Industrial Requirements on Component
Technologies for Vehicular Control-Systems

Anders Mollerf * Mikael Akerholm * Joakim Frobergf 4
Johan Fredriksson® Mikael Nolin' *

TMRTC, Mélardalen University, Sweden
*CC Systems, Uppsala, Sweden
#Volvo Construction Equipment, Eskilstuna, Sweden

February 10, 2006

Abstract

Software component technologies for automotive applications are de-
sired due to the envisioned benefits in reuse, variant handling, and port-
ing; thus, facilitating both efficient development and increased quality
of software products. Component based software development has had
success in the PC application domain, but requirements are different in
the embedded domain and existing technologies does not match. Hence,
software component technologies have not yet been generally accepted by
embedded-systems industries.

In order to better understand why this is the case, we present two sep-
arate case-studies together with an evaluation of the existing component
technologies suitable for embedded control systems.

The first case-study presents a set of requirements based on industrial
needs, which are deemed decisive for introducing a component technology.
Furthermore, in the second study, we asked the companies involved to
grade these requirements.

Then, we use these requirements to compare existing component tech-
nologies suitable for embedded systems. One of our conclusions is that
none of the studied technologies is a perfect match for the industrial re-
quirements. Furthermore, no single technology stands out as being a
significantly better choice than the others; each technology has its own
pros and cons.

The results can be used to guide modifications and/or extensions to
existing component technologies in order to make them better suited for
industrial deployment in the automotive domain. The results can also
serve to guide other software engineering research by showing the most
desired areas within component-based software engineering.

1 Introduction

During the last decade, Component-Based Software Engineering (CBSE) for
embedded systems has received a large amount of attention. For office/Internet
applications, CBSE has had tremendous impact [1, 2, 3], and today components
are downloaded and on the fly integrated into, e.g., word processors and web
browsers. However, in the embedded systems industry CBSE is still to a large
extent envisioned as a promising future technology to meet specific demands on
improved quality and lowered cost, by facilitating software reuse, efficient soft-
ware development, enhanced system maintainability, and more reliable software
systems [4].

CBSE has not yet been generally accepted by embedded-system develop-
ers. They are in fact, to a large extent, still using monolithic and platform
dependent software development techniques, in spite of the fact that this make
software systems difficult to maintain, upgrade, and modify. A major reason to
not change to more modern techniques is to avoid the additional overhead with
respect to, e.g., memory consumption and processor demands that new com-
mercial technologies seem to introduce. A second reason is to not renounce re-
laibility and robustness aspects using, e.g., polymorphism and dynamic linking.
Finally, there are also significant risks and costs associated with the adoption of
a new development technique, that these companies may not be willing to take
without guarantees.

The contributions of this article are threefold. First, it straightens out some
question-marks regarding actual industrial requirements placed on a component
technology. Second, we have asked industry to rank these requirements in order
be able to focus on the most important aspects of component based development.
This grading can be used to guide the research community when focusing on
areas with the highest potential industrial impact. Third, we have used the
ranked requirements to evaluate a set of available component technologies (from
academia as well as from industry) that can be used to minimise the risk when
introducing a new development process. Thus, this study can help companies
to take the step into tomorrow’s technology today. The list can also be used
to guide modifications and/or extensions to existing component technologies,
in order to make them better suited for industrial deployment. Our list of
requirements also illustrates how industrial requirements on ! products and
product development impact requirements on a component, technology.

This article summarises our work on industrial requirements [5, 6, 7], and
extends previous work, studying the requirements for component technologies,
in that the results are not only based on our experience, or experience from
a single company [8, 9]. We base most of our results on interviews with se-
nior technical staff at the two companies involved in this article, but we have
also conducted interviews with technical staff at other companies. Furthermore,
since the embedded systems market is so diversified, we have limited our study
to applications for distributed embedded real-time control in safety-critical en-
vironments, specifically studying companies within the heavy vehicles market
segment [10, 11]. This gives our results higher validity, for this class of appli-

cations, than do more general studies of requirements in the embedded systems
market [12].

2 Introducing CBSE in the Vehicular Industry

Component-based software engineering arouses interest and curiosity in indus-
try. This is mainly due to the enhanced development process and the improved
ability to reuse software offered. Also, the increased possibility to predict the
time needed to complete a software development project, due to the fact that
the assignments can be divided into smaller and more easily defined tasks, is
seen as a driver for CBSE.

CBSE can be approached from two, conceptually different, points of view;
distinguished by whether the components are (1) used as a design philoso-
phy independent from any concern for reusing existing components, or (2)
seen as reusable off-the-shelf building blocks used to design and implement a
component-based system [13]. When talking to industrial software developers
with experience from using a CBSE development process [14], such as Volvo
Construction Equipment!, the first part, (1), is often seen as the most impor-
tant advantage. Their experience is that the design philosophy of CBSE gives
rise to good software architecture and significantly enhanced ability to divide
the software development in small, clearly-defined, sub-projects. This, in turn,
gives predictable development times and shortens the time-to-market. The sec-
ond part, (2), are by these companies often seen as less important, and the
main reason for this is that experience shows that most approaches to large
scale software reuse is associated with major risks and high initial costs. Rather
few companies are willing to take these initial costs and risks since it is difficult
to guarantee that money is saved in the end.

On the other hand, when talking to companies with less, or no, experience
from component-based technologies, (2) is seen as the most important motiva-
tion to consider CBSE. This discrepancy between companies with and without
CBSE experience is striking.

However, changing the software development process to using CBSE does
not only have advantages. Especially in the short term perspective, introducing
CBSE represents significant costs and risks. For instance, designing software
to allow reuse requires (sometimes significantly) higher effort than does de-
signing for a single application [15]. According to certain experience it takes
even three times longer to develop a general reusable component than achieving
the same functionailty targetting a specific case [16]. For resource constrained
systems, design for reuse is even more challenging, since what are the most
critical resources may vary from system to system (e.g. memory or CPU-load).
Furthermore, a component designed for reuse may exhibit an overly rich inter-
face and an associated overly complex and resource consuming implementation.
Hence, designing for reuse in resource constrained environments requires signif-
icant knowledge not only about functional requirements, but also about extra-

1Volvo Construction Equipment, Home Page: http://www.volvo.com

functional requirements. These problems may limit the possibilities of reuse,
even when using CBSE.

Within software engineering, having a clear and complete understanding of
the software requirements is paramount. However, practice shows that a major
source of software errors comes from erroneous, or incomplete, specifications
[15]. Often incomplete specifications are compensated for by engineers hav-
ing good domain knowledge, hence having knowledge of implicit requirements.
However, when using a CBSE approach, one driving idea is that each compo-
nent should be fully specified and understandable by its interface and associated
documentation. Hence, the use of implicit domain knowledge not documented
in the interface may hinder reuse of components. Also, division of labour into
smaller projects focusing on single components, require good specifications of
what interfaces to implement and any constraints on how that implementation
is done, further disabling use of implicit domain knowledge. Hence, to fully
utilise the benefits of CBSE, a software engineering process that do not rely on
engineers’ implicit domain knowledge need to be established.

Also, when introducing reuse of components across multiple products and /or
product families, issues about component management arise. In essence, each
component has its own product life-cycle that needs to be managed. This in-
cludes version and variant management, keeping track of which versions and
variants is used in what products, and how component modifications should be
propagated to different version and variants. Components need to be main-
tained, as other products, during their life cycle. This maintenance needs to
be done in a controlled fashion, in order not to interfere aversively with ongo-
ing projects using the components. This can only be achieved using adequate
tools and processes for version and variant management, to fully support a
component-based strategy such tools should support version management for
components instead of traditional files, and also allow the use of different ver-
sions of a component to the same client (e.g., to allow a single product to use a
number of diffent versions of a component).

