions of the system tick rate. This includekim@ trigger ticks and system tickkependent

¢ Individual tasks (considered atomic for the purpose of eisiantics) are represented by protocols which ac-
cept repeated instances of a unique corresponding taskasymihich are mutually dependent on the trigger
tick corresponding to their invocation frequency. (Thisreatly leaves certain behaviour nondeterministic, for
example the ordering of multiple tasks coincidentally stthied for the same real time instant in the absence of
other constraints);

e Where tasks invoke each other, this is represented by mdépendence of their respective symbols, and ap-
propriate ordering within the trace language;

e Where tasks may only optionally invoke another task, thisiither represented by optionality of the invoked
task in the trace language;

e Where one task has priority over another, an additionaliapggnchronisation protocol which respects.

3.3.2 The ACC moddl in DFMSs

To illustrate the semantics, we give an abstract machinéhirAdaptive Cruise Controller (ACC) without distin-
guishing adaptive versus regular behaviour. Even usindasiviely simple, coarse-grained characterisation of this
component, the abstract machine is surprisingly complexded, it is not practical to show a complete finite state
machine because of the state explosion which occurs whesidming all the possible valid ordering of events occur-
ing within its implementation.

The trace language generated by the abstract machine iggalantrace expression as follows:

L = (a(blc|beltr)"[[(dt2)"|[(t1t)"[|(¢ttttat)”)
E = {a,b, C,t17t27t} (3)
D= {a,b}*U{a,c}?U{b,t;}* U{c,t1}2 U {d, t2}? U {t1,t}> U {tz,1}? (4)

While the trace language semantics uses restricted shufftipts, the DFSM semantics cited avoids the associ-
ated state space explosion by using Petri nets in which entlignt behaviours (actions or entire components) remain
unordered.

In addition, our approach keeps the state space explosichdok, which could result from flattening a large
hierarchy of component models, by treating componentsaxkiiloxes and associating approximate and simplified
property models with them. At higher levels in the hierarthg simpler models are propagates without recursing

to the details from which they were derived. We call this cosifional modeling 'property-enriched component
models’.

For WCET we use formulae and tables in our implementationdbacribe worst case times or reliability condi-
tional upon classes of deployment contexts. These conpoaitDFSM semantics are currently being evaluated in
large-scale real-world case studies in collaboration witlustry partners.

4 Reated Work

During the last decade, tremendous advancements have basm im component-based development (CBD) for
desktop- and Internet-applications, e.g., MicrosoftsNC@nd .NET, SUN’s EJB. However, for embedded systems
no readily available technique exist [14, 15]. To this endnmprojects have come up with component models that
should support analysable systems, e.g. [8, 16, 17]. Aflealtechniques are based upon static, worst-case analysis of
the system. Crnkovic and Larsson provides a good overvigheoproblems needed to be tackled when employing
component-based development for embedded systems [HB}alter et al. [19] describes industrial requirements to

be met by a component technology for embedded systems.

While traditional WCET approaches such as thatdfre reaching maturity in the research community, our work
is novel in that it seeks to address the need for a true conmpdrased WCET analyser which, while still accurate,
is also scalable to large systems for which complete souralysis may not be feasible due to sheer size or even the
unavailable of source code for third party components.

In collaboration with ABB Corporate Research Center in Gamy the Monash authors are applying DFSM-
based techniques to the “Extra-functional Consistency Rmdliction of Component-Based Control Systems” (eCAP)
project, developing a commercial prototype for the analggicontroller designs deployed using ABB’s Industfial
suite, which supports notations compliant with IEC 6 113heBuding procedural code (“structured text”), dataflow-
style “function block diagrams”, and some proprietary esiens.

5 Conclusions

In this paper we described an extension of the SaveCCM stdtlity analysis to context-dependent WCET mod-
elling. To this end we based the models on dependent finite stachines (described elsewhere). The paper con-
tributes refined and more accurate schedulability analyagain, for SaveCCM. It also extends DFSMs to multi-task
analysis; they have so far only been used for single-task Watalysis.

The combination of SaveCCM and schedulability analysi$whiie DFSM semantics and dependency analysis
allows scalable and improved schedulability analysis afe€£M systems and extends the range of compositional
extra-functional properties studied and analysed in tiéecd of DFSMs to date.

References

[1] International Standards Organisation (ISO). Road ¥elsi— Interchange of Digital Information — Controller Andatwork
(CAN) for High-Speed Communication, November 1993. voDIStandard 11898.

