
Industrial Requirements on ComponentTehnologies for Vehiular Control-SystemsAnders Möller† ⋆ Mikael Åkerholm† ⋆ Joakim Fröberg† ‡Johan Fredriksson† Mikael Nolin† ⋆

†MRTC, Mälardalen University, Sweden
⋆CC Systems, Uppsala, Sweden

‡Volvo Constrution Equipment, Eskilstuna, SwedenFebruary 10, 2006AbstratSoftware omponent tehnologies for automotive appliations are de-sired due to the envisioned bene�ts in reuse, variant handling, and port-ing; thus, failitating both e�ient development and inreased qualityof software produts. Component based software development has hadsuess in the PC appliation domain, but requirements are di�erent inthe embedded domain and existing tehnologies does not math. Hene,software omponent tehnologies have not yet been generally aepted byembedded-systems industries.In order to better understand why this is the ase, we present two sep-arate ase-studies together with an evaluation of the existing omponenttehnologies suitable for embedded ontrol systems.The �rst ase-study presents a set of requirements based on industrialneeds, whih are deemed deisive for introduing a omponent tehnology.Furthermore, in the seond study, we asked the ompanies involved tograde these requirements.Then, we use these requirements to ompare existing omponent teh-nologies suitable for embedded systems. One of our onlusions is thatnone of the studied tehnologies is a perfet math for the industrial re-quirements. Furthermore, no single tehnology stands out as being asigni�antly better hoie than the others; eah tehnology has its ownpros and ons.The results an be used to guide modi�ations and/or extensions toexisting omponent tehnologies in order to make them better suited forindustrial deployment in the automotive domain. The results an alsoserve to guide other software engineering researh by showing the mostdesired areas within omponent-based software engineering.1

1 IntrodutionDuring the last deade, Component-Based Software Engineering (CBSE) forembedded systems has reeived a large amount of attention. For o�e/Internetappliations, CBSE has had tremendous impat [1, 2, 3℄, and today omponentsare downloaded and on the �y integrated into, e.g., word proessors and webbrowsers. However, in the embedded systems industry CBSE is still to a largeextent envisioned as a promising future tehnology to meet spei� demands onimproved quality and lowered ost, by failitating software reuse, e�ient soft-ware development, enhaned system maintainability, and more reliable softwaresystems [4℄.CBSE has not yet been generally aepted by embedded-system develop-ers. They are in fat, to a large extent, still using monolithi and platformdependent software development tehniques, in spite of the fat that this makesoftware systems di�ult to maintain, upgrade, and modify. A major reason tonot hange to more modern tehniques is to avoid the additional overhead withrespet to, e.g., memory onsumption and proessor demands that new om-merial tehnologies seem to introdue. A seond reason is to not renoune re-laibility and robustness aspets using, e.g., polymorphism and dynami linking.Finally, there are also signi�ant risks and osts assoiated with the adoption ofa new development tehnique, that these ompanies may not be willing to takewithout guarantees.The ontributions of this artile are threefold. First, it straightens out somequestion-marks regarding atual industrial requirements plaed on a omponenttehnology. Seond, we have asked industry to rank these requirements in orderbe able to fous on the most important aspets of omponent based development.This grading an be used to guide the researh ommunity when fousing onareas with the highest potential industrial impat. Third, we have used theranked requirements to evaluate a set of available omponent tehnologies (fromaademia as well as from industry) that an be used to minimise the risk whenintroduing a new development proess. Thus, this study an help ompaniesto take the step into tomorrow's tehnology today. The list an also be usedto guide modi�ations and/or extensions to existing omponent tehnologies,in order to make them better suited for industrial deployment. Our list ofrequirements also illustrates how industrial requirements on ! produts andprodut development impat requirements on a omponent tehnology.This artile summarises our work on industrial requirements [5, 6, 7℄, andextends previous work, studying the requirements for omponent tehnologies,in that the results are not only based on our experiene, or experiene froma single ompany [8, 9℄. We base most of our results on interviews with se-nior tehnial sta� at the two ompanies involved in this artile, but we havealso onduted interviews with tehnial sta� at other ompanies. Furthermore,sine the embedded systems market is so diversi�ed, we have limited our studyto appliations for distributed embedded real-time ontrol in safety-ritial en-vironments, spei�ally studying ompanies within the heavy vehiles marketsegment [10, 11℄. This gives our results higher validity, for this lass of appli-2

ations, than do more general studies of requirements in the embedded systemsmarket [12℄.2 Introduing CBSE in the Vehiular IndustryComponent-based software engineering arouses interest and uriosity in indus-try. This is mainly due to the enhaned development proess and the improvedability to reuse software o�ered. Also, the inreased possibility to predit thetime needed to omplete a software development projet, due to the fat thatthe assignments an be divided into smaller and more easily de�ned tasks, isseen as a driver for CBSE.CBSE an be approahed from two, oneptually di�erent, points of view;distinguished by whether the omponents are (1) used as a design philoso-phy independent from any onern for reusing existing omponents, or (2)seen as reusable o�-the-shelf building bloks used to design and implement aomponent-based system [13℄. When talking to industrial software developerswith experiene from using a CBSE development proess [14℄, suh as VolvoConstrution Equipment1, the �rst part, (1), is often seen as the most impor-tant advantage. Their experiene is that the design philosophy of CBSE givesrise to good software arhiteture and signi�antly enhaned ability to dividethe software development in small, learly-de�ned, sub-projets. This, in turn,gives preditable development times and shortens the time-to-market. The se-ond part, (2), are by these ompanies often seen as less important, and themain reason for this is that experiene shows that most approahes to largesale software reuse is assoiated with major risks and high initial osts. Ratherfew ompanies are willing to take these initial osts and risks sine it is di�ultto guarantee that money is saved in the end.On the other hand, when talking to ompanies with less, or no, experienefrom omponent-based tehnologies, (2) is seen as the most important motiva-tion to onsider CBSE. This disrepany between ompanies with and withoutCBSE experiene is striking.However, hanging the software development proess to using CBSE doesnot only have advantages. Espeially in the short term perspetive, introduingCBSE represents signi�ant osts and risks. For instane, designing softwareto allow reuse requires (sometimes signi�antly) higher e�ort than does de-signing for a single appliation [15℄. Aording to ertain experiene it takeseven three times longer to develop a general reusable omponent than ahievingthe same funtionailty targetting a spei� ase [16℄. For resoure onstrainedsystems, design for reuse is even more hallenging, sine what are the mostritial resoures may vary from system to system (e.g. memory or CPU-load).Furthermore, a omponent designed for reuse may exhibit an overly rih inter-fae and an assoiated overly omplex and resoure onsuming implementation.Hene, designing for reuse in resoure onstrained environments requires signif-iant knowledge not only about funtional requirements, but also about extra-1Volvo Constrution Equipment, Home Page: http://www.volvo.om3

funtional requirements. These problems may limit the possibilities of reuse,even when using CBSE.Within software engineering, having a lear and omplete understanding ofthe software requirements is paramount. However, pratie shows that a majorsoure of software errors omes from erroneous, or inomplete, spei�ations[15℄. Often inomplete spei�ations are ompensated for by engineers hav-ing good domain knowledge, hene having knowledge of impliit requirements.However, when using a CBSE approah, one driving idea is that eah ompo-nent should be fully spei�ed and understandable by its interfae and assoiateddoumentation. Hene, the use of impliit domain knowledge not doumentedin the interfae may hinder reuse of omponents. Also, division of labour intosmaller projets fousing on single omponents, require good spei�ations ofwhat interfaes to implement and any onstraints on how that implementationis done, further disabling use of impliit domain knowledge. Hene, to fullyutilise the bene�ts of CBSE, a software engineering proess that do not rely onengineers' impliit domain knowledge need to be established.Also, when introduing reuse of omponents aross multiple produts and/orprodut families, issues about omponent management arise. In essene, eahomponent has its own produt life-yle that needs to be managed. This in-ludes version and variant management, keeping trak of whih versions andvariants is used in what produts, and how omponent modi�ations should bepropagated to di�erent version and variants. Components need to be main-tained, as other produts, during their life yle. This maintenane needs tobe done in a ontrolled fashion, in order not to interfere aversively with ongo-ing projets using the omponents. This an only be ahieved using adequatetools and proesses for version and variant management, to fully support aomponent-based strategy suh tools should support version management foromponents instead of traditional �les, and also allow the use of di�erent ver-sions of a omponent to the same lient (e.g., to allow a single produt to use anumber of di�ent versions of a omponent).3 A Component Tehnology for Heavy VehilesExisting omponent tehnologies [1, 2, 3℄ are in general not appliable to embed-ded omputer systems, sine they do not onsider aspets suh as safety, timing,and memory onsumption that are ruial for many embedded systems [1, 2℄.Some attempts have been made to adapt omponent tehnologies to embeddedsystems, like, e.g., MinimumCORBA [17℄. However, these adaptations have notbeen generally aepted in the embedded system segments. The reason for thisis mainly due to the diversi�ed nature of the embedded systems domain. Dif-ferent market segments have di�erent requirements on a omponent tehnology,and often, these requirements are not ful�lled simply by stripping down existingomponent tehnologies; e.g. MinimumCORBA requires less memory then doesCORBA, however, the need to statially predit memory usage is not addressed.It is important to keep in mind that the embedded systems market is ex-4