3 A Component Technology for Heavy Vehicles

Existing component technologies [1, 2, 3] are in general not applicable to embed-
ded computer systems, since they do not consider aspects such as safety, timing,
and memory consumption that are crucial for many embedded systems [1, 2].
Some attempts have been made to adapt component technologies to embedded
systems, like, e.g., MinimumCORBA [17]. However, these adaptations have not
been generally accepted in the embedded system segments. The reason for this
is mainly due to the diversified nature of the embedded systems domain. Dif-
ferent market segments have different requirements on a component technology,
and often, these requirements are not fulfilled simply by stripping down existing
component technologies; e.g. MinimumCORBA requires less memory then does
CORBA, however, the need to statically predict memory usage is not addressed.

It is important to keep in mind that the embedded systems market is ex-

tremely diversified in terms of requirements placed on the software. For in-
stance, it is obvious that software requirements for consumer products, telecom
switches, and avionics are quite different. Hence, we will focus on one single
market segment: the segment of heavy vehicles, including, e.g., wheel loaders
and forest harvesters. It is important to realise that the development and eval-
uation of a component technology is substantially simplified by focusing on a
specific market segment. Within this market segment, the conditions for soft-
ware development should be similar enough to allow a lightweight and efficient
component technology to be established.

3.1 The Business Segment of Heavy Vehicles

Developers of heavy vehicles faces a situation of (1) high demands on reliability
and performance, (2) requirements on low product cost, and (3) supporting
many configurations, variants and suppliers. Computers offer the performance
needed for the functions requested in a modern vehicle, but at the same time
vehicle reliability must not suffer. Computers and software add new sources
of failures and, unfortunately, computer engineering is less mature than many
other fields in vehicle development and can cause lessened product reliability.
This yields a strong focus on the ability to model, predict, and verify computer
functionality.

At the same time, the product cost for volume products must be kept low.
Thus, there is a need to include a minimum of hardware resources in a product
(only as much resources as the software really needs). The stringent cost re-
quirements also drive vehicle developers to integrate low cost components from
suppliers rather than develop in-house. On top of these demands on reliabil-
ity and low cost, vehicle manufacturers make frequent use of product variants
to satisfy larger groups of customers and thereby increase market share and
product volume.

In order to accommodate (1)-(3), as well as an increasing number of features
and functions, the electronic system of a modern vehicle is a complex construc-
tion which comprise electronic and software components from many vendors
and that exists in numerous configurations and variants.

The situation described cause challenges with respect to verification and
maintenance of these variants, and integration of components into a system.
Using software components, and a CBSE approach, is seen as a promising way
to address challenges in product development, including integration, flexible
configuration, as well as good reliability predictions, scalability, software reuse,
and fast development. Further, the concept of components is widely used in the
vehicular industry today. Using components in software would be an extension
of the industry’s current procedures, where the products today are associated
with the components that constitute the particular vehicle configuration.

What distinguishes the segment of heavy vehicles in the automotive indus-
try is that the product volumes are typically lower than that of, e.g., trucks
or passenger cars [10]. Also the customers tend to be more demanding with
respect to technical specifications such as engine torque, payload etc, and less

demanding with respect to style. This causes a lower emphasis on product cost
and optimisation of hardware than in the automotive industry in general. The
lower volumes also make the manufacturers more willing to design variants to
meet the requests of a small number of customers.

3.2 System Description

In order to describe the context for software components in the vehicular in-
dustry, we will first explore some central concepts in vehicle electronic systems.
Here, we outline some common and typical solutions and principles used in the
design of vehicle electronics. The purpose is to describe commonly used solu-
tions, and outline the de facto context for application development and thereby
also requirements for software component technologies.

The system architecture can be described as a set of computer nodes called
Electronic Control Units (ECUs). These nodes are distributed throughout the
vehicle to reduce cabling, and to provide local control over sensors and actuators.
The nodes are interconnected by one or more communication busses forming
the network architecture of the vehicle. When several different organisations
are developing ECUs, the bus often acts as the interface between nodes, and
hence also between the organisations. The communication bus is typically low
cost and low bandwidth, such as the Controller Area Network (CAN) [18].

Actuator e —

Sensor i Intelligent !
L. Senso

o N\

prT— Y ECU ECU ECU
[Bus1 | 1 2 3
.

ECU ECU
4 5

i Service
Computer

Figure 1: Example of a vehicle network architecture

In the example shown in Fig. 1, the two communication busses are separated
using a gateway. This is a common architectural pattern that are used for
several reasons, e.g., separation of criticality, increased total communication

bandwidth, fault tolerance, compatibility with standard protocols [19, 20, 21],
etc. Also, safety critical functions may require a high level of verification, which
is usually very costly. Thus, non-safety related functions might be separated to
reduce cost and effort of verification. In some systems the network is required
to give synchronisation and provide fault tolerance mechanisms.

The hardware resources are typically scarce due to the requirements on low
product cost. Addition of new hardware resources will always be defensive, even
if customers are expected to embrace a certain new function. Because of the
uncertainty of such expectations, manufacturers have difficulties in estimating
the customer value of new functions and thus the general approach is to keep
resources at a minimum.

Example Power train ECU in a Vehicular Control-System

» Processor: 25 MHz 16-bit processor
» Memory devices:

v Flash: 1 MB used for application code

v" RAM: 128 kB used for the run-time memory usage

v" EEPROM: 64 kB used for system parameters
Serial interfaces: RS232 or RS485, used for service purpose
Communications: Controller Area Network (CAN) (one or more interfaces)
1/0: A number of digital and analogue in and out ports

Y VYV

Figure 2: Specification of an embedded system ECU

In order to exemplify the settings in which software components are consid-
ered, we have studied our industrial partner’s currently used nodes. In Figure 2
we list the hardware resources of a typical ECU with requirements on sensing
and actuating, and with a relatively high computational capacity (this example
is from a typical power train ECU).

Also, included in a vehicle’s electronic system can be display computer(s)
with varying amounts of resources depending on product requirements. There
may also be PC-based ECU’s for non-control applications such as telematics,
and information systems. Furthermore, in contrast to these resource intense
ECU’s, there typically exists a number of small and lightweight nodes, such as,
intelligent sensors (i.e. processor equipped, bus enabled, sensors).

Figure 3 on the following page depicts the typical software architecture of an
ECU. Current practice typically builds on top of a reusable "software platform",
which consists of a hardware abstraction layer with device drivers and other
platform dependent code, a Real-Time Operating System (RTOS), one or more
communication protocols, and possibly a software (component) framework that
is typically company (or project) specific. This software platform is accessible to
application programmers through an Application Programmers Interface (API).
Different nodes, presenting the same API, can have different realisation of the
different parts in the software platform (e.g. using different RTOSs).

Today it is common to treat parts of the software platform as components,
e.g. the RTOS, device drivers, etc, in the same way as the ECU’s bus connectors

Application Programmers Interface

Software Framework
Communication | RTOS

Software
Platform

Hardware Abstraction Layer

| Device Drivers

Hardware

Figure 3: Internals of an ECU - A software platform

and other hardware modules. That is, some form of component management
process exists; trying to keep track of which version, variant, and configuration
of a component is used within a product. This component-based view of the
software platform is however not to be confused with the concept of CBSE since
the components does not conform to standard interfaces or component models.

