
Mälardalen University Doctoral Thesis
No.17

Adapting to Varying Demands
in Resource Constrained

Real-Time Devices

Tomas Lennvall

September 2005

Department of Computer Science and Electronics
Mälardalen University

Västerås, Sweden

Copyright c© Tomas Lennvall, 2005
ISSN 1651-4238
ISBN 91-88834-85-9
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

In-home entertainment systems are becoming popular because they al-
low a variety of consumer electronic (CE) devices to be connected, using
a wireless network, to form a system capable of handling multimedia
content. Using such a system provide the end-users the possibility of
transparently streaming multimedia content between devices of varying
capabilities. This is possible because the system adapts the multimedia
content to match the capabilities of the receiving device.

What looks simple to the end-user, is actually a very complex system
that manages all existing multimedia streams and resources. It must
manage all the varying resource demands, on all the constrained devices,
in such a way that the resulting quality (video or audio playback) is
acceptable to all the end-users of the system.

In this thesis we investigate two different, but still related, issues
within the in-home entertainment network. First, we look at how we
can adapt to the the capabilities of the nodes, which contains processors
of varying capabilities and also operating systems which also provide
different capabilities. Secondly, we have to adapt to the varying capa-
bilities of the wireless network when it is used for video streaming in
the presence of other network traffic.

For nodes, we present two scheduling methods that are extensions
to the off-line scheduling paradigm.

The first method aims at improving the handling of soft aperiodic
tasks in an off-line scheduled system, which are normally handled in
the background resulting in long response times. The method creates

i

ii

space within an off-line schedule in order to allow a Total Bandwidth
Server to use it during run-time in order to improve the response times.

The second method deals with overload caused by firm aperiodic
tasks in an off-line scheduled system. The method deals with the over-
load by selecting which aperiodic tasks to execute, and which tasks
to drop, without disturbing the execution of the more critical off-line
scheduled tasks.

We also present a third scheduling related method that presents an
plug-in based scheduling architecture with the purpose of allowing easy
change of scheduling algorithm within operating systems.

In order to deal with the wireless network issues we present an archi-
tecture that decrease the network congestion in order to improve packet
delivery reliability and decrease packet delays. In order to accomplish
this, the architecture continuously predicts the available bandwidth, then
uses this information to adapt the transmission rate of the node in order
not to exceed what is available.

Dedicated to my family

Preface

First of all, thanks to my father, mother, and brother for encouraging me
to take this path and continue until the end.

Thanks to my supervisor, Gerhard Fohler, for making this possible
at all, helping me along the way, and for all the interesting research
(gadget) discussions we have had during the years. I also wish to thank
Professor Ivica Crnković for his co-supervision.

This has all been even more fun due to the people in the salsART
research group, Radu, Damir, Larisa, and Pau. We have had a lot of
interesting discussions ranging from research to cooking to movies to
football to car repairs, all from which i have benefited.

Thanks Paolo, for taking care of me during my visits to Italy, "Peppe",
Gerardo, Luigi, and Giorgio for taking care of me during my first visit
to Pisa.

And, thanks to all my other colleagues at the department, who make
it a fun and stimulating place to work in. Especially Jan Carlson, who
collaborated with me at the beginning of my P.hD.

Finally, i want to thank Harriet, Monica, and Malin, who have all
been a great help and pleasant company during my years here at the
department.

This work has been supported by Volvo Research Foundation and
the European Union (EU) Information Society Technologies (IST) project.

Tomas Lennvall
Västerås, September, 2005

v

Publications

I have authored or co-authored the following publications:

Book Chapters
• Gerhard Fohler, Tomas Lennvall, and Radu Dobrin: A Component

Based Real-Time Scheduling Architecture, Architectures for De-
pendable Systems, editor(s): Rogerio de Lemos, Cristina Gacek,
and Alexander Romanovsky, Springer Verlag, 2003.

Refereed Conferences and Workshops
• Gerhard Fohler, Tomas Lennvall: Providing Adaptive QoS in Wire-

less Networks by Traffic Shaping, Resource Management for Me-
dia Processing in Networked Embedded Systems (RM4NES), Eind-
hoven, The Netherlands, March, 2005.

• Jan Carlson, Tomas Lennvall, and Gerhard Fohler: Enhancing
Time Triggered Scheduling with Value Based Overload Handling
and Task Migration, 6th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, Hakodate, Japan, May,
2003.

• Tomas Lennvall, Gerhard Fohler, and Björn Lindberg: Handling
Aperiodic Tasks in Diverse Real-Time Systems via Plug-Ins, 5th
IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing, Washington D.C, USA, May, 2002.

vii

viii

• Gerhard Fohler, Damir Isovic, Tomas Lennvall, and Roger Vuolle:
SALSART - A Web Based Cooperative Environment for Offline
Real-Time Schedule Design, 10th Euromicro Workshop on Paral-
lel, Distributed, and Network-based Processing (PDP), Gran Ca-
naria, Spain, January 2002.

• Gerhard Fohler, Tomas Lennvall, and Giorgio Buttazzo: Improved
handling of Soft Aperiodic Tasks in Offline Scheduled real-Time
Systems using Total Bandwidth Server, 8th IEEE International
Conference on Emerging Technologies & Factory Automation,
Nice, France, October, 2001.

• Jan Carlson, Tomas Lennvall, Gerhard Fohler: Value Based Over-
load Handling of Aperiodic Tasks in Offline Scheduled Real-Time
Systems, Work-in-progress Session, 13th Euromicro Conference
on Real-Time Systems, Delft, The Netherlands, June, 2001.

Technical Reports

• Damir Isovic, Gerhard Fohler, and Tomas Lennvall: Analysis of
MPEG-2 Video Streams, Mälardalen Real-Time Research Center
(MRTC), Mälardalen University, August, 2002.

• Jan Carlson, Tomas Lennvall, Gerhard Fohler: Simulation Re-
sults and Algorithm Details for Value based Overload Handling,
Mälardalen Real-Time Research Center (MRTC), Mälardalen Uni-
versity, May, 2002.

• Jan Carlson, Tomas Lennvall, Gerhard Fohler: Value Based Over-
load Handling of Aperiodic Tasks in Distributed Offline Sched-
uled Real-Time Systems, Mälardalen Real-Time Research Center
(MRTC), Mälardalen University, May, 2001.

• Tomas Lennvall, Gerhard Fohler: Integration of Off-line and On-
line Scheduling for Admission Control, Mälardalen Real-Time Re-
search Center (MRTC), Mälardalen University, September, 2000.

ix

Licentiate Thesis

• Tomas Lennvall: Handling Aperiodic Tasks and Overload in Dis-
tributed Off-line Scheduled Real-Time Systems, Licentiate Thesis,
Mälardalen University, May, 2003.

Contents

1 Introduction 1
1.1 Real-Time Systems Background 2

1.1.1 Constraints . 3
1.1.2 On-Line and Off-line Scheduling 4
1.1.3 Event and Time Triggered Systems 4
1.1.4 Overload . 5
1.1.5 Network Scheduling 6

1.2 Resource Constrained Real-Time Devices 7
1.2.1 Processor and Operating System Constraints . . 7
1.2.2 Network Constraints 9

1.3 Adapting to Varying Demands 11
1.3.1 Processor Scheduling Overview 11
1.3.2 Related Work 11
1.3.3 Contribution 14
1.3.4 Packet Scheduling Overview 16
1.3.5 Related Work 16
1.3.6 Contribution 23

1.4 Outline of the Thesis 25

2 Resource Constrained Real-Time Devices 27
2.1 Overview . 27
2.2 Processors and Operating Systems 28

2.2.1 Windows NT/2000 in Real-Time Systems 29
2.2.2 Windows CE 31

xi

xii Contents

2.2.3 Methods to Give GPOS Real-Time Support . . . 32
2.3 Networks . 33

2.3.1 Wireless Network Issues 34
2.3.2 Network Congestion 36

2.4 Chapter Summary . 37

3 Processor Scheduling 39
3.1 Overview . 39

3.1.1 Slot Shifting 40
3.2 Soft Aperiodic Task Handling 40

3.2.1 Transformation Technique 42
3.2.2 On-line Scheduling 43
3.2.3 Simulation Results 45

3.3 Overload Handling . 47
3.3.1 Overload Handling 48
3.3.2 Rejection Algorithm 51
3.3.3 Remote Task Stealing 52
3.3.4 Node Communication 54
3.3.5 Simulation Results 55

3.4 Plug-in Scheduling Architecture 59
3.4.1 Target System Diversity and Plug-In Applicability 63
3.4.2 Plug-Ins for Aperiodic Task Handling 65
3.4.3 Example . 71
3.4.4 Results . 76

3.5 Chapter Summary . 77

4 Network Packet Scheduling 79
4.1 Overview . 79

4.1.1 Streaming using Wireless Ethernet 79
4.2 Basic Idea . 81
4.3 Architecture Details . 86

4.3.1 Adjustment Level 88
4.3.2 Bandwidth Prediction 90
4.3.3 Traffic Shaping 92

4.4 Streaming . 99

Contents xiii

4.4.1 Two Streaming Application Architectures 101
4.4.2 MPEG-2 . 101
4.4.3 Video Stream Server 102
4.4.4 Web-cam Server 103

4.5 Chapter Summary . 105

5 Conclusions 107

A Implementation Details and Measurement Results 111
A.1 Overload Handling Results 111

A.1.1 Experiment 1: Method Comparison 112
A.1.2 Experiment 2: Restrictions 113
A.1.3 Algorithm for Computing Overload Amount . . 116

A.2 Bandwidth Prediction in Linux 118
A.3 Traffic Shaping in Linux 119

A.3.1 Bandwidth Management 120
A.3.2 Our Implementation 120

A.4 Network Packet Scheduling Results 121
A.4.1 Bandwidth Prediction 122
A.4.2 Round Trip Time 128
A.4.3 Packet Loss . 135
A.4.4 Rate Change Overhead 135

Bibliography 149

Glossary 151

Index 151

Populärvetenskaplig svensk sammanfattning 151

List of Figures

3.1 Total Bandwidth Server example. 44
3.2 Response times for the soft aperiodic tasks. 46
3.3 Node communication (t=1). 55
3.4 Node communication (t=3). 56
3.5 Even load distribution. 57
3.6 Uneven load distribution. 58
3.7 Accumulated value for different cutoff values. 58
3.8 Plug-in and system architecture 60
3.9 Example plug-ins . 63
3.10 Plug-in A and Plug-in B 70

4.1 Difference between actual and predicted bandwidth for
each time interval. 82

4.2 Example architecture: a set of nodes with different band-
width shares, note that the streaming server has the high-
est share. 87

4.3 Overview of how the data flows between the local re-
source manager and the global resource manager, using
the Matrix architecture. 88

4.4 Architecture using 3 token buckets for traffic shaping . . 94
4.5 Architecture using 3 priority queues for traffic shaping . 96
4.6 Architecture using a combination of priority queues and

token buckets for traffic shaping 97

xv

xvi List of Figures

4.7 Round-Trip Times using our method compared to stan-
dard wireless Ethernet, 0.375Mbps of payload. 98

4.8 Round-Trip Times using our method compared to stan-
dard wireless Ethernet, 3.0Mbps of payload. 98

A.1 Accumulated value for even load distribution. 114
A.2 Accumulated value for uneven load distribution. 114
A.3 Average number of operations for different cutoff values. 115
A.4 Maximum number of operations for different cutoff val-

ues. 116
A.5 Architecture using a combination of priority queues and

token buckets for traffic shaping 121
A.6 Bandwidth prediction results using a 0.2s interval. 123
A.7 Bandwidth prediction results using a 0.5s interval. 124
A.8 Bandwidth prediction results using a 1.0s interval. 124
A.9 Bandwidth prediction results using a 2.0s interval. 125
A.10 Bandwidth prediction results an alpha value of 0.0. . . . 126
A.11 Bandwidth prediction results an alpha value of 0.25. . . . 126
A.12 Bandwidth prediction results an alpha value of 0.5. . . . 127
A.13 Bandwidth prediction results an alpha value of 0.75. . . . 127
A.14 Bandwidth prediction results an alpha value of 1.0. . . . 128

List of Tables

3.1 The original interval table. 72
3.2 Updated interval table for plug-in A. 73
3.3 Example execution trace 76

4.1 The measured maximum, minimum, and average over-
head for the bandwidth prediction. 84

4.2 The measured maximum, minimum, and average over-
head for updating the traffic shaper parameters. 85

4.3 Different sampling intervals has little effect on the aver-
age predicted bandwidth. 91

A.1 RTT with our method and standard Ethernet, without
any crosstraffic. 130

A.2 RTT with our method and standard Ethernet, with 0.5
Mbit/s of crosstraffic. 131

A.3 RTT with our method and standard Ethernet, with 1.0
Mbit/s of crosstraffic. 132

A.4 RTT with our method and standard Ethernet, with 2.0
Mbit/s of crosstraffic. 133

A.5 RTT with our method and standard Ethernet, with 3.0
Mbit/s of crosstraffic. 134

A.6 Packet losses with standard Ethernet and our architec-
ture, with varying payloads and 3.0Mbps of crosstraffic. . 135

A.7 Overhead for the packet probing. 136

xvii

xviii List of Tables

A.8 Overhead for updating the traffic shaping parameters. . . 137

Chapter 1

Introduction

In-home entertainment systems are becoming more and more popular,
because they provide the possibility to uniformly handle various con-
sumer electronic (CE) devices with different capabilities. These kind
of systems allow users to transparently stream multimedia content, i.e.,
video or audio, basically between any devices, without worrying about
connection type or media format. The system will automatically adapt
the multimedia stream according to the capabilities of the receiver de-
vice. Furthermore, most of the devices within the in-home entertainment
system are connected using a wireless network. This permits the devices
to be easily moved within the home and it also allows mobile devices to
continuously receive streamed multimedia.

What looks simple from the user point of view is actually a very
complex real-time system that transparently "handles" different resources
with varying demands on real-time devices with very different capabili-
ties.

Providing an architecture for such a real-time system requires a solu-
tion that is capable of efficiently handling varying resource demands in
constrained real-time devices. Varying resource demands are, for exam-
ple, task sets with varying utilization demands, or video/audio streams
with variable bit rates. The problem is that these demands cannot always
be met; which depends on the constrains of the devices, i.e. the proces-

1

2 Chapter 1. Introduction

sor power, operating system capabilities, and available bandwidth of the
network. Thus, the architecture must adapt to the resource demands in
order to match the constraints of the devices.

1.1 Real-Time Systems Background

Real-time systems are becoming more and more commonplace, and are
used in applications ranging from cars, airplanes, and factory automa-
tion, to mobile phones, and multimedia systems. In [63] real-time sys-
tems are defined as systems where: “not only the functional but also the
timely correctness is important”, i.e., not only the logical correctness
of the computations performed are important, but also at the time these
computations are performed.

In many cases, each computation has an associated deadline. If the
computation does not complete before the deadline the system is con-
sidered to have failed, and depending on the category of the system, this
can lead to serious consequences, i.e., for safety critical or hard real-time
systems.

Real-time systems are usually divided into two categories: hard and
soft. Hard real-time systems have stringent requirements on both func-
tional and timely behavior. If either of these fail, the consequences can
be catastrophic, such as damage to people or property. Soft real-time
systems, on the other hand, are systems that can tolerate an occasional
failure of the timing requirements without any severe consequences,
e.g., only a possible degradation of performance or quality.

Real-time systems consist of applications and resources, i.e., where
resources usually are one or several processors. Applications consist
of tasks that cooperate to achieve the global goal of the application. To
avoid contention and conflict between these tasks over the resources that
exist in the system, i.e., the processors, a scheduling algorithm need
to determine when to execute the tasks (in which order). There are
two main scheduling algorithms paradigms, off-line, or on-line schedul-
ing. Off-line scheduling takes place before run-time and provides pre-
dictability and support for general constraints at the cost of flexibility.

1.1 Real-Time Systems Background 3

On-line scheduling, on the other hand, provides flexibility and dynamic
run-time activities, but at the expense of less support for handling mul-
tiple constraints.

1.1.1 Constraints

Constraints originate from the demands of the application and impose
requirements on the system. We define two classes of constraints as:

Simple can easily be handled by on-line scheduling algorithms. Ex-
amples of such constraints are periods, start-times, and deadlines.

Complex constraints, on the other hand, cause problems for on-line
schedulers. However, some of them can be solved at the cost of a higher
overhead. Here we give some examples of complex constraints:

Jitter causes the start or end of tasks to vary, which means that the
interval between task instance invocations will vary. Some appli-
cations require the jitter between task instances to be constant or
to have a small variation. In the extreme, periodic tasks can have
invocations back-to-back or at the start of the first period and end
of the second period.

Distribution cooperating tasks can execute on different nodes in a sys-
tem, which can require synchronization. Many real-time systems
are distributed by nature, requiring synchronization and commu-
nication between the parts. In order to provide determinism in
such systems, the scheduler requires a global view of the whole
distributed system.

Precedence means that a series of tasks must execute in a predefined
order (also called a transaction). The basic example is the already
mentioned sensor-actuator example, where the sensor measures
some data, then computation take place, and finally data is sent to
the actuator.

End-to-end deadline are deadlines for whole transactions of tasks, i.e.,
when the first task starts, a deadline is determined for the whole

4 Chapter 1. Introduction

transaction of tasks. In the sensor-actuator example an end-to-end
deadline exists for the whole transaction, from the sampling to the
actuation.

1.1.2 On-Line and Off-line Scheduling

On-line scheduling provides flexibility for partially, or non specified,
activities, i.e., for aperiodic and sporadic activities. Feasibility tests de-
termine whether a given task set can be feasibly scheduled according to
the rules of the particular algorithm applied. On-line scheduling allows
to efficiently reclaim any spare time coming from early completions and
allows to handle overload situations according to actual workload condi-
tions. On-line schedulers are divided in two categories, dynamic prior-
ity schedulers, i.e., earliest deadline first (EDF), and fixed fixed priority
schedulers (FPS) [46].

Off-line scheduling, also called table driven scheduling, is capable
of constructing schedules for distributed applications with complex con-
straints, e.g., precedence, jitter, or end-to-end deadlines. The inclusion
of additional constraints into an offline scheduler is typically straightfor-
ward, e.g., by including the constraints in a feasibility test applied during
schedule construction. As a result, the off-line scheduler produces a ta-
ble containing task execution positions. During run-time, the dispatcher
simply performs a simple table lookup to execute tasks according to the
schedule, resulting in a very simple run-time dispatching.

This approach has been shown to be suitable for critical hard real-
time systems [39, 40]. By applying strict temporal control, critical ac-
tivities can be performed in a deterministic way.

1.1.3 Event and Time Triggered Systems

Real-time systems are usually further classified as event or time-triggered,
with respect to how the real-time activities are controlled.

In event-triggered systems, the activities happen in response to ex-
ternal events. The typical example of this is the sensor-actuator exam-
ple: a sensor detects an external event and activates a task that reacts to

1.1 Real-Time Systems Background 5

this event (performs a computation), after which the task sends it’s out-
put to an actuator. This is an example of a system reacting and adjusting
to an external event. One of the main issues with event-triggered sys-
tems is that external events can cause many tasks to be activated, thus,
causing overload in the system, potentially leading to system failure.
On-line scheduling is suitable for event triggered systems as it provides
the ability to handle dynamic on-line events. SPRING [64] is an exam-
ple of an event-triggered real-time operating system.

Time-triggered systems, on the other hand, require a priori knowl-
edge about all activities. In distributed time-triggered systems, each
node must have the same notion of time, implying that clock synchro-
nization is needed. The main advantage of time-triggered systems is the
predictable behavior they provide at the cost of low run-time flexibility.
Time triggered systems are scheduled using off-line scheduling, which
provides a time table containing task activation times, corresponding
to the external events. Examples of a time-triggered real-time operat-
ing system are MARS [41] and TTP-OS [69] a time triggered operating
system.

1.1.4 Overload

Overload is defined as a situation when there is not enough processor
time available for the timely completion of all tasks, i.e., some tasks
will miss their deadlines. Overload situations are usually sudden and
transient, i.e., if a system reacts to a sudden event by activating many
tasks. It is very hard to predict when the system will become overloaded.

Traditional on-line scheduling algorithms such as EDF or FPS be-
have poorly in overload situations, as shown in [47]. In the worst case
they might even cause all tasks to miss their deadlines.

Off-line schedulers also handles overload poorly because of the lack
of flexibility they provide. If possible overload situations have to be in-
cluded as a consideration when creating an off-line schedule, the result,
will in many cases, lead to in an over-constrained system. At the same
time, because of the low flexibility, the number of allowed overload ac-
tivities would usually be restricted over the system lifetime.

6 Chapter 1. Introduction

Since real-time system can also be distributed, it is possible that
overload situations occur on a set of processing nodes although the sys-
tem is globally underloaded. Such situations could be resolved by mi-
grating tasks from overloaded nodes to underloaded nodes.

1.1.5 Network Scheduling

Real-Time communication can, just as real-time systems, be divided
into hard or soft systems. Hard real-time systems consider a packet
deadline miss as seriously as a task deadline miss, i.e the consequences
can be catastrophic.

On the other hand, soft real-time systems may only experience a
quality degradation as a result a late packet. Soft real-time communica-
tion is often based on general purpose communication networks, such
as Ethernet [3]. We give more details on the issues of using Ethernet for
real-time communication in section 2.3.

Furthermore, real-time communication can be classified into time
triggered or event triggered, with the same distinction as for real-time
systems. The same advantages and disadvantages as for real-time sys-
tems.

Controller Area Network

Controller Area Network (CAN) [29] is an example of an event trig-
gered communication bus, where each message has a unique id that also
represents the priority of that message. When a node wants to transmit
a message, it starts by transmitting the id of the message, bit-by-bit. If
several nodes want to transmit, they all start with the message id. A
simple arbitration scheme determines which node that will be allowed
to send its message. Basically the CAN bus works as a XOR gate, i.e.,
the node with most dominant bits will be allowed to send its message.

1.2 Resource Constrained Real-Time Devices 7

Time-Triggered Protocol

Time-Triggered Protocol (TTP) [42] is an example of a time-triggered
communication bus that uses the Time Division Multiple Access (TDMA)
algorithm. Each node is assigned at least one time slot where it can send
its message. All these slots create a scheduling table that is repeated
over and over again. There is no need for arbitration since the ordering
of message transmissions are determined off-line.

Ethernet

The Ethernet [3] family is the most common network communication
protocol in use today. It is widely used in environments ranging from
industry, offices, and homes. The main advantages of Ethernet is: the
low cost compared to the special protocols used for hard real-time com-
munication, that it has been widely used and tested during a long period
of time (decades), and that it provides very high data rates.

When using Ethernet for real-time communication, the problem is
that it was not designed with real-time systems in mind. Ethernet was
intended to be used for general purpose communication. Therefore, it
has unbounded delays on message passing, no priority scheme, and no
delivery guarantee. According to [10], the non-determinism of Ethernet
increase if the load exceeds 30% of the total capacity.

Switched Ethernet is a simple way to achieve better real-time com-
munication using Ethernet. The idea is that each node is connected to a
full-duplex switch. The switch ensures that no collisions between pack-
ets can occur, thus allowing a reliable message passing.

1.2 Resource Constrained Real-Time Devices

1.2.1 Processor and Operating System Constraints

The nodes in our system contain both processors and operating systems,
who are responsible for running the tasks that make up the applications.
We give a short description of their constraints and limitations.

8 Chapter 1. Introduction

Desktop PCs are usually uniprocessor systems, but still with very
powerful processors that are capable of a huge amount of computations
per second. It is also possible to have multiple processors tightly con-
nected within the same PC, a so called Symmetric Multi-Processing
(SMP), which further increase the capability of the PC. Another pos-
sibility is to have a distributed system, where multiple processors are
located on different PCs, but still cooperate when performing computa-
tions.

The processor is not solely responsible for the handling and running
of tasks, the operating system (OS) is also a vital part.

The OS is responsible for handling most things during the life of a
task. It manages when tasks are created, activated, deactivated, when
they execute, and so on. It is within the OS that the task scheduling
actually takes place, i.e., the decisions of in which order tasks will be
executed on the processor.

Real-time OSs (RTOS) provide real-time scheduling algorithms for
task scheduling, while general-purpose OSs (GPOS) provide algorithms
that are fair, i.e., all tasks gets to run. Both types of OSs are viable to
exist on different nodes within an in-home entertainment network.

Windows NT/2000 in Real-Time Systems

Real-time systems have somewhat stricter demands on tight and well
specified deadlines. There are several reasons to why Windows NT/2000
(NT/2000) is not suitable for use in real-time systems "as is". Some of
these reasons can be traced back to the fact that one of the goals with
NT/2000 was to introduce a fairness in the system. NT/2000 is designed
to prevent the potential starvation of low priority processes.

In [30, 52], thorough experimental investigations of the real-time ca-
pabilities of NT/2000 are made, and reasons for using NT/2000 in real-
time systems are mentioned. One reason is that there are many compe-
tent programmers available that knows the NT/2000 programming envi-
ronment. Contributing is also that the development environment around
NT/2000 is quite large. There also exists a vast amount of inexpensive
Commercial Off The Shelf (COTS) software for the Windows NT/2000

1.2 Resource Constrained Real-Time Devices 9

platform. If the underlying operating system can provide real-time sup-
port, it is possible that some of the COTS software can as-well.

1.2.2 Network Constraints

In in-home entertainment systems, nodes communicate using wireless
networks in order to achieve more flexibility for the system. More
specifically, we use the Ethernet standard network (IEEE 802.11). We
give a short introduction to how it works, and present the problems that
come with wireless Ethernet.

Wired Ethernet in Real-Time Systems

As mentioned in 1.1.5, Ethernet (IEEE 802.3) [3] is the most common
and popular network communication protocol in use today.

The problem is that it was not designed with real-time systems in
mind, thus lacking support for bounded message delays, message prior-
ities, and delivery guarantees. In addition, the networks starts to become
more and more non-deterministic as the load on the network increases.

Wireless Networks

Another, widely used variant of the IEEE 802 family is the wireless
Ethernet (IEEE 802.11 [1]) protocol, which has gained popularity in
the recent years. It is based on similar techniques as the wired version
(IEEE 802.3), but there are also some significant differences.

A big advantage is that no wiring is necessary to connect devices,
and it is even possible to have mobile devices roaming within the net-
work which is a desirable feature in many cases. Depending on which
part of the 802.11 standard (a,b,or g) that is used, where two different
maximum communication speeds can be achieved, 11 or 54 Mbps.