tremely diversi�ed in terms of requirements plaed on the software. For in-stane, it is obvious that software requirements for onsumer produts, teleomswithes, and avionis are quite di�erent. Hene, we will fous on one singlemarket segment: the segment of heavy vehiles, inluding, e.g., wheel loadersand forest harvesters. It is important to realise that the development and eval-uation of a omponent tehnology is substantially simpli�ed by fousing on aspei� market segment. Within this market segment, the onditions for soft-ware development should be similar enough to allow a lightweight and e�ientomponent tehnology to be established.3.1 The Business Segment of Heavy VehilesDevelopers of heavy vehiles faes a situation of (1) high demands on reliabilityand performane, (2) requirements on low produt ost, and (3) supportingmany on�gurations, variants and suppliers. Computers o�er the performaneneeded for the funtions requested in a modern vehile, but at the same timevehile reliability must not su�er. Computers and software add new souresof failures and, unfortunately, omputer engineering is less mature than manyother �elds in vehile development and an ause lessened produt reliability.This yields a strong fous on the ability to model, predit, and verify omputerfuntionality.At the same time, the produt ost for volume produts must be kept low.Thus, there is a need to inlude a minimum of hardware resoures in a produt(only as muh resoures as the software really needs). The stringent ost re-quirements also drive vehile developers to integrate low ost omponents fromsuppliers rather than develop in-house. On top of these demands on reliabil-ity and low ost, vehile manufaturers make frequent use of produt variantsto satisfy larger groups of ustomers and thereby inrease market share andprodut volume.In order to aommodate (1)-(3), as well as an inreasing number of featuresand funtions, the eletroni system of a modern vehile is a omplex onstru-tion whih omprise eletroni and software omponents from many vendorsand that exists in numerous on�gurations and variants.The situation desribed ause hallenges with respet to veri�ation andmaintenane of these variants, and integration of omponents into a system.Using software omponents, and a CBSE approah, is seen as a promising wayto address hallenges in produt development, inluding integration, �exibleon�guration, as well as good reliability preditions, salability, software reuse,and fast development. Further, the onept of omponents is widely used in thevehiular industry today. Using omponents in software would be an extensionof the industry's urrent proedures, where the produts today are assoiatedwith the omponents that onstitute the partiular vehile on�guration.What distinguishes the segment of heavy vehiles in the automotive indus-try is that the produt volumes are typially lower than that of, e.g., truksor passenger ars [10℄. Also the ustomers tend to be more demanding withrespet to tehnial spei�ations suh as engine torque, payload et, and less5

demanding with respet to style. This auses a lower emphasis on produt ostand optimisation of hardware than in the automotive industry in general. Thelower volumes also make the manufaturers more willing to design variants tomeet the requests of a small number of ustomers.3.2 System DesriptionIn order to desribe the ontext for software omponents in the vehiular in-dustry, we will �rst explore some entral onepts in vehile eletroni systems.Here, we outline some ommon and typial solutions and priniples used in thedesign of vehile eletronis. The purpose is to desribe ommonly used solu-tions, and outline the de fato ontext for appliation development and therebyalso requirements for software omponent tehnologies.The system arhiteture an be desribed as a set of omputer nodes alledEletroni Control Units (ECUs). These nodes are distributed throughout thevehile to redue abling, and to provide loal ontrol over sensors and atuators.The nodes are interonneted by one or more ommuniation busses formingthe network arhiteture of the vehile. When several di�erent organisationsare developing ECUs, the bus often ats as the interfae between nodes, andhene also between the organisations. The ommuniation bus is typially lowost and low bandwidth, suh as the Controller Area Network (CAN) [18℄.

ECU
1

ECU
2

ECU
3

I/O

Sensor
Actuator

Bus 1

Gateway

ECU
5

ECU
4

Bus 2

Service
Computer

Intelligent
Sensor

Figure 1: Example of a vehile network arhitetureIn the example shown in Fig. 1, the two ommuniation busses are separatedusing a gateway. This is a ommon arhitetural pattern that are used forseveral reasons, e.g., separation of ritiality, inreased total ommuniation6

bandwidth, fault tolerane, ompatibility with standard protools [19, 20, 21℄,et. Also, safety ritial funtions may require a high level of veri�ation, whihis usually very ostly. Thus, non-safety related funtions might be separated toredue ost and e�ort of veri�ation. In some systems the network is requiredto give synhronisation and provide fault tolerane mehanisms.The hardware resoures are typially sare due to the requirements on lowprodut ost. Addition of new hardware resoures will always be defensive, evenif ustomers are expeted to embrae a ertain new funtion. Beause of theunertainty of suh expetations, manufaturers have di�ulties in estimatingthe ustomer value of new funtions and thus the general approah is to keepresoures at a minimum.
Example Power train ECU in a Vehicular Control-System�

Processor: 25 MHz 16-bit processor�
Memory devices:�

Flash: 1 MB used for application code�
RAM: 128 kB used for the run-time memory usage�
EEPROM: 64 kB used for system parameters�

Serial interfaces: RS232 or RS485, used for service purpose�
Communications: Controller Area Network (CAN) (one or more interfaces)�
I/O: A number of digital and analogue in and out ports

Example Power train ECU in a Vehicular Control-System�
Processor: 25 MHz 16-bit processor�
Memory devices:�

Flash: 1 MB used for application code�
RAM: 128 kB used for the run-time memory usage�
EEPROM: 64 kB used for system parameters�

Serial interfaces: RS232 or RS485, used for service purpose�
Communications: Controller Area Network (CAN) (one or more interfaces)�
I/O: A number of digital and analogue in and out portsFigure 2: Spei�ation of an embedded system ECUIn order to exemplify the settings in whih software omponents are onsid-ered, we have studied our industrial partner's urrently used nodes. In Figure 2we list the hardware resoures of a typial ECU with requirements on sensingand atuating, and with a relatively high omputational apaity (this exampleis from a typial power train ECU).Also, inluded in a vehile's eletroni system an be display omputer(s)with varying amounts of resoures depending on produt requirements. Theremay also be PC-based ECU's for non-ontrol appliations suh as telematis,and information systems. Furthermore, in ontrast to these resoure intenseECU's, there typially exists a number of small and lightweight nodes, suh as,intelligent sensors (i.e. proessor equipped, bus enabled, sensors).Figure 3 on the following page depits the typial software arhiteture of anECU. Current pratie typially builds on top of a reusable "software platform",whih onsists of a hardware abstration layer with devie drivers and otherplatform dependent ode, a Real-Time Operating System (RTOS), one or moreommuniation protools, and possibly a software (omponent) framework thatis typially ompany (or projet) spei�. This software platform is aessible toappliation programmers through an Appliation Programmers Interfae (API).Di�erent nodes, presenting the same API, an have di�erent realisation of thedi�erent parts in the software platform (e.g. using di�erent RTOSs).Today it is ommon to treat parts of the software platform as omponents,e.g. the RTOS, devie drivers, et, in the same way as the ECU's bus onnetors7