[2] MOST. Specification framework rev 1.1. MOST Coopertibttp://www.mostnet.de, November 1999.

[3] LIN. — Protocol, Development Tools, and Software for Bbénterconnect Networks. In 9th International Conferenoe
Electronic Systems for Vehicles, October 2000. Baden-Ba@ermany.

[4] H.Hansson, M. Akerholm, I. Crnkovic, and M. Térngrenv8&CM - a Component Model for Safety-Critical Real-Time Sys
tems. InProceedings of 3¢ Euromicro Conference, Special Session Component Moddlefrendable SystemSeptember
2004.

[5] H. W. Schmidt, I. Peake, J. Xie, et al. Modelling Predidta Component-Based Distributed Control Architectures. |
Proceedings of the Ninth IEEE International Workshop one@briented Real-Time Dependable Systelasuary 2004.
Anacapri, Italy.

[6] H.W. Schmidt. Trustworthy components: compositiotyadind predictionJournal of Systems and Software, Elsevier Science
Inc, 65(3):215-225, 2003.

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

H W Schmidt, B J Krdmer, | Poernomo, and R Reussner. Ptaaie Component Architectures Using Dependent Finite
State MachinesLecture Notes in Computer Scien@941:310-324, 2004. (Proceedings of the 9th Interndtidfeakshop

in Radical Innovations of Software and Systems Enginedrirthe Future, Venice, Italy; revised version of the papethef
same title in the Sep/2002 proceedings published as a TR hetdita Ca Foscari di Venezia).

M. Akerholm, A. Méller, H. Hansson, and M. Nolin. TowardsDependable Component Technology for Embedded System
Applications. InProceedings of the 10 IEEE International Workshop on Object-oriented Real-Tibependable Systems
(WORDSO05)February 2005. Sedona, Arizona, USA.

D. Sundmark, A. Mdller, and M. Nolin. Monitored Softwa@omponents — A Novel Software Engineering Approach —. In
Proceedings of the 11 Asia-Pasific Software Engineering Conference, WorkshoPaitware Architectures and Component
TechnologiesNovember 2004. Pusan, Korea.

L. Sha, T. Abdelzaher, K-E. Arzén, A. Cervin, T. Baker, Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok.
Real Time Scheduling Theory: A Historical Perspecti®eal-Time System28(2/3):101-155, 2004.

J.C. Palencia Gutierrez and M. Gonzalez Harbour. Sdhédity Analysis for Tasks with Static and Dynamic Offsetin
Proc. 19" IEEE Real-Time Systems Symposium (RT3&)ember 1998.

C. Szyperski.Component Software — Beyond Object-Oriented Programniaiglison-Wesley, ISBN: 0201745720, 1998.

Jakob Engblom, Andreas Ermedahl, and Friedhelm Stapfievorst-case execution-time analysis tool prototypesimbed-
ded real-time systems. Workshop on Real-Time Tools (RT-TOOLS 2001) held in cotipmwith CONCUR 2001Aalborg,
Denmark, Aug 2001.

I. Crnkovic. Componet-Based Approach for Embeddedt@ys. InProceedings of ¢ International Workshop on
Component-Oriented Programmingune 2004. Oslo, Norway.

A. Moller, M. Akerholm, J. Fredriksson, and M. Nolin. BMation of Component Technologies with Respect to Indalstr
Requirements. lEuromicro Conference, Component-Based Software Engime&rack August 2004.

K. C. Wallnau. Volume IlI: A Component Technology fordelictable Assembly from Certifiable Components. Technical
report, Software Engineering Institute, Carnegie Mellanivdrsity, April 2003. Pittsburg, USA.

M. Winter, T. Genssler, et al. Components for Embeddefivre — The PECOS Apporach. TFhe 2 International
Workshop on Composition Languages, in conjunction withl8i& ECOOP June 2002. Malaga, Spain.

I. Crnkovic and M. LarssonBuilding Reliable Component-Based Software Systehntech House publisher, 2002. ISBN
1-58053-327-2.

A. Mdller, J. Froberg, and M. Nolin. Industrial Requinents on Component Technologies for Embedded Systenfroin
ceedings of the*? International Symposium on Component-Based SoftwarenBaghg 2004 Proceedings Series: Lecture
Notes in Computer Science, Vol. 3054, May 2004. EdinburgiotI8nd.

