
A component-based approach for supporting

functional and non-functional analysis in control loop

design

Massimo Tivoli1, Johan Fredriksson2 and Ivica Crnkovic2

1University of L’Aquila, Computer Science Department, Italy, tivoli@di.univaq.it
2Mälardalen University, Mälardalen Real-Time Research Centre, Väster̊as - Sweden

{jhoan.fredriksson, ivica.crnkovic}@mdh.se

Abstract

One of the main issues in developing modern control systems is how to design control loops in such
a way that functional requirements as well as real-time attributes can be analyzed during design-
time. Nowadays, control loops are often constructed performing a modular approach by means of
libraries of building blocks that can be considered as components of a control system. Although
component models that support predictability of the system behavior there exist, they are found to
be inappropriate for the control systems application domain. In fact, they assume to not deal with
control loops (i.e., control flow feedbacks) which cause problems with predictability of the system
behavior. This has lead to a real need of a component-based approach for designing control loops
and supporting predictability of the behavior of the designed system. In this paper, we present a
possible component-based approach for supporting functional and non-functional analysis of control
loops during design-time. Moreover, we outline an overall view of the component-based development
framework which implements our approach.

1 Introduction
The use of component-based development (CBD) is growing in the software engineering community
and it has been successfully applied in many engineering domains such as desktop environments,
office applications, e-business and in web-based distributed applications. Recently, to improve control
systems analysability, reusability, flexibility and to decrease the time-to-market, the need of CBD is
growing also in other domains related to dependable and embedded systems (i.e., control engineering
domain). One of the main issues in control engineering domain is how to design control loops [11] in
such a way that functional requirements (safety and liveness properties) as well as real-time attributes
(end-to-end timing, freshness of data, simultaneity, jitter tolerances, WCET) can be analyzed already
in an early phase of the control loop life-cycle, namely during design-time. Nowadays, control loops
are often constructed performing a modular approach by means of libraries of building blocks with
high functionality and a high degree of flexibility. This has lead to a need of a component-based
approach for building control loops out of a set of “control modules” [12]. Such control module
concept has been implemented in ABB’s new control system, Control IT as a more reliable and
easy-to-use generalization of a traditional IEC61131-3 function block1 [1]. A control module might
be considered as a component of a control system and hence it is the mean to build control loops by
adopting a component-based approach supported by a suitable component technology. Unfortunately,
commercial component technologies are too complex and unpredictable and hence, within such an
approach, predictability of the functional and non-functional behavior of the system would be weakly
supported and in most cases not supported at all. Moreover, although component models that support
predictability of the system behavior there exist, they assume to not deal with control loops (i.e.,
control flow feedbacks) which notoriously cause problems with predictability. Thus, a component-
based development framework which supports predictability of the functional and non-functional
behavior of a control system, during design-time, is highly needed.

In this paper, we present a possible component-based approach supporting predictability of
the control system behavior during control loops design-time. Our reference component model
is “SaveCCM” [6] which is designed for safety-critical real-time systems. SaveCCM is part of a
component-based development framework called SAVEComp. SAVEComp is being developed in the
project SAVE (SAfety critical components for VEhicular systems - http://www.mrtc.mdh.se/SAVE).
The main purpose of SAVEComp is to provide efficient support for designing and implementing

1In the reminder of the paper, we will use the term “function block” to identify a “IEC61131-3 function block” and all
its further extensions (e.g., IEC61499 function blocks [7]).

1

embedded control applications by mainly focusing on simplicity and analysability of functional re-
quirements and of real-time and dependability quality attributes. SaveCCM has been thought to
support predictability of the real-time behavior of the system. We show how to extend the current
version of SaveCCM in order to incorporate the control module concept in SAVEComp in such a
way that we are able to predict the system behavior. A control module in SAVEComp is inherently
able to correctly deal with outer and inner control loops. By exploiting the existent architectural
elements of SaveCCM, we can define a control module as a new composite architectural element
that - when composed with other control modules to build control loops - satisfies requirements on
the loop that are needed for the correct functioning of the loop and to predict the system behavior.
For example, the SaveCCM control modules within a control loop satisfy that the backwards flow is
always executed only after the forwards flow has been completely performed. Moreover, the design of
a SaveCCM control module can be enriched with information about the module quality attributes by
providing the ground support for the system analysis. By means of both the extended capabilities of
SaveCCM and the analysis tools provided by SAVEComp, the developer is able to build and compose
control modules in such a way that both functional requirements and real-time attributes can be
analyzed in control loops design.