 Application

Application Programmers Interface

Software Framework
RTOS

Hardware

Communication

Hardware Abstraction Layer

Device Drivers

Software
Platform

Figure 3: Internals of an ECU - A software platformand other hardware modules. That is, some form of omponent managementproess exists; trying to keep trak of whih version, variant, and on�gurationof a omponent is used within a produt. This omponent-based view of thesoftware platform is however not to be onfused with the onept of CBSE sinethe omponents does not onform to standard interfaes or omponent models.4 Component Tehnology RequirementsThere are many di�erent aspets and methods to onsider when looking intoquestions regarding how to apture the most important requirements on a om-ponent tehnology speially fousing on heavy vehiles. Our approah has beento ooperate with our industrial partners (CC Systems and Volvo ConstrutionEquipment) very losely, both by performing interviews and by partiipatingin software development projets. In doing so, we have extrated the most im-portant requirements on a omponent-based tehnique from the developers ofheavy vehiles point of view. The results from this study was �rst presented in[5℄. The requirements are divided into two main groups, the tehnial require-ments (Set. 4.2) and the development proess related requirements (Set. 4.3).Also, in Set. 4.4 we present some implied (or derived) requirements, i.e. require-ments that we have synthesised from the requirements in setions 4.2 and 4.3,but that are not expliit requirements from industry.4.1 Researh MethodThe goal of this study was to extrat all hallenges of relevane when intro-duing a omponent tehnology, and �nd the most important requirements. Itseems natural to seek answers where the requirements are de�ned, i.e. at theautomotive software developing organisations. Seondly, the answers are likelyqualitative with a ontext full of details from development setting, produts,8

organisation et. These two fats led us to perform a ase study [22℄ for the twoases represented by two developing organizations.Aording to [22℄ a ase study is an empirial inquiry that investigates aontemporary phenomenon in its real life ontext and opes with situationswhere there are more variables of interest than data points. In this study thephenomenon is the relutane to adopt a omponent tehnology in automotivedevelopment and thereby the requirements put on suh a tehnology. It is learlya ontemporary phenomenon and the situation in a development organisationomprises many variables with no hope of sampling enough data points to maprelations.The ase-study was performed at Volvo Constrution Equipment and at CCSystems. The respondents were senior tehnial sta� from di�erent parts ofthe organisation, like projet managers, development proess speialists, pro-grammers, and testing speialists. The ase-study protool questions were openended to enourage respondents to report on any issues they might attribute toomponent tehnologies.4.2 Tehnial RequirementsThe tehnial requirements desribe the needs and desires that our industrialpartners have regarding the tehnially related aspets and properties of a om-ponent tehnology.4.2.1 AnalysableThe vehiular industry strives for better analyses of omputer system behaviourin general. This striving naturally a�ets requirements plaed on a omponentmodel. System analysis, with respet to extra-funtional properties, suh asthe timing behaviour and the memory onsumption, of a system built up fromwell-tested omponents is onsidered attrative.When analysing a system, built from well-tested and funtionally orretomponents, the main issue is assoiated with omposability. The omposabilityproblemmust guarantee extra-funtional properties, suh as the ommuniation,synhronisation, memory, and timing harateristis of the system [4℄.When onsidering, e.g., timing analysability, it is important to be able toverify (1) that eah omponent meet its timing requirements, (2) that eah node(whih is built up from several omponents) meet its deadlines (i.e. shedulabil-ity analysis), and (3) to be able to analyse the end-to-end timing behaviour ofdistributed funtions (e.g. distributed over several nodes in a distributed ontrolsystem).Beause of the fat that the systems are resoure onstrained (Set. 3), itis important to be able to analyse the memory onsumption. To hek thesu�ieny of the appliation memory, as well as the paramater memory (typ-ially EEPROM), is important. This hek should be done pre-runtime to avoidfailures during runtime. 9

4.2.2 Testable and debuggableIndustry requires tools that support funtional debugging, both at omponentlevel (e.g. a graphial debugging tool showing the omponents in- and out-portvalues) and at the traditional white-box soure ode level. The test and debugenvironment needs to be "omponent aware" in the sense that port-values anbe monitored and traed and that breakpoints an be set on omponent level.Testing and debugging is by far the most ommonly used tehnique to ver-ify software systems funtionality. Testing is a very important omplement toanalysis, and it should not be ompromised when introduing a omponenttehnology.In fat, the ability to test embedded-system software an be improved whenusing CBSE. This is possible beause the omponent funtionality an be testedin isolation. This is a desired funtionality asked for by our industrial partners.This test should be used before the system tests, and this approah an help�nding funtional errors and soure ode bugs at the earliest possible opportu-nity.4.2.3 PortableThe omponents, and the infrastruture surrounding them, should be platformindependent to the highest degree possible. Here, platform independent meanshardware independent, RTOS independent and ommuniation protool inde-pendent.Components are kept portable by minimising the number of dependeniesto the supporting software platform. Suh dependenies are o� ourse, to someextent, neessary in order to onstrut an exeutable system. However, thedependenies should be kept to an absolute minimum, and whenever possibledependenies should be generated automatially by on�guration tools.Ideally, omponents should also be independent of the omponent frame-work used during run-time. This may seem far fethed, sine traditionally aomponent model has been tightly integrated with its omponent framework.However, support for migrating omponents between omponent frameworks isimportant for ompanies ooperating with di�erent ustomers, using di�erenthardware and operating systems.4.2.4 Resoure ConstrainedThe omponents should be small and light-weighted and the omponents in-frastruture and framework should be minimised. Ideally, there should no run-time overhead ompared to not using a omponent based approah.Embedded vehiular systems are typially resoure onstrained in order tolower the prodution osts. When ompanies design new ECUs, future pro�t isthe main onern. Therefore the hardware is dimensioned for antiipated usebut not more.One possibility, that an redue resoure onsumption of omponents and theomponent framework signi�antly, is to limit the possible run-time dynamis.10

This means that it is desirable to allow only stati, o�-line, on�gured systems.Many existing omponent tehnologies have been design to support high run-time dynamis, where omponents are added, removed and reon�gured at run-time. However, this dynami behaviour omes at the prie of inreased resoureonsumption.4.2.5 Component ModellingA omponent tehnology should be based on a standard modelling language likeUML [23℄ or UML 2.0 [24℄. The main reason for hoosing UML is that it is awell known and thoroughly tested modelling tehnique with tools and formatssupported by third-party developers.The reason for our industrial partners to have spei� demands in thesedetails, is that it is belived that the business segment of heavy vehiles doesnot have the possibility do develop their own standards and praties. Insteadthey preferably relay on the use of simple and mature tehniques supported bya welth of third party suppliers.4.2.6 Computational ModelComponents should preferably be passive, i.e. they should not ontain their ownthreads of exeution. A view where omponents are alloated to threads duringomponent assembly is preferred, sine this is believed to enhane reusability,and to limit resoure onsumption. The omputational model should be fousedon a pipe-and-�lter model [25℄. This is partly due to the well known ability toshedule and analyse this model o�-line. Also, the pipes-and-�lters model is agood oneptual model for ontrol appliations.4.3 Development RequirementsWhen disussing CBSE requirements, the researh ommunity often overlooksrequirements related to the development proess. For software developing om-panies, however, these requirements are at least as important as the tehni-al requirements. When talking to industry, earning money is the main fous.However, this annot be done without having an e�ient development proessesdeployed. Hene � to obtain industrial reliane, the development requirementsneed to be onsidered and addressed by the omponent tehnology.4.3.1 IntroduibleIt should be possible for ompanies to gradually migrate into a new develop-ment tehnology. It is important to make the hange in tehnology as safe andinexpensive as possible.Revolutionary hanges in the development tehnique used at a ompany areassoiated with high risks and osts. Therefore a new tehnology should bepossible to divide into smaller parts, whih an be introdued separately. Forinstane, if the arhiteture desribed in Fig. 3 is used, the omponents an11

be used for appliation development only and independently of the real-timeoperating system. Or, the infrastruture an be developed using omponents,while the appliation is still monolithi.One way of introduing a omponent tehnology in industry, is to startfousing on the development proess related requirements. When the developershave aepted the CBSE way of thinking, i.e. thinking in terms of reusablesoftware units, it is time to look at available omponent tehnologies. Thisapproah should minimise the risk of spending too muh money in an initialphase, when swithing to a omponent tehnology without having the CBSEway of thinking.4.3.2 ReusableComponents should be reusable, e.g., for use in new appliations or environmentsthan those for whih they where originally designed [26℄. The requirement ofreusability an be onsidered both a tehnial and a development proess relatedrequirement. Development proess related sine it has to deal with aspetslike version and variant management, initial risks and ost when building up aomponent repository, et. Tehnial sine it is related to aspets suh as, howto design the omponents with respet to the RTOS and HW ommuniation,et.Reusability an more easily be ahieved if a loosely oupled omponent teh-nology is used, i.e. the omponents are fousing on funtionality and do notontain any diret operating system or hardware dependenies. Reusability issimpli�ed further by using input parameters to the omponents. Parametersthat are �xed at ompile-time, should allow automati redution of run-timeoverhead and omplexity.A lear, expliit, and well-de�ned omponent interfae is ruial to enhanethe software reusability. To be able to replae one omponent in the softwaresystem, a minimal amount of time should be spent trying to understand theomponent that should be interhanged.It is, however, both omplex and expensive to build reusable omponents foruse in distributed embedded real-time systems [4℄. The reason for this is thatthe omponents must work together to meet the temporal requirements, theomponents must be light-weighted sine the systems are resoure onstrained,the funtional errors and bugs must not lead to erroneous outputs that followthe signal �ow and propagate to other omponents and in the end ause unsafesystems. Hene, reuse must be introdued gradually and with grate are.4.3.3 MaintainableThe omponents should be easy to hange and maintain, meaning that devel-opers that are about to hange a omponent need to understand the full impatof the proposed hange. Thus, not only knowledge about omponent interfaesand their expeted behaviour is needed. Also, information about urrent de-ployment ontexts may be needed in order not to break existing systems where12