Unfortunately, there are additional drawbacks to the ones from the
wired variant (IEEE 802.3). The main problem is packet losses due
to interference and disturbance of the radio signal. The IEEE 802.11
family of network protocols standards all use radio waves to transport

10 Chapter 1. Introduction

the packets, they operate in different frequencies, 2.4 Ghz for 802.11b/g
and 5 Ghz for the 802.11a standard.

The wireless network, since it uses radio waves, is subject to inter-
ference from various sources. Interference causes packets to disappear
and makes it more problematic to handle the communication protocol.

There are many types of radio wave interference, here we shortly
describe two of the most common.

Diffraction, Refraction, Reflection As described in [62], these three
phenomena causes the radio wave to practically disturb itself. Dif-
fraction occurs when the wave is split into multiple waves, Re-
fraction occurs when the wave changes direction, and Reflection
occurs when the wave bounces of an object (like a wall).

Unregulated frequency Another problem is that the operating frequency
of the 802.11b/g standards is unregulated, which means that any
device can use it. Bluetooth [14] and microwave owens both oper-
ate in the unregulated frequency causing interference if they oper-
ate during the same time as the the wireless network. Thus, packet
losses increase and the performance of the network degrades. The
same problems can also appear if many wireless networks that use
the same frequency operate within the range of each other.

One advantage of the 802.11a standard is that it operates in a reg-
ulated frequency and, thus, is not subject to the same amount of
interference. The drawback is that the higher frequency limits the
range and penetration capability of the radio signal, making the
standard less popular than the other two (b and g).

Other effects Walls, movement, and other physical effects also con-
tribute as interference to the wireless network.

A well known issue with wireless communication is the packet overhead
introduced in order to increase the reliability of the packet delivery. For
each data packet transmitted, several "small" packets are also transmit-
ted to ensure the delivery of the data packet. This has the effect that the

1.3 Adapting to Varying Demands 11

actual efficient bandwidth available for transmitting data is significantly
lower than the theoretical maximums (11 or 54 Mbps). Distance to the
communication endpoint is also an important factor that decreases the
actual speed. According to [72], typical peak throughput is more around
4 − 5 Mbps for a 11 Mbps network, which our own measurements con-
firm. Typical data rates in home networks are more around 2− 3 Mbps.
The same is true for a the 54 Mbps network, where speeds up to 50%,
i.e 27 Mbps, might be reached.

1.3 Adapting to Varying Demands

1.3.1 Processor Scheduling Overview

In this section we present three processor scheduling solutions. We
present two theoretical scheduling algorithms, both extensions to the
slot shifting algorithm [27]. The first extension allows more efficient
handling of soft aperiodic tasks, and the second extension allows over-
load situations to be handled.

The third solution proposes a plug-in based architecture to allow dif-
ferent scheduling algorithms to be incorporated into the operating sys-
tem in a "plug-in" manner.

1.3.2 Related Work

Soft Aperiodic Task Handling

On-line scheduling is used to efficiently handle those activities that can-
not be completely characterized off-line in terms of worst-case behavior,
and, hence, cannot receive a priori guarantee. Examples of these activ-
ities include soft aperiodic tasks (e.g., multimedia tasks) whose com-
putation time or, inter-arrival times, can have significant variation from
instance to instance. Moreover, on-line scheduling is used to reclaim
any spare time coming from early completion. A bandwidth reserva-
tion technique [20] is used to isolate the temporal behavior of the two
schedules and prevent the event-driven tasks to corrupt the off-line plan.

12 Chapter 1. Introduction

The MARS system [41] is an example of a system with entire off-
line planning of all activities. On the other side of the spectrum, SPRING
[64] is using planning and global task migration [75] for handling a vari-
ety of constraints on-line. Its planning efforts are expensive; a dedicated
scheduling chip is suggested. In our approach, the on-line scheduling is
very simple as we only compute new deadlines.

The use of free resources in offline constructed schedules for aperi-
odic tasks has been discussed in [55]. The resulting flexibility is limited
since aperiodic tasks are inserted into the idle times of the schedule only.
Slot shifting [27] analyzes off-line schedules for unused resources and
leeway, which is represented as execution intervals and spare capacities.
This information is used at runtime to shift task executions, accommo-
date dynamic tasks, and to perform on-line guarantee tests. It provides
increased flexibility, but focuses on hard and firm tasks only. In [34] the
authors present a new and improved, with respect to complexity, method
for on-line handling of aperiodic tasks.

From the on-line side, the integration of different scheduling par-
adigms in the same system requires a resource reservation mechanism
to isolate the temporal behavior of each schedule. In [49], Mercer, Sav-
age, and Tokuda propose a scheme based on processor capacity reserves,
where a fraction of the CPU bandwidth is reserved to each task. This
approach removes the need of knowing the worst-case computation time
(WCET) of each task because it fixes the maximum time that each task
can execute in each period. Since the periodic scheduler is based on the
Rate Monotonic algorithm, the classical schedulability analysis can be
applied to guarantee hard tasks, if any present.

In [22], Liu and Deng describe a two-level scheduling hierarchy
which allows hard real-time, soft real-time, and non real-time applica-
tions to coexist in the same system. According to this approach, each
application is handled by a dedicated server, which can be a Constant
Utilization Server [23] for tasks that do not use non-preemptable sec-
tions or global resources, and a Total Bandwidth Server [61, 60] for
the other tasks. At the lowest level, all jobs coming from the different
applications are handled by the EDF scheduling algorithm. Although

1.3 Adapting to Varying Demands 13

this solution can isolate the effects of overloads at the application level,
the method requires the knowledge of the WCET even for soft and non
real-time tasks.

The use of information about amount and distribution of unused re-
sources for non periodic activities is similar to the basic idea of slack
stealing [67], [21] which applies to fixed priority scheduling. Our method
applies this basic idea in the context of offline and EDF scheduling.
Chetto and Chetto [19] presented a method to analyze idle times of peri-
odic tasks based on EDF. Our scheme analyzes offline schedules, which
can be more general than strictly periodic tasks, e.g., for control appli-
cations.

Overload Handling

Value based overload handling has been thoroughly investigated. In [15],
a number of methods that use values and deadlines to handle overload
are compared. For a wide range of overload conditions, the best perfor-
mance was achieved by EDF scheduling, extended with a value based
overload recovery mechanism and resource reclaiming. An example of
such an algorithm is RED [16]. For very high overloads, scheduling
based on value density outperforms EDF based methods. In [6], task
priorities are calculated dynamically from values and remaining exe-
cution times. They consider tasks with soft deadlines, i.e., values that
decrease if the deadline is missed, rather than become zero or negative.
In [11], an overload algorithm is presented for the special case when a
minimum slack factor for every task is known. Also, tasks are assumed
to be equally important.

These methods do not consider distributed scheduling, or overload
handling in the presence of offline scheduled critical tasks.

Distributed overload handling is addressed in, e.g., [56], where an
acceptance test is performed upon arrival of aperiodic tasks. If it fails,
the node initiates an intricate bidding procedure in which nodes coop-
erate to decide where to migrate the task. The problem considered in
this thesis requires an overload handling where values are taken into ac-
count. Another difference is that in our method migration is initiated

14 Chapter 1. Introduction

by the receiving node rather than the current owner of the task, and that
migration is integrated with resource reclaiming and the acceptance test
of new aperiodic tasks.

Plug-in Scheduling

A number of aperiodic task handling methods have been presented [66,
67, 61], but within their respective packages only.

Instead of extending an existing scheduling package, we concen-
trate the functionality into a module, define the interface, and discuss its
application to off-line and on-line scheduling methods as examples.

S.Ha.R.K [28] is an operating system where scheduling algorithms
including aperiodic servers are created in a modular fashion. The inter-
face between the system and the scheduler in S.Ha.R.K is more complex
than the interface we propose in this paper.

Another operating system which provides the possibility of "plug-
ging in" scheduling algorithms is the MaRTE OS [7]. MaRTE supports
the application-defined scheduling interface proposed in [8] which is
further generalized in [9]. Application-defined scheduling allows the
application designer to construct his/her own scheduling algorithm and
use it to schedule the task within the application. The application sched-
uler executes as a special thread thus allowing several different applica-
tion schedulers to co-exist.

A problem with this approach is that since the scheduling algorithm
acts as an extra layer, between the kernel scheduler and application,
overhead will be introduced due to extra context switches occurring for
each "normal" context switch.

1.3.3 Contribution

In this section we describe how the time triggered approach can be en-
hanced to suit distributed real-time systems where overload situations
must be anticipated. We give a precise formulation of overload detec-
tion and value based task rejection in the presence of off-line scheduled

1.3 Adapting to Varying Demands 15

tasks, and present a heuristic overload handling algorithm. Overload sit-
uations are detected immediately when the offending tasks arrive, and
resolved by rejection of low value tasks.

The overload handling includes a task migration algorithm to benefit
from the distributed setting, that integrates migration of rejected tasks
with resource reclaiming and the acceptance test of newly arrived tasks.

We assume that the critical tasks are scheduled offline, but the sched-
ule is handled in a flexible way at runtime to facilitate the inclusion of
aperiodic tasks. This is achieved by including mechanisms from the
slot shifting algorithm [27] that allow the planned execution of offline
scheduled tasks to be shifted in time, while still ensuring that no critical
constraints are violated.

This allows the designer to choose, for each activity individually,
the trade-off between guaranteed timely execution, and less resource
demanding non-guaranteed handling based on values.

Plug-in Scheduling

Scheduling algorithms have been typically developed around central
paradigms, such as earliest deadline first (EDF) [46], rate monotonic
(RM)[46], or off-line scheduling. Additional functionality, such as ape-
riodic task handling, guarantees, etc., is typically provided as extensions
to a basic algorithm. Over time, scheduling packages evolved, providing
a sets of functionality centered around a certain scheduling methodol-
ogy.

EDF or FPS, for example, are chosen for simple dispatching and
flexibility. Adding constraints, however, increases scheduling overhead
[73] or requires new, specific schedulability tests which may have to
be developed yet. Off-line scheduling methods can accommodate many
specific constraints and include new ones by adding functions, but at the
expense of runtime flexibility, in particular inability to handle aperiodic
and sporadic tasks.

A similar approach dominates operating system functionality: im-
plementation of the actual real-time scheduling algorithm, i.e., take the
decisions which task to execute at which times to ensure deadlines are

16 Chapter 1. Introduction

met, are intertwined with kernel routines such as task switching, dis-
patching, and bookkeeping to form a scheduling/dispatching module.
Additional real-time scheduling functionality is added by including or
“patching” this module. Replacement or addition of only parts is a te-
dious, error prone process.

Consequently, a designer given an application composed of mixed
tasks and constraints has to choose which constraints to focus on in the
selection of scheduling algorithm; others have to be accommodated as
good as possible. Along with the choice of algorithm, operating system
modules are chosen early on in the design process.

This contrasts actual industrial demands: designers want to select
various types of functionality without consideration of which package
they come from. They are reluctant to abandon trusted methods and to
switch packages for the sake of an additional functional module only.
Instead, there is a need to seamlessly integrate new functionality with
a developed system, enabling designers to choose the best of various
packages.

In this paper, we propose the use of a plug-in approach to add func-
tionality to existing scheduling schemes and provide for easy replace-
ment at the operating system level. In particular, we present an archi-
tecture to disentangle actual real-time scheduling from dispatching and
other kernel routines with a small API, suited for a variety of schedul-
ing schemes as plug-ins. We detail two plug-ins for aperiodic task han-
dling and how they can extend two target systems, table-driven and EDF
scheduling using the presented approach.

1.3.4 Packet Scheduling Overview

1.3.5 Related Work

Ethernet Communication

There are many attempts to modify Ethernet to make it more determin-
istic and useful in real-time communication. As mentioned above, we
want a solution which uses the standard hardware and protocols, but for

1.3 Adapting to Varying Demands 17

completeness we will discuss a few solutions that changes part of the
standard.

In [48], the authors present a method to achieve hard real-time com-
munication using standard Ethernet, using Switched Ethernet. The idea
is to use switches (not hubs) and connect only one node to each port in
the switch in order to avoid any contention, thus avoiding the use of the
unpredictable contention resolution algorithm.

The switch is capable of full duplex transmission, i.e., sending and
receiving simultaneously, thus allowing efficient communication. Due
to the switch ensures there are no collisions. The only problem is that
output queues can overflow if the input rate is to high, i.e., several nodes
are transmitting to the same node with a combined rate higher than the
switch’s output rate. In this case packets will be dropped by the switch.

Another problem with switched Ethernet is that there are no priori-
ties among packets, which is desirable for real-time communication. A
solution to this problem is to use the IEEE 802.3p [4] protocol, which
adds the possibility to prioritize packets.

In [59], the authors propose a change to the MAC layer, which will
result in a non standard solution. The good thing with the proposed
solution is that the modified MAC layer is only required on the nodes
that want to use real-time communication. All other nodes can use the
standard Ethernet protocol. The method relies on on the sensing and
collision detection abilities of standard network cards, and it requires
that the cards can send a jam signal (called black burst). Real-time traffic
is prioritized using round-robin to determine which node is allowed to
transmit.

Nodes transmitting real-time packets uses the normal Ethernet rules
when transmitting the first packet, but for subsequent packets a special
algorithm is used. The nodes schedule the next access attempt in the
future. To seize the channel for the next packet transmission the node
waits an amount of time before transmitting (Inter-frame spacing). If
a collision is detected, the node immediately sends the jamming signal,
i.e., the black burst, and continues doing so up to a predefined maximum
time, or until no collision is detected. If several nodes transmit the black

18 Chapter 1. Introduction

burst, the node with the longest burst gets access to the medium and
immediately transmits its packet.

The length of the burst is is a direct function of the contention delay,
measured from the time the access was scheduled to the time when the
node perceives the medium to be idle, i.e., the node that has waited the
longest time has the longest burst.

Bandwidth Estimation

Network bandwidth, especially the available bandwidth, is of major im-
portance for QoS verification, streaming applications, and congestion
control. Much research effort have therefore been dedicated to the prob-
lem of measuring bandwidth within the network communication area.
However, there are few existing methods which are oriented toward the
wireless environment. Although some adaptive bandwidth allocation
schemes have been proposed, they all require some form of resource
reservation, which is not included in the Ethernet standard. The adap-
tation of QoS is therefore strongly dependent on an end-to-end on-line
measurement of the availability of bandwidth along the path from the
sender to the receiver.

We give a short introduction to some methods that are based on
probing the network path, which serve a basis for our own bandwidth
prediction method, which is presented in chapter 4.

Probe Packet Probing is a method suited for determining end-to-end
characteristics of a network path.

The basic idea is to probe the network by generating a traffic flow
that is sent from one end node to the other. Information about the state
and behavior of the network can then be extracted from the time delay
of the probe packet.

The time delay of a probe packet across a single link consists of three
components: the propagation delay, queuing delay, and transmission
delay.

Propagation delay, also called latency, is due to the time it takes

1.3 Adapting to Varying Demands 19

for the signal to traverse the link, i.e., the time it takes for each bit of
the packet to traverse the link. It is independent of the packet size but
depends on the geographical spread of the network, i.e., the distance
between the nodes.

Queuing delay occurs inside nodes (such as routers) when there is
contention at the input and output ports of these devices. All incoming
packets are queued in an output buffer, and queuing delay is simply the
waiting time for a packet before it gets services, i.e., transmitted, and
occurs due to previous packets that have not yet been serviced. The
amount of traffic passing through the node determines the delay, more
traffic means longer delay.

Transmission delay is related to the underlying transmission hard-
ware. It occurs due to the time it takes to physically transmit a packet
onto the network.

One Packet Probing Technique The one packet probing technique,
introduced in [12], is based on a deterministic model which is mathemat-
ically represented as shown in equation 1.1, where the path is assumed
to consist of n links, the latency of link l is denoted by dl , the band-
width of link l is denoted by bi , the size of probe packet k is sk , the
time when packet k has completely arrived on link l is denoted by tkl .

t0l = t00 +
l−1∑
i=0

(
s0

bi
+ di

)
(1.1)

In [12], the authors observe that in the absence of cross traffic, queu-
ing delays can be assumed to be negligible; queuing caused by addi-
tional traffic can only increase the total delay time. This model also
assume that the propagation delay remains constant for different packet
sizes since the absolute signal frequency has a higher order relative to
the size of the packet. Therefore, sending a large number of packets
of different sizes ensures that the minimum value of their transmission
times will approximate a line whose slope is the inverse of link band-
width.

20 Chapter 1. Introduction

Packet Pair Probing Technique This technique, proposed in [38], is
a well-known mechanism for measuring the capacity of a path. It was
first introduced to measure the available bandwidth given in fair queuing
networks.

A packet pair measurement consists of two packets of the same size
L sent back-to-back from the source to the destination. Without any
cross traffic in the path, the packet pair will reach the receiver with a
time spacing, called dispersion, δ, that is equal to the transmission delay
at the narrowest link in the end-to-end path.

The receiver can then estimate the capacity C of the bottleneck link
from the measured dispersion δ, as C = L/δ.

Similarly to the one-packet model, the packet pair technique can
produce a wide variety of measurements and erroneous capacity esti-
mates. The main reason is that cross traffic can distort the packet pair
dispersion, leading to capacity underestimation or overestimation.

Pathload Pathload is another method proposed in [24]. This tech-
nique probes a network path by periodically sending a stream of UDP
packets. The period is varied among different streams according to the
probing information that is returned.

Pathload is based on the observation that, if there is an increasing
trend in the one-way packet delays, the sending rate of a packet stream
is higher than the available bandwidth. Otherwise, the sending rate is
lower than the available bandwidth.

A third possibility, referred to as grey-region, is the case of ambigu-
ous trend (the trend is neither increasing or decreasing). The grey-region
is due to the fact that the available bandwidth varies around the sending
rate during a probing stream.

As a result of the bandwidth estimation, a range containing the lower
and upper bounds for the available bandwidth is reported to the sender.
This approach has the advantage that it detects one-way delays, thus
it does not require a symmetric network structure and the estimation
can be more accurate for some single way communication. Another
interesting aspect of Pathload is that it watches for the presence of the

1.3 Adapting to Varying Demands 21

overall increasing trend during the entire stream instead of instantaneous
performance measurement.

Pathload is based on an iterative algorithm to analyze the delay vari-
ation at the receiver side. The measurement latency is large since it
needs a large quantity of the delay samples to produce a final estimation.
The overhead is also relative high, which is not desirable for mobile de-
vices such as pocket PCs and other handheld devices.

Traffic Shaping

In [44] and [43], the authors propose a method to achieve better results
using Ethernet for real-time communication with respect to round-trip
time and packet loss ratio.

The basic idea of applying traffic smoothing for network transmis-
sion is to smooth a bursty stream of data into a constant stream of data
by using the leaky bucket algorithm. The rationale is that, by smoothing
out bursts, the transmission is evenly spread out over time in order to
reduce the probability of congestion and collisions on the network. It is
also a way to control the rate of the transmitted traffic generated by each
node.

The traffic smoother architecture resides on all nodes, and is inserted
between the UDP, TCP/IP layers and the MAC layer, where it intercepts
all outgoing IP packets. Traffic is divided into real-time or non real-
time traffic. The idea is to only smooth non real-time traffic, and let the
real-time traffic pass the smoother without interference, to eliminates
contention within the node. By smoothing the non real-time traffic, col-
lisions between real-time and non real-time packets are reduced.

The traffic smoother uses a credit bucket to regulate the burstiness of
the non real-time traffic stream. The transmission rate for non real-time
traffic is dynamically adjusted depending on the current network uti-
lization. Adjustment is carried out by changing the refresh period of the
credit bucket, i.e., how often new credits are added to the bucket. The
transmission rates for all nodes are adjusted using a mechanism similar
to the "slow start increase and multiplicative decrease" of TCP/IP con-
gestion avoidance mechanism, called harmonic increase multiplicative

22 Chapter 1. Introduction

decrease (HIMD). Periodically, the transmission rates of all nodes are
harmonically increased (by decreasing the refresh period) until a col-
lision occurs. When a collision is detected, the remaining credits are
deleted from the bucket, and the refresh period is doubled.

In [18] propose an improvement to the above described traffic smooth-
ing method. First, in order to have a better picture of the current net-
work utilization, both throughput and collisions are monitored. The
smoothing is dynamically adjusted using a fuzzy controller instead of
the HIMD approach described above.

The fuzzy controller takes the number of collisions and throughput
as input, and produces an output that determines the refresh period ad-
justment. One difference with the previous approach is that the adjust-
ment of the refresh period is dynamic instead of static. Fuzzy control is
used because of the non-linearity and complex behavior of the systems,
which is difficult to model for a traditional controller.

The authors show that this approach gives shorter round trip times
(RTT) and a better throughput than the previous work.

Wi-Fi Multimedia (WMM)

The Wi-Fi Alliance [70] started interoperability certification for WMM
as a profile of the upcoming IEEE 802.11e QoS extension [2] for 802.11
networks in 2000.

WMM defines four access categories, voice, video, best effort, and
background to be used for prioritizing of traffic. Legacy devices, i.e.,
without WMM support, are supported and such traffic is transmitted
using the best effort priority.

Clients can get the permission to transmit a burst of data. They
can actually transmit data for a certain amount of time, based on the
access class of the traffic. A higher priority access class gets a longer
time interval in which it may transmit packets. The length of the time
frame, ranging from 0.2ms to 6ms, depends on the speed of the wireless
network, i.e., 11 or 54 Mbps.

In the future, WMM will also support a feature called scheduled ac-
cess, where applications are allowed to reserve network resources based

1.3 Adapting to Varying Demands 23

on their traffic characteristics through requests sent to the AP.

1.3.6 Contribution

The traffic smoothing solutions presented in 1.3.5 are based on the as-
sumption that you can detect collisions in the network, which is pos-
sible if wired Ethernet is used. But, the in-home entertainment sys-
tems will use wireless Ethernet, which, as mentioned earlier, uses a
collision avoidance (CSMA/CA) scheme instead of collision detection
(CSMA/CD). This is due to difficulties in detecting collisions on the
wireless medium, that makes the traffic smoothing solutions not applica-
ble in our scenario.

Instead, we need other methods to measure the currently available
bandwidth of the network. Furthermore, because of the variation of
the available bandwidth of the wireless network (it is not varying in
wired networks), we need to continuously adapt the transmission rate
according to these variations.

To accomplish this we try to come up with the answer to a simple
question:

"is it possible to continue transmitting at the current rate?".
To determine the answer to this question we need to predict the

available bandwidth and compare it to the transmission rate of the node.
If the answer is "yes" we can continue, otherwise we have to adapt the
transmission rate to the amount of bandwidth that will be available ac-
cording to the prediction.

The purpose of the transmission rate adaptation is to avoid overload-
ing the network with packets which will cause congestion. Congestion
is bad since packets will collide triggering retransmission algorithms, in
turn causing longer delays for the packets. In the worst case, conges-
tion can also cause packets to be dropped, causing the network QoS to
become poor.

We propose an architecture that provides network QoS by contin-
uously adapting the transmission rate of nodes in order to match the
currently available bandwidth of the wireless network.

24 Chapter 1. Introduction

The architecture consists of a bandwidth predictor, that first uses a
simple probe-packet technique to measure the available bandwidth of
the network. Then, prediction of the future available bandwidth uses
both the probe packet measurement and the history of previous predic-
tions in order to come with the current prediction. The predicted band-
width is then fed into the traffic shaping part of the architecture, which
adjust the transmission rate of the node accordingly.

It also prioritizes video streams traffic over other traffic when trans-
mitting packets using a low level traffic shaper setup.

Bandwidth Prediction

Our bandwidth prediction uses the well known packet-pair probing tech-
nique presented in [38]. Shortly, the sender transmits two probe packets
of identical size, back-to-back, to the receiver. The receiver measures
the delay between the two packets, and returns this information to the
sender.

This information indicates whether the network load is high or low,
i.e., a long delay indicates high load and vice versa.

To make a more accurate prediction of the available bandwidth we
also include the history of previous predictions in the current prediction.
The reason for including the history in the calculation of the current pre-
diction is to not react to "strongly" to temporary spikes. With the history
of prediction we include the previous trend of the network bandwidth.

We have to repeatedly perform the bandwidth prediction in order to
catch the behavior of the varying bandwidth of the wireless network. We
perform measurements to determine the sampling frequency we need to
use in order to properly predict the bandwidth. What we conclude from
the measurements, using different sampling periods of 0.2, 0.5, 1.0, and
2.0 seconds, is that the prediction result is unaffected by the choice of
period.

1.4 Outline of the Thesis 25

Traffic Shaping

The Traffic Shaper shapes the outbound traffic according to the portion
of available bandwidth assigned to the node and the bandwidth predic-
tion result.

We perform traffic shaping at two different levels: at the low level,
where we shape all outgoing IP-packets, and at the application level,
where the application itself can adapt the transmission rate.

At the low level, we have the possibility of controlling the transmis-
sion rate at a bit level, giving us a fine granularity control. Furthermore,
this level allows us to prioritize video stream packets over other packets
by installing a complex traffic shaping architecture, using network QoS
features built into the Linux kernel. The architecture allows us to give
the video stream a higher share of the rate assigned to the node, but,
without starving the other traffic that also needs to be transmitted.

On the application level we have a coarse granularity control an only
perform major transmission rate changes. If the application does not
react we risk internal buffers to overflow causing packet to be dropped
even before they are transmitted.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows way: in chapter 2 we
present what we consider to be resource constrained real-time devices
within an in-home entertainment system. Chapter 3 contains the proces-
sor and operating system scheduling solutions, two theoretical algo-
rithms and a plug-in scheduling architectural solution. In chapter 4 we
present our solution for the wireless network issues presented in chap-
ter 2 which is two part: we present our bandwidth prediction and traffic
shaping methods.

In Appendix A, we present implementation details and simulation
results from the solutions we presented in chapters 3 and 4.

Chapter 2

Resource Constrained
Real-Time Devices

2.1 Overview

We look at two types of resources within the in-home entertainment
system, namely the nodes, containing processors and operating systems,
and the network.

In this chapter we describe the resources in more detail and we also
present problems and issues related to each resource.

Nodes are varying devices ranging from full blown PCs, with pow-
erful processors and lots of memory, to handheld devices, with more
restricted processors and memory. The processors have different power
(speed), that limits the amount of work than efficiently can be performed
on them. Since it is not possible to simultaneously execute all existing
threads, scheduling of the application threads (tasks) to efficiently uti-
lize the processors is required.