4 Component Technology Requirements

There are many different aspects and methods to consider when looking into
questions regarding how to capture the most important requirements on a com-
ponent technology specially focusing on heavy vehicles. Our approach has been
to cooperate with our industrial partners (CC Systems and Volvo Construction
Equipment) very closely, both by performing interviews and by participating
in software development projects. In doing so, we have extracted the most im-
portant requirements on a component-based technique from the developers of
heavy vehicles point of view. The results from this study was first presented in
[5].

The requirements are divided into two main groups, the technical require-
ments (Sect. 4.2) and the development process related requirements (Sect. 4.3).
Also, in Sect. 4.4 we present some implied (or derived) requirements, i.e. require-
ments that we have synthesised from the requirements in sections 4.2 and 4.3,
but that are not explicit requirements from industry.

4.1 Research Method

The goal of this study was to extract all challenges of relevance when intro-
ducing a component technology, and find the most important requirements. It
seems natural to seek answers where the requirements are defined, i.e. at the
automotive software developing organisations. Secondly, the answers are likely
qualitative with a context full of details from development setting, products,

organisation etc. These two facts led us to perform a case study [22] for the two
cases represented by two developing organizations.

According to [22] a case study is an empirical inquiry that investigates a
contemporary phenomenon in its real life context and copes with situations
where there are more variables of interest than data points. In this study the
phenomenon is the reluctance to adopt a component technology in automotive
development and thereby the requirements put on such a technology. It is clearly
a contemporary phenomenon and the situation in a development organisation
comprises many variables with no hope of sampling enough data points to map
relations.

The case-study was performed at Volvo Construction Equipment and at CC
Systems. The respondents were senior technical staff from different parts of
the organisation, like project managers, development process specialists, pro-
grammers, and testing specialists. The case-study protocol questions were open
ended to encourage respondents to report on any issues they might attribute to
component technologies.

4.2 Technical Requirements

The technical requirements describe the needs and desires that our industrial
partners have regarding the technically related aspects and properties of a com-
ponent technology.

4.2.1 Analysable

The vehicular industry strives for better analyses of computer system behaviour
in general. This striving naturally affects requirements placed on a component
model. System analysis, with respect to extra-functional properties, such as
the timing behaviour and the memory consumption, of a system built up from
well-tested components is considered attractive.

When analysing a system, built from well-tested and functionally correct
components, the main issue is associated with composability. The composability
problem must guarantee extra-functional properties, such as the communication,
synchronisation, memory, and timing characteristics of the system [4].

When considering, e.g., timing analysability, it is important to be able to
verify (1) that each component meet its timing requirements, (2) that each node
(which is built up from several components) meet its deadlines (i.e. schedulabil-
ity analysis), and (3) to be able to analyse the end-to-end timing behaviour of
distributed functions (e.g. distributed over several nodes in a distributed control
system).

Because of the fact that the systems are resource constrained (Sect. 3), it
is important to be able to analyse the memory consumption. To check the
sufficiency of the application memory, as well as the paramater memory (typ-
cially EEPROM), is important. This check should be done pre-runtime to avoid
failures during runtime.

4.2.2 Testable and debuggable

Industry requires tools that support functional debugging, both at component
level (e.g. a graphical debugging tool showing the components in- and out-port
values) and at the traditional white-box source code level. The test and debug
environment needs to be "component aware" in the sense that port-values can
be monitored and traced and that breakpoints can be set on component level.

Testing and debugging is by far the most commonly used technique to ver-
ify software systems functionality. Testing is a very important complement to
analysis, and it should not be compromised when introducing a component
technology.

In fact, the ability to test embedded-system software can be improved when
using CBSE. This is possible because the component functionality can be tested
in isolation. This is a desired functionality asked for by our industrial partners.
This test should be used before the system tests, and this approach can help
finding functional errors and source code bugs at the earliest possible opportu-
nity.

4.2.3 Portable

The components, and the infrastructure surrounding them, should be platform
independent to the highest degree possible. Here, platform independent means
hardware independent, RTOS independent and communication protocol inde-
pendent.

Components are kept portable by minimising the number of dependencies
to the supporting software platform. Such dependencies are off course, to some
extent, necessary in order to construct an executable system. However, the
dependencies should be kept to an absolute minimum, and whenever possible
dependencies should be generated automatically by configuration tools.

Ideally, components should also be independent of the component frame-
work used during run-time. This may seem far fetched, since traditionally a
component model has been tightly integrated with its component framework.
However, support for migrating components between component frameworks is
important for companies cooperating with different customers, using different
hardware and operating systems.

4.2.4 Resource Constrained

The components should be small and light-weighted and the components in-
frastructure and framework should be minimised. Ideally, there should no run-
time overhead compared to not using a component based approach.

Embedded vehicular systems are typically resource constrained in order to
lower the production costs. When companies design new ECUs, future profit is
the main concern. Therefore the hardware is dimensioned for anticipated use
but not more.

One possibility, that can reduce resource consumption of components and the
component framework significantly, is to limit the possible run-time dynamics.

10

This means that it is desirable to allow only static, off-line, configured systems.
Many existing component technologies have been design to support high run-
time dynamics, where components are added, removed and reconfigured at run-
time. However, this dynamic behaviour comes at the price of increased resource
consumption.

4.2.5 Component Modelling

A component technology should be based on a standard modelling language like
UML [23] or UML 2.0 [24]. The main reason for choosing UML is that it is a
well known and thoroughly tested modelling technique with tools and formats
supported by third-party developers.

The reason for our industrial partners to have specific demands in these
details, is that it is belived that the business segment of heavy vehicles does
not have the possibility do develop their own standards and practices. Instead
they preferably relay on the use of simple and mature techniques supported by
a welth of third party suppliers.

4.2.6 Computational Model

Components should preferably be passive, i.e. they should not contain their own
threads of execution. A view where components are allocated to threads during
component assembly is preferred, since this is believed to enhance reusability,
and to limit resource consumption. The computational model should be focused
on a pipe-and-filter model [25]. This is partly due to the well known ability to
schedule and analyse this model off-line. Also, the pipes-and-filters model is a
good conceptual model for control applications.

4.3 Development Requirements

When discussing CBSE requirements, the research community often overlooks
requirements related to the development process. For software developing com-
panies, however, these requirements are at least as important as the techni-
cal requirements. When talking to industry, earning money is the main focus.
However, this cannot be done without having an efficient development processes
deployed. Hence to obtain industrial reliance, the development requirements
need to be considered and addressed by the component technology.

4.3.1 Introducible

It should be possible for companies to gradually migrate into a new develop-
ment technology. It is important to make the change in technology as safe and
inexpensive as possible.

Revolutionary changes in the development technique used at a company are
associated with high risks and costs. Therefore a new technology should be
possible to divide into smaller parts, which can be introduced separately. For
instance, if the architecture described in Fig. 3 is used, the components can

11

be used for application development only and independently of the real-time
operating system. Or, the infrastructure can be developed using components,
while the application is still monolithic.

One way of introducing a component technology in industry, is to start
focusing on the development process related requirements. When the developers
have accepted the CBSE way of thinking, i.e. thinking in terms of reusable
software units, it is time to look at available component technologies. This
approach should minimise the risk of spending too much money in an initial
phase, when switching to a component technology without having the CBSE
way of thinking.

4.3.2 Reusable

Components should be reusable, e.g., for use in new applications or environments
than those for which they where originally designed [26]. The requirement of
reusability can be considered both a technical and a development process related
requirement. Development process related since it has to deal with aspects
like version and variant management, initial risks and cost when building up a
component repository, etc. Technical since it is related to aspects such as, how
to design the components with respect to the RTOS and HW communication,
etc.