the omponent is used.In essene, this requirement is a produt of the previous requirement onreusability. The �ip-side of reusability is that the ability to reuse and reon�g-ure the omponents using parameters leads to an abundane of di�erent on�g-urations used in di�erent vehiles. The same type of vehile may use di�erentsoftware settings and even di�erent omponent or software versions. So, byintroduing reuse we introdue more administrative work.Reusing software omponents lead to a ompletely new level of softwaremanagement. The omponents need to be stored in a repository where di�erentversions and variants need to be managed in a su�ient way. Experienes fromtrying to reuse software omponents show that reuse is very hard and initiallyrelated with high risks and large overheads [4℄. These types of osts are usuallynot very attrative in industry.The maintainability requirement also inludes su�ient tools supporting theservie of the delivered vehiles. These tools need to be omponent aware andhandle error diagnostis from omponents and support for updating softwareomponents.4.3.4 UnderstandableThe omponent tehnology and the systems onstruted using it should be easyto understand. This should also inlude making the tehnology easy and intu-itive to use in a development projet.The reason for this requirement is to simplify evaluation and veri�ationboth on the system level and on the omponent level. Also, fousing on anunderstandable model makes the development proess faster and it is likelythat there will be fewer bugs.It is desirable to hide as muh omplexity as possible from system develop-ers. Ideally, omplex tasks (suh as mapping signals to memory areas or busmessages, or produing shedules or timing analysis) should be performed bytools. It is widely known that many software errors our in ode that deals withsynhronisation, bu�er management and ommuniations. However, when usingomponent tehnologies suh ode an, and should, be automatially generated;leaving appliation engineers to deal with appliation funtionality.4.4 Derived RequirementsHere, we present two implied requirements, i.e. requirements that we have syn-thesised from the requirements in setions 4.2 and 4.3, but that are not expliitrequirements from the vehiular industry.4.4.1 Soure Code ComponentsA omponent should be soure ode, i.e., no binaries. The reasons for thisinlude that ompanies are used to have aess to the soure ode, to �ndfuntional errors, and enable support for white box testing (Set. 4.2.2). Sine13

soure ode debugging is demanded, even if a omponent tehnology is used,blak box omponents is undesirable.Using blak-box omponents would, regarding to our industrial partners,lead to a feeling of not having ontrol over the system behaviour. However,the possibility to look into the omponents does not neessary mean that youare allowed to modify them. In that sense, a glass-box omponent model issu�ient.Soure ode omponents also leaves room for ompile-time optimisations ofomponents, e.g., stripping away funtionality of a omponent that is not usedin a partiular appliation. Hene, soue ode omponents will ontribute tolower resoure onsumption (Set. 4.2.4).4.4.2 Stati Con�gurationFor a omponent model to better support the tehnial requirements of analysabil-ity (Set. 4.2.1), testability (Set. 4.2.2), and light-weightiness (Set. 4.2.4), theomponent model should be on�gured pre-runtime, i.e. at ompile time. Com-ponent tehnologies for use in the o�e/Internet domain usually fous on adynami behaviour [1, 2℄. This is of ourse appropriate in this spei� domain,where powerful omputers are used. Embedded systems, however, fae anotherreality - with resoure onstrained ECU's running omplex, dependable, ontrolappliations. Stati on�guration should also improve the development proessrelated requirement of understandability (Set. 4.3.4), sine there will be noomplex run-time reon�gurations.Another reason for the stati on�guration is that a typial ontrol node,e.g. a power train node, does not interat diretly with the user at any time.The node is started when the ignition key is turned on, and is running as aself-ontained ontrol unit until the vehile is turned o�. Hene, there is noneed to reon�gure the system during runtime.4.5 DisussionReusability is perhaps the most obvious reason to introdue a omponent teh-nology for a ompany developing embedded real-time ontrol systems. Thismatter has been the most thoroughly disussed subjet during our interviews.However, it has also been the most separating one, sine it is related to thequestion of deiding if money should be invested in building up a repository ofreusable omponents.Two important requirements that have emerged during the disussions withour industrial partners are safety and reliability. These two are, as we see it,not only assoiated with the omponent tehnology. Instead, the responsibilityof designing safe and reliable system rests mainly on the system developer. Thetehnology and the development proess should, however, give good support fordesigning safe and reliable systems.Another part that has emerged during our study is the need for a quality rat-ing of the omponents depending on their suess when used in target systems.14

This requirement an, e.g., be satis�ed using Exeution Time Pro�les (ETP's),disussed in [27℄. By using ETPs to represent the timing behaviour of softwareomponents, tools for stohasti shedulability analysis an be used to makeost-reliability trade o�s by dimensioning the resoures in a ost e�ient wayto ahieve the reliability goals. There are also emerging requirements regardingthe possibilities to grade the omponents depending on their software quality,using for example di�erent SIL (Safety Integrity Levels) [28℄ levels.5 Requirements GradingIn order to better understand whih of the requirements that is of most impor-tane to industry we onduted a seond study [7℄. The motivation of gradingrequirements is that the results an be used to guide researhers and tool ven-dors to put fous on the most relevant industrial requirements, and to resolveon�its between requirements.5.1 MethodThe �rst ase study identi�ed many areas of interests and many were losely re-lated to the development proess. Open ended disussions gave us the eliitationof the most important requirements but no notion of relative importane anbe analysed based on these results. In order to grade requirements aording toimportane we performed a seond study.The requirement grading was performed in a workshop with a short presen-tation, de�nition of terms, questions and a numerial grading of requirementswhere the average sum was bounded. Thus, respondents ould not grade allrequirements high in order to get a sum average in the prede�ned range. Theproedure was the following:1. The workshop started with a short presentation of the study and of ompo-nent tehnologies basis. A very brief bakground was presented with PCsoftware bene�ts while automotive software engineers are still relutant.Furthermore the development proess of working with omponents in aomponent repository rather than developing in a normal V model wasdesribed. The terms; Tool, Components, Platform, Component Frame-work and Repository was explained. Finally the results from the earlierstudy were presented.2. Seondly, the de�nitions of all the requirements that were to be gradedwere presented and respondents were given handouts with the de�nitions.Respondents were allowed to ask questions on the de�nitions.3. The data olletion was made by the respondents �lling in a spreadsheetform on a laptop omputer where all the twelve listed requirements were tobe graded with a number 1-4 indiating from "interesting" to "absolutelydeisive". The respondents were to make sure that the sum average of all15

their grades was in the range 2.4 - 2.6. The sum, average of grades, wasshown and realulated throughout the grading.5.2 ResultsIn this setion we present the results (see Figure 1) from the seond study, i.e.the industry grading of the requirements in setion 4. We present the resultby �rst disussing the requirements separately, and then in setion 5.1 we drawsame general onlusions from our work.5.2.1 AnalysableAnalysability is in general onsidered to be important, but the results fromour ase-study expose that it is not amongst the most important issues ofomponent-based development. For example, it is worth notiing that our part-ners onsider testability and the means to debug the appliation as muh moreimportant. Reasons for this might be that the business segment of heavy ve-hiles has low series (ompared to, e.g., truks or passenger ars) and that isheaper to add extra proessing power (faster CPU and more memory) in orderto avoid timing or memory problems. It may be that a ommon view amongstindustrial developers that analysability is omplex and that it leads to a lot ofmanual information managing. Perhaps timing and memory onsumption is nota problem in today's appliations whereas testability gives diret feedbak tothe software developer and might hene be seen as more important. Yet anotherreason might be that analysability is not believed to be feasible or pratial fordistributed and omplex industrial systems.5.2.2 Test and DebugTest and debug is the most important quality attribute seen in the requirementgrades (see �gure 1). This is most likely due to the fat that testing of embeddedsystems is extremely time onsuming today. Hene, from a ompany perspetive- there is a huge amount of time (and money) to save if a omponent tehnologyould derease the time it takes to verify software funtionality.Another important issue is the rising requirement from Original EquipmentManufaturers (OEMs) that sub-ontrators deliver "error-free" software. Lateor erroneous deliveries are typially punished by an OEM �ne. This entail thattesting of software (typially not omplete systems but rather omponents) ofthe system gets more and more important.It is also worth notiing that both CCS and VCE have spent huge amountsof money on developing test and debug equipment for their respetive systems.Hene, the results might be a bit biased, i.e., that these ompanies onsider itmore important than the typial embedded software developer.
16