In this chapter we look at both wired and wireless Ethernet. We
discuss their general properties, and give a more specific description
the problems that may be encountered when using wired and wireless
Ethernet for real-time communication.

27

28 Chapter 2. Resource Constrained Real-Time Devices

2.2 Processors and Operating Systems

Desktop PCs are usually uniprocessor systems, but still with very pow-
erful processors that are capable of a huge amount of computations per
second. It is also possible to have multiple processors tightly connected
within the same PC, a so called Symmetric MultiProcessing (SMP),
which further increase the capability of the PC. Another possibility is
to have a distributed system, where multiple processors exists on dif-
ferent PCs, but still cooperate when performing computations. In this
thesis we consider PCs with uniprocessor architectures.

The processor is not solely responsible for the handling and run-
ning of tasks: the operating system (OS) is also a vital part. The OS is
responsible for managing the life of all tasks, i.e., task creation, activa-
tion, deactivation, when they should execute, and so on. Task schedul-
ing takes place within the OS. Real-time OSs (RTOS) provide real-time
scheduling algorithms for task scheduling, while general-purpose OSs
(GPOS) provide algorithms that are fair, i.e., all tasks are scheduled to
get share of the processor for execution. Both types of OSs are viable to
exist on different nodes within an in-home entertainment network.

As mentioned in 1.3.3, one problem with RTOSs is that they usu-
ally only support one specific scheduling algorithm (or paradigm), for
example FPS. All applications has to be tailored to fit the scheduling
paradigm present within the OS, even if using another paradigm would
be more suitable. Since most RTOSs also have a monolithic design, it is
not trivial to change or replace the scheduling algorithm because of the
tight coupling between the scheduler and the rest of the OS kernel.

GPOS, on the other hand, do not at all, or has very limited, support
for real-time scheduling. Most of them use Round-robin algorithms,
where each task is given a "slice" of time for execution, in a "round-
robin fashion". GPOSs suffer from the same problem as RTOSs, it is
not easy to separate the scheduling parts from the rest of the OS kernel
if there is a desire to change the scheduling algorithm.

The theoretical scheduling algorithms we present in chapter 3 are
all real-time algorithms, aimed at being used in RTOSs. Furthermore,

2.2 Processors and Operating Systems 29

we propose an architecture to disentangle the tight coupling between
the scheduling and OS kernel routines, which will allow any scheduling
algorithm to be easily added to the OS.

2.2.1 Windows NT/2000 in Real-Time Systems

Real-time systems have somewhat stricter demands on tight and well
specified deadlines. There are several reasons to why Windows NT/2000
(NT/2000) is not suitable for use in real-time systems "as is". Some of
these reasons can be traced back to the fact that one of the goals with
NT/2000 was to introduce a fairness in the system. NT/2000 is designed
to prevent the potential starvation of low priority processes.

There are also other reasons for not using NT/2000 in real-time sys-
tems. The fairness policy makes the operating system highly responsive,
but it does so at the expense of determinism.

Deficiencies

It is not really feasible to incorporate NT/2000 into a real-time system
without some adjustments and limitations. The issues that need ad-
justing according to [30, 52], are described below. The deficiencies of
NT/2000 in the context of real-time systems are more observable under
higher system load, when the system is stressed.

There is no priority tracking scheme in the interrupt handling [52].
Priority tracking is a scheme that ensures that all parts of a thread ex-
ecutes at the same priority. For example, in case of an interrupt, the
interrupt will run with the same priority as the thread. Thus the interrupt
will not affect the execution of any of the other threads in the system.

In NT/2000, the Interrupt Service Routine (ISR) is always executed
at the highest priority. The execution of the ISR releases a Deferred
Procedure Call (DPC). DPCs are handled in FIFO order and run on a
priority higher than any user thread. This can cause priority inversion,
and is, therefore, not compliant with priority inheritance.

Priority inversion is the name of the phenomenon when a lower pri-
ority thread blocks the execution of a higher priority thread by locking

30 Chapter 2. Resource Constrained Real-Time Devices

a shared resource for a unbounded time period. Because all ISRs run
on higher priority than the DPCs, even lower priority interrupts, for ex-
ample interrupts caused by mouse movement, affect the execution of all
DPCs.

As mentioned earlier, scheduling is a central part in real-time sys-
tems. The scheduling scheme must allow an analysis that can determine
whether the system will keep its timely restrictions or not. The schedul-
ing scheme of NT/2000 is based on priority classes (with seven priority
levels in each class).

There are four classes (presented in ascending priority order): IDLE,
NORMAL, HIGH, and REALTIME. Threads that belong to the three
lower classes are incorporated into the previously mentioned fairness
policy, their priorities are raised if they get too little execution time.

Processes running on a priority in the REALTIME class is not in-
cluded in that policy. There is no straightforward way to make an analy-
sis when the scheduling is affected by the fairness policy, because lower
priority threads can affect higher priority threads in unexpected ways.
Thus, real-time systems should use the REALTIME class. Unfortu-
nately, there are only seven priorities within that class and many ap-
plications require quite a lot more.

An additional drawback is that all ISRs and DPCs run on priori-
ties higher than the REALTIME class, which may cause REALTIME
threads to be blocked by non time-critical interrupts. In order to rem-
edy the fact that most conventional uses of PCs require more RAM
than is actually available in the system, Windows NT, and most other
general purpose operating systems use page swapping. In cooperation
with a virtual memory scheme and a secondary storage medium (hard-
drive), page swapping allows the system to allocate more RAM than
actually exists in the system. This is very useful and practically a must
for general purpose operating systems. Unfortunately, it introduces un-
quantifiable delays, a property that is unacceptable in real-time systems.
Threads running on kernel level have permission to disable interrupts,
or raise the Interrupt ReQuest Level (IRQL). Thus, for unknown peri-
ods of time that the application has no control over (or even knowledge

2.2 Processors and Operating Systems 31

of), interrupts can be disabled. Also, the mapping of the IRQL is per-
formed dynamically at system startup, and may differ between hardware
architectures.

2.2.2 Windows CE

As stated in [71], Windows CE is designed as a general-purpose oper-
ating system for small devices, typically diskless systems with limited
memory capacity, such as pocket PCs. The Hardware Abstraction Layer
(HAL) is a thin layer of code that is adapted to specific hardware plat-
forms.

Unlike other Windows operating systems, Windows CE does not
represent one standard or identical piece of software that is common to
all platforms. To support the varying need of a wide range of products,
Windows CE is modular, i.e., it can be custom built for a product by
selecting from a set of provided software modules.

Windows CE offers a subset of the of the same programming inter-
faces used to develop applications for other Windows operating systems.

Real-Time Support in Windows CE

Windows CE is a preemptive multitasking operating systems, and sup-
ports a maximum of 32 processes to run simultaneously. The number
of threads a process can contain is limited only by available system re-
sources.

Windows CE uses a priority-based time-sliced algorithm to sched-
ule the execution of threads, and supports eight discrete priority levels.
Level 0 and 1, the highest priorities, are intended for real-time applica-
tions and device drivers. Levels 2− 4 are intended to be used for kernel
threads and normal applications, while 5 − 7 should be used by appli-
cations that can always be preempted by other applications. Threads
with higher priority are always scheduled to execute before threads with
lower priority, and threads of the same priority run in a round-robin
fashion where each thread gets a time slice for execution.

32 Chapter 2. Resource Constrained Real-Time Devices

Unlike other Windows operating systems, Windows CE thread pri-
orities are fixed and do not change. To avoid priority inversion, Win-
dows CE allows the lower priority thread to inherit the more critical
threads priority and run at the higher priority until it releases its use of
the resource.

Windows CE offers a different set of "wait objects" for thread syn-
chronization. These include critical section, event , and mutex objects,
which allow a thread to block its own execution and wait until the spec-
ified object changes. The requests to the synchronization objects are
processed in "FIFO-by-priority" order: a different FIFO queue is de-
fined for each of the discrete priority levels. A request from a thread is
placed at the end of that priority level queue, and the scheduler adjusts
these queues when priority inversion occurs.

Windows CE splits interrupt processing into two steps: an interrupt
service routine (ISR) and an interrupt service thread (IST). Each hard-
ware interrupt request line (IRQ) is associated with one ISR, so, when an
interrupt occurs, the kernel calls the registered ISR. Since the ISR is the
kernel part of the interrupt processing, with the primary responsibility
of directing the kernel to launch the appropriate IST, it is kept as short
as possible. The ISTs are waiting for specific events that are generated
by the kernel whit directions from the ISR. When this event occurs, the
IST starts its execution, where it performs additional interrupt process-
ing. ISTs run at the two highest priority levels, 0 or 1, ensuring that
these threads run as quickly as possible.

2.2.3 Methods to Give GPOS Real-Time Support

There are several possible approaches on how to improve the real-time
capabilities of a general purpose operating system.

There are also other approaches on how to improve real-time per-
formance of GPOS [30], as described below: If the worst-case behavior
of a system can be decided beforehand, it may be possible to use the en-
vironment "as is". The requirements should either be very modest real-
time requirements, or every system property should be known before-
hand. Then it could be possible to dimension the system in such a way

2.3 Networks 33

that there are always sufficient resources available. It is also possible
to make modifications to the kernel of the operating system. However,
it seems that there are some issues that makes this approach question-
able [53] . It is also a matter of following the future development of the
platform.

Another possibility is to have two machines running two separate
OSs, one with the GPOS and one with a RTOS. If a RTOS offered the
same API as the GPOS, there is no need to incorporate the GPOS into
the real-time system.

2.3 Networks

According to [5, 43], Ethernet (IEEE802.3) is one of the most success-
ful local area networks ever implemented. It is widely used in real-life
networks both in office and in industry applications.

Ethernet is based on a scheme called Carrier Sense Multiple Access
with Collision Detection (CSMA/CD). The scheme allows all nodes to
make one attempt to send a packet, as long as the network is not busy.
If the first transmission attempt fails (because of a packet collision),
the nodes involved in the collision will detect the collision and wait an
arbitrary time before making a new sending attempt. The algorithm in
use is called Binary Exponential Backoff (BEB), and it is used to resolve
failed transmission attempts by randomly generating the time for the
next transmission attempt.

This scheme yields very good performance in general purpose net-
works, but the CSMA/CD scheme is one of the reasons for Ethernets in-
ability to give real-time guarantees. A node could potentially be blocked
for an unlimited time if packet collisions occurs at inappropriate times.
This non-prioritized competition for packet transmission and randomly
generated times are undesirable in real-time systems.

34 Chapter 2. Resource Constrained Real-Time Devices

2.3.1 Wireless Network Issues

Due to technical difficulties in detecting collisions on the
wireless medium 1, a Collision Avoidance scheme is used instead of
collision detection. Hence it belongs to the group of protocols that uses
the CSMA/CA medium sharing mechanism.

The Collision Avoidance scheme is designed to reduce the proba-
bility of collisions when they are most likely to occur [37]. Because
of the Carrier Sense protocol, most collisions occur when two nodes
simultaneously makes attempts to access the medium. Simultaneous ac-
cess to the medium is most likely to occur right after a busy medium
becomes free, because there may be several nodes that have sensed the
busy state, and are waiting to transmit. As a protection from these po-
tential collisions, the Collision Avoidance scheme implements a ran-
dom back-off agreement that decreases the probability of collisions in
these situations. In resemblance with wired Ethernet, the CSMA/CA
medium access protocol uses a random back-off time in the case where
the medium is identified as busy.

However it is often not possible to determine whether a radio chan-
nel is busy or not. One of the reasons for this is that one node may be
receiving information from second node that is out of range with respect
to a third node that wants to know whether the channel to the second
node is busy or not. This is referred to as the natural hidden terminal
problem [74].

The standard that specifies the IEEE 802.11 protocol [1], defines the
physical and medium access control layers. Wireless Ethernet commu-
nication is carried out over radio or infrared, and the Medium Access
Control (MAC) supports communication between independent mobile
nodes as well as communication via access points. Networks without
access points are referred to as ad-hoc networks [1]. Such networks are
often created spontaneously and no additional resources than the devices
participating in the network are required. Routing in ad-hoc networks

1Radio modems are half-duplex, thus they cannot listen while they transmit. Even if
they could, the relation between transmitted and received signal strength makes listen-
ing non-trivial.

2.3 Networks 35

is more complicated due to the limited temporal and spatial extent of
the network. Important differences to wired media exist in the physical
layer specified in the IEEE 802.11 standard [1] for Wireless Ethernet.
There are no well-defined coverage areas, i.e., no absolute or observ-
able bounds where stations are known to be unable to receive frames.

The following list shows some of the problems with wireless Ether-
net:

• The physical layer is unprotected from interference.

• The media used for communication is significantly less reliable.

• The network topology is dynamic and may change over time.

• There is no full connectivity. Stations may be hidden from each
other and it cannot be assumed that every station can listen to the
other stations participating in the network.

• The propagation properties are varying over time and are asym-
metric.

Yet another difference between wired communication and Wireless
Ethernet is that the assumption that an address is the same as a destina-
tion (valid for wired communication) is invalid in Wireless Ethernet [1].
When using Wireless Ethernet the destination of a message is a station
(abbreviated STA in the IEEE standard) but not necessarily a particular
location. The above properties makes Wireless Ethernet less suitable
for real-time systems, where timeliness and determinism are essential
properties.

Point Coordination Function

Within the MAC layer there are two possible ways for medium access
control, the Distributed Coordination Function (DCF) and the Point Co-
ordination Function.

DCF is the "normal" way of accessing the medium, i.e., where all
nodes try to access the medium using the CSMA mechanism.

36 Chapter 2. Resource Constrained Real-Time Devices

PCF is an optional method where access control is handled in a cen-
tralized way, i.e., one node acts as a master. The master is called point
coordinator and is responsible for polling all other nodes to control when
they can transmit data. In this way the point coordinator can be used to
control when time sensitive data will be sent. In order to guarantee
the point coordinator access to the medium, it uses a shorter Interframe
Space (IFS), compared to what is normally used, before transmitting
its polling packet. Normally, a node uses an Distributed Coordination
Function IFS (DIFS) as delay before contending for access. The point
coordinator uses a Point Coordination Function IFS (PIFS) which is
shorter in order to be sure that it gets access.

In order to prevent the point coordinator of monopolizing the net-
work, a time interval known as superframe was introduced. Within a
superframe, there are two time intervals: first an interval where PCF is
used, this is where the time critical messages can be sent. The second
interval is used for the "normal" DCF, allowing nodes to compete for
access to the medium.

2.3.2 Network Congestion

Network congestion is a problem when using Ethernet networks. Net-
work congestion occurs when the network is over loaded with traffic
which leads to packet collisions and packet drops within routers. Col-
lisions occur because sever nodes try to transmit packets at a high rate
and at the same time, and in the end it is difficult to successfully transmit
a packet. Routers drop packets if their internal queues are full further
increasing the difficulty of successful packet delivery.

Network congestion causes packets to collide because many nodes
are trying to transmit at the same time. These collisions will cause re-
transmissions, as nodes will repeatedly try to transmit their data. As an
end result there will be no reliable network communication, the proba-
bility of getting a packet "through" is low.

In addition, packets can be dropped by the switches or access points
(AP). Switches, or APs, drop packets if the internal queues become over-
loaded with packets. In the case of constant retransmissions and bursty

2.4 Chapter Summary 37

traffic there is a high probability of packet overflow. If a 10 Mbit/s
switch simultaneously receives 10 Mbit/s of traffic from several differ-
ent nodes, with the same destination node, that outgoing port (within the
switch) will become overflowed, causing packet drops.

In order to avoid, or minimize, congestion, the network traffic must
be controlled. Nodes can not be allowed to transmit any amount of data
at any time. Instead the packet transmission from the nodes must be
strictly controlled.

2.4 Chapter Summary

In this chapter we presented two types of constrained real-time devices
within in-home entertainment system; the nodes, containing processors
and operating systems, and the network.

Processors comes in a variety of classes, from powerful desktop PC
processors to less powerful processors used in handheld computers. And
operating systems (OS), which run on the processors and are responsible
for managing the life-cycle of the tasks, i.e., including the scheduling of
tasks.

OSs can be divided into two classes; real-time operating systems
(RTOS) and general-purpose operating systems (GPOS), both with dif-
ferent goals in mind. A RTOS is intended to be used in real-time sys-
tems, where timeliness is as important as correct functionality. GPOSs,
on the other hand, are more focused on providing correct functional-
ity and a fair share of the processor time to all tasks (threads) running
in the system. Using GPOSs in real-time systems is problematic since
they were not designed with real-time as a goal, typical problems come
from lack of control of all resources and tasks leading to problems with
blocking times, priority inversion, and so on. A common problem with
both types of OSs is that they usually are quite monolithic, meaning that
the scheduling algorithm is tightly coupled with the OS kernel, making
it problematic to change algorithm within the OS.

The second resource we presented was both wired and wireless Eth-
ernet. Using Ethernet for real-time communication is problematic be-

38 Chapter 2. Resource Constrained Real-Time Devices

cause it cannot give any real-time guarantees. Wireless Ethernet is sim-
ilar to the wired variant, but in addition has the problem of sensitivity to
interference. For both types, wired and wireless, network congestion is
a big problem.

Chapter 3

Processor Scheduling

3.1 Overview

In this chapter we look at our task scheduling solutions. We present two
theoretical scheduling algorithms, both which are extensions to the slot
shifting algorithm, which we also give a short introduction on.

The first algorithm extends the handling of soft aperiodic tasks in
conjunction with the off-line scheduling methods used in slot shifting.
It allocates processor bandwidth to be used, at run-time, for an aperiodic
task handling server. Bandwidth is allocated in the off-line phase, where
the scheduling table is created, to not interfere with the execution of the
hard real-time guaranteed time triggered tasks.

The second extension deals with the case when there is overload in
the system, i.e., the tasks request more processor capacity then what is
available. The problem is that time triggered tasks with hard real-time
guarantees cannot be skipped or dropped due to the overload, instead the
algorithm deals with the firmly guaranteed aperiodic tasks. The method
finds a suitable set of firm aperiodic tasks to remove, based on task val-
ues, without disturbing the execution of the time triggered tasks.

Finally, we propose a solution to a problem that exists in most real-
time systems, namely that they contain a predefined scheduling algo-
rithm. All applications has to be tailored to fit the paradigm of the

39

40 Chapter 3. Processor Scheduling

algorithm present in the system, even though it might not be suitable.
With our solution we propose to insert a plug-in scheduling architecture
within the operating system kernel. The plug-in architecture has a small
and simple interface allowing for easy creation and insertion of various
scheduling algorithms, allowing the operating system to be tailored to
the application and not vice versa.

3.1.1 Slot Shifting

As mentioned, both theoretical algorithms are extension to the slot shift-
ing algorithm presented in [27], here we give a short summary of the
principal ideas of the algorithm.

Slot shifting introduces flexibility into the off-line schedule by al-
lowing off-line scheduled tasks to be shifted in time, but never in such a
way that their timely execution is impeded.

Information about this flexibility, i.e., available resources and lee-
way in the off-line schedule, is represented as spare capacity of disjoint
time intervals. This information is used by the runtime scheduler to de-
cide for each slot whether to execute an aperiodic or an off-line task.
In this thesis, the spare capacity of these fixed intervals are only consid-
ered as a way to determine the spare capacity of arbitrary future intervals
when handling overload.

3.2 Soft Aperiodic Task Handling

The rationale of our method to provide for complex application con-
straints and efficient runtime flexibility is to concentrate all mechanisms
to handle complex constraints in the off-line phase, where they are trans-
formed into simple constraints suitable for earliest deadline first schedul-
ing, which is then used for on-line execution. The off-line determined
simple constraints serve as an "interface" between off-line preparations
and on-line scheduling. Specifically, we use the off-line scheduler pre-

3.2 Soft Aperiodic Task Handling 41

sented in [25] 1, start-time, deadline pairs as simple constraints, and
EDF based Total Bandwidth Server [61] and Constant Bandwidth Server
[20] as runtime algorithms. The amount of desired flexibility can be set
in this step as well.

Our transformation technique can extract maximum flexibility. By
tightening start time and deadlines of certain tasks, it is possible to con-
strain the execution of some tasks, e.g., for reasons of testing or reliabil-
ity.

Our method works by reducing complexity (NP hard in the case
of distributed, precedence constrained executions with end-to-end dead-
lines) off-line by instantiating a set of independent tasks with start-times,
deadlines constraints on single processors which fulfill application con-
straints and guaranteed bandwidth requirements. The issues of alloca-
tion to nodes, subtask deadline assignment, fulfilling jitter requirements
are resolved by the off-line scheduler. This allows the use of time in-
tensive algorithms to resolve the constraints, since they are performed
off-line, i.e., before the system is deployed, and flexible scheduling at
runtime.

Once tasks with start-time, deadline constraints have been derived
and analyzed, earliest deadline first scheduling is performed on single
nodes individually at runtime; the original set of complex constraints,
distribution, etc., remains hidden from on-line scheduling.

The resulting instance of simple constraints will not generally be
optimum. Since it is performed off-line, however, additional analysis
can be performed, possibly resulting in another instantiation with differ-
ent simple constraints. Consider a subtask deadline assignment which
induces tight constraint on one node. Performance analysis may show a
different, more relaxed setting to be more appropriated.

As an additional requirement, the offline scheduler has to create a
schedule such that a desired fraction Us of the processor utilization (i.e.,
a desired bandwidth) is reserved for on-line aperiodic service. This
means that, if a bandwidth Us is reserved on a node, then for any interval

1This serves as example; a number of other off-line scheduling algorithm can be
applied, e.g., the one presented in [54].

42 Chapter 3. Processor Scheduling

[t1, t2], there must be at least (t2 − t1)Us time available for aperiodic
processing.

A trivial approach is to replace the worst case execution time of
each task with C

1−US
. No modifications to the scheduler are required to

guarantee a bandwidth of US . This method, however, does not consider
spare capacities in the schedule for bandwidth reservation. Response
times in the resulting scheduling can thus be prohibitively long.

Our bandwidth reservation method during offline schedule construc-
tion analyzes the schedule for idle resources and their distribution. It
maximizes flexibility by considering the leeway in the schedule, as per
the specification constraints. In particular, the offline scheduler contains
a function with tests the feasibility of the schedule constructed so far; it
is extended by testing the availability of the specified bandwidth as well.

3.2.1 Transformation Technique

The feasible schedule with guaranteed bandwidth is transformed into
independent tasks with start-times, deadline pairs. Our method is based
on the preparations for on-line scheduling in slot shifting [27].

The offline scheduler allocates tasks to nodes and resolves the prece-
dence constraints. The scheduling tables list fixed start- and end times
of task executions, that are not as flexible as possible. The only as-
signments fixed by specification are starts of first and completion of last
tasks in chains with end-to-end constrains, and tasks sending or receiv-
ing inter-node messages. The points in time of execution of all other
tasks may vary within the precedence order. We calculate earliest start-
times and latest finish-times for all tasks per node based on this knowl-
edge. As we want to determine the maximum leeway of task executions,
we calculate the deadlines to be as late as possible.

Let end(PG) denote the end and start(PG) the start of a prece-
dence graph PG according to the schedule. The start of an inter-node
message transmission M is denoted start(M), the time it is available
at all receiving nodes end(M). These are the only fixed start times and
deadlines, all others are calculated recursively with respect to prece-
dence successors.

3.2 Soft Aperiodic Task Handling 43

These fixed constraints are derived first: The deadline of task T , dT ,
of precedence graph PG in a schedule is:

• If T is exit task in PG: dT = dl(PG),

• if T sends an inter-node message M : dT = start(M).

The earliest start time of task T , rT , of precedence graph PG in a
schedule is calculated in a similar way:

• If T is entry task: rT = start(PG),

• If T receives an inter-node message M : rT = end(M).

Next, constraints of predecessors and successors of tasks with fixed
constraints are derived:

• A predecessor P of a task T with fixed deadline is assigned a
deadline so as to be executed before T with EDF, i.e., dP = dT −
CT .

• A successor S of a task T with fixed start-time is assigned the
same start-time as T . An appropriate deadline and EDF with en-
sure P preceding T . rP = rT . This step is applied recursively.

3.2.2 On-line Scheduling

Once the transformation is performed off line and a bandwidth Us is re-
served on each processing node, on line scheduling of aperiodic tasks
can be handle by a Total Bandwidth Server (TBS). This service mech-
anism was proposed by Spuri and Buttazzo [60, 61] to improve the re-
sponse time of soft aperiodic requests in a dynamic real-time environ-
ment, where tasks are scheduled according to EDF.

The server works as follows: whenever an aperiodic request enters
the system, the total bandwidth (in terms of CPU execution time) of the
server, is immediately assigned to it. This is done by simply assign-
ing a suitable deadline to the request, which is scheduled according to

44 Chapter 3. Processor Scheduling

the EDF algorithm together with the periodic tasks in the system. The
assignment of the deadline is done in such a way to preserve the schedu-
lability of the other tasks in the system.

In particular, when the k-th aperiodic request arrives at time t = rk,
it receives a deadline

dk = max(rk, dk−1) +
Ca

k

Us
,

where Ca
k is the execution time of the request and Us is the server uti-

lization factor (i.e., its bandwidth). By definition d0 = 0. The request is
then inserted into the ready queue of the system and scheduled by EDF,
as any periodic or sporadic instance. Note that the maximum between
rk and dk−1 is needed to keep track of the bandwidth already assigned
to previous requests.

Figure 3.1 shows an example of schedule produced with a TBS. The
first aperiodic request, arrived at time t = 6, is assigned a deadline
d1 = r1 + C1

Us
= 6 + 1

0.25 = 10, and since d1 is the earliest deadline in
the system, the aperiodic activity is executed immediately. Similarly, the
second request receives the deadline d2 = r2 + C2

Us
= 21, but it is not

serviced immediately, since at time t = 13 there is an active periodic
task with a shorter deadline (18). Finally, the third aperiodic request,
arrived at time t = 18, receives the deadline d3 = max(r3, d2) + C3

Us
=

21 + 1
0.25 = 25 and is serviced at time t = 22.

22

τ 1

τ 2

Us = 1/4

r 1 d 1 r 2 r 3 d 3d 2

0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 23 24 2521 2610

1 2 1

Figure 3.1: Total Bandwidth Server example.