The paper is organized as follows. Section 2 sets the context of our work by referring to control
modules as a solution for an “easy-to-make” component-based design of control loops. In Section 3
the main features of SaveCCM are summarized. In Section 4 we first outline the overall structure
of SAVEComp and then - by means of an explanatory example - we present our approach as it is
implemented within SAVEComp. Section 5 concludes and discusses future work.

2 Setting the context
In Section 1, we said that in many modern control systems, a control loop is designed by using a
modular approach in which its constituent function blocks are combined together. This is the case,
e.g., of cascade control loops [11]. Unfortunately, nowadays, function blocks are very complex and
have many configuration parameters because the rapid development of control algorithms has lead
to a tremendous increase of the function block’s functionalities. There are two main disadvantages
due to the increased complexity of the function blocks. The first one is that there are a lot of
parameters to be set and interface points to be connected and, hence, the designer should have a
deep knowledge of the different function blocks. The second one is the obvious risk to make mistakes
when the designer has to deal with a large amount of parameters and interface points. In [12], a
component-based solution to overcame these disadvantages has been proposed. The main idea is to
reduce the complexity of control loops by defining a standard interface for the signals between the
building blocks. This implies that the blocks have to be constructed according to component-oriented
principles (as we will see later each one of them will be constructed as an aggregate component in our
reference component model). A ControlConnection data structure which allows one to connect
these building blocks has been defined in [12]. This data structure contains all the signals that are
sent between the function blocks of the control loop. Since in real-scale control loops some of the
signals are sent forwards and some are sent backwards, ControlConnection collects all the signal
in two substructures called Forward and Backward respectively.

(A) internal design

AI

AI AO

Master

AI

Slave Forward

Backward

Value
Status

Range.Min

Value
Backtracking
MaxReached
MinReached

Master
Slave

ControlConnection

Range.Max Range.Min
Range.Max

(B) top-level design

Figure 1: Two different designs of the same cascade control loop

In Figure 1.A we show an example of a cascade control loop where its building blocks are traditional
function blocks. In Figure 1.B we show the same cascade control loop where its building blocks
are connected by means of graphical connection of ControlConnection type. Note that a control
loop is configured in a much simpler way if the blocks are connected with a ControlConnection
structure by considerably simplifying the designer tasks. As showed in the figure, we will hereafter
refer to the simpler configuration as the top-level design of the control system and to the other one as
its internal design. In order to deal with connections of ControlConnection type, all the building

2

blocks of the loop have to be able to transmit information forwards as well as backwards, within the
loop, without delays. For this reason, in [12], the concept of control module has been introduced as
a generalization of a traditional function block. The control module contains two parts of code for
transmitting information forwards and backwards without delay, respectively. Although the control
module concept considerably reduces the complexity of control loops by providing a component-based
approach to design them, unfortunately current component technologies do not allow one to realize
a control module in order to provide the designer with facilities for supporting predictability of the
control system behavior. This leads to a real need of a component-based approach for designing
and composing control modules in such a way that such a support can be provided. Our aim is to
provide a mean that will make it possible to use a component-based approach and predict the system
behavior.