5.2.3 PortabilityPortability is onsidered very important, mainly due to the fat that it is desiredto keep hardware upgrading osts to an absolute minimum. But it is of oursealso important to be �exible in the hoie of software platform.For CCS, working with many di�erent OEMs (and many di�erent platforms),the requirements of portability is obvious - but it is striking to see that also VCEonsider portability as being very important (see Figure 2). The reason for thisis essentially that it is very important not to be too dependent on tool vendorsand hardware platforms.5.2.4 Resoure ConstrainedSurprisingly, and in quite ontrary to what one ould expet from developers ofresoure onstrained embedded systems, this requirements is onsidered to bethe least important in this study. The reason for this might be the fat thaturrent state-of-pratise development methods used by the vehiular industryare rather resoure onstrained. Hene, there is not muh fous on this require-ment in the daily work. It might be the ase that developers take things theyhave for granted, and see things they do not have.Another reason is Moore's law, it is heaper to by more proessing powerthan it is to spend money on analysing timing and memory onsumption. Thisis also dependent on the produt volumes, for low series produts it might beworth spending some extra money on hardware in order to failitate the use ofmore advaned development methods.5.2.5 Component ModellingThis requirement is not onsidered to be very important; meaning that otheraspets of modelling is more important than using business standards. For ex-ample, simpliity is more important than using a standard modelling language.However, it is interesting to notie that the requirement on using a standardisedmodelling language is more important relative to the requirement on resoureusage.5.2.6 Computational ModelThe requirement on the omputational model, meaning that the omponentsshould be passive (not having their own threads of exeution) and that pipe-and-�lter should be used as an arhitetural pattern, is the most deviatingrequirement (see Figure 2). This might be beause VCE is urrently using theRubus Component Model [29℄ using a pipe-and-�lter arhiteture, whilst CCSuse di�erent arhitetural patterns in di�erent appliations.
17

An
aly

sa
ble

Te
sta

ble
 an

d d
eb

ug
ga

ble

Po
rta

ble

Re
so

urc
e C

on
str

ain
ed

Co
mp

on
en

t M
od

elli
ng

Co
mp

uta
tio

na
l M

od
el

Int
rod

uc
ible

Re
us

ab
le

Ma
int

ain
ab

le

Un
de

rst
an

da
ble

So
urc

e C
od

e C
om

po
ne

nts

Sta
tic

 Co
nfi

gu
rat

ion

An
aly

sa
ble

Te
sta

ble
 an

d d
eb

ug
ga

ble

Po
rta

ble

Re
so

urc
e C

on
str

ain
ed

Co
mp

on
en

t M
od

elli
ng

Co
mp

uta
tio

na
l M

od
el

Int
rod

uc
ible

Re
us

ab
le

Ma
int

ain
ab

le

Un
de

rst
an

da
ble

So
urc

e C
od

e C
om

po
ne

nts

Sta
tic

 Co
nfi

gu
rat

ion

Figure 4: Requirements grades5.2.7 IntroduibleIt is onsidered relatively important that the omponent tehnology is easy tointrodue in new and existing projets/produts. This requirement also inludesthe possibility to use parts of a omponent tehnology, e.g., together with variousoperating systems depending on ustomer needs.One would expet to see a ertain di�erene between a sub-ontrator andan OEM - but as an be seen in Figure 2 both ompanies agree on the relativeimportane of this requirement.5.2.8 ReusableIt is very interesting to see that reusability whih is one of the fundamentalreasons for moving towards CBSE is onsidered to be the seond most importantoverall requirement. The reason for this is likely the large potential of softwarereuse in terms of development time and ost.Reusability is typially onsidered to be very demanding, so it is worthnotiing that the ompanies are willing to spend the extra money on moreproessing power (low emphasis on the requirement of resoure usage) in orderto failitate reusability.5.2.9 MaintainabilityMaintainability is ranked as the third most important requirement. The reasonfor this is most likely the high osts that arise when upgrading or updating18

software. Support for software on�guration management is onsidered a pre-requisite in order to failitate ross platform and produt reuse, and hene theserequirements are tightly oupled. Also, updating existing software by replaingerroneous software omponents requires e�ient tool support.5.2.10 UnderstandableUnderstandability is not a primary requirement. This means that the ompaniesare willing to spend some money on training personnel in software developmentin order to reah primary goals like reusability, portability and testability.5.2.11 Soure Code and Stati Con�gurationNot muh fous is spent on the derived requirements. These requirements shouldperhaps not be ompared with the other requirement sine they are tightlyoupled to primary requirements. This is rather to be seen as means to reahother requirements. For example, it is not possible to debug the appliationsoure ode if the software omponents are delivered in a binary format.This might be onsidered a weakness of the study, but we inlude the resultsfor onsisteny reasons.5.3 DisussionIt is interesting to see that the basi properties of CBSE (e.g. reusability, main-tainability, and portability) are highly valued by industry. This might be biaseddue to the fat that this ase-study deals with omponent-based development.However, the relative importanes between the listed requirements are obviousand should be seen as a driver for omponent-based software.

A
na

ly
sa

bl
e

T
es

ta
bl

e
an

d
de

bu
gg

ab
le

P
or

ta
bl

e

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

l
M

od
el

In
tr
od

uc
ib

le

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

S
ta

tic
C

on
fig

ur
at

io
n

CCS

VCE

A
na

ly
sa

bl
e

T
es

ta
bl

e
an

d
de

bu
gg

ab
le

P
or

ta
bl

e

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

l
M

od
el

In
tr
od

uc
ib

le

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

S
ta

tic
C

on
fig

ur
at

io
n

CCS

VCE

Figure 5: Requirements from the two ompanies19

Also, it is interesting to see that the results from the two ompanies (seeFigure 2) orrespond with eah other very well. Bearing in mind that the twoompanies represent two di�erent types of ontrol system developers, OEM andsub-ontrator, these similarities are even more striking. Another interestingonlusion from this ase-study is that the development proess related require-ments (i.e. introduible, reusable, maintainable, and understandable) is onsid-ered to be substantially more important then the tehnial requirements. Hene,the researh ommunity should not overlook these problems but rather spendmore fous on issues like, e.g., support for software on�guration management.6 Component Tehnology EvaluationIn this setion, existing omponent tehnologies for embedded systems are de-sribed and evaluated. The tehnologies originate both from aademia andindustry. The seletion riterion for a omponent tehnology has �rstly beenthat there is enough information available, seondly that the authors laim thatthe tehnology is suitable for embedded systems, and �nally we have tried toahieve a ombination of both aademi and industrial tehnologies.The tehnologies desribed and evaluated are PECT, Koala, Rubus Compo-nent Model, PBO, PECOS and CORBA-CCM. We have hosen CORBA-CCMto represent the set of tehnologies existing in the PC/Internet domain (otherexamples are COM, .NET [1℄ and Java Enterprise Beans [2℄) sine it is theonly tehnology that expliitly address embedded and real-time issues. Also,the Windows CE version of .NET [1℄ is omitted, sine it is targeted towardsembedded display-devies, whih only onstitute a small subset of the deviesin vehiular systems. The evaluation is based on existing, publially available,doumentation.6.1 Researh MethodThe researh presented in this artile started with a preliminary literature study,summarised in the state-of-the-art report [30℄. The report is based on about30 artiles summarising the area of omponent-based software engineering forsafety ritial embedded appliations. Understanding the state-of-the-art andstate-of-pratie omponent tehnologies was a prerequisite for the subsequentwork. Based on the preliminary literature study � a qualitative ase-studyinterview protool (i.e. a ase-study questionnaire) [22℄ was put together.6.2 PECTA Predition-Enabled Component Tehnology (PECT) [12℄ is a development in-frastruture that inorporates development tools and analysis tehniques. PECTis an ongoing researh projet at the Software Engineering Institute (SEI) atthe Carnegie Mellon University.2 The projet fouses on analysis; however, the2Software Engineering Institute, CMU; http://www.sei.mu.edu20