3.2 Soft Aperiodic Task Handling 45

Intuitively, the assignment of the deadlines is such that in each inter-
val of time, the fraction of processor time allocated by EDF to aperiodic
requests never exceeds the server utilization Us. Since the processor
utilization due to aperiodic tasks is at most Us, the schedulability of a
periodic task set in the presence of a TBS can simply be tested by veri-
fying the following condition:

Up + Us ≤ 1,

where Up is the utilization factor of the periodic task set. This results is
proved by the following theorem.

Theorem 1 (Spuri and Buttazzo, 96). Given a set of n periodic tasks
with processor utilization Up and a TBS with processor utilization Us,
the whole set is schedulable if and only if

Up + Us ≤ 1.

The implementation of the TBS is straightforward, since to correctly
assign the deadline to a new request, we only need to keep track of the
deadline assigned to the last aperiodic request (dk−1). Then, the request
can be inserted into the ready queue and treated by EDF as any other
periodic instance. Hence, the overhead is practically negligible.

3.2.3 Simulation Results

In order to evaluate the method we implemented and simulated the de-
scribed algorithm in a Real-Time simulator, presented in [58]. All the
offline and soft aperiodic tasks were randomly generated, and the load
of the offline tasks is varied between 0 and 0.9, and the soft aperiodic
task load is varied between three different levels over the LCM.

The simulation length for each run was 10000 slots, and the soft
aperiodic tasks arrived during that length.

We have studied the average response times of the soft aperiodic
tasks, and compared our algorithm against background scheduling. We
also check what happens with the response times of the soft tasks when

46 Chapter 3. Processor Scheduling

the load of the offline tasks increases. When the offline load is equal to
0 only TBS is running.

Figure 3.2 shows the result of the simulation. The same task sets
were run with both background scheduling and our method, and the
response times are measured in slots.

0

10

20

30

40

50

60

0 0,3 0,5 0,7 0,9

offline utilization

a
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 i

n
 s

lo
ts

off+tbs

background

Figure 3.2: Response times for the soft aperiodic tasks.

Due to high offline load, many soft aperiodic tasks did not finish
before the simulation ended and therefore the response times became
higher with increased load. Even when the offline load was 0 some
soft aperiodic tasks were not able to finish because the ready queue was
overloaded.

3.3 Overload Handling 47

3.3 Overload Handling

The overload handling algorithm presented in this chapter is developed
in cooperation with Jan Carlson 2.

At runtime, local scheduling uses the slot shifting algorithm de-
scribed in [27], except for the guarantee mechanism.

As outlined above, slot shifting is used to decide when aperiodic
tasks can be allowed to run without causing an off-line scheduled task
to miss its deadline. In addition, the scheduler must decide which aperi-
odic task to execute. In the proposed method, aperiodic tasks are served
according to EDF once accepted by the overload detection mechanism.

To handle overload situations, each node keeps the ready queue,
containing the aperiodic tasks ready to be executed on that node, con-
stantly free from overload. When new aperiodic tasks arrive, they are
inserted into the ready queue based on their deadlines. Then, the queue
is processed to detect future overload situations and to resolve them to
make the queue free from overload again.

All tasks removed from the ready queue due to overload are stored
in a separate maybe-later queue, as long as they have positive laxity.
This queue is similar to the reject queue in RED [16], but used for tasks
migration as well as resource reclaiming.

The basis of the task migration algorithm is that selected tasks from
maybe-later queues are retried, possibly on other nodes. Retrying tasks
locally is required to reclaim resources when tasks finish in less time
than WCET. If a task is accepted on the new node, it is immediately
migrated. An important aspect of this scheme is that a task is only mi-
grated if it has been found non-profitable for local execution, and if there
is room for it on the new node, possibly after rejecting a number of lower
valued tasks.

2P.hD. Student at the Department of Computer Science and Electronics, MĎlardalen
University, Sweden.

48 Chapter 3. Processor Scheduling

3.3.1 Overload Handling

At run time, scheduling is performed locally via the slot shifting scheme,
which decides for each slot if an aperiodic task can be allowed to execute
without causing an offline scheduled task to miss its deadline.

Aperiodic tasks are served according to EDF, which gives good per-
formance in non-overload situations. When the system is overloaded,
two important issues must be addressed. In general, high valued tasks
should be preferred over tasks with low value. Additionally, tasks should
be removed as early as possible, rather than simply being allowed to
miss their deadlines, since an early removal might allow the task to be
stolen by another node in the system.

Our algorithm ensures an overload-free ready queue, i.e., all tasks
in the queue can be executed without missing their deadlines, also in the
presence of offline scheduled tasks. When new aperiodic tasks arrive,
the algorithm checks if they cause overload, and if so, which tasks to
reject in order to resolve this efficiently.

Problem Formulation

Detection and removal of overload can be formulated as a general bi-
nary optimization problem. This allows us to abstract on details, since
the dynamic aspects of the rejection problem (e.g., that rejecting a task
influences the finishing times of the others) are represented by static
restrictions. This facilitates the development of a suitable algorithm.

Let τ1, . . . , τn be the aperiodic tasks currently in the ready queue,
including the ones that just arrived, sorted according to EDF. For each
task τi we use a boolean variable xi to represent whether the task should
be kept in the ready queue (xi = 0), or rejected (xi = 1). These vari-
ables are the output of the overload algorithm, used by the Flea Market
algorithm described in Section 3.3.3.

To explain the problem formulation, we first consider a simpler set-
ting without offline scheduled tasks, and then proceed by showing the
modifications needed to incorporate offline scheduled tasks as well.

Consider a single aperiodic task τi. To detect if there is a risk of

3.3 Overload Handling 49

this task missing its deadline, we need the expected finishing time, de-
noted fti. In a pure EDF setting, with no offline scheduled tasks to
consider, this would be computed by adding the remaining execution
times c1, . . . , ci to the current time.

However, detecting overload is not enough. To solve it efficiently
we need to know the size of each deadline miss, so we denote by σi

the overload amount of τi, defined in the simple setting as fti − dli. In
order to ensure that τi does not miss its deadline, at least σi slots must
be freed, by removing some of the tasks τ1, . . . , τi. This is represented
by the following restriction:

c1x1 + c2x2 + . . . + cixi ≥ σi

Similar reasoning can be applied to each of the tasks in the ready
queue, resulting in the following set of restrictions:

c1x1 ≥ σ1

c1x1 + c2x2 ≥ σ2
...

c1x1 + c2x2 + . . . + cnxn ≥ σn

Note that these restrictions give a static formulation of the problem,
since the σ-values are defined in term of the current ready queue, and
do not depend on the x-values.

An assignment of the values 0 or 1 to the x-variables corresponds
to a potential solution to the task rejection problem. Furthermore, any
assignment that satisfies the restrictions corresponds to a solution that
would result in a ready queue free from overload. However, we do not
simply look for a solution (rejecting all tasks is always a valid possibil-
ity), we want a solution that gives as high value as possible to the sys-
tem. This means that the summed values of the removed tasks should
be minimized, which is represented as:

min v1x1 + v2x2 + . . . + vnxn

So far, we have considered a simplified system that contains only
aperiodic tasks. In order to construct similar restrictions when offline

50 Chapter 3. Processor Scheduling

scheduled tasks also have to be considered, the definition of σi must be
modified.

Let sc[a, b] be the spare capacity of the interval from a to b, i.e., the
number of slots in the interval that is not required to execute offline
scheduled tasks in time. Now, σi can be defined as follows:

σi = sc[dli, f ti]

This definition requires the expected finishing time to be computed,
and now that the system contains offline scheduled tasks as well, this
is not straightforward. Instead, we use the following definition, which
is equivalent to the previous one except that it assigns negative values
rather than zero to tasks that finish before the deadline. In this definition,
tc denotes the current time.

σ1 = c1 − sc[tc, dl1]
σi = σi−1+ci − sc[dli−1, dli] (1 < i ≤ n)

The modified definition of σi allows the same restrictions to be used
as in the simplified setting, and the final representation of task rejection
as a optimization problem is:

min v1x1 + v2x2 + . . . + vnxn

when c1x1 ≥ σ1

c1x1 + c2x2 ≥ σ2
...

c1x1 + c2x2 + . . . + cnxn ≥ σn

x1, x2, . . . , xn ∈ {0, 1}

Example: Let the ready queue contain the following aperiodic tasks
at the beginning of slot 10, where (dli, ci, vi) represents τi.

τ1 : (15, 2, 20) τ3 : (19, 3, 10) τ5 : (21, 4, 20)
τ2 : (16, 1, 10) τ4 : (19, 1, 5) τ6 : (24, 4, 20)

The tasks τ3 and τ6 have just arrived, and might have caused overload. If
no more tasks were to arrive, the execution of the aperiodic tasks would

3.3 Overload Handling 51

look as follows. The arrows denote deadlines, and the gaps indicate
slots needed to execute offline tasks. For simplicity, we assume that the
offline schedule has a low load in the interval.

10 15 20 25

τ1 ↑ σ1 =−3
τ2 ↑ σ2 =−2
τ3 ↑ σ3 =−2
τ4 ↑ σ4 =−1
τ5 ↑ σ5 =2
τ6 ↑ σ6 =5

The corresponding optimization problem is:

min 20x1 + 10x2 + 10x3 + 5x4 + 20x5 + 20x6

when 2x1 ≥−3
2x1 + 1x2 ≥−2
2x1 + 1x2 + 3x3 ≥−2
2x1 + 1x2 + 3x3 + 1x4 ≥−1
2x1 + 1x2 + 3x3 + 1x4 + 4x5 ≥ 2
2x1 + 1x2 + 3x3 + 1x4 + 4x5 + 4x6 ≥ 5
x1, x2, . . . , x6 ∈ {0, 1}

The last two inequalities correspond to the overload at τ5 and τ6, and
describe what must be done in order to resolve this.

3.3.2 Rejection Algorithm

Even when all restrictions except the last one are trivially satisfied (σi ≤
0 for 1 ≤ i < n), the problem is hard to solve. In fact, it has been re-
duced to the well known NP-hard binary knapsack problem, which in-
dicates that an optimal algorithm is not feasible. Instead, our algorithm
is based on heuristics that exploit properties of this particular problem.

One such property is that each restriction contains less variables than
the subsequent ones. Furthermore, a good solution (with respect to the

52 Chapter 3. Processor Scheduling

minimization criteria) to a single restriction is a reasonably good partial
solution to all subsequent restrictions, since the variables are equally
weighted in all restrictions.

Algorithm Description. Initially, all xi variables are set to 0, which
represents a solution where no tasks are removed. The rejection algo-
rithm traverses the restrictions top-down, solving each of them individ-
ually.

The restrictions are solved by changing some of the variables from
0 to 1. Once a variable is set to 1, this variable is never changed during
the solving of subsequent restrictions.

Each restriction, unless already satisfied by the current variable set-
tings, is solved in three steps.

• First, we consider the variables of the left-hand side of the restric-
tion that are currently set to 0, and would solve the restriction if
set to 1. From these we select as our best single candidate the one
with lowest vi.

• Next, we construct the collection candidates. From the remain-
ing left-hand side variables that are currently set to 0 (i.e., those
that would not solve the restriction if set to 1), we collect vari-
ables from right to left until the restriction would be solved if all
variables in the collection are set to 1.

• Finally the value of the best single candidate is compared against
the summed values of the collection candidates (if a large enough
collection was found), to decide what the final choice should be.

3.3.3 Remote Task Stealing

A distributed system with runtime task migration must somehow decide
when and where to move tasks in order to maximize the total value of
executed tasks. These decisions become increasingly important when
the load, or the value of tasks, varies a lot between nodes. Ensuring
optimal global scheduling is an NP-hard problem, and we therefore aim
for a sub-optimal solution.

3.3 Overload Handling 53

In order to cope with the complexity of the problem, scheduling is
primarily handled locally on each node, as discussed in Section 3.3.1.
Task migration is handled together with acceptance tests of new tasks,
and local resource reclaiming. Further, task migration is always initi-
ated by the node the task is to migrate to, and not the current owner.
Therefore, we use the term task stealing, rather than migration.

To keep network usage low, and to simplify the algorithm by rul-
ing out the possibility of conflicting thefts, only one node at a time is
allowed to steal tasks. This is ensured by something similar to a con-
ceptual token ring, where the owner of the token may steal tasks from
any other node during one slot, before the token is passed to the next
node in the ring.

By some arbitrary communication scheme, the maybe-later queues
(or parts of them) are made visible to all nodes in the system. At the start
of a slot, each node adds newly arrived aperiodic tasks to its ready queue.
In addition, the node holding the token may add tasks from any maybe-
later queue in the system, including its own. After adding tasks, each
node applies the overload handling algorithm to resolve any overload
situations.

Since only one node is allowed to steal tasks from any maybe-later
queue at the start of each slot, and no additional data have to be sent
over the network, the stealing node may execute one of the stolen task
immediately (in the current slot).

The parameter MaxTheft is used to adjust the algorithm w.r.t. net-
work capacity and system size. At the start of every slot, each node
performs the following algorithm:

1. Let A be the set of all aperiodic tasks currently in the ready queue.

2. Add to A all aperiodic tasks that arrived to the node at this tick.

3. This step is only performed by the node currently holding the to-
ken. Gather tasks from the maybe-later queues of all nodes in
the system. From the maybe-later queues of other nodes, con-
sider only tasks that are movable. Add to A the tasks with highest
value density, at most MaxTheft tasks.

54 Chapter 3. Processor Scheduling

4. Apply the overload algorithm to A. The result is a boolean value
xi for each ai ∈ A, where 0 represents acceptance and 1 rejection.
For each xi, perform the following action depending on whether
the task ai was added during step 1, 2 or 3 of this algorithm.

xi step action
1 1 Remove ai from ready queue,

and insert it in the maybe-later
queue.

1 2 Insert ai into maybe-later
queue.

1 3 Do nothing.
0 1 Do nothing.
0 2 Insert ai into ready queue.
0 3 Insert ai into ready queue, and

inform the current owner (pos-
sibly yourself) of the theft.

5. If the node holds the token, send it to the next node.

3.3.4 Node Communication

The algorithm is described as if the whole maybe-later queues are visi-
ble to all nodes, but this is actually not required. The node holding the
token is interested only in the MaxTheft tasks with highest value density.
By keeping maybe-later queues sorted according to value density, it is
sufficient to make the MaxTheft first tasks in each queue visible. Also,
since aperiodic tasks are assumed to reside on all nodes in the system,
only tasks identifiers are sent over the network.

Furthermore, only one node uses the maybe-later queues each slot.
Thus, the distribution of maybe-later queue information in a system of n
nodes can be accomplished by a total of n−1 messages, each consisting
of MaxTheft task identifiers and remaining execution time.

Communication is also required in order to migrate tasks. Since
only one node may steal tasks from the maybe-later queues in each slot,

3.3 Overload Handling 55

the only communication needed in order to migrate a task is to inform
the current owner of the theft. Thus, a stolen task may execute on the
new node in the same slot as it is stolen. At most n−1 messages, each
containing one task identifier, are sent each slot due to task migration.

The algorithm, as described above, assumes that the network is fast
enough to permit the following communication during a single slot:

• The node holding the token sends theft messages to all nodes.

• When receiving the theft message, each node sends its new maybe-
later queue information to the next token holder.

If the network does not permit this within a single slot, but within t slots,
the algorithm can be modified so that the token is inactive for t−1 slots
when it arrives to a node. Figure 3.3 and 3.4 show the communication
between three nodes for t = 1 and t = 3. Ticks are denoted by vertical
lines, and the scheduling performed in each slot is represented by a grid.
Horizontal lines denote the token holder, and dashed lines represent that
the token is inactive. Arrows starting in a grid are messages concern-
ing stolen tasks, and those starting in the middle of a slot are messages
containing maybe-later queue information.

N1

N2

N3

�
�
��

�
�
�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�	

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�� �

�
�
�
�
�	

�
�
��

Figure 3.3: Node communication (t=1).

3.3.5 Simulation Results

Simulations have been performed for various overload scenarios, show-
ing how the algorithm behaves in terms of total accumulated value.

56 Chapter 3. Processor Scheduling

N1

N2

N3

�

�
�

�
�

�
�

�
�

� �������

�������

Figure 3.4: Node communication (t=3).

In order to evaluate the efficiency of introducing task migration, i.e
moving the tasks to other nodes for possible execution, we compare the
total accumulated value for both scenarios. The simulation results are
visible in tables 3.5 and 3.6.

In the figures we also show the results of a comparison of the fol-
lowing methods for overload handling:

1. The full method presented in the paper.
2. The overload handling algorithm, without task migration.
3. A basic algorithm that uses the offline schedule, assigning idle

slots to the aperiodic tasks based on value density.
4. Same as 3, but aperiodic tasks are ordered by value.
5. Same as 3, but aperiodic tasks are ordered EDF.
6. Same as 3, but aperiodic tasks are serviced in order of arrival.

Methods 1 and 2 implement the efficiency improvements suggested
in Section 3.3.2. Each point in the figures represents some 300 simula-
tions.

In the first experiment, all nodes in the system are subject to the
same amount of load. The result is presented in figure 3.5. Because
all nodes are overloaded, the possibility of task migration does not pro-
vide any significant improvement. Compared to the basic methods, the
proposed method performs better.

The second experiment, shown in figure 3.6, is a scenario of un-
evenly distributed load. Half of the nodes have no aperiodic tasks ar-
riving, only offline scheduled tasks. Here, the task migration algorithm

3.3 Overload Handling 57

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 3.5: Even load distribution.

clearly increases the system performance, compared to overload han-
dling without migration, because tasks can migrate to nodes with no
aperiodic load.

Another important issues we investigated is how we can deal with
the worst case complexity of the algorithm O(n2), where n is the length
of the ready queue, i.e the number of tasks present in the ready queue.

We found that by reducing the number of tasks we look at in the
ready queue, not necessarily all tasks, we can deal with the complex-
ity and still get an acceptable behavior from the algorithm. Figure 3.7
shows the accumulated value for different cutoff values.

As we see in the figure, the difference between the different cutoff
values are minimal, indicating that it is possible to efficiently deal with
the complexity by looking at fewer tasks.

We have performed more simulation in order to evaluate the be-
havior of the algorithm, the interested reader can see these results in
Appendix A.

58 Chapter 3. Processor Scheduling

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 3.6: Uneven load distribution.

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

cutoff=15

cutoff=10

cutoff=5

Figure 3.7: Accumulated value for different cutoff values.

3.4 Plug-in Scheduling Architecture 59

3.4 Plug-in Scheduling Architecture

Functionality for various services of scheduling algorithms is typically
provided as extensions to a basic algorithm. Aperiodic task handling,
guarantees, etc., are integrated with a specific basic scheme, such as
earliest deadline first, rate monotonic, or off-line scheduling. Thus,
scheduling services come in packages of scheduling schemes, fixed to a
certain methodology.

A similar approach dominates operating system functionality: im-
plementation of the actual real-time scheduling algorithm, i.e., take the
decisions which task to execute at which times to ensure deadlines are
met, are intertwined with kernel routines such as task switching, dis-
patching, and bookkeeping to form a scheduling/dispatching module.

Consequently, designers have to choose a single scheduling pack-
age, although the desired functionality may be spread over several ones.
Instead, there is a need to seamlessly integrate new functionality with
a developed system, enabling designers to choose the best of various
packages.

In this section, we propose the use of a plug-in approach to add
functionality to existing scheduling schemes and provide for easy re-
placement on the operating system level. In particular, we present an
architecture to disentangle actual real-time scheduling from dispatch-
ing and other kernel routines with a small API, suited for a variety of
scheduling schemes as plug-ins. We detail two plug-ins for aperiodic
task handling and how they can extend two target systems, table-driven
and earliest deadline first scheduling using the presented approach.

A plug-in can be thought of as a hardware or software module that
adds a specific feature or service to an existing system. The purpose of
a plug-in is to add functionality without calling for redesign or exten-
sive modifications. To accomplish this it must be clear what services
the plug-in provides and an interface between the plug-in and the target
system must be defined.

60 Chapter 3. Processor Scheduling

Plug-in
module

Wake-up
Calendar

Execution
sequence

table

Dispatcher

insert(task, pos)remove(task)

event(taskEnd)

dispatch()

event(wakeUp, id)

setWakeUpPoint(time, id)

deleteWakeUpPoint(time, id) event(taskArrival)

SYSTEM

Figure 3.8: Plug-in and system architecture

Target System Architecture and Interface

Before we go into the details of the plug-in, we define the target sys-
tem model that the plug-in will interact with. The model is presented
in figure 3.8 and it consists of three separate modules as parts of the
system:

Execution Sequence Table This is the table where the tasks are kept
sorted in a certain order, depending on the plug-in module’s schedul-
ing algorithm. The plug-in module has exclusive modification
rights on this table. To manipulate the table, the plug-in module
uses the two methods insert(task, pos) and remove(task).

Dispatcher It is responsible for taking the first task in the execution
sequence table and execute it. The dispatcher has access to view
the contents of the whole execution sequence table, but it cannot
modify it. The plug-in module also has exclusive control over
the dispatcher and it is activated by the dispatch() call. When the
dispatcher is activated, it will check if there is an executing task
and either preempt the task, if it exists in the execution sequence
table, or else abort it.

Wake-up Calendar This calendar controls a set of watch-dog timers,

3.4 Plug-in Scheduling Architecture 61

all tasks will get entries set in the calendar corresponding to their
deadlines (to catch deadline misses). The calendar will also hold
other time critical points, such as the critical slots from [32].
To set or remove these wake-up points the plug-in module uses
the setWakeUpPoint(time, id) and the deleteWakeUpPoint(time)
methods. All the wake-up points are associated with an id. The
id’s represents deadlines, critical slots, and so on.

Plug-In Interface

The plug-in module encapsulates a scheduling algorithm for scheduling
of user level tasks (not system level tasks), such that the rest of the sys-
tem becomes completely decoupled from the scheduling. This means
that the plug-in module is the only part of the system that knows about
scheduling, and it is also the only part that needs to be changed, if the
scheduling algorithm is being changed.

Therefore the interface to the plug-in module is kept small and sim-
ple such that it is clear how to write a new plug-in. This makes it easier
for designers to create the scheduling package they want. The plug-
in interface is used by the system, specifically the wake-up calendar
and dispatcher, to activate the plug-in module at certain events or times.
Thus each plug-in module that is implemented, is responsible for react-
ing correctly to the events that activates it.

The details of the plug-in module interface and the events it must
react to follow below:

event(taskArrival) This event activates the plug-in when a new user
level task has been activated. The plug-in is responsible for ex-
ecuting the appropriate acceptance test to either accept or reject
the new task. If the task is accepted, the plug-in must insert it at
the correct position in the execution sequence table and activate
the dispatcher.

event(wakeUp, id) This event is sent by the wake-up calendar and it
activates the plug-in at a certain point of time earlier set by the

62 Chapter 3. Processor Scheduling

plug-in itself. Here, the plug-in must check what the wake-up
activation corresponds to, by looking at the id, and take the ap-
propriate actions.

event(taskEnd) The dispatcher sends this event to the plug-in when a
task has finished its execution. The dispatcher does not care if the
task is periodic (and should be reactivated later) or aperiodic, it’s
the job of plug-in module to make the correct decision based on
this. Here, the plug-in should remove the task from the execution
sequence table and activate the dispatcher.

System and Plug-In Interaction

In figure 3.8, we can see the interface the system and the plug-in uses to
interact with with each other. In this section we will describe in more
detail how this interaction works for some of the events that can happen
during system execution.

Task arrival when a new user task is activated, event(taskArrival) is
called to activate the plug-in module. The module executes its
acceptance test to either accept or reject the task. If the task is ac-
cepted, the plug-in calls setWakeUpPoint(dl, id) to set a watchdog
on the deadline of the task. Then, the task is inserted into the ex-
ecution sequence table, using insert(task, pos) to set it at the cor-
rect position according to the scheduling algorithm. Finally the
plug-in activates the dispatcher, by calling dispatch(), and then
it suspends itself. The dispatcher is activated, looks at the front
of the execution sequence table, picks that task for execution and
then it suspends.

Task finishing execution when a task has finished its execution in a
timely manner, the dispatcher gets activated and activates the plug-
in module by calling event(taskEnd), then the dispatcher suspends.
The plug-in removes the wake-up time for the task deadline with
removeWakeUpPoint(dl, id), then it removes the task from the ex-
ecution sequence table by remove(task). The plug-in also calls

3.4 Plug-in Scheduling Architecture 63

Plug-in
(EDF)

dl_rules

SYSTEM

Plug-in
(Offline)

task_table

SYSTEM

Figure 3.9: Example plug-ins

dispatch() again to activate the dispatcher. The dispatcher looks
at the front of the execution sequence table and picks that task for
execution, then it suspends.

Task deadline miss if a task has not finished execution before its dead-
line, the wake-up calendar will be activated by a timer interrupt.
It will then use event(wake-up, id) to activate the plug-in mod-
ule. The plug-in module sees that the id indicates a deadline miss
and removes the task from the execution sequence table, and, if
necessary takes other actions to handle a deadline miss. Then the
plug-in calls the dispatcher, using dispatch(), to activate it. The
dispatcher checks if the executing task exist in the execution se-
quence table. When it discovers that the task has been removed
by the plug-in it will abort the task. The dispatcher also checks
for the first task in the execution sequence table, picks it for exe-
cution, and suspends itself.

3.4.1 Target System Diversity and Plug-In Applicability

The plug-in module design makes it possible to hide the differences be-
tween scheduling algorithms behind a common interface. We will dis-
cuss how this architecture would be applied to the different scheduling
paradigms that exist, and detail what the functions in the interface would
do. Figure 3.9 shows the plug-ins.

64 Chapter 3. Processor Scheduling

Earliest Deadline Scheduled System

In an event-triggered system using the EDF scheduling algorithm, the
tasks are characterized by start times, worst case execution time (WCET),
and deadlines. The tasks can also be either periodic, and have the period
as an additional attribute, or aperiodic. Before the start of the system,
the plug-in sorts any existing tasks in the execution sequence table in
EDF order. It also sets the wake-up events for the deadlines of the tasks
in the wake-up calendar.

When the system is started, the plug-in activates the dispatcher and
suspends itself. The dispatcher does it’s job and suspends. If no new task
arrives, the executing task will continue until it finishes its execution and
then the dispatcher will activate the plug-in module again. The plug-in
will see that it has been activated by a task-end event and remove that
task from the execution sequence table. Then it activates the dispatcher
again. This is how the plug-in and the system would interact if no new
tasks would arrive or no deadline misses would occur.