Reusability can more easily be achieved if a loosely coupled component tech-
nology is used, i.e. the components are focusing on functionality and do not
contain any direct operating system or hardware dependencies. Reusability is
simplified further by using input parameters to the components. Parameters
that are fixed at compile-time, should allow automatic reduction of run-time
overhead and complexity.

A clear, explicit, and well-defined component interface is crucial to enhance
the software reusability. To be able to replace one component in the software
system, a minimal amount of time should be spent trying to understand the
component that should be interchanged.

It is, however, both complex and expensive to build reusable components for
use in distributed embedded real-time systems [4]. The reason for this is that
the components must work together to meet the temporal requirements, the
components must be light-weighted since the systems are resource constrained,
the functional errors and bugs must not lead to erroneous outputs that follow
the signal flow and propagate to other components and in the end cause unsafe
systems. Hence, reuse must be introduced gradually and with grate care.

4.3.3 Maintainable

The components should be easy to change and maintain, meaning that devel-
opers that are about to change a component need to understand the full impact
of the proposed change. Thus, not only knowledge about component interfaces
and their expected behaviour is needed. Also, information about current de-
ployment contexts may be needed in order not to break existing systems where

12

the component is used.

In essence, this requirement is a product of the previous requirement on
reusability. The flip-side of reusability is that the ability to reuse and reconfig-
ure the components using parameters leads to an abundance of different config-
urations used in different vehicles. The same type of vehicle may use different
software settings and even different component or software versions. So, by
introducing reuse we introduce more administrative work.

Reusing software components lead to a completely new level of software
management. The components need to be stored in a repository where different
versions and variants need to be managed in a sufficient way. Experiences from
trying to reuse software components show that reuse is very hard and initially
related with high risks and large overheads [4]. These types of costs are usually
not very attractive in industry.

The maintainability requirement also includes sufficient tools supporting the
service of the delivered vehicles. These tools need to be component aware and
handle error diagnostics from components and support for updating software
components.

4.3.4 Understandable

The component technology and the systems constructed using it should be easy
to understand. This should also include making the technology easy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluation and verification
both on the system level and on the component level. Also, focusing on an
understandable model makes the development process faster and it is likely
that there will be fewer bugs.

It is desirable to hide as much complexity as possible from system develop-
ers. Ideally, complex tasks (such as mapping signals to memory areas or bus
messages, or producing schedules or timing analysis) should be performed by
tools. It is widely known that many software errors occur in code that deals with
synchronisation, buffer management and communications. However, when using
component technologies such code can, and should, be automatically generated;
leaving application engineers to deal with application functionality.

4.4 Derived Requirements

Here, we present two implied requirements, i.e. requirements that we have syn-
thesised from the requirements in sections 4.2 and 4.3, but that are not explicit
requirements from the vehicular industry.

4.4.1 Source Code Components

A component should be source code, i.e., no binaries. The reasons for this
include that companies are used to have access to the source code, to find
functional errors, and enable support for white box testing (Sect. 4.2.2). Since

13

source code debugging is demanded, even if a component technology is used,
black box components is undesirable.

Using black-box components would, regarding to our industrial partners,
lead to a feeling of not having control over the system behaviour. However,
the possibility to look into the components does not necessary mean that you
are allowed to modify them. In that sense, a glass-box component model is
sufficient.

Source code components also leaves room for compile-time optimisations of
components, e.g., stripping away functionality of a component that is not used
in a particular application. Hence, souce code components will contribute to
lower resource consumption (Sect. 4.2.4).

4.4.2 Static Configuration

For a component model to better support the technical requirements of analysabil-
ity (Sect. 4.2.1), testability (Sect. 4.2.2), and light-weightiness (Sect. 4.2.4), the
component model should be configured pre-runtime, i.e. at compile time. Com-
ponent technologies for use in the office/Internet domain usually focus on a
dynamic behaviour [1, 2]. This is of course appropriate in this specific domain,
where powerful computers are used. Embedded systems, however, face another
reality - with resource constrained ECU’s running complex, dependable, control
applications. Static configuration should also improve the development process
related requirement of understandability (Sect. 4.3.4), since there will be no
complex run-time reconfigurations.

Another reason for the static configuration is that a typical control node,
e.g. a power train node, does not interact directly with the user at any time.
The node is started when the ignition key is turned on, and is running as a
self-contained control unit until the vehicle is turned off. Hence, there is no
need to reconfigure the system during runtime.

4.5 Discussion

Reusability is perhaps the most obvious reason to introduce a component tech-
nology for a company developing embedded real-time control systems. This
matter has been the most thoroughly discussed subject during our interviews.
However, it has also been the most separating one, since it is related to the
question of deciding if money should be invested in building up a repository of
reusable components.

Two important requirements that have emerged during the discussions with
our industrial partners are safety and reliability. These two are, as we see it,
not only associated with the component technology. Instead, the responsibility
of designing safe and reliable system rests mainly on the system developer. The
technology and the development process should, however, give good support for
designing safe and reliable systems.

Another part that has emerged during our study is the need for a quality rat-
ing of the components depending on their success when used in target systems.

14

This requirement can, e.g., be satisfied using Execution Time Profiles (ETP’s),
discussed in [27]. By using ETPs to represent the timing behaviour of software
components, tools for stochastic schedulability analysis can be used to make
cost-reliability trade offs by dimensioning the resources in a cost efficient way
to achieve the reliability goals. There are also emerging requirements regarding
the possibilities to grade the components depending on their software quality,
using for example different SIL (Safety Integrity Levels) [28] levels.

5 Requirements Grading

In order to better understand which of the requirements that is of most impor-
tance to industry we conducted a second study [7]. The motivation of grading
requirements is that the results can be used to guide researchers and tool ven-
dors to put focus on the most relevant industrial requirements, and to resolve
conflicts between requirements.

5.1 Method

The first case study identified many areas of interests and many were closely re-
lated to the development process. Open ended discussions gave us the elicitation
of the most important requirements but no notion of relative importance can
be analysed based on these results. In order to grade requirements according to
importance we performed a second study.

The requirement grading was performed in a workshop with a short presen-
tation, definition of terms, questions and a numerical grading of requirements
where the average sum was bounded. Thus, respondents could not grade all
requirements high in order to get a sum average in the predefined range. The
procedure was the following:

1. The workshop started with a short presentation of the study and of compo-
nent technologies basics. A very brief background was presented with PC
software benefits while automotive software engineers are still reluctant.
Furthermore the development process of working with components in a
component repository rather than developing in a normal V model was
described. The terms; Tool, Components, Platform, Component Frame-
work and Repository was explained. Finally the results from the earlier
study were presented.

2. Secondly, the definitions of all the requirements that were to be graded
were presented and respondents were given handouts with the definitions.
Respondents were allowed to ask questions on the definitions.

3. The data collection was made by the respondents filling in a spreadsheet
form on a laptop computer where all the twelve listed requirements were to
be graded with a number 1-4 indicating from "interesting" to "absolutely
decisive". The respondents were to make sure that the sum average of all

15

their grades was in the range 2.4 - 2.6. The sum, average of grades, was
shown and recalculated throughout the grading.

5.2 Results

In this section we present the results (see Figure 1) from the second study, i.e.
the industry grading of the requirements in section 4. We present the result
by first discussing the requirements separately, and then in section 5.1 we draw
same general conclusions from our work.