framework does not inlude any onrete theories - rather de�nitions of howanalysis should be applied. To be able to analyse systems using PECT, properanalysis theories must be found and implemented and a suitable underlyingomponent tehnology must be hosen.A PECT inlude an abstrat model of a omponent tehnology, onsisting ofa onstrution framework and a reasoning framework. To onretise a PECT, itis neessary to hoose an underlying omponent tehnology, de�ne restritionson that tehnology (to allow preditions), and �nd and implement proper analy-sis theories. The PECT onept is highly portable, sine it does not inlude anyparts that are bound to a spei� platform, but in pratise the underlying teh-nology may hinder portability. For modelling or desribing a omponent-basedsystem, the Constrution and Composition Language (CCL) [12℄ is used. TheCCL is not ompliant to any standards. PECT is highly introduible, in prini-ple it should be possible to analyse a part of an existing system using PECT. Itshould be possible to gradually model larger parts of a system using PECT. Asystem onstruted using PECT an be di�ult to understand; mainly beauseof the mapping from the abstrat! omponent model to the onrete omponenttehnology. It is likely that systems looking idential at the PECT-level behavedi�erently when realised on di�erent omponent tehnologies.PECT is an abstrat tehnology that requires an underlying omponent teh-nology. For instane, how testable and debugable a system is depends on thetehnial solutions in the underlying run-time system. Resoure onsumption,omputational model, reusability, maintainability, blak- or white-box ompo-nents, stati- or dynami-on�guration are also not possible to determine with-out knowledge of the underlying omponent tehnology.6.3 KoalaThe Koala omponent tehnology [9℄ is designed and used by Philips3 for devel-opment of software in onsumer eletronis. Typially, onsumer eletronis areresoure onstrained sine they use heap hardware to keep development ostslow. Koala is a light weight omponent tehnology, tailored for Produt LineArhitetures [31℄. The Koala omponents an interat with the environment,or other omponents, through expliit interfaes. The omponents soure odeis fully visible for the developers, i.e. there are no binaries or other intermediateformats. There are two types of interfaes in the Koala model, the provides-and the requires- interfaes, with the same meaning as in UML 2.0 [24℄. Theprovides interfae speify methods to aess the omponent from the outside,while the required interfae de�nes what is required by the omponent from itsenvironment. The interfaes are statially onneted at design time.One of the primary advantages with Koala is that it is resoure onstrained.In fat, low resoure onsumption was one of the requirements onsidered whenKoala was reated. Koala use passive omponents alloated to ative threadsduring ompile-time; they interat through a pipes-and-�lters model. Koala uses3Phillips International, In; Home Page http://www.phillips.om21

a onstrution alled thread pumps to derease the number of proesses in thesystem. Components are stored in libraries, with support for version numbersand ompatibility desriptions. Furthermore omponents an be parameterisedto �t di�erent environments.Koala does not support analysis of run-time properties. Researh has pre-sented how properties like memory usage and timing an be predited in generalomponent-based systems, but the thread pumps used in Koala might ausesome problems to apply existing timing analysis theories. Koala has no expliitsupport for testing and debugging, but they use soure ode omponents, anda simple interation model. Furthermore, Koala is implemented for a spei�operating system. A spei� ompiler is used, whih routes all inter-omponentand omponent to operating system interation through Koala onnetors. Themodelling language is de�ned and developed in-house, and it is di�ult to seean easy way to gradually introdue the Koala onept.6.4 Rubus Component ModelThe Rubus Component Model (Rubus CM) [29℄ is developed by Artius sys-tems.4 The omponent tehnology inorporates tools, e.g., a sheduler and agraphial tool for appliation design, and it is tailored for resoure onstrainedsystems with real-time requirements. The Rubus Operating System (Rubus OS)[32℄ has one time-triggered part (used for time-ritial hard real-time ativities)and one event-triggered part (used for less time-ritial soft real-time ativities).However, the Rubus CM is only supported by the time-triggered part.The Rubus CM runs on top of the Rubus OS, and the omponent modelrequires the Rubus on�guration ompiler. There is support for di�erent hard-ware platforms, but regarding to the requirement of portability (Set. 4.2.3),this is not enough sine the Rubus CM is too tightly oupled to the RubusOS. The Rubus OS is very small, and all omponent and port on�guration isresolved o�-line by the Rubus on�guration ompiler.Extra-funtional properties an be analysed during desing-time sine theomponent tehnology is statially on�gured, but timing analysis on ompo-nent and node level (i.e. shedulability analysis) is the only analysable propertyimplemented in the Rubus tools. Testability is failitated by stati sheduling(whih gives preditable exeution patterns). Testing the funtional behaviouris simpli�ed by the Rubus Windows simulator, enabling exeution on a regularPC.Appliations are desribed in the Rubus Design Language, whih is a non-standard modelling language. The fundamental building bloks are passive. Theinteration model is the desired pipes-and-�lters (Set. 4.2.6). The graphialrepresentation of a system is quite intuitive, and the Rubus CM itself is also easyto understand. Complexities suh as shedule generation and synhronisationare hidden in tools.The omponents are soure ode and open for inspetion. However, there is4Artius Systems; Home Page http://www.artius.se22

no support for debugging the appliation on the omponent level. The ompo-nents are very simple, and they an be parameterised to improve the possibilityto hange the omponent behaviour without hanging the omponent soureode. This enhanes the possibilities to reuse the omponents.Smaller piees of legay ode an, after minor modi�ations, be enapsulatedin Rubus omponents. Larger systems of legay ode an be exeuted as bak-ground servie (without using the omponent onept or timing guarantees).6.5 PBOPort Based Objets (PBO) [33℄ ombines objet oriented design, with port au-tomaton theory. PBO was developed as a part of the Chimera Operating Sys-tem (Chimera OS) projet [34℄, at the Advaned Manipulators Laboratory atCarnegie Mellon University.5 Together with Chimera, PBO forms a frameworkaimed for development of sensor-based ontrol systems, with speialisation in re-on�gurable robotis appliations. One important goal of the work was to hidereal-time programming and analysis details. Another expliit design goal fora system based on PBO was to minimise ommuniation and synhronisation,thus failitating reuse.PBO implements analysis for timeliness and failitates behavioural modelsto ensure preditable ommuniation and behaviour. However, there are fewadditional analysis properties in the model. The ommuniation and ompu-tation model is based on the pipes-and-�lters model, to support distributionin multiproessor systems the onnetions are implemented as global variables.Easy testing and debugging is not expliitly addressed. However, the tehnologyrelies on soure ode omponents and therefore testing on a soure ode levelis ahievable. The PBOs are modular and loosely oupled to eah other, whihadmits easy unit testing. A single PBO-omponent is tightly oupled to theChimera OS, and is an independent onurrent proess.Sine the omponents are oupled to the Chimera OS, it an not be easilyintrodued in any legay system. The Chimera OS is a large and dynamiallyon�gurable operating system supporting dynami binding, it is not resoureonstrained.PBO is a simple and intuitive model that is highly understandable, both atsystem level and within the omponents themselves. The low oupling betweenthe omponents makes it easy to modify or replae a single objet. PBO isbuilt with ative and independent objets that are onneted with the pipes-and-�lters model. Due to the low oupling between omponents through simpleommuniation and synhronisation the objets an be onsidered to be highlyreusable. The maintainability is also a�eted in a good way due to the looseoupling between the omponents; it is easy to modify or replae a single om-ponent.5Carnegie Mellon University; Home Page http://www.mu.edu
23

6.6 PECOSPECOS6 (PErvasive COmponent Systems) [8, 35℄ is a ollaborative projetbetween ABB Corporate Researh Centre7 and aademia. The goal for thePECOS projet was to enable a omponent-based tehnology with appropriatetools to speify, ompose, validate and ompile software for embedded systems.The omponent tehnology is designed espeially for �eld devies, i.e. reativeembedded systems that gathers and analyse data via sensors and reat by on-trolling atuators, valves, motors et. Furthermore, PECOS is analysable, sinemuh fous has been put on extra-funtional properties suh as memory on-sumption and timeliness.Extra-funtional properties like memory onsumption and worst-ase exeution-times are assoiated with the omponents. These are used by di�erent PECOStools, suh as the omposition rule heker and the shedule generating and ver-i�ation tool. The shedule is generated using the information from the ompo-nents and information from the omposition. The shedule an be onstrutedo�-line, i.e. a stati pre-alulated shedule, or dynamially during run-time.PECOS has an exeution model that desribes the behaviour of a �eld devie.The exeution model deals with synhronisation and timing related issues, and ituses Petri-Nets [36℄ to model onurrent ativities like omponent ompositions,sheduling of omponents, and synhronisation of shared ports [37℄. Debuggingan be performed using COTS debugging and monitoring tools. However, theomponent tehnology does not support debugging on omponent level as de-sribed in Set. 4.2.2.The PECOS omponent tehnology uses a layered software arhiteture,whih enhane portability (Set. 4.2.3). There is a Run-Time Environment(RTE) that takes are of the ommuniation between the appliation spei�parts and the real-time operating system. PECOS use a modelling languagethat is easy to understand, however no standard language is used. The om-ponents ommuniate using a data-�ow-oriented interation, it is a pipes-and-�lters onept, but the omponent tehnology uses a shared memory, ontainedin a blakboard-like struture.Sine the software infrastruture does not depend on any spei� hardwareor operating system, the requirement of introduability (Set. 4.3.1) is to someextent ful�lled. There are two types of omponents, leaf omponents (blak-boxomponents) and omposite omponents. These omponents an be passive,ative, and event triggered. The requirement of openness is not onsideredful�lled, due to the fat that PECOS uses blak-box omponents. In laterreleases, the PECOS projet is onsidering to use a more open omponent model[38℄. The devies are statially on�gured.6PECOS Projet, Home Page: http://www.peos-projet.org/7ABB Corporate Researh Centre in Ladenburg, Home Page: http://www.abb.om/
24