If a new task arrives, the plug-in is activated and executes the accep-
tance test. If the task is accepted, it will be inserted into the execution
sequence table at the correct position. The plug-in then activates the
dispatcher and suspends, and the interaction continues as normal.

If a deadline miss occurs and activates the plug-in, the task will be
removed from the execution sequence table. The plug-in then activates
the dispatcher and the execution continues.

Off-line Scheduled System

A target system using an off-line generated [54] schedule usually has
more stringent task requirements, such as precedence constraints, than
an on-line scheduled, event-triggered counterpart. In an off-line gener-
ated schedule, tasks have fixed starting and finishing times. In off-line
scheduled systems there are only off-line scheduled task and no new
task will dynamically arrive during the runtime of the system.

Before the execution of the system, the plug-in prepares the execu-
tion sequence table to correspond to the task table internally stored in

3.4 Plug-in Scheduling Architecture 65

the plug-in. The on-line execution of this plug-in will therefore be sim-
pler with an EDF plug-in module. As with the EDF plug-in, wake-up
points will also be set for the deadline of the tasks in the off-line sched-
ule. The plug-in also sets wake-up points for every time slot, like the
MARS system described in [40].

When the system is activated, the plug-in immediately sets a wake-
up point at the next time-slot. If no task has a start time equal to the
current time, it suspends. The plug-in will be activated at the start of the
next time-slot and repeat what it did in the previous time-slot.

If there is a task with the start time equal to the current time, the
plug-in activates the dispatcher, then it suspend. The dispatcher activates
the execution of the next task and suspends.

The plug-in will be activated every slot, and it will also get events
when tasks end or if tasks miss their deadline. If a task finishes execution
in a timely manner, the dispatcher activates the plug-in, which removes
the task from the execution sequence table and then checks if there is a
task ready.

3.4.2 Plug-Ins for Aperiodic Task Handling

Below we present two plug-ins that handles aperiodic tasks. These plug-
ins are meant to be “plugged into” a scheduling module that makes
scheduling decisions based on earliest start times and deadlines. The
plug-ins work independently of the scheduling module and can be seen
as a layer on top of it.

At all times, the scheduling module schedules task that are ready to
execute, that is, tasks that are present in the ready-queue. The plug-in
deals with the aperiodic tasks and places them in the ready-queue of the
scheduling module, which then processes the aperiodic tasks as it would
any other tasks in the system.

The mechanism for the two plug-ins for aperiodic task handling is
based on the slot shifting [27], taking advantage of resources not needed
by non-aperiodic tasks and using them to schedule aperiodic tasks.

We have named the different plug-ins, plug-in A and plug-in B to
distinguish between the two different algorithms. Plug-in A focuses on

66 Chapter 3. Processor Scheduling

guarantees and handling of single aperiodic tasks with fixed demands,
e.g., execution time, while plug-in B is geared toward large number of
aperiodic tasks with changing requirements.

Aperiodic tasks have unknown arrival times. The earliest start time
of an aperiodic task is equal to its arrival time. Aperiodic tasks are
considered independent. We assume that task dependencies are resolved
in the off-line phase.

Known WCET Aperiodic tasks with known worst case times and dead-
lines are termed firm aperiodic. If accepted, which is determined
by a guarantee test, these tasks must be completed before their
deadlines.

Unknown WCET Aperiodic tasks without deadlines and possibly with-
out known maximum execution times are termed soft aperiodic.
These are executed in a best effort fashion at lower priority than
guaranteed tasks such that the timely execution of guaranteed
tasks is not impaired.

Off-line Preparations - Slot Shifting

We propose to use the off-line transformation and on-line management
of the slot-shifting method [27], and further extended in [33]. We don’t
give a full description here, but confine to salient features relevant to
our new algorithms. More detailed descriptions can be found in [26],
[27], [33]. It uses standard off-line schedulers, e.g., [54], [26] to create
schedules which are then analyzed to define start-times and deadlines of
tasks.

After off-line scheduling, and calculation of start-times and dead-
lines, the deadlines of tasks are sorted for each node. The schedule is
divided into a set of disjoint execution intervals for each node. Spare ca-
pacities (sc) to represent the amount of available resources are defined
for these intervals.

Each deadline calculated for a task defines the end of an interval Ii,
end(Ii). Several tasks with the same deadline constitute one interval.

3.4 Plug-in Scheduling Architecture 67

Note that these intervals differ from execution windows, i.e. start times
and deadline: execution windows can overlap, intervals with sc are dis-
joint. The deadline of an interval is identical to that of the task. The
start, however, is defined as the maximum of the end of the previous
interval or the earliest start time of the task. The end of the previous
interval may be later than the earliest start time. Thus it is possible that
a task executes outside its interval, i.e., earlier than the interval start, but
not before its earliest start-time.

Obviously, the amount of unused resources in an interval cannot
be less than zero, and for most computational purposes, e.g., summing
available resources up to a deadline are they considered zero, as detailed
in later sections.

Negative values are used in the spare capacity variables to increase
runtime efficiency and flexibility. In order to reclaim resources of a task
which executes less than planned, or not at all, affected intervals only
need to be update with increments and decrements, instead of a full
recalculation. Which intervals to update is derived from the negative
spare capacities. The reader is referred to [26] for details.

Thus, it is possible to represent the information about amount and
distribution of free resources in the system, plus on-line constraints of
the off-line tasks with an array of four numbers per task. The runtime
mechanisms of the first version of slot shifting [26] added tasks by mod-
ifying this data structure, creating new intervals, which is not suitable
for frequent changes as required by sporadic tasks. The improved [33]
method briefly described in this section only modifies spare capacity.

On-line Activities

Runtime scheduling is performed locally for each node. If the spare
capacities of the current interval sc(Ic) > 0, EDF is applied on the
set of ready tasks. sc(Ic) = 0 indicates that a guaranteed task has to
be executed or else a deadline violation in the task set will occur. It
will execute immediately. Since the amount of time spent is known and
represented in sc, guarantee algorithms include this information.

After each scheduling decision, the spare capacities of the affected

68 Chapter 3. Processor Scheduling

intervals are updated. If, in the current interval Ic, an aperiodic task
executes, or the CPU remains idle for one slot, current spare capacity
in Ic is decreased. If an off-line task assigned to Ic executes, spare ca-
pacity does not change. If an off-line task T assigned to a later interval
Ij, j > c executes, the spare capacity of Ij is increased - T was sup-
posed to execute there but does not, and that of Ic decreased. If Ij “bor-
rowed” spare capacity, the “lending” interval(s) will be updated. This
mechanism ensure that negative spare capacity turns zero or positive at
runtime. Current spare capacity is reduced either by aperiodic tasks or
idle execution and will eventually become 0, indicating a guaranteed
task has to be executed. See [27] for more details.

Guarantee Algorithm A

Assume that an aperiodic task Ta is tested for guarantee. We identify
three parts of the total spare capacities available:

• sc(Ic)t, the remaining sc of the current interval

• ∑ sc(Ii), c < i ≤ l, end(Il) ≤ dl(TA)∧end(Il+1) > dl(TA), sc(Ii) >
0, the positive spare capacities of all full intervals between t and
dl(TA)

• min(sc(Il+1), dl(TA) − start(Il+1)), the spare capacity of the
last interval, or the execution need of TA before its deadline in
this interval, whichever is smaller

If the sum of all three is larger than wcet(TA), TA can be accom-
modated, and therefore guaranteed. Upon guarantee of a task, the spare
capacities are updated to reflect the decrease in available resources. Tak-
ing into account that the resources for TA are not available for other
tasks. This guarantee algorithm is O(N), with N being the number of
intervals.

3.4 Plug-in Scheduling Architecture 69

Guarantee Algorithm B

This plug-in uses a newer version of slot shifting, presented in [33],
as guarantee test and the basic idea behind it is based on the standard
EDF guarantee. EDF is based on having full availability of the CPU, so
we have to consider interference from the non-aperiodic tasks in S and
pertain their feasibility.

Assume that at time t1 there is a set of guaranteed aperiodic tasks
Gt1 and a set of non-aperiodic tasks S. At time t2 where t1 < t2, a new
aperiodic A arrives to the plug-in module. Meanwhile, a number of tasks
of Gt1 may have executed; the remaining task set at t2 is denoted Gt2 .
A test if A ∪ Gt2 can be accepted, considering tasks in S is performed.
If so, A is added to the set of guaranteed aperiodic tasks, G.

The finishing time of a firm aperiodic task Ai, with an execution
demand of c(Ai), is calculated with respect to the finishing time of the
previous task, Ai−1. Without any off-line tasks, it is calculated the same
way as in the EDF algorithm:

ft(Ai) = ft(A− i − 1) + c(Ai) (3.1)

Since firm aperiodic tasks are guaranteed together with tasks in S, the
formula above is extended with a new term that reflects the amount of
resources reserved for these tasks:

ft(Ai)=c(Ai) +

{
t + R[t, f t(A1)] , i = 1
ft(Ai−1)+R[ft(Ai−1), f t(Ai)] , i > 1

(3.2)

where R[t1, t2] stands for the amount of resources (in slots) reserved
for the execution of the tasks in S between time t1 and time t2 . It is
possible to access R[t1, t2] via spare capacities and intervals at runtime:

R[t1, t2] = [t2 − t1] −
∑

Ic∈(t1,t2)

max(sc(Ic), 0) (3.3)

As ft(Ai) appears on both sides of the equation, a simple solution is
not possible. But in [33] an algorithm, with a complexity of O(N), for
computing the finishing times of hard aperiodic tasks is presented.

70 Chapter 3. Processor Scheduling

Plug-in
(EDF)

SYSTEM

Plug-in A

interval_table

Plug-in
(EDF)

SYSTEM

Plug-in B
accepted_tasks
interval_table

Figure 3.10: Plug-in A and Plug-in B

In this plug-in module no explicit reservation of resources is done,
which would require changes in the intervals and spare capacities, as
done in the plug-in A module. Rather, resources are guaranteed by ac-
cepting the task only if it can be accepted together with the previous
tasks in G and S. This enables the efficient use of rejection strategies,
and simplifies the handling of the intervals and sc.

Guarantee Plug-Ins

When a plug-in is activated, it updates the intervals in conformity with
the last task execution and checks if there are any pending aperiodic
tasks. If so, it processes them and puts one or more of them into the
ready-queue of the scheduler. Figure 3.10 show the two plug-ins and
the data structures they contain.

Plug-In A The plug-in keeps a table consisting of the intervals and
their attributes (start, end, sc, and so on) that was created in the off-
line phase. It must also keep track of which task executed last, when it
started its latest execution, and how much time it consumed, to be able
to update the intervals table. Using this information, the plug-in updates
interval spare capacities and possibly also wake-up points.

3.4 Plug-in Scheduling Architecture 71

Plug-In B Plug-in B also needs information about the last task exe-
cution to be able to update spare capacities and wake-up points in the
intervals table it keeps locally. It focuses on handling large numbers of
aperiodic tasks with changing requirements, therefore accepting tasks is
done with explicit guarantees via modifying intervals and spare capaci-
ties. Rather, guarantees are including implicitly, by keeping a list of the
so far accepted task. Should a task finish early, it is removed from the
list and the resources reserved for it are freed without further provisions.
It is well suited for efficient overload handling, since task removals do
not require changes in intervals and spare capacities as in plug-in A.

After each scheduling decision, the spare capacities of the affected
intervals are updated as for plug-in A.

3.4.3 Example

In this section we will use an example to illustrate how the two plug-in
modules we defined earlier, plug-in A and plug-in B, work and interact
with the rest of the system. We assume that there are three periodic
tasks scheduled by the EDF algorithm, and the task-set is the following:
A = (1, 4), B = (1, 6), C = (2, 12), where (C, T) represents WCET
and period. Deadline is assumed to be equal to the end of the period
(D = T). The tasks have harmonic periods to make the example simple.
Firm aperiodic tasks have the format: Taf = (C,D), and soft aperiodic
tasks have the following format: Tas = (C).

Off-line In the off-line phase the plug-ins create a table that contains
all the interval start and end points, the length of the interval, the sc and
total execution time in an interval, and lastly the wake-up (wu) point of
the interval. This table is stored within the plug-in and it will be updated
during runtime to reflect the correct state. Both plug-ins create identical
tables as shown in table 3.1. The table is created with a length equal to
the least common multiple (LCM) of the periods of the tasks. This table
will be restored and repeated when time t is equal to a multiple of the
LCM.

72 Chapter 3. Processor Scheduling

Interval start(I) end(I) | I | sc(I) wu(I)

I0 0 4 4 3 3
I1 4 6 2 1 5
I2 6 8 2 1 7
I3 8 12 4 0 8

Table 3.1: The original interval table.

The execution sequence table (ES-table) contains the following pe-
riodic tasks from the start: ES-table={A0, B0, C0}.

On-line The on-line behavior of the two models differs so we will
show step by step how each of them behave, and what happens with the
interval table at different times. Below we will see the actions taken
during each step by the system and the plug-ins.

Time System actions Plug-in actions

This shows how the actions by the different parts will be repre-
sented. At each point time we can see the system’s dispatcher, wake-up
calendar actions, and the plug-ins actions.

t = 0 dispatch A0 setWakeUpPoint(3), dispatch()

No new aperiodic tasks have arrived so the plug-in sets a wake-up
point and suspends.

t = 1 dispatch Taf remove(A0), Guarantee-test,

deleteWakeUpPoint(3,critical-

slot), setWakeUpPoint(4),

insert(Taf ,dl-pos), dispatch()

ES-table= {B0, C0} and a firm aperiodic task has arrived,
Taf = (1, 4).

Plug-in A The absolute deadline of Taf is 5, so Ic = I0 and If = I1

and the available sc in this interval is 4 (sc(Ic)+sc(If)), which is larger
than Taf execution requirement, so Taf will be guaranteed. Since Taf

’s deadline, 5, is not equal to end(If), I1 will have to be split. The sc is

3.4 Plug-in Scheduling Architecture 73

Interval start(I) end(I) | I | sc(I) wu(I)

I0 0 4 4 3 3
I1a 4 5 1 0 4
I1b 5 6 1 0 5
I2 6 8 2 1 7
I3 8 12 4 0 8

Table 3.2: Updated interval table for plug-in A.

also updated after the split and the interval table for plug-in A is shown
in table 3.2.

Plug-in B In this plug-in the set of guaranteed aperiodic tasks (G)
is empty. The plug-in tests if Taf can be accepted together with the
periodic tasks. This is done by calculating the finishing time of Taf ,
which is 2 in this case (according to formula 3.2). No interval split
will occur in this plug-in, nor any change to the sc of the intervals table
because an aperiodic task was accepted.

Both plug-ins will set an updated wake-up point. The wake-up point
has been changed because task A0 has executed one slot, and then sus-
pend.

t = 2 event(taskEnd),

dispatch B0

remove(Taf),
Internal-work,

dispatch()

ES-table= {B0, C0}. No new aperiodic tasks has arrived, Taf has
finished. The plug-ins will be activated by this task-end event, plug-in
A will modify the wake up point of the interval Taf belonged to in the
intervals table, wu(I1a = 5), and then suspend again. Plug-in B takes
no action and suspends.

t = 3 event(taskEnd),

dispatch C0

remove(B0),
Internal-work,

dispatch()

ES-table= {C0}. No new aperiodic tasks have arrived. C0 will
execute. B0 has finished, the wake up point is not modified because B0

74 Chapter 3. Processor Scheduling

belongs to a later interval (but the wu in that interval is modified, so
wu(I1) = 6).

t = 4 event(wakeUp),

dispatch Tas

insert(Tas,first-pos),
insert(A1,pos),

setWakeUpPoint(5), setWake-

UpPoint(6), dispatch()

ES-table= {A1, C0}. Next instance of task A is ready. C0 has
finished executing and it belongs to a later interval, so the wu of that
interval is modified (wu(I3) = 9).

A soft aperiodic task Tas = (4) has arrived. Both plug-ins will be-
have in the same manner: since sc(Ic) > 0, task Tas will be inserted
first in the ready-queue. Plug-in B will set the next wake up point and
suspend. Plug-in A will set the wake up to 5 even though the origi-
nal wu(Ic) = 4, this has changed because Taf executed in an earlier
interval and thus the sc(Ic) increased to 1.

t = 5 event(wakeUp),

dispatch Tas

setWakeUpPoint(6), dispatch()

ES-table= {A1, C0}. Plug-in A is activated by the wake-up point
event. Normally this means that the execution of the soft task must be
stopped in favor of a periodic task. But in this case we have only an
interval change, and the sc(Ic) > 0, so the soft task can continue to
execute (sc(Ic) > 0 because B0 executed in an earlier interval). Plug-in
A resets the wake up point and suspends itself. Plug-in B is not activated.

t = 6 event(wakeUp),

dispatch Tas

insert(B1,EDF-pos), setWake-

UpPoint(7), dispatch()

ES-table= {A1, B1, C0}. The second instance of task B is acti-
vated. Both plug-ins are activated by wake up points, this means that
the execution of the soft task must be stopped in favor of a periodic task.
Once again, there is only an interval change and a new wake up point
can be set, and since the sc(Ic) > 0, Tas can continue to execute. Both
the plug-ins suspend.

t = 7 event(wakeUp),

dispatch A1

remove(Tas),

setWakeUpPoint(8), dispatch()

3.4 Plug-in Scheduling Architecture 75

ES-table= {A1, B1, C0}. The plug-ins are activated due to the wake
up point. Tas must be interrupted so A1 won’t miss it’s deadline. The
plug-ins set the next wake up point and suspend.

t = 8 event(wakeUp),

event(taskEnd),

dispatch Tas

remove(A1), insert(A2,pos),

insert(Tas,first-pos),

setWakeUpPoint(9), dis-

patch()

ES-table= {A2, B1, C0}. The next instance of task A is activated.
Since the sc(Ic) > 0, Tas will be put first in the ready queue and exe-
cuted. The plug-ins set the next wake up point and suspend.

t = 9 event(wakeUp),

event(taskEnd),

dispatch A2

remove(Tas),

setWakeUpPoint(10), dis-

patch()

ES-table= {A2, B1, C0}.
Tas has finished executing, the plug-ins set the next wake up point and
suspend.

t = 10 event(wakeUp),

event(taskEnd),

dispatch B1

remove(A2),

setWakeUpPoint(11), dis-

patch()

ES-table= {B1, C0}. A2 has finished it’s execution, B1 is executed.
The plug-ins set the next wake-up point and suspend.

t = 11 event(wakeUp),

event(taskEnd),

dispatch C0

remove(B1),

setWakeUpPoint(12), dis-

patch()

ES-table= {C0}. B1 has finished executing, the plug-ins set the
next wake up point and suspend.

After this, because t = total length of the interval tables, the plug-
ins recreate the original intervals table by restoring the sc and wu of the
intervals. If an aperiodic task arrives and has a deadline longer than the
end of the interval table, the table will be extended by repeatedly adding
the original table to the end of the extended table, until it is longer than
the deadline. All the interval information (start, end, sc, and so on) of

76 Chapter 3. Processor Scheduling

Taf TasA0 B0 B1A2A1C0 C0TasTasTas

Taf arrives Tas arrives

1110 2 3 4 5 6 7 8 9 10 12

Table 3.3: Example execution trace

the extended table is adjusted to represent a larger table, and thus later
time points.

3.4.4 Results

Our proposed plug-in architecture addresses the need for adding func-
tionality to systems, in particular scheduling algorithms, without need
for abandoning trusted methods or major revisions.

We presented a plug-in approach for aperiodic task handling, in
two different plug-in modules, and showed their applicability to two
scheduling schemes, EDF, and off-line scheduling. Our method con-
centrates the aperiodic task functionality into a software module with a
defined interface.

The purpose of the architecture is to disentangle actual real-time
scheduling from dispatching and other kernel routines with a small API,
suited for a variety of scheduling schemes as plug-ins. As the function-
ality of the plug-in is independent of the basic scheduling scheme and
the interface is very small, we can insert and apply the aperiodic-plug-
ins to both off-line and on-line scheduling methods. The API is kept
small in order to keep it simple when adding/writing a new scheduling
module, basically the plug-in module must react to three events from the
surrounding system. When task arrives for execution, wake-up points in
time, and when a task ends its execution. Task arrival is where any ac-
ceptance tests can be performed in order to decide if the task can be
allowed to execute or not. Wake-up points are used to wake the schedul-
ing module at certain time points, for instance if time is slotted, at pre-

3.5 Chapter Summary 77

emptions, and so on. Finally, the task end event allows the module to
handle tasks when their execution has finished, periodic tasks should be
reactivated at a later time, aperiodic can be removed, and so on.

3.5 Chapter Summary

In this chapter we presented scheduling solutions for various scenarios.
Two solutions are theoretical extensions to the slot shifting algorithm
presented in [27], the third solution deals with operating system kernel
scheduling architectures.

We presented a solution for handling soft aperiodic tasks in off-line
scheduled systems. The method allocates processor bandwidth in the
off-line phase of scheduling, which is then supposed to be used by a soft
aperiodic task scheduling server, such as the Total Bandwidth Server.
This allows for a more efficient handling than originally proposed in
slot shifting.

The second theoretical solution deals with overload in a off-line
scheduled distributed system. Overload must be removed without dis-
turbing the execution of the time-triggered tasks which has hard real-
time guarantees. Thus, the method removes the overload by removing
firm aperiodic tasks. The algorithm uses task values to compute the set
of tasks that is most appropriate to remove in order to solve the situation.
Removed tasks can be reinserted later for execution, if there are more
resources available due to execution being less than WCET, or they can
be migrated to other nodes for possible execution there.

The final solution within processor scheduling deals with a common
real-time operating system problem. Most RTOSs uses a fixed schedul-
ing algorithm, such as fixed priority, which is highly intertwined with
the rest of the OS kernel in order to have efficient overhead. The prob-
lem is that all applications written for that OS must be tailored to the
specific scheduling paradigm, even though it might not be suitable at
all. We propose a way to disentangle the scheduling algorithm from
the rest of the kernel by implementing a plug-in module. The plug-in
module has a Small and simple interface allowing easy implementation

78 Chapter 3. Processor Scheduling

and insertion of any scheduling algorithm. Thus, allowing the OS to be
tailored to the applications and not the opposite.

Various simulations have been conducted to show the results of the
algorithms presented above. All results are collected and presented in
appendix A.

Chapter 4

Network Packet Scheduling

4.1 Overview

In this chapter we look at the wireless network part of the in-home enter-
tainment system. Wireless Ethernet (IEEE 802.11) is used when stream-
ing video between devices.

We will give an overview of our architecture where we state the QoS
parameters we are interested in, and we also give a short overview of the
problems that exist when using a wireless network.

Finally, we present our architecture in detail, first how we perform
the available bandwidth prediction using probe packets. Secondly, we
present how the prediction information is used to adapt the transmission
rate of the node by using low level traffic shaping and application level
rate changes.

4.1.1 Streaming using Wireless Ethernet

Streaming of video and audio is a major part of in-home entertainment
systems. As mentioned earlier, the basic idea with these systems is to be
able to wirelessly stream the video or audio from any device capable of
streaming to any device capable of receiving and handling the stream.
The problem is that not all devices are capable of handling any stream,

79

80 Chapter 4. Network Packet Scheduling

for instance, a handheld PC is not powerful enough to handle a full
quality DVD movie. Because the available bandwidth of the wireless
network varies, there are no guarantees that a there is enough bandwidth
available to stream the full quality DVD movie, resulting in long delays
or even packet losses.

In order to achieve proper streaming, i.e for the user to perceive a
good video or hear good audio quality, the in-home entertainment sys-
tem needs to provide some kind of QoS.

For the in-home entertainment system we envision in this thesis, we
are interested in the following network QoS:

• A more reliable delivery of streaming packets compared to stan-
dard Ethernet.

• A lower average latency for the streaming packets compared to
standard Ethernet.

We compare our solution to what unmodified wireless Ethernet stan-
dard can provide, in terms of the network QoS we defined above.

In this chapter we present an architecture that provides network
QoS, as defined above, for streaming of video using a wireless network.

Unfortunately, as we have presented in section 2.3, the wireless Eth-
ernet (IEEE 802.11) types of network, was not designed with QoS as a
goal. Furthermore, since the network uses an unregulated bandwidth
spectrum, it can experience disturbance from other devices, such as
cordless phones, microwave owens, Bluetooth devices, and other wire-
less networks, all operating within the same spectrum. Walls, move-
ment, and other physical effects also affects the performance of the net-
work. All of this, combined with the radio wave phenomenon called
fading, where the signal basically disturbs itself, makes guaranteeing
reliable network communication difficult to achieve.

As presented in section 1.3.5 bandwidth prediction is a big research
area. Most bandwidth prediction research is aimed at Internet, where
the purpose is to try to find bottleneck links and then reroute the traffic
around those links, and temporal aspects are not as important as in our
case.

4.2 Basic Idea 81

Traffic smoothing is a way to deal with network congestion, by
limiting the transmission rates from all nodes to a certain limit, con-
gestion can be decreased. The traffic smoothing methods presented in
[44, 43, 18] was all intended to be used in a wired Ethernet, where the
available bandwidth is constant, which is not the case in wireless Ether-
net. The methods also rely on specific information, such as the number
of collisions occurring on the network, which is hard to get in wireless
networks, thus rendering the methods not directly applicable to our in-
home entertainment system.

It is not enough to shape the traffic at the low level presented in
[44, 43, 18], because if the application continues to transmit at a high
rate, there is a chance of internal buffer overflow. Thus, it is also impor-
tant that the application is aware of the varying bandwidth, and adapts
appropriately.

4.2 Basic Idea

The architecture we propose provides QoS for video streaming over the
wireless network, by adapting the transmission rate to the varying band-
width, and by prioritizing the transmission of the video stream packets.

In order for the architecture to provide QoS, it performs two func-
tions: it predicts the available bandwidth of the network and adapts the
transmission rate accordingly.

A major problem with bandwidth prediction in wireless networks is
that there is no easy way to know what the actual bandwidth is. Thus
it is not possible to compare the prediction to the real value in order to
find the error term, i.e. actual bandwidth − predicted bandwidth.

What we get from our bandwidth prediction is the average band-
width that will be available during the time interval until we make the
next prediction, which is also the bandwidth we adapt to. But it can
actually look like what is shown in figure 4.1.