3 The SaveCCM component model
In this section we briefly describe the main characteristics of our reference component model called
SaveCCM. Refer to [6] for a detailed description of it. For a comparison of SaveCCM to other com-
ponent models, please refer to [5]. SaveCCM consists of the following main architectural elements:
(1) components, which are basic units of encapsulated behavior; (2) switches, which provide facil-
ities to statically and dynamically change the component interconnection structure; (3) assemblies,
which provide means to form aggregate components from sets of interconnected components and
(possibly) switches; and (4) run-time framework, which provides a set of services, such as com-
munication between components, component execution and control of sensors and actuators. The
functional interface of all architectural elements is defined in terms of a set of ports, which are points
of interaction between the element and its external environment. We distinguish between input and
output ports, and there are two complementary aspects of ports: the data that can be transferred
via the port and the triggering of component executions. SaveCCM distinguishes between these two
aspects, and allows three types of ports: (i) data-only ports, (ii) triggering-only ports, and (iii) data
and triggering ports. An architectural element emits trigger signals and data at its output ports,
and receives trigger signals and data at its input ports. Systems are built by composing architectural
elements. This composition is obtained by connecting input ports to output ports. Since predictabil-
ity and analysisability are of primary concern for the considered application domain, the SaveCCM
execution model is rather restrictive. The basis is a control-flow (i.e., pipes-and-filter) paradigm in
which executions are triggered by clocks or external events, and where components have finite, possi-
bly variable, execution time. At the beginning a component is in an idle state where it waits for the
activation of all its triggers. Once the component triggers have been all activated, the component
reads its input ports (i.e., reading state), performs its computations (i.e., executing state) based on
the inputs read and its internal state, writes the result of the execution on its output ports (i.e.,
writing state) and finally goes back to the idle state. A list of quality attributes and (possibly)
their value and credibility (i.e., a measure of confidence of the expressed value) is included in the
specification of components and assemblies. In this paper we will only consider real-time attributes.
We will show how such attributes can be specified and used in analysis.

Input ports - The upper symbol is an input
port with a trigger, and no data. The middle
symbol is an input port with data and no
triggering, and the lower one is an input
port with data and triggering.

Output ports - Analogously to the input
ports, the upper symbol is an output port
with a trigger, and no data. The middle
symbol is an output port with data and no
triggering, and the lower one is an output
port with data and triggering.

Component - A component with the
stereotype changed to <<SaveComp>>
corresponds to a SaveCCM component.

Assembly - Components with the
stereotype <<Assembly>>, correspond to
assemblies in SaveCCM.

Delegation - A delegation is a direct
connection from an input to input or output
to output port, used within assemblies.

Symbol Interpretation

<<SaveComp>>
<name>

<<Switch>>
<name>

<<Assembly>>
<name>

Symbol Interpretation

Switch - Components with the stereotype
<<Switch>>, correspond to switches in
SaveCCM.

Figure 2: The SaveCCM graphical specification language

A component behavior is defined by means of variables that express internal states, and actions
that describe the component execution. Variables can be initiated by values from the input ports.
Actions are abstract specifications of the externally visible behavior of the component. Components
are specified by their interfaces, behavior and (quality) attributes. A subset of the UML2 component

3

diagrams2 is adopted as graphical specification language3. The symbols showed in Figure 2 are used.

4 The SAVEComp development framework
In this section we outline the overall structure of the SAVEComp development framework (see Fig-
ure 3). SAVEComp implements the approach we present in the following subsections as one part of
its overall structure. SAVEComp has been thought to be an extensible component-based develop-
ment framework for design-time analysis (both functional and non-functional) and development of
safety-critical embedded real-time systems. A part of it is the AutoComp technology [13] which is
intended only for predicting the real-time behavior of the system.

SaveCCM top-level
design of the system

(design + quality
attributes + functional

properties)

SaveCCM internal
design of the system

(design + quality
attributes + functional

properties)

Forward = (check.a
-> check.a1 ->
read.a -> Forward).
||ControlLoop =
(master:Forward ||
master:Backward ||

sd Client_S1

:Client :Environment

PCheckOut

PCheckIn

sd Client_S2

:Client :Environment

SCheckOut

SCheckIn

sd Client_Overview

ref

Client_S1

ref

Client_S2

behavioral models

real-time models

other classes of models

e.g., probabilistic models

safety and
liveness
analyzer

real-time
attributes
analyzer

other kinds of
analyzer (e.g.,

reliability analyzer)