 A
na

ly
sa

bl
e

 T
es

ta
bl

e
an

d
de

bu
ga

bl
e

 P
or

ta
bl

e

 R
es

ou
rc

e
C

on
st

ra
in

ed

 C
om

po
ne

nt
 M

od
el

lin
g

 C
om

pu
ta

tio
na

l M
od

el

 In
tr

od
uc

ib
le

 R
eu

sa
bl

e

 M
ai

nt
ai

na
bl

e

 U
nd

er
st

an
da

bl
e

 S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

 S
ta

tic
 C

on
fig

ur
at

io
n

A
ve

ra
ge

N
um

be
r

of
 2

’s

N
um

be
r

of
 0

’s

PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA 1.2 3 2

Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3

Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2 1.3 5 2

PBO 2 1 0 0 0 1 1 1 1 2 2 0 0.9 3 4

PECOS 2 1 2 2 0 2 1 2 1 2 0 2 1.4 7 2

CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 0 0.5 2 8

Average 1.2 1.0 1.2 1.2 0.0 1.4 1.4 1.2 1.0 1.5 1.2 1.2 1.1 4.3 3.5

 Figure 6: Grading of omponent tehnologies with respet to the requirements6.7 CORBA Based TehnologiesThe Common Objet Request Broker Arhiteture (CORBA) is a middlewarearhiteture that de�nes ommuniation between nodes. CORBA provides aommuniation standard that an be used to write platform independent appli-ations. The standard is developed by the Objet Management Group8 (OMG).There are di�erent versions of CORBA available, e.g., MinimumCORBA [17℄for resoure onstrains systems, and RT-CORBA [39℄ for time-ritial systems.RT-CORBA is a set of extensions tailored to equip Objet Request Brokers(ORBs) to be used for real-time systems. RT-CORBA supports expliit threadpools and queuing ontrol, and ontrols the use of proessor, memory and net-work resoures. Sine RT-CORBA adds omplexity to the standard CORBA,it is not onsidered very useful for resoure-onstrained systems. Minimum-CORBA de�nes a subset of the CORBA funtionality that is more suitable forresoure-onstrained systems, where some of the dynamis is redued.CORBA is a middleware arhiteture that de�nes ommuniation betweennodes, independent of omputer arhiteture, operating system or programminglanguage. Beause of the platform and language independene CORBA beomeshighly portable. To support the platform and language independene, CORBAimplements an Objet Request Broker (ORB) that during run-time ats as avirtual bus over whih objets transparently interat with other objets loatedloally or remote. The ORB is responsible for �nding a requested objets imple-mentation, make the method alls and arry the response bak to the requester,all in a transparent way. Sine CORBA run on virtually any platform, legayode an exist together with the CORBA tehnology. This makes CORBAhighly introduible.OMG has de�ned a CORBA Component Model (CCM) [3℄, whih extends8Objet Management Group. CORBA Home Page. http://www.omg.org/orba/25

the CORBA objet model by de�ning features and servies that enables ap-pliation developers to implement, mange, on�gure and deploy omponents.In addition the CCM allows better software reuse for server-appliations andprovides a greater �exibility for dynami on�guration of CORBA appliations.While CORBA is portable, and powerful, it is very run-time demanding,sine bindings are performed during run-time. Beause of the run-time deisions,CORBA is not very deterministi and not analysable with respet to timing andmemory onsumption. There is no expliit modelling language for CORBA.CORBA uses a lient server model for ommuniation, where eah objet isative. There are no extra-funtional properties or any spei�ation of interfaebehaviour. All these things together make reuse harder. The maintainability isalso su�ering from the lak of learly spei�ed interfaes.7 Summary of Component Tehnology Evalua-tionIn this setion we assign numerial grades to eah of the omponent tehnologiesdesribed in Set. 6, grading how well they ful�l eah of the requirements ofSet. 4. The grades are based on the disussion summarised in Set. 6. We usea simple 3 level grade, where 0 means that the requirement is not addressedby the tehnology and is hene not ful�lled, 1 means that the requirement isaddressed by the tehnology and/or that is partially ful�lled, and 2 means thatthe requirement is addressed and is satisfatory ful�lled. For PECT, whih isnot a omplete tehnology, several requirements depended on the underlyingtehnology. For these requirements we do not assign a grade (indiated withNA, Not Appliable, in Fig. 6). For the CORBA-based tehnologies we havelisted the best grade appliable to any of the CORBA �avours mentioned inSet. 6.7.For eah requirement we have also alulated an average grade. This gradeshould be taken with a grain of salt, and is only interesting if it is extremelyhigh or extremely low. In the ase that the average grade for a requirement isextremely low, it ould either indiate that the requirement is very di�ult tosatisfy, or that omponent-tehnology designers have paid it very little attention.In the table we see that only two requirements have average grades below1.0. The requirement "Component Modelling" has the grade 0 (!), and "Testingand debugging" has 1.0. We also note that no requirements have a very highgrade (above 1.5). This indiate that none of the requirement we have listedare general (or important) enough to have been onsidered by all omponent-tehnology designers. However, if ignoring CORBA (whih is not designed forembedded systems) and PECT (whih is not a omplete omponent tehnology)we see that there are a handful of our requirements that are addressed and atleast partially ful�lled by all tehnologies.We have also alulated an average grade for eah omponent tehnology.Again, the average annot be diretly used to rank tehnologies amongst eah26

other. However, the two tehnologies PBO and CORBA stand out as havingsigni�antly lower average values than the other tehnologies. They are alsodistinguished by having many 0's and few 2's in their grades, indiating thatthey are not very attrative hoies. Among the omplete tehnologies withan average grade above 1.0 we notie Rubus and PECOS as being the mostomplete tehnologies (with respet to this set of requirements) sine they havethe fewest 0's. Also, Koala and PECOS an be reognised as the tehnologieswith the broadest range of good support for our requirements, sine they havethe most number of 2's.However, we also notie that there is no tehnology that ful�ls (not evenpartially) all requirements, and that no single tehnology stands out as beingthe preferred hoie.8 ConlusionsIn this artile we have ompared some existing omponent tehnologies for em-bedded systems with respet to industrial requirements. The requirements havebeen olleted from industrial ators within the business segment of heavy ve-hiles. The software systems developed in this segment an be haraterisedas resoure onstrained, safety ritial, embedded, distributed, real-time, on-trol systems. Our �ndings should be appliable to software developers whosesystems have similar harateristis.We have notied that, for a omponent tehnology to be fully aepted byindustry, the whole systems development ontext needs to be onsidered. Itis not only the tehnial properties, suh as modelling, omputation model,and openness, that needs to be addressed, but also development requirementslike maintainability, reusability, and to whih extent it is possible to graduallyintrodue the tehnology. It is important to keep in mind that a omponenttehnology alone annot be expeted to solve all these issues; however a teh-nology an have more or less support for handing the issues.The result of the investigation is that there is no omponent tehnologyavailable that ful�l all the requirements. Further, no single omponent teh-nology stands out as being the obvious best math for the requirements. Eahtehnology has its own pros and ons. It is interesting to see that most require-ments are ful�lled by one or more tehniques, whih implies that good solutionsto these requirements exist.We onlude that using software omponents and omponent-based devel-opment is seen as a promising to address hallenges in produt development,inluding integration, �exible on�guration as well as support for software reuse.One of the main ontributions is that we show the relative importane ofindustrial requirements, in addition to the industrial requirements on a om-ponent tehnology for use in automotive appliations. We desribe and graderequirements on a omponent tehnology as eliited from two Swedish ontrol-system developers. The requirements are divided into two main groups, thetehnial requirements and the development proess related requirements. The27