If our prediction of the available bandwidth during the time interval
is lower than the bandwidth that is actually available, we are safe, i.e. we
will not try to transmit more than what is available. Otherwise, we will

82 Chapter 4. Network Packet Scheduling

Time

Available
bandwidth

actual bandwidth

predicted bandwidth

Figure 4.1: Difference between actual and predicted bandwidth for each
time interval.

try to transmit more than what is available, which will result in network
congestion. network congestion is bad since it will cause packets to
collide, which in turn causes retransmissions, which in turn causes the
packet to become delayed for a longer time, or even dropped. In the
end, this can cause important streaming packets to miss deadlines or
even disappear, causing the quality of the displayed video to be bad. So,
this is the major issue we are addressing with our proposed architecture.

Actually, instead of trying to predict the exact bandwidth, we will
try to answer a very simple question:

"is it possible to continue transmitting at the current rate?".

There are two answers to this question: "yes" or "no". A "no" means
that is it not possible to continue and we have to adapt the transmission
rate appropriately. A "yes" answer means we can continue, or maybe
even increase the rate we have if so desired. In order to answer this
question we are no longer interested in the exact amount of available
bandwidth, instead we want to know if it is higher or lower than the
currently requested transmission rate. This shifts our interest, from an

4.2 Basic Idea 83

exact bandwidth prediction, to a quick prediction that is a just part in the
process of determining an answer to the question above. We are more
interested in the end result, i.e. that the streaming is done properly,
which in our case means the timely arrival of the streaming packets at
the receiver node.

Once we know the answer to the question posed above, we take the
appropriate action: continue with the current transmission rate or change
to a lower rate. This approach introduces two new important questions
we need to answer:

• How often should we check if we can continue transmitting with
the current rate?

• With which granularity should we react to a change?

1st Question The first question deals with how often we need to sam-
ple the wireless network in order to "catch" the variability of the avail-
able bandwidth. If it varies rapidly, we need to predict, i.e., sample, the
bandwidth often, otherwise we will cause congestion since we might try
to transmit at a higher rate than what is available. On the other hand, if
the variations occur more seldom we don’t need to sample and predict
that often.

This is the problem of determining the sampling interval we need to
predict the available bandwidth. Normally, the Nyquist-Shannon Sam-
pling Theorem1 would be used to determine how often we should pre-
dict the bandwidth. In order for us to use the sampling theorem, we need
to have a model representing the "behavior" of the available bandwidth
of wireless network. Unfortunately, there are no proper models, and a
model is difficult to create since the behavior varies depending on the
environment in which the wireless network is deployed.

A problem with sampling often is the overhead introduced by our
prediction method, since we send probe packets in the network and per-
form computations at the sending node. The question is how big is the

1The Sampling Theorem states that the sampling rate should be at least 2x the band-
width of the signal to be sampled

84 Chapter 4. Network Packet Scheduling

Maximum time 43.9 ms
Minimum time 15.5 ms
Average time 17.5 ms

Table 4.1: The measured maximum, minimum, and average overhead
for the bandwidth prediction.

overhead is. Table 4.1 below shows the overhead of performing the
bandwidth prediction in our architecture.

As we seen in the table it takes about 15 ms to perform a complete
bandwidth prediction, sending the probe packets and receiving the time
difference result and performing the calculation. At a maximum, it takes
about 43 ms to perform the prediction. From these numbers we conclude
that frequent sampling should not be a problem. Furthermore, since
the code is not optimized we expect the possibility of improving these
numbers with more efficient code.

2nd Question The second question, at which granularity we should
react, deals with when we should react to the answers we get from the
question of whether we can continue transmitting at the current rate or
not. It is a question of whether we should react with a small granularity,
i.e., to changes on the bit level, or with a large granularity, i.e., when
the answer indicates a big change in rate. For example, we could have a
small set of different bandwidth levels, such as Low, Medium, or High
bandwidth. As long as the rate changes stays within the same level, we
do not react, but when the rate changes to another level we react.

Even if the answer is "no", the result can be that we adjust the rate
only to discover that the next answer says we can switch back to the
previous rate again.

If we react to often the end result might be a bad experience for the
user, if the video quality is fluctuating because of the varying bandwidth
of the network the perceived quality of the displayed video is bad.

Our architecture has the possibility of adjusting the transmission rate

4.2 Basic Idea 85

Maximum time 55.5 ms
Minimum time 22.8 ms
Average time 38.8 ms

Table 4.2: The measured maximum, minimum, and average overhead
for updating the traffic shaper parameters.

simultaneously on both a low and the application level within the oper-
ating system.

On the low level it is possible to catch all IP packets and adjusts their
rate before they are inserted into the Network Interface Control (NIC)
layer. At the low level we get a very fine granularity for control, basi-
cally we can adjust the rate in terms of one single bit if we wish. This is
where the traffic smoothers presented in [44, 43, 18] are positioned.

The problem is that it is not enough to only adjust at this level, the
applications also needs to adapt their transmission rates according to the
node limit. Otherwise we risk internal buffers to overflow, so we may
drop packets locally even before they are transmitted.

By only performing traffic shaping on the application level, the prob-
lem will be that the communication layers below the application does
not respect the rate transmitted by the application, and thus can create
bursty traffic at lower levels. Therefore, application level traffic shaping
it is not a viable solution by itself, but in combination with the low level
shaping it is viable.

The architecture we present performs traffic shaping at both levels
to avoid the problems that otherwise can occur.

We are again interested in the overhead of switching, it might be
worth switching at the low level every time there is a change, and the
high level switches occur more seldom.

Table 4.2 below shows the maximum, minimum, and average times
it takes to change the low level traffic shaper in our architecture.

As the table show it takes some time to change the traffic shaper at
the low level, this limits the probing intervals we can use. As we see

86 Chapter 4. Network Packet Scheduling

in the table the maximum time a change of the traffic shaper parameters
took around 55 milliseconds.

4.3 Architecture Details

The bandwidth prediction and traffic shaping architecture should be
present on all nodes within the in-home entertainment system. In this
way all nodes try to adapt according to the available bandwidth of the
network, by repeatedly checking if they can continue transmitting at the
current rate or not. It is important to note that the architecture works
without global control, each node uses our architecture locally without
consideration of the other nodes within the system.

If there are legacy nodes, i.e., nodes that for some reason cannot use
our architecture, the system will still function but with the possibility
of those uncontrolled nodes of causing network congestion when they
transmit data.

To answer the question we need to determine if the available band-
width is higher or lower than the rate we are transmitting at. We look at
two parameters to determine the available bandwidth; first we measure
the delay between probe packets that we send into the network. This de-
lay indicates the amount of congestion between the sender and receiver,
i.e the whole path through the network. Secondly, we look at the history
of predictions in order to catch any trends of the varying bandwidth, i.e.,
is it going down, up, or staying the same?

These two parameters are combined to give us the answer to the
question, i.e. if we can keep transmitting at the current rate or not.

If the answer is yes, we can continue, or maybe even increase the
transmission rate if we want or need to.

Otherwise, if the answer is no, we have to adjust (lower) the trans-
mission rate to match what we can actually transmit. In order to know
what rate we can transmit at, we use the two parameters, probe packet
delay and actual data transmitted from the node, to predict what the new
rate will be.

This is repeated periodically, and all this activity occurs on every

4.3 Architecture Details 87

node connected to the network, so each node detects and, if needed,
adjusts it’s rate accordingly.

Every node is also allocated a proportional share of the available
bandwidth of the wireless network. The share is an upper bound on
how much traffic the node is allowed to transmit into the network. By
carefully assigning these shares, we can prioritize specific traffic from
a node, i.e. the video stream from the streaming server. In our system
we consider the node containing a streaming server most important, and
therefore we assign it the largest share of the available bandwidth. Note
that, because of the previously mentioned fluctuation of available band-
width, the assigned share for each node will also fluctuate over time.

Figure 4.2 shows how this can look, where a streaming server is
assigned a higher bandwidth share than the other nodes.

AP

video stream

data stream

data stream

Node

Assigned 10%
bandwidth share

Node

Node

Assigned 10%
bandwidth share

Node

Assigned 70%
bandwidth share

Does not
transmit

Figure 4.2: Example architecture: a set of nodes with different band-
width shares, note that the streaming server has the highest share.

The problem with this approach is that bandwidth can be wasted
unless there is a possibility to dynamically adjust these shares according

88 Chapter 4. Network Packet Scheduling

to how they are used by the nodes. If a node would not use all of it’s
share of the bandwidth, no other node would have the possibility of
using it instead.

In [57] the authors present an architecture, called the Matrix, that
controls all the available resources within an in-home entertainment sys-
tem. Within the Matrix architecture there is a global resource manager
that is responsible for all decisions regarding resource usage.

The parts presented in this chapter of the thesis would fit into the
Matrix architecture as a local resource manager, which takes orders from
the global resource manager. The global manager would be responsible
for the proportional bandwidth share of all nodes, and because it has a
global view of how every node uses its share it could adapt them accord-
ingly.

Global resource manager

Local
resource
manager

Node

Resource
information

Adaptation
decisions

Local
resource
manager

Node

Figure 4.3: Overview of how the data flows between the local resource
manager and the global resource manager, using the Matrix architecture.

4.3.1 Adjustment Level

There are two levels where we can adjust the traffic. The low level,
where we have a fine granular control and can adjust the traffic on bit

4.3 Architecture Details 89

level, and the application level where have a coarse granularity of con-
trol because of the underlying communication protocol will interfere
with our control.

We do not want to change the rate at the application level to often.
In the Matrix architecture, [57], the authors suggest that a video stream
can be divided into a small number of quality levels, such as: Low,
Medium, and High. Each level of quality indicates a different bit rate,
so the Low level quality video has a lower bit rate than Medium, and
so on. The idea is to switch between these different streams when the
available bandwidth of the network varies.

The reason for this abstraction over the fluctuations in [57] is to
avoid overloading the scheduling if it has to react to every small change.

Again, tying in to the MATRIX architecture presented in [57], the
decision to switch between the different the different quality level streams
is a major decision and would therefore be taken by the global resource
manager. This is because a switch of the video stream quality affects
several resources within the in-home entertainment system, i.e. a change
to higher quality implies that the stream demands more resources for the
whole path between server and client.

The local resource manager would handle all low level traffic rate
adjustment, which occur more frequently and are too small to involve a
global decision. The global resource manager of course still has knowl-
edge about the resource availability at the local node, even though it
does not intervene.

In order to properly adjust the transmission rate, the first part of
our architecture, the bandwidth predictor, predicts the future bandwidth
based on the current available bandwidth and previous bandwidth pre-
dictions.

The bandwidth prediction is then fed into the low level part of our
architecture, the information is also if necessary conveyed to the global
resource manager suggested in [57] so that the application can be noti-
fied if needed. It shapes the traffic according to the available network
bandwidth. By separating the handling of streaming and non-streaming
traffic by using different shapers, we prioritize the streaming packets by

90 Chapter 4. Network Packet Scheduling

giving it a larger share of the bandwidth assigned to the node.
Available bandwidth is predicted between one sender and one re-

ceiver, i.e if there are multiple receivers, available bandwidth must be
predicted for each, because the results can be different depending of the
fluctuations of the wireless network.

Furthermore, for this thesis we assume that each sender only trans-
mits to one receiver, i.e only unicast communication, but this also works
for multiple receivers.

4.3.2 Bandwidth Prediction

Common for most of the bandwidth prediction presented in the litera-
ture is that they do not easily apply to wireless networks. The reason
is that the available bandwidth fluctuates an measurements needs to be
repeated often, thus the measurements need to be simple. The methods
presented above are mainly intended to find bottleneck links within a
more static environment. And the rate of change is on a generally mea-
sured on a larger timescale that what we are interested in, as for instance
presented in [35].

What we want is a fairly simple method that repeatedly probes the
wireless network and predicts the available bandwidth until the next pre-
diction takes place. These predictions are repeated in the sub second
range in order to give us a consistent picture of the fluctuating available
bandwidth.

Bandwidth Prediction Method Details

Our bandwidth prediction uses a packet-pair probing technique pre-
sented in [51], because of the advantage of being a method indepen-
dent of which protocol that is used, i.e., TCP or UDP. We determine the
network state by measuring the time delay between the probe packets.
In [17], the authors investigate other methods to determine the network
state, the signal strength, and signal strength variation, but found that
the probe packet delay is the most reliable method.

4.3 Architecture Details 91

Interval of 0.2 s 3427 kbps
Interval of 0.5 s 3411 kbps
Interval of 1.0 s 3363 kbps
Interval of 2.0 s 3364 kbps

Table 4.3: Different sampling intervals has little effect on the average
predicted bandwidth.

In order to dynamically react to the varying bandwidth of the net-
work, we periodically repeat the bandwidth prediction. Depending on
the time for the period of prediction we can get different results on the
measurements, so we have performed measurements with different pe-
riods to try to determine which period that is most suitable.

As we can see in table 4.3, the average bandwidth predicted using
different sampling intervals is almost identical.

More results from the bandwidth prediction is available in Appendix
A.

In our method, the sender transmits two probe packets (of identical
length), back to back, to the receiver. The receiver measures the de-
lay between the probe packets and returns this information, in another
packet, to the sender. This delay gives an indication of the current net-
work load, a high delay indicates a high network load and vice versa.

Formula 4.1, taken from [51], shows our simple calculation for the
measured bandwidth.

BWT = L/ΔT (4.1)

Where BWT is the resulting bandwidth, L is the probe packet length,
and ΔT is the measured delay between the probe packets (T2 − T1).

But this is not enough, we want to look at the history of measure-
ments so we don’t react wildly to a freak measurement that is not at all
consistent with the overall behavior of the network.

92 Chapter 4. Network Packet Scheduling

So, in order to predict the future available bandwidth we use expo-
nential averaging, which is a technique used to examine and average
a sequence of values along a time series, which enables us to make a
prediction based on previous predictions as well as the current network
load.

Formula 4.2, also taken from [51], shows how we predict the band-
width including history predictions:

Pk = αBWTk + (1 − α)Pk−1 (4.2)

Where Pk is the future prediction, Pk−1 is the previous prediction,
BWTk is the current bandwidth measurement, and α is a constant used
to determine how important the history vs. the current measurement is
to the current prediction.

More results are presented in Appendix A.

4.3.3 Traffic Shaping

The second part in our architecture is the traffic shaper. It is responsible
for controlling the rate of packets transmitted from a node, and it uses
information from the traffic prediction to properly adjust the transmis-
sion rate.

Normally, packets are transmitted in FIFO order, without any con-
sideration to the data contained within the packet. Traffic shaping is a
way to enforce prioritization policies on the packet transmission over a
network link.

Originally, traffic shaping was intended as a tool to divide bandwidth
between different applications. Making it possible to prioritize interac-
tive traffic over other traffic, such as file transfers, in order to experience
shorter delays.

Traffic Shaping Architecture Details

The traffic shaping architecture we propose shapes the outgoing IP-
packets. It is positioned at a low level within the network communi-

4.3 Architecture Details 93

cation stack, below the IP level, where it has access to all IP packets
being sent.

A requirement we have for our shaper is that it must prioritize data,
i.e packets, of different classes. In our solution we define three classes
of data; probe packets, video streams, and other data. The reason is that
we want to have as low latency as possible for the probe packets, i.e
we perform probing it should experience as little latency as possible in
order to reflect a fresh network state. Video streams are also important,
since we envision an in-home entertainment network. Other data is just
a class used for all other transmissions, such as http, ftp, and so on.

Our traffic shaper is based on the token bucket2 algorithm. The to-
ken bucket algorithm has a very widespread use in the context of traffic
shaping.

Each token bucket has three parameters; tokens, bucket depth, and
refresh period.

Tokens indicates the number of tokens presently in the bucket, n to-
kens are consumed when a packet of size n bytes is transmitted.
Packets are only transmitted if there are enough tokens available.

Bucket depth indicates how many tokens a bucket can contain at any
time.

Refresh Period is the time between each refill of tokens, up to the
bucket depth, into the bucket.

In [44, 43, 18] they all sue a token bucket solution to smooth the
traffic, the difference is that they do not smooth the real-time packets,
which is something we want to do. The reason for this is that they
assume that real-time packets are not sent very often, the video stream
is composed by real-time packets, which in this case will be sent very
often. So, in the pure form, one token bucket is not enough for our
needs, since we want packet prioritizing.

2The leaky bucket algorithm is similar, with the difference in that it has a constant
output rate.

94 Chapter 4. Network Packet Scheduling

Token Bucket Solution

A way to prioritize the different packets is to use several buckets, and
filter the different packet classes into different buckets. By giving a
guaranteed transmission rate to each of the buckets, some kind of pri-
oritizing occurs. For instance, the video stream class requires a higher
transmission rate than the probe packet class, but it should not starve the
probe packet class.

Figure 4.4 shows the architecture of the traffic shaper when token
buckets are used.

Filter

Token
bucket

(Probe
packets)

Token
bucket

(Video
stream)

Token
bucket
(Other)

IP packets

High rateLow rate Remaining
. rate

Network Interface Card (NIC)

Figure 4.4: Architecture using 3 token buckets for traffic shaping

There are three buckets, one for each class of packets, in this ar-
chitecture the video stream is given the highest transmission rate, probe
packets the lowest, and other traffic gets what is remaining.

In our implementation of this method we use a queuing discipline
described in [45] called the Hierarchical Token Bucket (HTB), which is
implemented in the Linux kernel, instead of the normal token buckets

4.3 Architecture Details 95

described above. HTBs allow for borrowing of bandwidth from one
bucket to another, thus, if there is no video stream transmission at the
moment, the other buckets have the possibility of using that, otherwise
wasted, bandwidth.

The problem with this solution is that no actual prioritizing takes
place, thus it does not exactly fulfill our requirement.

Priority Queue Solution

A solution that fulfills our prioritizing requirement is to use a token
bucket to limit the total transmission rate from the node, and then fil-
ter the three packet classes into different priority queues.

Packets from a higher priority are always transmitted before lower
priority packets, with the possibility of starvation. Thus, packets from
lower priority queues are transmitted as "background traffic" to the higher
priority queues, which is not something we desire.

Figure 4.6 shows the architecture of the traffic shaper when priority
queues are used instead of token buckets.

In this solution we have 3 priority queues, the probe packets have
the highest priority in order to guarantee that they are transmitted when
they are sent. The video stream has middle priority, and the other pack-
ets has the lowest priority. In this solution the video stream can, and
probably will, starve the lowest priority packet class because it sends a
large amount of data.

Combined Solution

The best solution would be if we could combine the two solutions pre-
sented above, i.e we both prioritize the classes and give guaranteed rates
to them. We want the probe packets to be transmitted without any hin-
drance from other packets, and since they are small this will not have
a sever performance impact on the video stream. Furthermore, we also
want the video stream to have a higher transmission rate than the other
traffic.

96 Chapter 4. Network Packet Scheduling

Filter

High
Priority
Queue
(Probe

packets)

Low
Priority
Queue
(Other)

IP packets

Network Interface Card (NIC)

Middle
Priority
Queue
(Video
stream)

Figure 4.5: Architecture using 3 priority queues for traffic shaping

In this solution we first have two priorities, in order for us to pri-
oritize the probe packets over the video stream and other packets. This
allows the probe packets to be transmitted when the need to, without
disturbance from the video stream or the other traffic. Then the video
stream and other traffic is separated into two different buckets, with a
high transmission rate set for the video stream bucket, and a low rate set
for the other traffic. In this setup the video stream will be on the same
priority as the other traffic and therefore cannot starve it.

Again we measure the round-trip times to see evaluate the perfor-
mance of our architecture. We can see the measured RTT in figures 4.7
and 4.8, for ease of comparison we also included the RTT for standard
wireless Ethernet in the figures. The two figures show the RTT results
for two different payloads, 0.375 and 3.0Mbps respectively.

As we can see, with our architecture the RTT stays fairly constant,
and around 13 microseconds, while for the standard Ethernet it can it
varies all the way up to 3000 − 4000 microseconds.

4.3 Architecture Details 97

Filter

High
Priority
Queue
(Probe

packets)

Low
Priority
Queue

IP packets

Token
bucket

(Video
stream)

Token
bucket
(Other)

Filter

High rate Remaining
. rate

Low rate

Network Interface Card (NIC)

Figure 4.6: Architecture using a combination of priority queues and
token buckets for traffic shaping

Clearly, using our architecture we will get a much lover latency than
what standard Ethernet can provide, and thus, a high likelihood of the
timely arrival of the streaming packets at the receiver which is a goal we
set out to accomplish.

We implemented the traffic shaping architecture using features within
the Linux 2.6 kernel, more details are available in Appendix A.

98 Chapter 4. Network Packet Scheduling

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time

Standard wireless Ethernet
Our method

Figure 4.7: Round-Trip Times using our method compared to standard
wireless Ethernet, 0.375Mbps of payload.

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time

Standard wireless Ethernet
Our method

Figure 4.8: Round-Trip Times using our method compared to standard
wireless Ethernet, 3.0Mbps of payload.

4.4 Streaming 99

4.4 Streaming

Streaming of video and audio is the major reason for having an in-home
entertainment system. Video and audio stream will consume most of the
resources of the system, of course there are other data streams, such as
control information, and normal computer usage data, i.e. web brows-
ing, ftp transfers, telnet sessions, and so on, present as well.

For the work presented in this thesis we have focused on the stream-
ing on video.

In our in-home entertainment system we give priority to the video
streams over any other type of data, with the exception of the probe
packets used for bandwidth prediction. We prioritize the transmission
of the video stream packets from the nodes, and if possible we also give
nodes that will stream video a large enough network bandwidth share to
accomplish the streaming. We want to have as good a result as possible
for the video stream.

There are many issues related to streaming that is not the focus of
our work, and we will not discuss it in this thesis, but we will mention
a very important issue. It is the issue of which network communica-
tion protocol to use for streaming? We have looked at both TCP/IP and
UDP/IP as possible options for our streaming applications. Both options
has their share of advantages and disadvantages, an in the table below
we describe them in more detail:

TCP/IP The Transmission Control Protocol (TCP) is a connection ori-
ented protocol, intend to be used over a unreliable network. TCP
provides a reliable end-to-end delivery of packets through the use
of retransmissions of lost packets.

From a streaming point of view this is not suitable, retransmis-
sions will cause longer delays of packets, which also transfers to
delays in the video. Buffering is a method to avoid delays, the
problem is that it is not trivial to determine a suitable size for the
buffer in order to avoid the delays. And, for live video streaming
buffering is not an option, because delays are not tolerated at all.

100 Chapter 4. Network Packet Scheduling

TCP video streaming will result in a good picture quality, because
no packets are lost, but retransmissions can result in delays for the
displayed video.

UDP/IP The User Data Protocol (UDP) is a connectionless protocol
that provide a simple datagram delivery with no guarantees of
packet delivery at all. UDP is a simple protocol compared to TCP,
it add a small 8-byte header to a raw IP-datagram.

The advantage of using UDP for streaming is its simplicity, there
is almost no overhead added by the protocol, not adding to any
packet delays. The drawback is that there are no guarantees for a
reliable packet delivery, forcing the applications to be capable of
handling data losses.

UDP video streaming can result in a bad picture quality, because
packets can be lost, but the video will be displayed without any
delay.

The choice of which protocol to use, TCP or UDP, boils down to
a chaise between picture quality and delay. This depends on the type
of video that is streamed, live or a DVD movie, and also on the device
that will display the video. A small handheld device might not have
enough memory to handle the buffering needed when using TCP, so
UDP becomes the only viable choice. End user preference is of course
also important, i.e. do the user prefer a bad picture quality or delays?

The reason we choose to use UDP for our streaming applications, is
because of the cases when we are dealing with live video streams. We
do not want the communication protocol to create delays by retransmit-
ting packets. Furthermore, if TV is broadcasted, it has a TV tableau
with fixed times for when each program i showed, if the communication
protocol delay the program, it will no longer be according to the TV
tableau.

In the following sections we present two different video streaming
applications that we have developed. The exact details of how they differ
is presented in each section of the applications, but what they have in
common is the use of UDP for the streaming.

4.4 Streaming 101

4.4.1 Two Streaming Application Architectures

In this section we present two applications that uses the packet schedul-
ing architecture we presented in above. Both applications are aware of
the fact that the network bandwidth is fluctuating, i.e, both applications
adapts the rate of sending data.

The applications are two different variants of a streaming server, i.e
they both stream MPEG-2 video to a receiver. The difference lies in the
sources they have for the MPEG-2 video, the first application streams
the video from file, and the second application streams the video from a
web camera. Thus, both the applications adapts the MPEG-2 stream to
the fluctuating bandwidth in different ways.

Furthermore, we also present a Middleware used for network com-
munication, which we modified to accommodate our plug-in architec-
ture, presented in section 3.4. The Middleware schedule the data trans-
mission using a fixed scheduling algorithm, but our plug-in architecture
now allows us to implement and insert any algorithm we desire.

4.4.2 MPEG-2

The Moving Picture Coding Experts Group (MPEG) [50] was estab-
lished in January 1988 with the mandate to develop standards for coded
representation of moving pictures, audio and their combination. It is a
working group of ISO, the International Organization for Standardiza-
tion.

MPEG is an encoding and compression system for digital multime-
dia content. To understand why video compression is so important, one
has to consider the vast bandwidth required to transmit uncompressed
digital movie. The basic idea is to transform a stream of discrete sam-
ples into a bit-stream of tokens, which takes less space, but is just as
filling to the eye or ear (perceptive coding).

A MPEG-2 video stream consists of picture frames, of which there
are three different types: I-frame, P-frame, and B-frame.

I-frame (Intra coded)I-frames contains a compete picture, very similar

102 Chapter 4. Network Packet Scheduling

to a JPEG picture, which can be decoded into a picture without
information from any other frame.

P-frame (Predicted)P-frames needs information from a previous I-frame
when being decoded into a picture.

B-frame (Bi-directional)B-frames needs information from both a pre-
vious frame and a future frame in order to be decoded into a pic-
ture.

Group-Of-Picture (GOP) is a collection of frames of all types of
arbitrary length, the GOP starts with an I-frame and is followed by a
sequence of P- and B-frames.

4.4.3 Video Stream Server

The first application is a streaming server capable of dynamically switch-
ing between a small number of differently sized versions of the same
MPEG-2 stream, as described in [57]. Synchronization of the streams is
based on Groups Of Pictures (GOP), i.e. a switching between streams
always occurs at a the start of a GOP. The server switches the transmis-
sion between these streams according to the currently available band-
width predicted by our method.