synthesizer

target application

compile-time run-time

design-
time

compile-
time

SaveCCM
visual editor

SaveCCM top-level
design converter

models
generator

data plugin-based tool
data flow (i.e., data elaboration
mechanically performed)

developer manual
intervention

possible developer
manual intervention

Figure 3: The SAVEComp development framework

As showed in Figure 3, SAVEComp can be described by distinguishing three main phases of its uti-
lization. During design-time, developers can exploit the new capabilities of SaveCCM - we present
in the following subsections - to specify the top-level design of the control system by adopting a
component-based software engineering process (i.e., by using control modules). Moreover, the ex-
tended version of SaveCCM allows the developer to enrich the top-level design with: (1) functional
properties of the system expressed in terms of sequences of actions performed on component ports;
and (2) high level temporal constraints in form of end-to-end deadlines and jitter supplied with their
credibility values. During compile-time, SAVEComp automatically produces the SaveCCM internal
design corresponding to the top-level one and, from it, derives different views of the designed system
intended to support both different kinds of specific functional/non-functional analysis and the map-
ping process to a real-time operating system (RTOS). In the figure, we show two possible classes of
system views/models: (i) behavioral models (e.g., Process Algebras, LTSs, state machines, MSCs,
UML2 interaction diagrams); and (ii) real-time models (e.g., Fixed Priority Scheduling models). The
first class is intended to perform functional analysis (i.e., checking safety and liveness properties), the
second one to perform non-functional analysis in the specific case of guaranteeing real-time attributes.
The plugin-based nature of SAVEComp allows us either to add new classes of system models - when-
ever it is needed to perform other specific kinds of analysis - or to extend an existent class to contain
other model notations that are needed to support/integrate other processes for the same kind of analy-
sis. For example, as sketched in the figure, we might need to add a probabilistic models view (e.g.,
Markov Chains, Stochastic Process Algebras) to perform reliability analysis by taking into account,
e.g., the credibility value of each real-time attribute. Each specific kind of analysis/transformation is
supported by a plugin-based tool within SAVEComp. Each “plugin” might be either an existent tool
suitably integrated with SAVEComp or built from scratch. By looking at the result of each particular
analysis, the developer can either refine the top-level design since some functional or non-functional
requirement has not been met or - if the design matches every requirement - execute a synthesis step.
It is within this step the binary representation of the system is created, often the operating system
and the run-time one are also included with the application code in a single bundle. Moreover, in each
utilization phase, the developer has the possibility to interact with a particular plugin-based tool to
set specific configuration parameters of it or to apply refinements (that are dictated by the analysis
results) directly on the generated data/models rather than being forced to go back to the original
design. We chosen Eclipse platform4 as implementation environment of SAVEComp since it provides

2UML2.0 specification - http://www.omg.org/technology/documents/modeling spec catalog.htm#UML.
3In [6], the complete textual syntax (i.e, BNF specification) of the specification language is reported.
4The Eclipse project. Eclipse platform technical overview. Technical report, 2001 - http://www.eclipse.org.

4

us with all the integration features we need to build SAVEComp. Eclipse facilitates the integration of
different tools, that usually manipulate different content types. SAVEComp is built on a XML-based
core. This XML core is the substrate providing an intermediate XML-based representation of system
models that may work as a common ground to apply functional and non-functional analysis. To
make SAVEComp as extensible as possible the XML core is kept general enough to allow its further
extensions needed to manage new system model notations and new analysis processes and tools. In
the reminder, we will only focus on the parts of SAVEComp that implement our approach.

4.1 Extending SaveCCM to design and use control modules
The control module concept can be implemented in SaveCCM by means of a new type of assem-
bly which composes two components. We denote this new assembly type as “ControlComponent”
type. One component within a ControlComponent is denoted as “Forward”, the other one is denoted
as “Backward”. Forward and Backward are for transmitting information forwards and backwards
(within the loop) without delays, respectively. In other words, Forward is responsible - given input
values and taking into account the state of its ControlComponent - for calculating the output value
of the ControlComponent. Analogously, Backward is responsible for updating the state of its Con-
trolComponent depending on the feedback signals. Forward exports an interface made of input and
output data-and-triggering ports. The same is for Backward. ControlComponent, in turn, exports
the same interface of Forward and Backward. As it is usual in SaveCCM, the ports of ControlCom-
ponent are connected to the corresponding ports of Forward and Backward through delegation. In
Figure 4, we show both the SaveCCM top-level design of a ControlComponent (i.e., left-hand side)
and its internal design (i.e., right-hand side). In the figure we show also labels that are used to refer
the I/O ports. They model port names and they are specified only internally and do not appear at
design level.