reason for this is to larify that the industrial ators are not only interestedin tehnial solutions, but also in improvements regarding their developmentproess.The result an be used to guide modi�ations and/or extensions to exist-ing omponent tehnologies in order to make them better suited for industrialdeployment. The results an also serve as a platform for software engineeringresearh, sine researhers an be guided to put fous on the most desired areaswithin omponent-based software engineering.AknowledgementsWe would like to thank CC Systems and Volvo Constrution Equipment fortheir great support during our researh. Espeially we would likt to thankJörgen Hansson (CCS), Nils-Erik Bånkestad (VCE) and Robert Larsson (VCE).Thank you!Referenes[1℄ Mirosoft Component Tehnologies. COM/DCOM/.NET. http://www.-mirosoft.om.[2℄ Sun Mirosystems. Enterprise Java Beans Tehnology. http://java.sun.-om/produts/ejb/.[3℄ CORBA Component Model 3.0. Objet Management Group, June 2002.http://www.omg.org/tehnology/douments/formal/omponents.htm.[4℄ I. Crnkovi and M. Larsson. Building Reliable Component-Based SoftwareSystems. Arteh House publisher, 2002. ISBN 1-58053-327-2.[5℄ A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Compo-nent Tehnologies for Embedded Systems. In Proeedings of the 7th Inter-national Symposium on Component-Based Software Engineering (CBSE7).2004 Proeedings Series: Leture Notes in Computer Siene, Vol. 3054,May 2004. Edinburgh, Sotland.[6℄ Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael Nolin.Evaluation of Component Tehnologies with Respet to Industrial Require-ments. In Euromiro Conferene, Component-Based Software EngineeringTrak, August 2004.[7℄ Anders M"oller, Mikael Åkerholm, Joakim Fr"oberg, and Mikael Nolin. In-dustrial grading of quality requirements for automotive software omponenttehnologies. In Embedded Real-Time Systems Implementation Workshopin onjuntion with the 26th IEEE International Real-Time Systems Sym-posium, 2005 Miami, USA, Deember 2005.28

[8℄ M. Winter, T. Genssler, et al. Components for Embedded Software � ThePECOS Apporah. In The 2nd International Workshop on CompositionLanguages, in onjuntion with the 16th ECOOP, June 2002. Malaga,Spain.[9℄ R. van Ommering et al. The Koala Component Model for Consumer Ele-tronis Software. IEEE Computer, 33(3):78�85, Marh 2000.[10℄ J. Fröberg. Engineering of Vehile Eletroni Systems: Requirements Re-�eted in Arhiteture. Mälardalen University Tehnology Lientiate ThesisNo.26, ISSN 1651-9256, ISBN 91-88834-41-7. Mälardalen Real-Time Re-searh Centre, Mälardalen University, Marh, 2004, Västerås, Sweden.[11℄ A. Möller. Software Component Tehnologies for Heavy Vehiles.Mälardalen University Tehnology Lientiate Thesis No.42, ISSN 1651-9256, ISBN 91-88834-88-3. Mälardalen Real-Time Researh Centre,Mälardalen University, January, 2005, Västerås, Sweden.[12℄ K. C. Wallnau. Volume III: A Component Tehnology for PreditableAssembly from Certi�able Components. Tehnial report, Software Engi-neering Institute, Carnegie Mellon University, April 2003. Pittsburg, USA.[13℄ A. Brown and K. Wallnau. The Current State of CBSE. IEEE Software,September/Otober 1998.[14℄ C. Nordström, M. Gustafsson, et al. Experienes from Introduing State-of-the-art Real-Time Tehniques in the Automotive Industry. In Eigth IEEEInternational Conferene and Workshop on the Engineering of Computer-Based Systems, April 2001. Washington, USA.[15℄ S. R. Shah. Classial and Objet-Oriented Software Engineering.MGraw-Hill Siene/Engineering/Math; 3rd edition, 1996. ISBN 0-256-18298-1.[16℄ Ivia Crnkovi and Magnus Larsson. A ase study: Demands onomponent-based development. In Proeedings, 22th International Confer-ene of Software Engineering, Limerik, Ireland, May 2000. ACM, IEEE.[17℄ Objet Management Group. MinimumCORBA 1.0, August 2002. http://-www.omg.org/tehnology/douments/formal/minimum_CORBA.htm.[18℄ International Standards Organisation (ISO). Road Vehiles � Interhangeof Digital Information � Controller Area Network (CAN) for High-SpeedCommuniation, November 1993. vol. ISO Standard 11898.[19℄ CiA. CANopen Communiation Pro�le for Industrial Systems, Based onCAL, Otober 1996. CiA Draft Standard 301, rev 3.0, http://www.-anopen.org.[20℄ SAE Standard. SAE J1939 Standards Colletion. http://www.sae.org.29

[21℄ SAE Standard. SAE J1587, Joint SAE/TMC Eletroni Data InterhangeBetween Miroomputer Systems In Heavy-Duty Vehile Appliations.http://www.sae.org.[22℄ R.K. Yin. Case Study Researh � Design and Methods. Applied SoialResearh Methods Series, Volume 5, SAGE Publiations, 2003. ISBN 0-7619-2553-8.[23℄ B. Seli and J. Rumbaugh. Using UML for modelling omplex real-timesystems, 1998. Rational Software Corporation.[24℄ Objet Management Group. UML 2.0 Superstruture Spei�ation, TheOMG Final Adopted Spei�ation, 2003. http://www.omg.om/uml/.[25℄ M. Shaw and D. Garlan. Software Arhiteture: Perspetives on an Emerg-ing Disipline. Prentie Hall; 1 edition, 1996. ISBN 0-131-82957-2.[26℄ D. Garlan, R. Allen, and J. Okerbloom. Arhitetural mismath or whyit's hard to build systems out of existing parts. In Proeedings of the 17thInternational Conferene on Software Engineering, April 1995. Seattle,USA.[27℄ T. Nolte, A. Möller, and M. Nolin. Using Components to Failitate Sto-hasti Shedulability. In Proeedings of the 24th Real-Time System Sympo-sium � Work-in-Progress Session. IEEE Computer Soiety, Deember 2003.Canun, Mexio.[28℄ SIL. Safety Integrity Levels � Does Reality Meet Theory?, 2002. Report f.seminar held at the IEE, London, on 9 April 2002.[29℄ K.L. Lundbäk, J. Lundbäk and M. Lindberg. Component-Based Devel-opment of Dependable Real-Time Appliations. In Real-Time in Sweden� Presentation of Component-Based Software Development Based on theRubus onept, Artius Systems: http://www.artius.se, August 2003.Västerås, Sweden.[30℄ M. Nolin et al. Component-Based Software for Embedded Systems - ALiterature Survey. Tehnial report, MRTC Report No 104, ISSN 1404-3041, ISRN MDH-MRTC-104/203-1-SE, Mälardalen Real-Time ReseahCentre, Mälardalen University, June 2003. Västerås, Sweden.[31℄ P. Clements and L. Northrop. Software Produt Lines: Praties and Pat-terns. Addison-Wesley, 2001. ISBN 0-201-70332-7.[32℄ K.L. Lundbäk. Rubus OS Referene Manual � General Conepts. ArtiusSystems: http://www.artius.se.[33℄ D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynamially Re-on�gurable Real-Time Software Using Port-Based Objets. IEEE Trans-ations on Software Engineering, pages 759 � 776, Deember 1997.30

[34℄ P.K. Khosla et al. The Chimera II Real-Time Operating System for Ad-vaned Sensor-Based Control Appliations. IEEE Transations on Systems,1992. Man and Cybernetis.[35℄ T. Genssler, A. Christoph, B. Shuls, M. Winter, et al. PECOS in a Nut-shell. PECOS projet http://www.peos-projet.org.[36℄ M. Sgroi. Quasi-Stati Sheduling of Embedded Software Using Free-ChoiePetri Nets. Tehnial report, University of California at Berkely, May 1998.Berkely, USA.[37℄ O. Nierstrass, G. Arevalo, S. Duasse, et al. A Component Model for FieldDevies. In Proeedings of the First International IFIP/ACM WorkingConferene on Component Deployment, June 2002. Germany.[38℄ R. Wuyts and S. Duasse. Non-funtional requirements in a omponentmodel for embedded systems. In International Workshop on Spei�ationand Veri�ation of Component-Based Systems, 2001. OPPSLA.[39℄ D.C. Shmidt, D.L. Levine, and S. Mungee. The Design of the tao real-timeobjet request broker. Computer Communiations Journal, Summer 1997.

31