Application Details

For the video streamer, we must prepare different version of a MPEG-
2 video stream before the streaming starts. These different versions of
the video only differ in the bit rate, there is no changes, additions, or
removal of headers.

The number of different streams created and used depends on the
granularity of switching that is wanted. If many streams are used, with
only a small difference in bit rate, a lot of switching will probably occur,
and vice versa.

In our solution we use a small number of different sized versions of
the same stream, we consider bandwidth to also be divided into a small

4.4 Streaming 103

set of levels, as described in [57], how bandwidth are mapped into these
bounds are not within the scope of this thesis.

The server parses these streams and sends data in chunks only from
the stream currently selected for transmission to the receiver. At the
same time the server also parses all different versions of the streams on
a GOP by GOP basis.

If there is an indication of enough bandwidth change to warrant a
stream switch, and depending on the predicted bandwidth, the server
needs to determine which stream version to switch too.

Since we switch streams only at GOPs starts, an if, as is the worst
case, the order to switch comes 1 bit after the GOP header has been
transmitted, we have to discard all data until the next GOP start. This
will result in a lot of data, a GOP can be half a second of video, being
lost, which will result in poor picture quality at the receiver.

4.4.4 Web-cam Server

The second application, developed by Enrico Viero and Daniel Lund-
berg 3, is also a streaming server, but it uses a web camera to capture
pictures, which are then encoded into a video stream with the possibility
to control the stream size by adjusting a quality parameter of the encod-
ing. This encoding is accomplished by the JPEGConverter program4

The quality parameter is determined based on the bandwidth prediction
we perform. This stream is then transmitted onto the network adapted
so that it fits with the available bandwidth.

JPEG

JPEG is a standardized image compression mechanism [36], and stands
for Joint Photographic Experts Group, after the original name of the
committee that wrote the standard. JPEG is designed for compress-
ing either full-color or gray-scale digital images of "natural", real-world

3As part of their Master Thesis.
4JPEGConverter was kindly provided by Joe Woelfel and Chia Shen at Mitsubishi

Electric Research Lab (MERL).

104 Chapter 4. Network Packet Scheduling

scenes, it does not work very well on non-realistic images, such as car-
toons or line drawings.

JPEG does not handle black-and-white (1-bit-per-pixel) images, nor
does it handle motion picture compression, where MPEG is used in-
stead.

Regular JPEG is "lossy", meaning that the image you get out of
decompression isn’t quite identical to what you originally put in. The
algorithm achieves much of its compression by exploiting known limi-
tations of the human eye, notably the fact that small color details aren’t
perceived as well as small details of light-and-dark.

Application Details

The web camera application works in three steps, first it communicates
with the camera, grabs a image in bitmap format, 24 times per second.
Second, it converts the grabbed bitmap into a JPEG picture, in which we
can tune the size (quality) of the picture using a parameter in the JPEG
encoder, from the Independent JPEG group [31]. The parameter can be
set in a range between 0 to 100, where 100 represents lossless compres-
sion. In the third step, the JPEG picture is converted to an MPEG-2
frame, using the Berkley MPEG encoder [13], frames are then collected
in a buffer, up to a certain data chunk size, which is then sent to the
receiver. The server only creates I-frames, not P- or B-frames, in order
to simplify the whole encoding process.

The JPEG encoding step is necessary in order to dynamically adapt
and change the size of the pictures, which is something the MPEG en-
coder is not capable of.

Depending on the available bandwidth we decide the parameter value
when encoding the next JPEG picture. Again, finding an optimal solu-
tion for the available bandwidth to size parameter match is not within
the scope of this thesis.

The web camera server can be "faster" in its response to bandwidth
change, if the buffer being transmitted is small, say one frame, the "new"
frame, encoded with a different size, will almost immediately be trans-
mitted.

4.5 Chapter Summary 105

4.5 Chapter Summary

In this chapter we presented an architecture that provides QoS for video
streaming, using wireless Ethernet, within the in-home entertainment
system. To achieve a better QoS than standard Ethernet we adapt the
transmission rate according to how much bandwidth that currently is
available on the network. Each node within the in-home entertainment
system is assigned a proportional share of the available bandwidth. In
our system the streaming serve gets th highest share of all nodes since
we consider it to be very important that streaming can occur without
problems.

The architecture we propose has the goal of improving these two
QoS parameter, which we define as QoS for the wireless network in this
thesis:

• A more reliable delivery of streaming packets.

• A lower average latency for the streaming packets.

Conceptually we try to answer the following question: can we con-
tinue to transmit at the current rate? The architecture comes up with an
answer to this simple question and takes the appropriate action, depend-
ing on the answer it can lower or continue with, or maybe even increase,
the transmission rate.

In order to answer the question, the architecture performs two tasks.
First, it predicts the future available bandwidth using probe packets to
measure the currently available bandwidth, and the history of previous
predictions. This prediction is performed periodically.

The results of each prediction, a bit/s answer, is then fed into the sec-
ond part, the traffic shaper. The traffic shaper is responsible for changing
the transmission rate of the node, and does so by changing Linux QoS
kernel parameters to set the new maximum allowed rate.

The kernel level adjustment takes place at a very low level, it is
positioned so it can shape all IP packets that will be transmitted from
the node. At this level the granularity of control is very fine, the traffic
shaper works on a bit level.

106 Chapter 4. Network Packet Scheduling

The problem is that this is not enough, if the streaming application
continues to stream at a previous level, there is a chance of internal
buffer overflow. Thus, the application must also be aware of bandwidth
fluctuation, and have the possibility to adapt its streaming rate according
to the bandwidth prediction.

We provide to example streaming applications that adapts the trans-
mission rates, according to the available bandwidth prediction, in two
different ways. Both applications stream MPEG-2 video, the first one
switches between different size version of the same stream when or-
dered to change the transmission rate. The other application is a live
video streaming web cam, where the size of the resulting video stream
can be set with a parameter, which is changed when the transmission
rate needs to be adjusted.

Finally, in order to evaluate our architecture we performed a set of
simulations aimed at verifying an increased QoS compared to what the
standard wireless Ethernet can provide.

We have seen that the round-trip times we get when using our ar-
chitecture is basically the same with or without crosstraffic, which is
around 14 microseconds. For the standard Ethernet, the round trip times
varies alot as the crosstraffic increases, with times up to around 4000
microseconds.

This good result is because the crosstraffic is controlled by our traffic
shaper, and adjusted to what is available and to what bandwidth share
the node is assigned.

To overhead for perform the bandwidth prediction, i.e., packet prob-
ing and calculation, is on average around 1.7 milliseconds, which is a
good result considering the code is not optimized at all. And finally,
the overhead for changing the traffic shaper parameters is on average 38
milliseconds.

Chapter 5

Conclusions

In this thesis we have presented various solutions for a in-home enter-
tainment system. Within these type of systems, different consumer elec-
tronic (CE) devices are interconnected using a wireless network. The
idea is that multimedia content could be shared between any device in
a transparent way, i.e., it should be possible to view the DVD movie,
streamed from the DVD player, on any device, such as a handheld PC.

In order to accomplish this, the system needs to adapt to the varying
resource demands in the constrained real-time devices, i.e., the DVD
movie needs to be adapted in order for the pocket PC to display the
video.

In chapter 2, we presented the constrained real-time devices which
we are interested in. Processors comes in a variety of classes, from pow-
erful desktop PC processors to less powerful processors used in hand-
held computers. And operating systems (OS), which run on the proces-
sors and are responsible for managing the life-cycle of the tasks, i.e.,
including the scheduling of tasks.

OSs can be divided into two classes; real-time operating systems
(RTOS) and general-purpose operating systems (GPOS), both with dif-
ferent goals in mind. A RTOS is intended to be used in real-time sys-
tems, where timeliness is as important as correct functionality. GPOSs,
on the other hand, are more focused on providing correct functional-

107

108 Chapter 5. Conclusions

ity and a fair share of the processor time to all tasks (threads) running
in the system. Using GPOSs in real-time systems is problematic since
they were not designed with real-time as a goal, typical problems come
from lack of control of all resources and tasks leading to problems with
blocking times, priority inversion, and so on.

The second resource we presented was both wired and wireless Eth-
ernet. Using Ethernet for real-time communication is problematic, since
it was not intended to provide real-time guarantees. Network congestion
is a common problem that occurs if the network is overloaded with traf-
fic. Congestion leads to collisions and re-transmissions, which in turn
leads to more collisions, and so on. In the worst case, congestion leads
to packets drops.

Wireless Ethernet is similar to the wired variant, but, in addition has
the problem of being sensitive to interference. Interference is the phe-
nomenon where the radio signal is disturbed, by itself, physical effects
(walls, movement, ...), and other devices (Microwave owens, Bluetooth
devices, cordless phones, ...). Thus, the reliability is even lower for
wireless- compared to a wired Ethernet.

In chapter 3 we presented two theoretical and one practical solution
for processor scheduling.

We presented a solution for handling soft aperiodic tasks in off-line
scheduled systems. The method allocates processor bandwidth in the
off-line phase of scheduling, which is then supposed to be used by a soft
aperiodic task scheduling server, such as the Total Bandwidth Server.
This allows for a more efficient handling than originally proposed in
slot shifting.

The second theoretical solution deals with overload in a off-line
scheduled distributed system. Overload must be removed without dis-
turbing the execution of the time-triggered tasks which has hard real-
time guarantees. Thus, the method removes the overload by removing
firm aperiodic tasks. The algorithm uses task values to compute the set
of tasks that is most appropriate to remove in order to solve the situation.
Removed tasks can be reinserted later for execution, if there are more
resources available due to execution being less than WCET, or they can

109

be migrated to other nodes for possible execution there.

The final solution within processor scheduling deals with a common
real-time operating system problem. Most RTOSs uses a fixed schedul-
ing algorithm, such as fixed priority, which is highly intertwined with
the rest of the OS kernel in order to have efficient overhead. The prob-
lem is that all applications written for that OS must be tailored to the
specific scheduling paradigm, even though it might not be suitable at
all. We propose a way to disentangle the scheduling algorithm from
the rest of the kernel by implementing a plug-in module. The plug-in
module has a Small and simple interface allowing easy implementation
and insertion of any scheduling algorithm. Thus, allowing the OS to be
tailored to the applications and not the opposite.

In chapter 4 we propose an architecture to deal with the unreliability
of the wireless network.

Our bandwidth prediction is based on a well known, and used, method:
packet probing. We use packet pair probing to gather information about
the current state of the network, i.e., the available bandwidth can be de-
rived from the probe packets. This is used in an exponential averaging to
predict the future available bandwidth, including both the result from the
probe packets and the history of previous prediction. The result, which
indicate the future available bandwidth, is used fed into the second part,
the traffic shaper.

our traffic shaper works on the assumption that we have three classes
of traffic; probe packets, video streams, and other traffic. Probe packets
are the two packets we use for the bandwidth prediction, and they need
as low latencies as possible when being transmitted because we want the
measurement to be as fresh as possible. Secondly, the video stream is
the main form of data in the in-home entertainment system. Other traffic
is a collection class for all other kinds of traffic, such as http, ftp, telnet,
and so on.

Probe packets have the highest priority for transmissions, then both
the video stream and other have the same priority. The video stream ant
the other traffic is differentiated by the data transmission rates they are
allowed to use, the video stream gets a high rate, and other traffic gets

110 Chapter 5. Conclusions

the remainder of what is available.

Appendix A

Implementation Details and
Measurement Results

In this Appendix we present simulation results for the overload schedul-
ing algorithm, implementation details the network packet scheduler, and
the results from the measurements we performed in order to evaluate the
network packet scheduling.

The network packet scheduling is implemented in Linux, and uses
built in kernel QoS features. The measurements we performed for the
network packet scheduling, i.e., bandwidth prediction and traffic shap-
ing, were performed using a wireless network.

A.1 Overload Handling Results

We have implemented the described method, and have run simulations
for various scenarios. The simulated system consists of 8 processing
nodes, connected via a network where all necessary messages can be
sent during one time slot.

Each simulation has a length of 2000 slots. The offline schedules are
created from randomly generated precedence graphs, an offline sched-
uler transforms the precedence graphs to offline schedules. Each node

111

112 Chapter A. Implementation Details and Measurement
Results

has one offline schedule with a load of 0.4 and a length between 300 and
1000 slots.

Worst case computation time for both offline and aperiodic tasks
varies uniformly in the range 1–10. Aperiodic tasks are assigned an
actual execution time uniformly distributed between 0.5 and 1.0 of its
WCET, and relative deadlines varying between 1–3 times WCET.

Arrival times of aperiodic tasks are distributed over the simulation
length, with the restriction that no task have a deadline exceeding the
simulation length. Finally, values of aperiodic tasks vary uniformly in
the range 1–100.

The average node load varies between 0.8 and 3.0, the offline load of
0.4 included. The load parameter is based on WCET, and thus represents
the load as perceived by the overload algorithm. The actual system load
is lower1, since execution time is less than WCET.

A.1.1 Experiment 1: Method Comparison

We have studied the total accumulated value of aperiodic tasks that fin-
ished in time, and the following methods have been compared:

1. The full method presented in the paper (Migration).

2. The overload handling algorithm, without task migration (Local).

3. A basic algorithm that uses the offline schedule, assigning idle
slots to aperiodic tasks based on value density (Offline Valueden-
sity).

4. Same as 3, but aperiodic tasks are ordered by value (Offline Value).

5. Same as 3, but aperiodic tasks are ordered according to EDF (Of-
fline EDF).

6. Same as 3, but aperiodic tasks are serviced in order of arrival.
(Offline FCFS).

1The actual system load varies approximately between 0.7 and 2.35 in the experi-
ments, based on the distribution of actual execution times

A.1 Overload Handling Results 113

Methods 1 and 2 implement the efficiency improvements suggested in
3. Each point in the figures represents some 300 simulations.

In the first part of the experiment, all nodes in the system are sub-
ject to the same amount of load. The result is presented in Figure A.1.
Here, the possibility of task migration does not provide any significant
improvement. Compared to the basic method, the performance of the
proposed method is significantly higher.

The second part of the experiment, shown in Figure A.2, is a sce-
nario of unevenly distributed load. Half of the nodes have no aperiodic
tasks arriving, only offline scheduled tasks. Here, the task migration
algorithm clearly increases the system performance, compared to over-
load handling without migration, because tasks can migrate to nodes
with no aperiodic load.

A.1.2 Experiment 2: Restrictions

The theoretical worst case time complexity of the overload algorithm,
for a ready queue of length n, is O(n2). This experiment shows how
the execution time is affected by system load, and the impact on per-
formance from restricting the algorithm as suggested in 3 to deal with
complexity issues.

The parameter cutoff denotes the maximum length of the ready queue.
Tasks that are inserted at a position greater than cutoff are automatically
rejected, which means that they are placed in the maybe-later queue (if
they just arrived, or if they were in the ready queue during the previous
slot), or not stolen (if they were from a maybe-later queue).

We have measured the total accumulated value of aperiodic tasks
that finished in time (similar to experiment 1) for different cutoff val-
ues. Execution time has been approximated by the number of arith-
metic, comparison and assignment operation performed in the overload
algorithm, including the computation of σ-values.

The parameters are the same as in experiment 1, with the load evenly
distributed over the nodes, and using the full method from the paper
(Migration). In Figure A.3, the average number of operations for a sin-
gle call to the overload algorithm is presented. Figure A.4 gives the

114 Chapter A. Implementation Details and Measurement
Results

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3
System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure A.1: Accumulated value for even load distribution.

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3
System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure A.2: Accumulated value for uneven load distribution.

A.1 Overload Handling Results 115

0

20

40

60

80

100

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

Figure A.3: Average number of operations for different cutoff values.

maximum number of operations performed during a single call to the
overload algorithm. Each point in the figures represents some 300 sim-
ulations. Thus, in figures A.3 and A.4, each point represents over 4
million calls to the overload algorithm (8 nodes, and a simulation length
of 2000).

In practice, the execution time is not as big an issue as the theoret-
ical complexity suggests. None of the 57 million calls to the overload
algorithm made during simulations needed more than 720 operations to
be performed.

This is partly because the ready queue size (which is the parame-
ter used in the complexity analysis) is not proportional to system load.
Also, the worst case assumes that none of the restrictions are trivially
solved by the solution to the previous ones, which is highly unlikely
when the queue is long.

The simulations show that restricting the length of the ready queue
significantly reduces worst case execution time, with only a moderate
performance decrease.

116 Chapter A. Implementation Details and Measurement
Results

0

150

300

450

600

750

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

Figure A.4: Maximum number of operations for different cutoff values.

A.1.3 Algorithm for Computing Overload Amount

Given the deadlines and remaining execution times of the aperiodic
tasks, and the spare capacity (slots not reserved for offline scheduled
tasks) of consecutive intervals, this algorithm computes the overload
amount of each aperiodic task.

Let τ1 . . . τn be a sequence of aperiodic tasks sorted by increasing
deadline. Also, assume a sequence of consecutive, non-empty, time in-
tervals, each associated to a number of offline scheduled tasks as defined
by the slot shifting algorithm [27]. The following additional notation is
used in the algorithm.

dlx the deadline of τx

cx the remaining execution time of τx
endx the end time of interval number x

scx the spare capacity of interval number x
oax will be assigned the overload amount of τx

A.1 Overload Handling Results 117

Algorithm

Let ct be the current time, and ci the number of the interval that ct
belongs to. Further, assign oa1 := c1. If the algorithm is called with
compute-oa(ct, 1, ci, scci), then oa contains the overload values for τ1
to τn, upon termination.

function compute-oa(t, d, i, c)
if d ≤ n then

if dld < endi then
tmp := min(c, dld − t)
oad := oad − tmp
if d < n then oad+1 := oad + cd+1

compute-oa(dld, d + 1, i, c − tmp)
else

oad := oad − c
compute-oa(endi, d, i + 1, sci+1)

Note that the function is tail-recursive and thus can be implemented
with bounded memory, e.g., as a standard imperative loop.

Complexity

Before considering the complexity of the algorithm, we formulate an
invariant, i.e., a proposition that is true every time the function is called.
For this, we define in(x) to be the number of the interval containing the
time x. This allow us to formulate the invariant as i ≤ in(dld).

The correctness of the invariant is proven as follows. For the initial
call to the function, we have i = ci ≤ in(dl1) since no task in the
sequence has already violated its deadline. Next, we assume that the
invariant holds for one call, and show that this implies that it must hold
for the next recursive call as well.

If the first branch of the if-then-else statement is selected, i is un-
changed and dis increased by one in the next recursive call. Since
in(dld) < in(dld+1), and since i ≤ in(dld) by assumption, we have

118 Chapter A. Implementation Details and Measurement
Results

i ≤ in(dld+1) so the invariant holds for the next call as well.
If, instead, the else branch is selected, we must have dld ≥ endi.

Assume further that the invariant does not hold for the next call. Than,
since it holds for the current call, we must have i = in(dld). This
implies that endi ≥ dli, which leads to a contradiction and thus proves
that the invariant must hold for the next call.

By induction, we have now shown that the invariant holds each time
the function is called.

Since we have d ≤ n, the invariant implies i ≤ in(dln). Also, we
know that d and i are never decreased, that one of them is increased in
each recursive call, and that they are initialized to 1 and ci respectively.
This implies that the total number of calls to the function can be no more
than n + m, where m is the number of intervals between the current
time, and the deadline of τn. Thus, the worst case time complexity of
the algorithm is in O(n + m).

A.2 Bandwidth Prediction in Linux

We implemented the bandwidth predictor as a user level application run-
ning on Linux. The bandwidth predictor uses UDP to transmit the two
probe packets, i.e., it is a connectionless transmission.

In order to catch the two probe packets on the receiver side, we
use the libpcap [65] library. Libpcap allows us to catch the IP-packets
arriving to the node. A time stamp is taken at the arrival of each of the
probe packets, the difference is calculated, then sent back to the sender
node, using a UDP packet. The time difference between the two probe
packets occurs due to network induced delays, i.e., due to crosstraffic.
By catching the probe IP-packets we avoid UDP protocol overhead in
the time delay (even if it it low). The time difference is used to calculate
the predicted bandwidth, as we described in 4.3, for ease of reference,
we show the equation we use, again:

BWT = L/ΔT (A.1)

A.3 Traffic Shaping in Linux 119

Where L is the length of the probe packets (in bytes), ΔT is the time
difference of the probe packets, and BWT , is the resulting measurement
of the available bandwidth. But, as described in 4.3, this is not enough
for our bandwidth prediction, we also want to include the history of
predictions.

Thus, we use the following formula to calculate the predicted band-
width:

Pk = αBWTk + (1 − α)Pk−1 (A.2)

BWT_k is the bandwidth measurement we just performed (from
equation A.1, α is a weight, and is a number between 0− 1, that is used
to determine how much of the current bandwidth measurement, and how
much of the history of predictions we use when calculating the current
prediction, P_k. This result, P_k is used to update the traffic shaper.

A.3 Traffic Shaping in Linux

We implemented our traffic shaper in Linux, using features built into
kernel. Linux has very advanced routing, filtering, and traffic shaping
options, which has been present in various forms since the 2.2 version
of the kernel. These features where intended to be used in various ways,
according to [45]:

• Throttle bandwidth for certain computers.

• Throttle bandwidth to certain computers.

• Help to fairly share bandwidth.

• Restrict access to computers.

• Do routing based on user id, MAC address, source IP address,
port number, type of service, ...

We are interested in the filtering and traffic shaping capabilities of
the Linux kernel.

120 Chapter A. Implementation Details and Measurement
Results

A.3.1 Bandwidth Management

To control the way in which data is sent, i.e., bandwidth management,
Linux contains methods called queuing disciplines. It is much more
difficult to control the data being received, so within Linux most queu-
ing disciplines work only for sending data. Each network device has a
queuing discipline attached to it. This makes it possible to simultane-
ously perform different traffic control on different devices.

There are many queuing disciplines (called qdiscs) available in the
kernel, but they can be classified into two types., classless and classfull.

classless qdiscs basically accepts packets, then only reschedules, de-
lays, or drops them. A token bucket is an example of a classless queue,
since it only delays or drops the packets it receives.

The other type is the classful qdiscs, which is useful if different
kinds of traffic should receive different treatment. Within classful qdiscs
packets are "filtered" based on one or several conditions, for example,
source or destination port, source or destination IP address, protocol
type, and so on. Filtering allows packets to be separated, and put into
different qdiscs, which uses different methods for further processing of
packets.

A.3.2 Our Implementation

We use the traffic control (tc) tool [68], in order to set up our traffic
shaping architecture. As presented in 4 we want to prioritize the probe
packets, give the video stream a high transmission rate while not starv-
ing any other traffic. Figure A.5 show the resulting architecture within
the Linux kernel.

Tc is used as a QoS control too within Linux, and it acts as an inter-
face for both setting and changing the traffic shaping parameters within
kernel. For us to set up the traffic shaping architecture we follow the
guidelines on [45].

First we use a priority qdisc in order to prioritize the probe packets.
Then, we add two hierarchical token buckets (HTB) in order to separate
the video stream from the rest of the traffic (called other). Filters (in our

A.4 Network Packet Scheduling Results 121

case filtering on destination ports) are used to control the flow of packets
into the correct qdisc.

Filter

High
Priority
Queue
(Probe

packets)

Low
Priority
Queue

IP packets

Token
bucket

(Video
stream)

Token
bucket
(Other)

Filter

High rate Remaining
. rate

Low rate

Network Interface Card (NIC)

Figure A.5: Architecture using a combination of priority queues and
token buckets for traffic shaping

A.4 Network Packet Scheduling Results

In order to evaluate the network packet scheduling architecture we pro-
posed in 4, we need to see how it performs in terms of the network QoS
requirements, which we defined in 4.1, compared to standard wireless
Ethernet. First we present the results of the bandwidth prediction, then
the results for the packet loss, and finally latency results for the video
stream packets.

122 Chapter A. Implementation Details and Measurement
Results

For ease of reference we repeat the network QoS requirements we
defined earlier:

• A more reliable delivery of streaming packets.

• A lower average latency for the streaming packets.

First, to measure the reliable delivery of packets we try to stream
packets to simulate a video stream, and count how many of those packets
that manage to reach the receiver during various scenarios. Secondly to
measure the latency experienced by a message we measure the round-
trip time of all the messages that simulate a video stream.

In order to perform the measurements described above we have set
up a Infrastructure wireless network. It is a IEEE 802.11b, 11 Mbit/s
network, all nodes are connected using the Infrastructure method, i.e.,
all packets pass through the access point (AP). The nodes are: one 600
MHz, Pentium III laptop (P3-laptop), and a 233 MHz, Pentium II laptop
(P2-laptop), and one 350 MHz, Pentium II desktop PC (P2-desktop).
The P3-laptop acts as the streaming server, and the P2-desktop acts as
the receiver of the stream. The P2-laptop is used to generate crosstraffic
in the network, which is sent to the P3-desktop.

To simulate various demands of the video stream, we use four dif-
ferent traffic rates: 0.375, 0.75, 1.5, and 3.0 Mbit/s.

Crosstraffic is generated as a constant stream with four different
rates: 0.5, 1.0, 2.0, and 3.0 Mbit/s.

A.4.1 Bandwidth Prediction

In this section we present the results we get from our bandwidth pre-
diction method. We already know [72] that the average bandwidth we
could expect from a 11 Mbps wireless network, which due to protocol
overhead only is around 3 - 4 Mbps, with possible peaks up to 6 − 7
Mbps.

Furthermore, we are also interested in the prediction results we get
when we use different prediction intervals. The four intervals we test
are: 0.2, 0.5, 1.0, and 2.0 seconds.

A.4 Network Packet Scheduling Results 123

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with an Interval of 0.2s

Probe packets

Figure A.6: Bandwidth prediction results using a 0.2s interval.

For this experiment we use the P3-laptop and the P2-desktop de-
scribed above, where the P3-laptop acts as the sender and the P2-desktop
as receiver. We perform 5000 predictions, where each one includes
sending two probe packets and calculating the available bandwidth.

The results we get is shown in figures A.6, A.7, A.8, and A.9.
As we see in the figures, the interval does not have a big impact

on the bandwidth prediction result. We can also see that the average
bandwidth which we predict is around 3.5 Mbps, which is as expected.

We also perform experiments on order to evaluate the effect different
α values has on the bandwidth prediction result. The second reason is
the weight factor we use in our bandwidth prediction formula, called α,
which determines how much of the current measurement vs. how much
of the previous predictions we should use for the current prediction. For
these experiments alpha was set to be 0.5, so we look equally at the
current prediction and the history of previous predictions.