5.2.1 Analysable

Analysability is in general considered to be important, but the results from
our case-study expose that it is not amongst the most important issues of
component-based development. For example, it is worth noticing that our part-
ners consider testability and the means to debug the application as much more
important. Reasons for this might be that the business segment of heavy ve-
hicles has low series (compared to, e.g., trucks or passenger cars) and that is
cheaper to add extra processing power (faster CPU and more memory) in order
to avoid timing or memory problems. It may be that a common view amongst
industrial developers that analysability is complex and that it leads to a lot of
manual information managing. Perhaps timing and memory consumption is not
a problem in today’s applications whereas testability gives direct feedback to
the software developer and might hence be seen as more important. Yet another
reason might be that analysability is not believed to be feasible or practical for
distributed and complex industrial systems.

5.2.2 Test and Debug

Test and debug is the most important quality attribute seen in the requirement
grades (see figure 1). This is most likely due to the fact that testing of embedded
systems is extremely time consuming today. Hence, from a company perspective
- there is a huge amount of time (and money) to save if a component technology
could decrease the time it takes to verify software functionality.

Another important issue is the rising requirement from Original Equipment
Manufacturers (OEMs) that sub-contractors deliver "error-free" software. Late
or erroneous deliveries are typically punished by an OEM fine. This entail that
testing of software (typically not complete systems but rather components) of
the system gets more and more important.

It is also worth noticing that both CCS and VCE have spent huge amounts
of money on developing test and debug equipment for their respective systems.
Hence, the results might be a bit biased, i.e., that these companies consider it
more important than the typical embedded software developer.

16

5.2.3 Portability

Portability is considered very important, mainly due to the fact that it is desired
to keep hardware upgrading costs to an absolute minimum. But it is of course
also important to be flexible in the choice of software platform.

For CCS, working with many different OEMs (and many different platforms),
the requirements of portability is obvious - but it is striking to see that also VCE
consider portability as being very important (see Figure 2). The reason for this
is essentially that it is very important not to be too dependent on tool vendors
and hardware platforms.

5.2.4 Resource Constrained

Surprisingly, and in quite contrary to what one could expect from developers of
resource constrained embedded systems, this requirements is considered to be
the least important in this study. The reason for this might be the fact that
current state-of-practise development methods used by the vehicular industry
are rather resource constrained. Hence, there is not much focus on this require-
ment in the daily work. It might be the case that developers take things they
have for granted, and see things they do not have.

Another reason is Moore’s law, it is cheaper to by more processing power
than it is to spend money on analysing timing and memory consumption. This
is also dependent on the product volumes, for low series products it might be
worth spending some extra money on hardware in order to facilitate the use of
more advanced development methods.

5.2.5 Component Modelling

This requirement is not considered to be very important; meaning that other
aspects of modelling is more important than using business standards. For ex-
ample, simplicity is more important than using a standard modelling language.
However, it is interesting to notice that the requirement on using a standardised
modelling language is more important relative to the requirement on resource
usage.

5.2.6 Computational Model

The requirement on the computational model, meaning that the components
should be passive (not having their own threads of execution) and that pipe-
and-filter should be used as an architectural pattern, is the most deviating
requirement (see Figure 2). This might be because VCE is currently using the
Rubus Component Model [29] using a pipe-and-filter architecture, whilst CCS
use different architectural patterns in different applications.

17

Computational Mode!
Introducible
Reusable
Meintainable
Understandable

Component Modelling

Andlysable

Testable and debuggable
Portable

Resource Constrained

Figure 4: Requirements grades

5.2.7 Introducible

It is considered relatively important that the component technology is easy to
introduce in new and existing projects/products. This requirement also includes
the possibility to use parts of a component technology, e.g., together with various
operating systems depending on customer needs.

One would expect to see a certain difference between a sub-contractor and
an OEM - but as can be seen in Figure 2 both companies agree on the relative
importance of this requirement.

5.2.8 Reusable

It is very interesting to see that reusability which is one of the fundamental
reasons for moving towards CBSE is considered to be the second most important
overall requirement. The reason for this is likely the large potential of software
reuse in terms of development time and cost.

Reusability is typically considered to be very demanding, so it is worth
noticing that the companies are willing to spend the extra money on more
processing power (low emphasis on the requirement of resource usage) in order
to facilitate reusability.

5.2.9 Maintainability

Maintainability is ranked as the third most important requirement. The reason
for this is most likely the high costs that arise when upgrading or updating

18

Saurce Code Components

Static Configuration

software. Support for software configuration management is considered a pre-
requisite in order to facilitate cross platform and product reuse, and hence these
requirements are tightly coupled. Also, updating existing software by replacing
erroneous software components requires efficient tool support.

5.2.10 Understandable

Understandability is not a primary requirement. This means that the companies
are willing to spend some money on training personnel in software development
in order to reach primary goals like reusability, portability and testability.

5.2.11 Source Code and Static Configuration

Not much focus is spent on the derived requirements. These requirements should
perhaps not be compared with the other requirement since they are tightly
coupled to primary requirements. This is rather to be seen as means to reach
other requirements. For example, it is not possible to debug the application
source code if the software components are delivered in a binary format.

This might be considered a weakness of the study, but we include the results
for consistency reasons.

5.3 Discussion

It is interesting to see that the basic properties of CBSE (e.g. reusability, main-
tainability, and portability) are highly valued by industry. This might be biased
due to the fact that this case-study deals with component-based development.
However, the relative importances between the listed requirements are obvious
and should be seen as a driver for component-based software.

A

Y

N

7 CCS
@ VCE

A\

N

N

L]
i
L]

A\

Component
Modelling

Analysable
Testable and
debuggable

Portable
Resource
Constrained

Computational
Model
Introducible
Reusable
Maintainable
Understandable g
Source Code
Components
Static
Configuration

Figure 5: Requirements from the two companies

19

Also, it is interesting to see that the results from the two companies (see
Figure 2) correspond with each other very well. Bearing in mind that the two
companies represent, two different types of control system developers, OEM and
sub-contractor, these similarities are even more striking. Another interesting
conclusion from this case-study is that the development process related require-
ments (i.e. introducible, reusable, maintainable, and understandable) is consid-
ered to be substantially more important then the technical requirements. Hence,
the research community should not overlook these problems but rather spend
more focus on issues like, e.g., support for software configuration management.

6 Component Technology Evaluation

In this section, existing component technologies for embedded systems are de-
scribed and evaluated. The technologies originate both from academia and
industry. The selection criterion for a component technology has firstly been
that there is enough information available, secondly that the authors claim that
the technology is suitable for embedded systems, and finally we have tried to
achieve a combination of both academic and industrial technologies.

The technologies described and evaluated are PECT, Koala, Rubus Compo-
nent Model, PBO, PECOS and CORBA-CCM. We have chosen CORBA-CCM
to represent the set of technologies existing in the PC/Internet domain (other
examples are COM, .NET [1] and Java Enterprise Beans [2]) since it is the
only technology that explicitly address embedded and real-time issues. Also,
the Windows CE version of .NET [1] is omitted, since it is targeted towards
embedded display-devices, which only constitute a small subset of the devices
in vehicular systems. The evaluation is based on existing, publically available,
documentation.

6.1 Research Method

The research presented in this article started with a preliminary literature study,
summarised in the state-of-the-art report [30]. The report is based on about
30 articles summarising the area of component-based software engineering for
safety critical embedded applications. Understanding the state-of-the-art and
state-of-practice component technologies was a prerequisite for the subsequent
work. Based on the preliminary literature study — a qualitative case-study
interview protocol (i.e. a case-study questionnaire) [22] was put together.

6.2 PECT

A Prediction-Enabled Component Technology (PECT) [12] is a development in-
frastructure that incorporates development tools and analysis techniques. PECT
is an ongoing research project at the Software Engineering Institute (SEI) at
the Carnegie Mellon University.? The project focuses on analysis; however, the

2Software Engineering Institute, CMUj; http://www.sei.cmu.edu

20

framework does not include any concrete theories - rather definitions of how
analysis should be applied. To be able to analyse systems using PECT, proper
analysis theories must be found and implemented and a suitable underlying
component technology must be chosen.