<<Assembly>>
<ControlModule>

<<SaveComp>>
<Forward>

<<SaveComp>>
<Backward>

(internal design)

(top-level design)

a b

ef

a a b b

c

eeff

g

d

h

Figure 4: Top-level and internal design of “ControlModule”

It is worth mentioning that Forward and Backward, as usual SaveCCM components, respect the
component execution model mentioned in Section 3. Since a ControlComponent is an assembly in
SaveCCM, it is not subject to the rules of the execution model of a SaveCCM component. In other
words, a SaveCCM assembly is only intended for design purposes5 (i.e., for modeling a collection
of components and hiding the internal structure rather than for component composition) and when
we want to reason about its execution model we have to refer to its internal structure. The type
of a data transmitted through a port of the ControlComponent is a structured data type as defined
by the ControlConnection structure. Forward and Backward handle the Forward and Backward
substructure, respectively. The triggering data are the mean which is used to activate a Forward
component or a Backward one depending on the control flow of the loop. They assure that the
information required to update the state of all the ControlComponent in a loop is not available until
all the Forward components have executed their code. This is required for a correct functioning of the
control loop. Note that a ControlComponent can handle outer control loops as well as inner ones. An
inner control loop can be performed by means of the inner connections among Forward and Backward
(i.e., “c”, “g” and “h”, “d” port connections). These inner connections are internally generated -
after the generation of Forward and Backward - by the “SaveCCM top-level design converter” (see
Figure 3). So far, we just have presented the structure of a control module as it can be built
in SaveCCM. To be able to specify a top-level design, we have to be able to connect, e.g., two
ControlComponent by means of a connection of ControlConnection type. Thus we have to show how
to build a ControlConnection in SaveCCM. The next subsection has been intended for this purpose.

4.2 Extending SaveCCM to compose control modules
For our purposes, we extend the set of SaveCCM port types by adding a port of “Control” type. A
Control port is allowed only on the functional interface of a ControlComponent. In the left-hand side
of Figure 5 we show both the top-level design of a Control port and its internal design.

5Assemblies are really useful, e.g., for identifying patterns of aggregates of component instances that serve for providing
some high-level functionality.

5

Output Control port

top-level design internal design

Input Control port

top-level design internal design <<Assembly>>
<ControlModule>

(top-level design)

Figure 5: Top-level and internal design of a Control port and final top-level design of “ControlModule”

Note that - internally - a Control port is a bidirectional one. We distinguish between input and
output Control ports. When an input Control port is attached to a ControlComponent - internally -
the “SaveCCM top-level design converter” produces: (1) an input and an output data-and-triggering
port on the ControlComponent (i.e., “a” and “f” in Figure 4); (2) an input data-and-triggering port
on Forward (i.e., “a”); and (3) an output data-and-triggering port on Backward (i.e., “f”). Finally,
the input data-and-triggering port of the ControlComponent is associated - through delegation -
with the corresponding one of Forward. Analogously, the output data-and-triggering port of the
ControlComponent is associated to the corresponding one of Backward. When an output Control
port is attached to a ControlComponent, the design converter behaves analogously. By means of
Control ports, the top-level design of “ControlModule” (showed in Figure 4) looks as it is showed in
the right-hand side of Figure 5.