For ease of reference, we show the bandwidth prediction formula

124 Chapter A. Implementation Details and Measurement
Results

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with an Interval of 0.5s

Probe packets

Figure A.7: Bandwidth prediction results using a 0.5s interval.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with an Interval of 1.0s

Probe packets

Figure A.8: Bandwidth prediction results using a 1.0s interval.

A.4 Network Packet Scheduling Results 125

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with an Interval of 2.0s

Probe packets

Figure A.9: Bandwidth prediction results using a 2.0s interval.

again:

Pk = αBWTk + (1 − α)Pk−1 (A.3)

If α is low, i.e., closer to 0, we will use more of the previous predic-
tions in our calculation which has the result that we react very slowly
to any changes in bandwidth. Thus, the predictions will be quite similar
to the previous prediction, unless the measured bandwidth is extremely
high or low, and therefore it is a more "careful" prediction, i.e., it does
not react extremely to extremely high or low bandwidth measurements.
Thus, since we started from 0 for these experiments, the predictions will
slowly If we, on the other hand, have a high α, the results will give an
even more fluctuating predictions, since we care mostly about the mea-
surements and not the history.

We performed a series of experiments with different α values in
order to determine which value would be the most appropriate to use.
The different α values we measure are: 0.0, 0.25, 0.5, 0.75, and 1.0.

126 Chapter A. Implementation Details and Measurement
Results

 3380

 3390

 3400

 3410

 3420

 3430

 3440

 3450

 3460

 0 100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with alpha=0.0

Probe packets

Figure A.10: Bandwidth prediction results an alpha value of 0.0.

 3100

 3200

 3300

 3400

 3500

 3600

 3700

 3800

 3900

 4000

 0 100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with alpha=0.25

Probe packets

Figure A.11: Bandwidth prediction results an alpha value of 0.25.

A.4 Network Packet Scheduling Results 127

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with alpha=0.5

Probe packets

Figure A.12: Bandwidth prediction results an alpha value of 0.5.

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with alpha=0.75

Probe packets

Figure A.13: Bandwidth prediction results an alpha value of 0.75.

128 Chapter A. Implementation Details and Measurement
Results

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

kb
ps

)

Sample #

Bandwidth Prediction with alpha=1.0

Probe packets

Figure A.14: Bandwidth prediction results an alpha value of 1.0.

As we see int the figures, α = 0 give a static result, which is be-
cause it only looks at the history of predictions and does not consider
any measurement results. As α increase, so does the fluctuations in the
bandwidth prediction, which is because the measurement influences the
prediction. It is difficult to see any big difference between values of 0.5,
0.75, and 1.0. For the rest of the experiments we will use an α of 0.5,
which looks at both the history and current measurement in a fair way.

A.4.2 Round Trip Time

To measure the Round-Trip Time (RTT) we used the ping utility, which
is provided in most operating systems. Ping is a user level application
that was created to measure network performance, such as RTT. It uses
the Internet Control Message Protocol (ICMP) to send its messages, in-
stead of TCP or UDP. ICMP contains a special ECHO_REQUEST mes-
sage that automatically generates a

A.4 Network Packet Scheduling Results 129

ECHO_REQUEST_RESPONSE response from the receiver, which is
how ping measures RTT.

To measure the RTT we send 10000 packets to simulate our video
streaming traffic, i.e., our streaming packets. The RTT packets have the
maximum IP packet size, i.e., 1500 bytes, and are sent with different
periods to simulate different network loads. The size was set to the
maximum because we assume that when streaming the amount of data
is so large that the IP packets will almost always be of the maximum
size. The streaming application will periodically send large chunks of
data which will translate into large IP packets.

The periods varies between 0.0005s, 0.001s, 0.01s, and 0.1s, repre-
senting a traffic rate (payload) of 3 Mbit/s, 1.5 Mbit/s, 0.75 Mbit/s, and
0.375 Mbit/s, respectively.

We also generate crosstraffic at different rate to see the effects on the
RTT. Crosstraffic is generated with a user level application that streams
data at specific rates into the network. We send crosstraffic with the
following traffic rates: no crosstraffic, 0.5 Mbit/s, 1.0 Mbit/s, 2.0 Kbit/s,
and 3.0Kbit/s.

Furthermore, if we combine our method to the experiment, i.e.,
bandwidth prediction and traffic shaping, the cross traffic should only
have a minimal effect on the RTT. The reason is because we limit the
available bandwidth of the crosstraffic generating node to a low value,
20% of what is available. We consider our streaming node to be most
"important" and thus we give it a high bandwidth share, actually 80% of
what is available, even though it might not use all of it.

Figures A.1, A.2, A.3, A.4, and A.5 shows the RTT for both our
method and standard Ethernet. In the figures we also see the RTT for
streaming rates between 0.375 and 3.0Mbit/s, and with crosstraffic rates
between 0.5Mbit/s and 3.0Mbit/s.

As we can see in all the figures, our architecture adapts the crosstraf-
fic according to the predicted bandwidth and the assigned bandwidth
share of the node, resulting in low RTT compared to standard Ethernet.
Standard Ethernet does not perform this adjustment resulting in RTT
that varies depending on the amount of crosstraffic. Standard Ethernet

130 Chapter A. Implementation Details and Measurement
Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time - No crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time with Traffic Shaping - No crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

Table A.1: RTT with our method and standard Ethernet, without any
crosstraffic.

A.4 Network Packet Scheduling Results 131

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time using standard Ethernet - 0.5Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time with Traffic Shaping - 0.5Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

Table A.2: RTT with our method and standard Ethernet, with 0.5 Mbit/s
of crosstraffic.

132 Chapter A. Implementation Details and Measurement
Results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time using standard Ethernet- 1.0Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time with Traffic Shaping - 1.0Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

Table A.3: RTT with our method and standard Ethernet, with 1.0 Mbit/s
of crosstraffic.

A.4 Network Packet Scheduling Results 133

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time using standard Ethernet - 2.0Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time with Traffic Shaping - 2.0Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

Table A.4: RTT with our method and standard Ethernet, with 2.0 Mbit/s
of crosstraffic.

134 Chapter A. Implementation Details and Measurement
Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time using standard Ethernet - 3.0Mbit/s crosstraffic

0.375Mbit/s payload
3.0Mbit/s payload

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ic

ro
se

co
nd

s

Package #

Round-Trip Time with Traffic Shaping - 3.0Mbit/s crosstraffic

rtt-0.375Mbit/s
rtt-0.750Mbit/s

rtt-1.5Mbit/s
rtt-3.0Mbit/s

Table A.5: RTT with our method and standard Ethernet, with 3.0 Mbit/s
of crosstraffic.

A.4 Network Packet Scheduling Results 135

Standard Ethernet Packet loss
0.375Mbps 13%
0.75Mbps 10%
1.5Mbps 0%
3.0Mbps 0%

Our architecture Packet loss
0.375Mbps 0%
0.75Mbps 0%
1.5Mbps 0%
3.0Mbps 0%

Table A.6: Packet losses with standard Ethernet and our architecture,
with varying payloads and 3.0Mbps of crosstraffic.

achieves round-trip times up to 30, 40, and even 50 milliseconds, which
is not desirable from a streaming point of view.

A.4.3 Packet Loss

When we performed the RTT measurements described above, we also
measured the packet loss ratio, comparing standard Ethernet with our
architecture.

Table A.6 shows the packet losses using our shaper architecture. For
the payloads that are lower than 3.0 Mbps, the packet loss is 0% for both
standard Ethernet and our architecture.

A.4.4 Rate Change Overhead

We also performed measurements to see the overhead introduced in the
various parts of our architecture. First we look at the time it takes to
perform the full bandwidth prediction algorithm, then we measure the
time it takes to update the low level traffic shaper.

We use the same setup as described above, but in this case we only

136 Chapter A. Implementation Details and Measurement
Results

Maximum time 43.9 ms
Minimum time 15.5 ms
Average time 17.5 ms

Table A.7: Overhead for the packet probing.

transmit between the P3-laptop, and the P2-desktop, acting as sender
and receiver respectively. We use the same setup as described above,
but in this case we only transmit between the P3-laptop, and the P2-
desktop, acting as sender and receiver respectively.

Bandwidth Prediction Overhead

In this experiment we measure the time it takes for a complete band-
width prediction, from sending the probe packets, receiving the packet
delay from the receiver node, to performing the calculation.

We take timestamps before and after the function calls for sending
probe packets and calculating the new bandwidth, and repeatedly run
the experiment. We did not insert any crosstraffic into the network in
order to get times that are as free as possible from any delays caused by
network interference. We performed 10000 measurement.

As we seen in table A.7, it takes about 15 milliseconds to perform
a complete bandwidth prediction, sending the probe packets and receiv-
ing the time difference result and performing the calculation. At a max-
imum, it takes about 43 milliseconds to perform the prediction.

With these numbers we see that there should be no problem with
sampling quite often, and since the code is not optimized we expect the
possibility of improving these numbers with a more efficient code.

Traffic Shaper Overhead

In the second experiment we were interested in finding out the time it
takes to change the setting of the Linux kernel traffic shaper.

A.4 Network Packet Scheduling Results 137

Maximum time 55.5 ms
Minimum time 22.8 ms
Average time 38.9 ms

Table A.8: Overhead for updating the traffic shaping parameters.

In our implementation we call the Linux traffic control (tc) inter-
face using the system() call provided by the kernel, which adds to the
overhead.

When performing this experiment, we don’t send any probe packets.
Instead, we repeatedly call the function that updates the traffic shaper
with the new numbers. We performed 10000 measurements.

As table A.8 show it takes some time to change the traffic shaper at
the low level, limiting the probing intervals we can use. As we see in the
table the maximum time a change of the traffic shaper parameters took
around 55 milliseconds.

Bibliography

[1] IEEE Std 802.11-1997 - Wireless LAN Medium Access Control
and Physical Layer Specifications, 1997.

[2] IEEE 802.11 WG. Draft Supplement to International Standard
for Information Technology-Telecommunications and Information
Exchange Between Systems LAN/MAN Specific Requirements.
IEEE 802.11e/D2.0, 2001.

[3] IEEE Std 802.3-1985 - Local Area Networks: Carrier Sense Multi-
ple Access with Collision Detection (CSMA/CD) - (ETHERNET),
1985.

[4] IEEE Std 802.3p-1993 - Suppements to Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications, 1985.

[5] M. A. Aboelaze and A. Elnaggar. The Performance of Ethernet
Under a Combined Data/Real-Time Traffic. In In Proceedings of
the 25th Annual IEEE Conference on Local Computer Networks,
Tampa, USA, November 2000.

[6] S. A. Aldarmi and A. Burns. Dynamic Value-Density for Schedul-
ing Real-Time Systems. In Proceedings 11th Euromicro Confer-
ence on Real-Time Systems, Dec 1999.

[7] M. Aldea and M. González Harbour. MaRTE OS: An Ada Ker-
nel for Real-Time Embedded Applications. In In Proceedings of

141

142 Bibliography

the International Conference on Reliable Software Technologies -
Ada-Europe’2001, Leuven, Belgium, May 2001.

[8] M. Aldea and M. González Harbour. POSIX-Compatible
Application-Defined Scheduling in MaRTE OS. In In Proceedings
of the 14th Euromicro Conference of Real-Time Systems, Vienna,
Austria, June 2002.

[9] M. Aldea and M. González Harbour. A New Generalized Ap-
proach to Application-Defined Scheduling. In In Proceedings of
the 16th Euromicro Conference of Real-Time Systems, Catania,
Italy, June 2004.

[10] C. Baek-Young, S. Song, N. Birch, and J. Huang. Probabilistic Ap-
proach to Switched Ethernet for Real-Time Control Applications.
In In Proceedings of the 7th International Conference on Real-
Time Computing Systems and Applications, Cheju Island, South
Korea, December 2000.

[11] S. Baruah and J. Haritsa. Scheduling for Overload in Real-Time
Systems. IEEE Transactions on Computers, September 1997.

[12] S. M. Bellovin. A Best-Case Network Performance Model.
http://www.research.att.com/smb/papers/netmeas.ps, February
1992.

[13] Berkley MPEG Tools - http://www.bmrc.berkley.edu/research/mpeg/.

[14] The Official Bluetooth Website - http://www.bluetooth.com/.

[15] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. Deadline Schedul-
ing in Overload Conditions. In In Proceedings of the 16th Real-
Time Systems Symposium, Pisa, Italy, December 1995.

[16] G. Buttazzo and J. Stankovic. RED: A Robust Earliest Deadline
Scheduling Algorithm. In In Proceedings of the 3rd International
Workshop on Responsive Computing Systems, September 1993.

Bibliography 143

[17] F. Carone and R.P.O. Guerra. Available bandwidth Measurements
on Wireless Networks. Technical report, Mälaradlens Högskola,
Västerås, Sweden, 2002.

[18] A. Carpenzano, R.Carponetto, L. LoBello, and O. Mirabella.
Fuzzy Traffic Smoothing: An Approach for Real-Time Comunica-
tion over Ethernet Networks. In IEEE International Workshop on
Factory Communication Systems, Västerås, Sweden, August 2002.

[19] H. Chetto and M. Chetto. Some Results on the Earliest Deadline
Scheduling Algorithm. Transactions on Software Engineering, 15,
October 1989.

[20] L. Davis and G. Buttazzo. Integrating Multimedia Applications in
Hard Real-Time Systems. In In Proceedings of the 19th Real-Time
Systems Symposium, Madrid, Spain, December 1998.

[21] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time in
Fixed Priority Pre-emptive Systems. In In Proceedings of the 14th
Real-Time Systems Symposium, Raleigh-Durham, USA, December
1993.

[22] Z. Deng and J. W. S. Liu. Scheduling Real-Time Applications in
Open Environment. In In Proceedings of IEEE Real-Time System
Symposium, San Francisco, USA, December 1997.

[23] Z. Deng, J. W. S. Liu, and J. Sun. A Scheme for Scheduling Hard
Real-Time Applications in Open System Environment. In In Pro-
ceedings of the 9th Euromicro Workshop on Real-Time Systems,
Toledo, Spain, June 1997.

[24] C. Dovrolis and M. Jain. Pathload: A Measurement Tool for End-
to-end Available Bandwidth. In In Proceedings of the 3rd Passive
and Active Measurements Workshop, Fort Collins, USA, March
2002.

144 Bibliography

[25] G. Fohler. Analyzing a Pre Run-Time Scheduling Algorithm and
Precedence Graphs. Technical report, Technishe Universität, Wi-
enna, Austria, 1992.

[26] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Sys-
tems. PhD thesis, Technishe Universität, Wienna, Austria, 1994.

[27] G. Fohler. Joint Scheduling of Distributed Complex Periodic and
Hard Aperiodic Tasks in Statically Scheduled Systems. In In Pro-
ceedings of the 16th Real-Time Systems Symposium, Pisa, Italy,
December 1995.

[28] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A New Kernel Ap-
proach for Modular Real-Time Systems Development. In Proceed-
ings of the 13th Euromicro Real-Time Systems Conference, Delft,
Netherlands, June 2001.

[29] R. Bosch GmbH. Contoller Area Network (CAN), 1986.

[30] O. J. González. Building Distributed Real-Time Systems with
Commercial-Off-The-Shelf Components. PhD thesis, University
of Massachusetts, Amherst, USA, 2001.

[31] Independent JPEG Group - http://www.ijg.org/.

[32] D. Isovic and G. Fohler. Handling Sporadic Tasks in Statically
Scheduled Distributed Real-Time Systems. In Proceedings of the
11th Euromicro Real-Time Systems Conference, York, England,
June 1999.

[33] D. Isovic and G. Fohler. Efficient Scheduling of Sporadic, Aperi-
odic, and Periodic Tasks with Complex Constraints. In Proceed-
ings of the 21st IEEE Real-Time Systems Symposium, Orlando,
Florida, USA, November 2000.

[34] D. Isovic and G. Fohler. Online Handling of Firm Aperiodic Tasks
in Time Triggered Systems. In Proceedings of the 12th EUROMI-
CRO Conference on Real-Time Systems, Stockholm, Sweden, No-
vember 2000.

Bibliography 145

[35] Andreas Johnsson, Bob Melander, and Mats Björkman. Band-
width Measurement in Wireless Networks. In Mediterranean Ad
Hoc Networking Workshop, 6 2005.

[36] Joint Photographic Experts Group - http://www.jpeg.org/.

[37] A. Kamerman and G. Aben. Net Throughput with IEEE 802.11
Wireless LANs. In In Proceedings of the IEEE Wireless Commu-
nications and Networking Conference, Chicago, USA, September
2000.

[38] S. Keshav. A Control-Theoretic Approach to Flow Control.
In Conference of Communications Architecture and Protocols,
Zürich, Switzerland, September 1991.

[39] H. Kopetz. Time-Triggered Model of Computation. In In Pro-
ceeedings 19th Real-Time Systems Symposium, Madrid, Spain, De-
cember 1998.

[40] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch.
Senft, and R. Zainlinger. Distributed Fault-Tolerant Real-Time
Systems: The MARS Approach. IEEE Micro, February 1989.

[41] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G. Pospischil,
P. Puschner, J. Reisinger, R. Schlatterbeck, W. Schütz, A. Vr-
choticky, and R. Zainlinger. The Distributed, Fault-Tolerant Real-
Time Operating System MARS. IEEE Operating Systems Newslet-
ter, 6(1), 1992.

[42] H. Kopetz and G. Grünsteidl. TTP - A Time-Triggered Protocol
for Fault-Tolerant Real-Time Systems. In In Proceedings of the
23rd IEEE International Symposium on Fault Tolerant Computing,
Tolouse, France, September 1993.

[43] S-K. Kweon, K. Shin, and G. Workman. Achieving Real-Time
Communication over Ethernet with Adaptive Traffic Smooth-
ing. In IEEE Real-Time Technology and Applications Symposium,
Washington DC, USA, May-June 2000.

146 Bibliography

[44] S-K. Kweon, K. Shin, and Q. Zheng. Statistical Real-Time Com-
munications over Ethernet for Manufacturing Automation Sys-
tems. In IEEE Real-Time Technology and Applications Sympo-
sium, Vancouver, Canada, June 1999.

[45] Linux Advanced Routing and Traffic Control -
http://www.lartc.org/.

[46] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multipro-
gramming in Hard Real-Time Environment. Journal of the ACM,
20, 1, January 1973.

[47] C. D. Locke. Best-Effort Decision Making for Real-Time Schedul-
ing. PhD thesis, Carnegie-Mellon University, Pittsburgh, USA,
1986.

[48] J. Loeser and H. Haertig. Low-Latency Hard Real-Time Commu-
nication over Switched Ethernet. In In Proceedings of the 16th
Euromicro Conference on Real-Time Systems, Catania, Italy, June
2004.

[49] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Re-
serves for Multimedia Operating Systems. In In Proceedings of
the IEEE International Conference on Multimedia Computing and
Systems, Bostin, USA, May 1994.

[50] Moving Pictures Expert Group - http://www.chiariglione.com/.

[51] P. Ni. Bandwidth Estimation for Adaptive Multimedia over Wire-
less Networks. Technical report, Mälardalen University, Västerås,
Sweden, 2003.

[52] K. M. Obenland, J. Kowalik, T. Frazier, and J. S. Kim. Comparing
the Real-Time Performance of Windows NT to an NT Real-Time
Extension. In In Proceedings of the 5th IEEE Real-Time Technol-
ogy and Applications Symposium, Vancouver, Canada, June 1999.

Bibliography 147

[53] D. Pattengale and D. Rohn. NT for Soft Real-Time Control. In
In Proceedings of IEEE Workshop on Advanced Process Control
Applications for Industry, Vancouver, Canada, April 1999.

[54] K. Ramamritham. Allocation and scheduling of complex periodic
tasks. In In the 10th International Conference on Distributed Com-
puting Systems, Paris, France, May 1990.

[55] K. Ramamritham, G. Fohler, and J.-M. Adan. Issues in the Sta-
tic Allocation and Scheduling of Complex Periodic Tasks. In In
Proceedings of the 10th IEEE Workshop on Real-Time Operating
Systems and Software, New York, USA, May 1993.

[56] K. Ramamritham, J.A. Stankovic, and W. Zhao. Distributed
Scheduling of Tasks with Deadlines and Resource Requirements.
IEEE Transactions on Computers, August 1989.

[57] Larisa Rizvanovic and Gerhard Fohler. The MATRIX: A QoS
Framework for Streaming in Heterogeneous Systems. In RTMM
- International Workshop on Real-Time for Multimedia, Catania,
Sicily, Italy, July 2004.

[58] RETIS Lab, RTSIM - Real-Time Simulator - http://retis.sssup.it/.

[59] J. L. Sobrinho and A. S. Krishnakumar. EQuB - Ethernet Quality
of Service using Black Bursts. In IEEE Local Computer Networks
Conference, Lowell, USA, October 1998.

[60] M. Spuri and G. Buttazzo. Efficient Aperiodic Service under Ear-
liest Deadline Scheduling. In In Proceedings of the 15th IEEE
Real-Time Systems Symposium, San Juan, Puerto Rico, December
1994.

[61] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in Dy-
namic Priority Systems. In In Proceedings of the IEEE Real-Time
Systems Symposium, Washington D.C., USA, December 1996.

148 Bibliography

[62] W. Stallings. Wireless Communications and Networks. Prentice
Hall, 2002.

[63] J. A. Stankovic and K. Ramamritham. IEEE Tutorial: Hard Real-
Time Systems. IEEE Computer Society Press, Washington, D.C.,
USA, 1988.

[64] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New
Paradigm for Real-Time Operating Systems. IEEE Software, May
1991.

[65] tcpdump/libpcap, Packet Dumping/Capturing Libraries -
http://www.tcpdump.org/.

[66] S. R. Thuel and J.P. Lehoczky. On-Line Scheduling of Hard Dead-
line APeriodic Tasks in Fixed-Priority Systems. In In Proceed-
ings of the 14th Real-Time Systems Symposium, Raleigh-Durham,
USA, December 1993.

[67] S. R. Thuel and J.P. Lehoczky. Algorithms for Scheduling Hard
Aperiodic Tasks in Fixed-Priority Systems using Slack Stealing.
In In Proceedings of the 15th Real-Time Systems Symposium, San
Juan, Puerto Rico, December 1994.

[68] tc - traffic control, Linux QoS Control Tool -
http://www.lartc.org/howto/.

[69] TTP-OS: Time-Triggered Operating System with TTP Support.

[70] Wi-Fi Alliane Webpage - http://www.wi-fi.org.

[71] Real-Time Systems with MS Windows CE -
http://www.microsoft.com/technet/prodtechnol/wce/plan/realtime.mspx.

[72] What is the Actual Speed of a Wireless Network? -
http://compnetworking.about.com/od/wirelessfaqs/f/maxspeed80211b.htm.

[73] V. Yodaiken. Rough notes on Priority Inheritance. Technical re-
port, New Mexico Institute of Mining, 1998.

Bibliography 149

[74] A. Zahedi and K. Pahlavan. Natural Hidden Terminal and the Per-
formance of Wireless LANs. In In Proceedings of the 6th IEEE
International Conference on Universal Personal Communications
Record, 1997.

[75] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive
Scheduling Under Time and Resource Constraints. IEEE Trans-
actions on Computers, August 1987.

Populärvetenskaplig svensk
sammanfattning

"Adapting to Varying Demands in Resource Constrained Real-Time
Devices"

Inom en nära framtid kommer så kallade digitala underhållningssys-
tem att bli mer och mer populära i hemmen. En stor fördel med dessa
system är att apparaterna, t.ex. TVn, DVDn, digital boxen, och datorn,
kommer att kunna kopplas ihop trådlöst, vilket gör det möjligt att slippa
sladdar mellan dem. Detta innebär också att flera apparater (TVn, PCn,
eller mobiltelefonen) kommer att ha möjlighet att spela upp en DVD
film som sitter i DVD spelaren, oavsett vart i huset apparaterna finns.
Det blir till och med möjligt att flytta de mobila apparaterna medans fil-
men spelas upp, t.ex. kan man gå runt i huset samtidigt som man tittar
på filmen på en liten handdator eller mobiltelefon. Detta är inte möjligt
idag eftersom man kopplar en sladd direkt mellan DVD spelaren och
TVn.

De digitala underhållningssytemen måste klara av att hantera både
ljud (musik) och bild (film) på ett sätt som är tillfredställande för den
som använder systemet, d.v.s, kvaliteten på ljudet som spelas upp eller
bilden som visas måste vara minst lika bra som den är idag. Detta kom-
mer att ställa höga krav på apparaterna, som måste hålla de kvalitetskrav
som ljud (musik) och bildströmmar (film) har.

Tack vare flexibiliteten, d.v.s, möjligheten att ha mobila apparater,

151

152 Populärvetenskaplig svensk sammanfattning

i dessa system, och kraven på systemen, uppstår nya problem som inte
funnits innan. T.ex. så har inte handdatorer eller mobiltelefoner den
tekniska möjligheten att spela upp en DVD film med samma kvalitet
som på en TV.

Ett annat problem är den varierande kapaciteten i det trådlösa nätver-
ket som knyter samman alla apparater. På grund av att nätverket är
väldigt känsligt för störningar (t.ex. från mikrovågsugnar) så varierar
kapaciteten för nätverket hela tiden, något som inte är fallet när man har
ett nätverk med sladdar.

Detta leder till problem med den trådlösa överföringen mellan olika
apparater. Eftersom en DVD film kräver en hel del kapacitet från nätver-
ket, och man inte kan vara säker på vad som finns tillgängligt så vet man
inte om överföringen av filmen kommer att gå bra.

I vår forskning presenterar vi två olika sätt att hantera problemen
med olika apparaters tekniska begränsningar och det trådlösa nätverkets
varierande kapacitet.

För att hantera problemet med olika apparater och dess varierande
tekniska möjligheter så har vi tagit fram metoder som möjliggör för oss
att anpassa uppgifterna (t.ex. spela musik eller film) som utförs på ap-
paraten beroende på den tekniska kapaciteten de har.

Vi föreslår även en metod där vi mäter hur mycket kapacitet som
det finns tillgängligt i det trådlösa nätverket. Eftersom kapaciteten på
nätverket varierar repeterar vi mätningen med jämna mellanrum så att vi
hela tiden har en aktuell bild av vad som finns tillgängligt. Vi använder
sedan den informationen för att anpassa det som skall överföras (musik
eller film) för att hela tiden göra det bästa möjliga av situationen.