A PECT include an abstract model of a component technology, consisting of
a construction framework and a reasoning framework. To concretise a PECT, it
is necessary to choose an underlying component technology, define restrictions
on that technology (to allow predictions), and find and implement proper analy-
sis theories. The PECT concept is highly portable, since it does not include any
parts that are bound to a specific platform, but in practise the underlying tech-
nology may hinder portability. For modelling or describing a component-based
system, the Construction and Composition Language (CCL) [12] is used. The
CCL is not compliant to any standards. PECT is highly introducible, in princi-
ple it should be possible to analyse a part of an existing system using PECT. It
should be possible to gradually model larger parts of a system using PECT. A
system constructed using PECT can be difficult to understand; mainly because
of the mapping from the abstract! component model to the concrete component
technology. It is likely that systems looking identical at the PECT-level behave
differently when realised on different component technologies.

PECT is an abstract technology that requires an underlying component tech-
nology. For instance, how testable and debugable a system is depends on the
technical solutions in the underlying run-time system. Resource consumption,
computational model, reusability, maintainability, black- or white-box compo-
nents, static- or dynamic-configuration are also not possible to determine with-
out knowledge of the underlying component technology.

6.3 Koala

The Koala component technology [9] is designed and used by Philips® for devel-
opment of software in consumer electronics. Typically, consumer electronics are
resource constrained since they use cheap hardware to keep development costs
low. Koala is a light weight component technology, tailored for Product Line
Architectures [31]. The Koala components can interact with the environment,
or other components, through explicit interfaces. The components source code
is fully visible for the developers, i.e. there are no binaries or other intermediate
formats. There are two types of interfaces in the Koala model, the provides-
and the requires- interfaces, with the same meaning as in UML 2.0 [24]. The
provides interface specify methods to access the component from the outside,
while the required interface defines what is required by the component from its
environment. The interfaces are statically connected at design time.

One of the primary advantages with Koala is that it is resource constrained.
In fact, low resource consumption was one of the requirements considered when
Koala was created. Koala use passive components allocated to active threads
during compile-time; they interact through a pipes-and-filters model. Koala uses

3Phillips International, Inc; Home Page http://www.phillips.com

21

a construction called thread pumps to decrease the number of processes in the
system. Components are stored in libraries, with support for version numbers
and compatibility descriptions. Furthermore components can be parameterised
to fit different environments.

Koala does not support analysis of run-time properties. Research has pre-
sented how properties like memory usage and timing can be predicted in general
component-based systems, but the thread pumps used in Koala might cause
some problems to apply existing timing analysis theories. Koala has no explicit
support for testing and debugging, but they use source code components, and
a simple interaction model. Furthermore, Koala is implemented for a specific
operating system. A specific compiler is used, which routes all inter-component
and component to operating system interaction through Koala connectors. The
modelling language is defined and developed in-house, and it is difficult to see
an easy way to gradually introduce the Koala concept.

6.4 Rubus Component Model

The Rubus Component Model (Rubus CM) [29] is developed by Arcticus sys-
tems.* The component technology incorporates tools, e.g., a scheduler and a
graphical tool for application design, and it is tailored for resource constrained
systems with real-time requirements. The Rubus Operating System (Rubus OS)
[32] has one time-triggered part (used for time-critical hard real-time activities)
and one event-triggered part (used for less time-critical soft real-time activities).
However, the Rubus CM is only supported by the time-triggered part.

The Rubus CM runs on top of the Rubus OS, and the component model
requires the Rubus configuration compiler. There is support for different hard-
ware platforms, but regarding to the requirement of portability (Sect. 4.2.3),
this is not enough since the Rubus CM is too tightly coupled to the Rubus
OS. The Rubus OS is very small, and all component and port configuration is
resolved off-line by the Rubus configuration compiler.

Extra-functional properties can be analysed during desing-time since the
component technology is statically configured, but timing analysis on compo-
nent and node level (i.e. schedulability analysis) is the only analysable property
implemented in the Rubus tools. Testability is facilitated by static scheduling
(which gives predictable execution patterns). Testing the functional behaviour
is simplified by the Rubus Windows simulator, enabling execution on a regular
PC.

Applications are described in the Rubus Design Language, which is a non-
standard modelling language. The fundamental building blocks are passive. The
interaction model is the desired pipes-and-filters (Sect. 4.2.6). The graphical
representation of a system is quite intuitive, and the Rubus CM itself is also easy
to understand. Complexities such as schedule generation and synchronisation
are hidden in tools.

The components are source code and open for inspection. However, there is

4 Arcticus Systems; Home Page http://www.arcticus.se

22

no support for debugging the application on the component level. The compo-
nents are very simple, and they can be parameterised to improve the possibility
to change the component behaviour without changing the component source
code. This enhances the possibilities to reuse the components.

Smaller pieces of legacy code can, after minor modifications, be encapsulated
in Rubus components. Larger systems of legacy code can be executed as back-
ground service (without using the component concept or timing guarantees).

6.5 PBO

Port Based Objects (PBO) [33] combines object oriented design, with port au-
tomaton theory. PBO was developed as a part of the Chimera Operating Sys-
tem (Chimera OS) project [34], at the Advanced Manipulators Laboratory at
Carnegie Mellon University.® Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systems, with specialisation in re-
configurable robotics applications. One important goal of the work was to hide
real-time programming and analysis details. Another explicit design goal for
a system based on PBO was to minimise communication and synchronisation,
thus facilitating reuse.

PBO implements analysis for timeliness and facilitates behavioural models
to ensure predictable communication and behaviour. However, there are few
additional analysis properties in the model. The communication and compu-
tation model is based on the pipes-and-filters model, to support distribution
in multiprocessor systems the connections are implemented as global variables.
Easy testing and debugging is not explicitly addressed. However, the technology
relies on source code components and therefore testing on a source code level
is achievable. The PBOs are modular and loosely coupled to each other, which
admits easy unit testing. A single PBO-component is tightly coupled to the
Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS, it can not be easily
introduced in any legacy system. The Chimera OS is a large and dynamically
configurable operating system supporting dynamic binding, it is not resource
constrained.

PBO is a simple and intuitive model that is highly understandable, both at
system level and within the components themselves. The low coupling between
the components makes it easy to modify or replace a single object. PBO is
built with active and independent objects that are connected with the pipes-
and-filters model. Due to the low coupling between components through simple
communication and synchronisation the objects can be considered to be highly
reusable. The maintainability is also affected in a good way due to the loose
coupling between the components; it is easy to modify or replace a single com-
ponent.

5Carnegie Mellon University; Home Page http://www.cmu.edu

23

6.6 PECOS

PECOS® (PErvasive COmponent Systems) [8, 35] is a collaborative project
between ABB Corporate Research Centre” and academia. The goal for the
PECOS project was to enable a component-based technology with appropriate
tools to specify, compose, validate and compile software for embedded systems.
The component technology is designed especially for field devices, i.e. reactive
embedded systems that gathers and analyse data via sensors and react by con-
trolling actuators, valves, motors etc. Furthermore, PECOS is analysable, since
much focus has been put on extra-functional properties such as memory con-
sumption and timeliness.

Extra-functional properties like memory consumption and worst-case execution-
times are associated with the components. These are used by different PECOS
tools, such as the composition rule checker and the schedule generating and ver-
ification tool. The schedule is generated using the information from the compo-
nents and information from the composition. The schedule can be constructed
off-line, i.e. a static pre-calculated schedule, or dynamically during run-time.