4.3 Analyzing functional requirements
In this section we formalize the execution model of a ControlComponent. This formalization is
intended to support functional analysis of control loops during design-time. We are interested in
proving safety and liveness properties. To formalize the execution model of a ControlComponent we
have to look at (i) its internal design; (ii) the execution model of a SaveCCM component; and (iii)
the set of possible actions on a SaveCCM port. By referring to Section 3, the execution model of
a component may be expressed as a combination of actions that can be executed on its ports. The
only action that can be performed on an input (output) data port is a reading (writing) action. We
denote it as “read” (“write”). “read” and “write” are non-blocking actions (i.e., there will always
be a value on a data port and it will always be possible to overwrite that value). On an input
(output) triggering port we can perform a checking (activating) action that we denote as “check”
(“activate”). “check” is a blocking action, that is it makes a component waiting for the activation of
an input triggering port. “activate” simply activates the trigger associated to an output triggering
port. On an input (output) data-and-triggering port a component executes “check” followed by
“read” (“write” followed by “activate”). These rules can be combined in the obvious way in order to
specify the execution behavior of a component, with an arbitrary number of ports of different type6,
by means of a process algebra. We choose FSP [8] (Finite State Processes) as process algebra to
model the execution behavior of components and assemblies at design level. FSP fits our purposes
because it is notoriously easier to use than other more expressive process algebras and it is supported
by LTSA [8] (Labeled Transition System Analyser). LTSA is a plugin-based verification tool for
concurrent systems. It mechanically checks that the specification of a concurrent system satisfies
required properties of its behavior. In addition, LTSA supports simulation to facilitate the interactive
exploration of the system behavior. Thus the FSP specification of a SaveCCM system represents the
mean to integrate SAVEComp with LTSA in order to support functional analysis. In Figure 6.A
we show the top-level design of the control loop - showed in Figure 1 - as specified by the designer
using the “SaveCCM visual editor”7, its internal design (Figure 6.B) as mechanically derived by the
“SaveCCM top-level design converter”, its FSP specification (Figure 6.C) and an its liveness property
(Figure 6.L3) that we want to verify.

The FSP specification has been mechanically derived by the “models generator” taking into ac-
count the loop’s internal design, the execution model of a SaveCCM component and by combining the
above mentioned rules (defining the set of actions that can be performed on a port) in the obvious way.
L3 has been included in the system top-level design (in a XML format) and it has been mechanically
translated in the LTSA property notation by the “models generator”. Integrating SAVEComp with
LTSA (i.e., a possible “safety and liveness analyzer”) allow us to easily verify functional properties of
the loop’s FSP specification. For example, we can mechanically verify that deadlocks do not occur in
the execution of the control loop (i.e., safety). Moreover, we can also verify that the execution of the

6Note only that if a component C - beyond other ports - has also p1, ..., pn input data-and-triggering ports then - during
the initial part of its execution - C will execute a sequence of n “check” (each one of them for each pi) followed by a sequence
of n “read”.

7For the sake of simplicity we omitted the AIs and the AO.

6

Forward = (check.a -> check.a1 -> read.a -> read.a1 -> read.d -> write.b -> activate.b -> write.c -> activate.c -> Forward).
Backward = (check.g -> check.e -> read.g -> read.e -> write.h -> write.f -> activate.f -> write.f1 -> activate.f1 -> Backward).
InnerConnectionCG = (write.c -> activate.c -> check.g -> read.g -> InnerConnectionCG).
InnerConnectionHD = (write.h -> InnerConnectionHD | read.d -> InnerConnectionHD).
OuterConnectionBA = (master.write.b -> master.activate.b -> slave.check.a -> slave.read.a -> OuterConnectionBA).
OuterConnectionFE = (slave.write.f -> slave.activate.f -> master.check.e -> master.read.e -> OuterConnectionFE).
||ControlLoop = (master:Forward || master:Backward || master:InnerConnectionCG || master:InnerConnectionHD ||
 slave:Forward || slave:Backward || slave:InnerConnectionCG || slave:InnerConnectionHD ||
 OuterConnectionBA || OuterConnectionFE) \ {master.write.c, master.activate.c, master.check.g, master.read.g,
 master.write.h, master.read.h, slave.write.c, slave.activate.c, slave.check.g, slave.read.g, slave.write.h, slave.read.h}.