PECOS has an execution model that describes the behaviour of a field device.
The execution model deals with synchronisation and timing related issues, and it
uses Petri-Nets [36] to model concurrent activities like component compositions,
scheduling of components, and synchronisation of shared ports [37]. Debugging
can be performed using COTS debugging and monitoring tools. However, the
component technology does not support debugging on component level as de-
scribed in Sect. 4.2.2.

The PECOS component technology uses a layered software architecture,
which enhance portability (Sect. 4.2.3). There is a Run-Time Environment
(RTE) that takes care of the communication between the application specific
parts and the real-time operating system. PECOS use a modelling language
that is easy to understand, however no standard language is used. The com-
ponents communicate using a data-flow-oriented interaction, it is a pipes-and-
filters concept, but the component technology uses a shared memory, contained
in a blackboard-like structure.

Since the software infrastructure does not depend on any specific hardware
or operating system, the requirement of introducability (Sect. 4.3.1) is to some
extent fulfilled. There are two types of components, leaf components (black-box
components) and composite components. These components can be passive,
active, and event triggered. The requirement of openness is not considered
fulfilled, due to the fact that PECOS uses black-box components. In later
releases, the PECOS project is considering to use a more open component model
[38]. The devices are statically configured.

SPECOS Project, Home Page: http://www.pecos-project.org/
7ABB Corporate Research Centre in Ladenburg, Home Page: http://www.abb.com/

24

8
o g
e o — c
) 2 £ z g .
3 8 T 9 E S
s 3 3 2 2 8 g
o 5 = e 0 B @) o0
o 5§ o g g 2 s T B8 £ N e
] © 5} = a I = Q c — —
2 2 o 8§ 2 8 3 2 £ £ 9 3§l o °
£ 3 8§ 32 2 28 3 § € § & oflg & %
£ 2 5 8 5§ 5 £ 3 s 2 3 E|z E S
< - o & O O = x = S5 o oz 2 2
PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA |[1.2 3 2
Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3
Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 13 52
PBO 2 1 0 0 0 1 1 1 1 2 2 q 0.9 3 4
PECOS 2 1 2 2 0 2 1 2 1 2 0 1.4 7 2
CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 g o5 2 8
Average 12 10 12 12 00 14 14 12 10 15 122 11 43 35

Figure 6: Grading of component technologies with respect to the requirements

6.7 CORBA Based Technologies

The Common Object Request Broker Architecture (CORBA) is a middleware
architecture that defines communication between nodes. CORBA provides a
communication standard that can be used to write platform independent appli-
cations. The standard is developed by the Object Management Group® (OMG).
There are different versions of CORBA available, e.g., MinimumCORBA [17]
for resource constrains systems, and RT-CORBA [39] for time-critical systems.

RT-CORBA is a set of extensions tailored to equip Object Request Brokers
(ORBs) to be used for real-time systems. RT-CORBA supports explicit thread
pools and queuing control, and controls the use of processor, memory and net-
work resources. Since RT-CORBA adds complexity to the standard CORBA,
it is not considered very useful for resource-constrained systems. Minimum-
CORBA defines a subset of the CORBA functionality that is more suitable for
resource-constrained systems, where some of the dynamics is reduced.

CORBA is a middleware architecture that defines communication between
nodes, independent of computer architecture, operating system or programming
language. Because of the platform and language independence CORBA becomes
highly portable. To support the platform and language independence, CORBA
implements an Object Request Broker (ORB) that during run-time acts as a
virtual bus over which objects transparently interact with other objects located
locally or remote. The ORB is responsible for finding a requested objects imple-
mentation, make the method calls and carry the response back to the requester,
all in a transparent way. Since CORBA run on virtually any platform, legacy
code can exist together with the CORBA technology. This makes CORBA
highly introducible.

OMG has defined a CORBA Component Model (CCM) [3], which extends

80bject Management Group. CORBA Home Page. http://www.omg.org/corba/

25

the CORBA object model by defining features and services that enables ap-
plication developers to implement, mange, configure and deploy components.
In addition the CCM allows better software reuse for server-applications and
provides a greater flexibility for dynamic configuration of CORBA applications.

While CORBA is portable, and powerful, it is very run-time demanding,
since bindings are performed during run-time. Because of the run-time decisions,
CORBA is not very deterministic and not analysable with respect to timing and
memory consumption. There is no explicit modelling language for CORBA.
CORBA uses a client server model for communication, where each object is
active. There are no extra-functional properties or any specification of interface
behaviour. All these things together make reuse harder. The maintainability is
also suffering from the lack of clearly specified interfaces.

7 Summary of Component Technology Evalua-
tion

In this section we assign numerical grades to each of the component technologies
described in Sect. 6, grading how well they fulfil each of the requirements of
Sect. 4. The grades are based on the discussion summarised in Sect. 6. We use
a simple 3 level grade, where 0 means that the requirement is not addressed
by the technology and is hence not fulfilled, 1 means that the requirement is
addressed by the technology and/or that is partially fulfilled, and 2 means that
the requirement is addressed and is satisfactory fulfilled. For PECT, which is
not a complete technology, several requirements depended on the underlying
technology. For these requirements we do not assign a grade (indicated with
NA, Not Applicable, in Fig. 6). For the CORBA-based technologies we have
listed the best grade applicable to any of the CORBA flavours mentioned in
Sect. 6.7.

For each requirement we have also calculated an average grade. This grade
should be taken with a grain of salt, and is only interesting if it is extremely
high or extremely low. In the case that the average grade for a requirement is
extremely low, it could either indicate that the requirement is very difficult to
satisfy, or that component-technology designers have paid it very little attention.

In the table we see that only two requirements have average grades below
1.0. The requirement "Component Modelling" has the grade 0 (!), and "Testing
and debugging" has 1.0. We also note that no requirements have a very high
grade (above 1.5). This indicate that none of the requirement we have listed
are general (or important) enough to have been considered by all component-
technology designers. However, if ignoring CORBA (which is not designed for
embedded systems) and PECT (which is not a complete component technology)
we see that there are a handful of our requirements that are addressed and at
least partially fulfilled by all technologies.

We have also calculated an average grade for each component technology.
Again, the average cannot be directly used to rank technologies amongst each

26

other. However, the two technologies PBO and CORBA stand out as having
significantly lower average values than the other technologies. They are also
distinguished by having many 0’s and few 2’s in their grades, indicating that
they are not very attractive choices. Among the complete technologies with
an average grade above 1.0 we notice Rubus and PECOS as being the most
complete technologies (with respect to this set of requirements) since they have
the fewest 0’s. Also, Koala and PECOS can be recognised as the technologies
with the broadest range of good support for our requirements, since they have
the most number of 2’s.

However, we also notice that there is no technology that fulfils (not even
partially) all requirements, and that no single technology stands out as being
the preferred choice.

& Conclusions

In this article we have compared some existing component technologies for em-
bedded systems with respect to industrial requirements. The requirements have
been collected from industrial actors within the business segment of heavy ve-
hicles. The software systems developed in this segment can be characterised
as resource constrained, safety critical, embedded, distributed, real-time, con-
trol systems. Our findings should be applicable to software developers whose
systems have similar characteristics.

We have noticed that, for a component technology to be fully accepted by
industry, the whole systems development context needs to be considered. It
is not only the technical properties, such as modelling, computation model,
and openness, that needs to be addressed, but also development requirements
like maintainability, reusability, and to which extent it is possible to gradually
introduce the technology. It is important to keep in mind that a component
technology alone cannot be expected to solve all these issues; however a tech-
nology can have more or less support for handing the issues.