<<Assembly>>
<Master>

(top-level design)

<<Assembly>>
<Slave>

<<SaveComp>>
<Forward>

<<SaveComp>>
<Backward>

a

b

c

ef g

Master

<<SaveComp>>
<Forward>

<<SaveComp>>
<Backward>

a
b

c

e

f g

Slave

(internal design)(A) (B)

(C)

d

h

d

h

a1

f1

a1

f1

Figure 6: FSP Specification of the cascade control loop and an its liveness property

control loop holds the liveness property showed in the figure. In Figure 6.L3 we show the graphical
notation used by LTSA to express a liveness property. It is given in form of its Büchi Automaton [3].
Informally, the Büchi Automaton is an operational description of the property and specifies the set
of system behaviors that hold it. 0 denotes the initial state. 3 denotes the accepting state. E is an
error state (i.e., a non-accepting sink node). Each arc label denotes a possible action of the system8.
By means of L3 we specify - as valid behaviors of the loop - all the ones in which the Backward
component of the Master will always read form “e” only after that the Forward component of the
Slave has read from “a”. L3 expresses a requirement of the correct functioning of the control loop.
Satisfying L3 assures that the information required to update the state of all the ControlComponent
in the loop is not available until all the Forward components have executed their code.

4.4 Guaranteeing real-time requirements
In this section we will discuss non-functional requirements (NFRs), real-time theory and transfor-
mation from design to run-time models. Period, end-to-end deadline, jitter and WCET are required
to reason about guaranteeing real-time requirements. Periods, end-to-end deadlines and jitters are
NFRs that are imposed by the environment. The WCET is a non-functional property (NFP) that
depends on the implementation and the underlying run-time system and varies between different plat-
forms. An efficient schedulability analysis requires an efficient prediction of WCET. Developers often
use manual instrumentation methods in order to obtain WCET estimates. However, the accuracy is
often low, hence to be safe the WCETs are often heavily overestimated. Current work on SaveCCM
includes adding context-dependent and stochastic methods to predict WCET of SaveCCM compo-
nents. [10, 9]. By guaranteeing real-time requirements we mean to find a feasible execution schedule
that fulfills the given NFRs of the ControlComponents, i.e., periods, end-to-end deadline and jitter
constraints. In order to calculate if the specified NFRs can be fulfilled, real-time analysis (RTA) with
transactions is utilized as described in, e.g., [14]. However, to use RTA the ControlComponents must
be organized into schedulable entities (tasks). Components can be mapped to tasks in numerous ways
and common approaches are to map each component to one task, or all components to one single
task. These two approaches may have obvious drawbacks, in the former, there may be extensive
overhead in terms of memory stacks and control blocks, and cpu-overhead (context-switches). In
the latter, where all components are mapped to one task, the flexibility for the scheduler is lower
and the timing requirements might not be fulfilled. Furthermore, the designer is often required to
manually set task attributes such as priorities. An important issue in embedded systems is to keep
resources at a minimum while guaranteeing predictability. In [4] a framework is developed that utilize
stochastic search methods to allocate components to tasks and derive task-attributes such as periods
and priorities in such a way that real-time properties are guaranteed (if possible) and overhead in
terms of cpu-overhead and memory usage is minimized. Consider the Figure 6.A and lets assume
that the master and slave have requirements that force them to execute periodically at 10 Hz. Lets
further assume that they have a 20 ms end-to-end deadline from input to the output. During compile-
time, the master and slave are unfolded to their basic components as shown in Figure 6.B and their
WCETs are determined. To simplify we assume that all four basic components have WCETs of 10

8To minimize the graphical view of the automaton, LTSA might label one arc with more than one action. These actions
have an OR semantics, i.e, having n actions ai, ..., an labeling one arc is like having n arcs each one of them labeled with
ai, ..., an respectively. The “tau” action means all the possible complementary actions with respect to the actions that are
explicitly specified as performable from that node.

7

ms. The basic components must be mapped to tasks in such a way that (i) Master and Slave Forward
components fulfil the end-to-end deadline of 20 ms; and (ii) all components execute within 100 ms
(one period). The best mapping in this specific case, considering real-time and low resources, is to
map Master.Forward, Slave.Forward, Slave.Backward, Master.Backward to one task in that specific
order.

5 Conclusion and future work
Although component models that support predictability of the system behavior there exist, they
are found to be inappropriate for the control systems application domain since they are not able to
predict the behavior of control loops. The approach presented in this paper represents a possible
solution to this problem. By means of it, we can build/compose control modules (i.e., in designing
the control system we can use a component-based approach by exploiting all its notorious advantages)
and - in the same time - predict the functional/non-functional behavior of control loops. Although
the introduction of the control module concept in SaveCCM considerably simplify the designer tasks,
it internally adds complexity at level of system implementation. To validate the real feasibility of
our approach, as future work, we plan to apply SAVEComp to real-scale case studies. Moreover,
SAVEComp, as it is currently structured, still lacks of integration between functional and non-
functional analysis. That is, functional and non-functional analysis are separately performed. We also
plan to incorporate SAVEComp into TOOL•ONE framework [2] which supports functional and non-
functional analysis integration, and implement the SAVEComp parts that go beyond the approach
presented in this paper.

Acknowledgements
This work is supported by SSF within both SAVE (SAfety critical components for VEhicular systems -
http://www.mrtc.mdh.se/SAVE/) and FLEXCON (FLEXible embedded CONtrol systems
- http://www.control.lth.se/FLEXCON/) project. We acknowledge Mikael Åkerholm which has provided the
authors with very valuable comments and constructive suggestions to improve the paper.

References
[1] International Electrotechnical Commission, IEC 61131 Programmable Controllers. Part 1 - 5, January

1992.

[2] V. Cortellessa, A. Marco, P. Inverardi, F. Macinelli, and P. Pelliccione. A framework for the integration
of functional and non-functional analysis of software architectures. In TACoS, 2004.

[3] E. M. Clarke and O. Grumberg and D. A. Peled. Model Checking. The MIT Press, 2000.

[4] J. Fredriksson, K. Sandström, and M. Åkerholm. Calculating resource trad-offs when mapping compo-
nents to real-time tasks. In In the 8th International Symposium on Component-Based Software Engi-
neering (CBSE8), St.Louis, USA, May 2005.

[5] J. Fredriksson, M. Tivoli, and I. Crnkovic. A component-based development framework for supporting
functional and non-functional analysis in control systems design. Technical report, Technical report,
Department of Computer Scienc and Electronics, Mälardalen University, 2005. Submitted for publication.

[6] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM - a component model for safety-
critical real-time systems. In Euromicro Conference, Special Session CMDS. IEEE, 2004.

[7] B. Lewis. IEC 61499 Function Blocks: A new way to design control systems? Control Engineering
Europe, April 2002.

[8] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John Wiley and Sons, 1999.

[9] A. Möller, J. Fredriksson, I. Peak, M. Nolin, and H. Schmidt. Context dependent predictions of
component-based control software. Technical report, Technical report, Department of Computer Sci-
enc and Electronics, Mälardalen University, 2005. Submitted for publication.

[10] T. Nolte, A. Möller, and M. Nolin. Using Components to Facilitate Stochastic Schedulability. In Proceed-
ings of the 24th Real-Time System Symposium – Work-in-Progress Session. IEEE Computer Society,
December 2003. Cancun, Mexico.

[11] E. Parr. Programmable Controllers - An Engineer’s Guide (2nd Edition). Butterworth-Heinemann Ltd,
2001.

[12] L. Pernebo and B. Hansson. Plug and play in control loop design. In Preprints Reglermöte 2002,
Linköping, Sweden, May 2002.

[13] K. Sandström, J. Fredriksson, and M. Åkerholm. Introducing a component technology for safety critical
embedded real-time systems. In Springer - LNCS 3054, May 2004.

[14] K. Tindell. Adding time offsets to schedulability analysis. Technical report, Department of Computer
Science, University of York, 1994.

8