The result of the investigation is that there is no component technology
available that fulfil all the requirements. Further, no single component tech-
nology stands out as being the obvious best match for the requirements. Each
technology has its own pros and cons. It is interesting to see that most require-
ments are fulfilled by one or more techniques, which implies that good solutions
to these requirements exist.

We conclude that using software components and component-based devel-
opment is seen as a promising to address challenges in product development,
including integration, flexible configuration as well as support for software reuse.

One of the main contributions is that we show the relative importance of
industrial requirements, in addition to the industrial requirements on a com-
ponent technology for use in automotive applications. We describe and grade
requirements on a component technology as elicited from two Swedish control-
system developers. The requirements are divided into two main groups, the
technical requirements and the development process related requirements. The

27

reason for this is to clarify that the industrial actors are not only interested
in technical solutions, but also in improvements regarding their development
process.

The result can be used to guide modifications and/or extensions to exist-
ing component, technologies in order to make them better suited for industrial
deployment. The results can also serve as a platform for software engineering
research, since researchers can be guided to put focus on the most desired areas
within component-based software engineering.

Acknowledgements

We would like to thank CC Systems and Volvo Construction Equipment for
their great support during our research. Especially we would likt to thank
Jorgen Hansson (CCS), Nils-Erik Bankestad (VCE) and Robert Larsson (VCE).
Thank you!

References

[1] Microsoft Component Technologies. COM/DCOM/.NET. http://www.-
microsoft.com.

[2] Sun Microsystems. Enterprise Java Beans Technology. http://java.sun.-
com/products/ejb/.

[3] CORBA Component Model 3.0. Object Management Group, June 2002.
http://www.omg.org/technology /documents/formal /components.htm.

[4] I. Crnkovic and M. Larsson. Building Reliable Component-Based Software
Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[5] A. Moller, J. Froberg, and M. Nolin. Industrial Requirements on Compo-
nent Technologies for Embedded Systems. In Proceedings of the 7*" Inter-
national Symposium on Component-Based Software Engineering (CBSE7).
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004. Edinburgh, Scotland.

[6] Anders Moller, Mikael Akerholm, Johan Fredriksson, and Mikael Nolin.
Evaluation of Component Technologies with Respect to Industrial Require-
ments. In Euromicro Conference, Component-Based Software Engineering
Track, August 2004.

[7] Anders M"oller, Mikael Akerholm, Joakim Fr"oberg, and Mikael Nolin. In-
dustrial grading of quality requirements for automotive software component
technologies. In Embedded Real-Time Systems Implementation Workshop
in conjunction with the 26th IEEE International Real-Time Systems Sym-
posium, 2005 Miami, USA, December 2005.

28

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Winter, T. Genssler, et al. Components for Embedded Software — The
PECOS Apporach. In The 2" International Workshop on Composition
Languages, in conjunction with the 16" ECOOP, June 2002. Malaga,
Spain.

R. van Ommering et al. The Koala Component Model for Consumer Elec-
tronics Software. IEEE Computer, 33(3):78 85, March 2000.

J. Froberg. Engineering of Vehicle Electronic Systems: Requirements Re-
flected in Architecture. Mélardalen University Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7. Mélardalen Real-Time Re-
search Centre, Milardalen University, March, 2004, Visteras, Sweden.

A. Moller. Software Component Technologies for Heavy Vehicles.
Maélardalen University Technology Licentiate Thesis No.42, ISSN 1651-
9256, ISBN 91-88834-88-3. Mailardalen Real-Time Research Centre,
Malardalen University, January, 2005, Visteras, Sweden.

K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software Engi-
neering Institute, Carnegie Mellon University, April 2003. Pittsburg, USA.

A. Brown and K. Wallnau. The Current State of CBSE. IEEE Software,
September /October 1998.

C. Nordstrom, M. Gustafsson, et al. Experiences from Introducing State-of-
the-art Real-Time Techniques in the Automotive Industry. In Eigth IEEE
International Conference and Workshop on the Engineering of Computer-
Based Systems, April 2001. Washington, USA.

S. R. Schach. Classical and Object-Oriented Software Engineering.
McGraw-Hill Science/Engineering/Math; 3rd edition, 1996. ISBN 0-256-
18298-1.

Ivica Crnkovic and Magnus Larsson. A case study: Demands on
component-based development. In Proceedings, 22th International Confer-
ence of Software Engineering, Limerick, Ireland, May 2000. ACM, IEEE.

Object Management Group. MinimumCORBA 1.0, August 2002. http://-
www.omg.org/technology /documents/formal /minimum CORBA.htm.

International Standards Organisation (ISO). Road Vehicles Interchange
of Digital Information — Controller Area Network (CAN) for High-Speed
Communication, November 1993. vol. ISO Standard 11898.

CiA. CANopen Communication Profile for Industrial Systems, Based on
CAL, October 1996. CiA Draft Standard 301, rev 3.0, http://www.-
canopen.org.

SAE Standard. SAE J1939 Standards Collection. http://www.sae.org.

29

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

132

[33]

SAE Standard. SAE J1587, Joint SAE/TMC Electronic Data Interchange
Between Microcomputer Systems In Heavy-Duty Vehicle Applications.
http://www.sae.org.

R.K. Yin. Case Study Research Design and Methods. Applied Social
Research Methods Series, Volume 5, SAGE Publications, 2003. ISBN 0-
7619-2553-8.

B. Selic and J. Rumbaugh. Using UML for modelling complex real-time
systems, 1998. Rational Software Corporation.

Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003. http://www.omg.com /uml/.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-2.

D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. In Proceedings of the 17"
International Conference on Software Engineering, April 1995. Seattle,
USA.

T. Nolte, A. Mdller, and M. Nolin. Using Components to Facilitate Sto-
chastic Schedulability. In Proceedings of the 24" Real-Time System Sympo-
sium — Work-in-Progress Session. IEEE Computer Society, December 2003.
Cancun, Mexico.

SIL. Safety Integrity Levels Does Reality Meet Theory?, 2002. Report f.
seminar held at the IEE, London, on 9 April 2002.

K.L. Lundbéck, J. Lundbéck and M. Lindberg. Component-Based Devel-
opment of Dependable Real-Time Applications. In Real-Time in Sweden
— Presentation of Component-Based Software Development Based on the
Rubus concept, Arcticus Systems: http://www.arcticus.se, August 2003.
Visteras, Sweden.

M. Nolin et al. Component-Based Software for Embedded Systems - A
Literature Survey. Technical report, MRTC Report No 104, ISSN 1404-
3041, ISRN MDH-MRTC-104/203-1-SE, Mélardalen Real-Time Reseach
Centre, Mélardalen University, June 2003. Visteras, Sweden.

P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2001. ISBN 0-201-70332-7.

K.L. Lundbéck. Rubus OS Reference Manual — General Concepts. Arcticus
Systems: http://www.arcticus.se.

D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynamically Re-
configurable Real-Time Software Using Port-Based Objects. IEEE Trans-
actions on Software Engineering, pages 759 776, December 1997.

30

134

[35]

[36]

137]

|38]

[39]

P.K. Khosla et al. The Chimera IT Real-Time Operating System for Ad-
vanced Sensor-Based Control Applications. IEEE Transactions on Systems,
1992. Man and Cybernetics.

T. Genssler, A. Christoph, B. Schuls, M. Winter, et al. PECOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

M. Sgroi. Quasi-Static Scheduling of Embedded Software Using Free-Choice
Petri Nets. Technical report, University of California at Berkely, May 1998.
Berkely, USA.

O. Nierstrass, G. Arevalo, S. Ducasse, et al. A Component Model for Field
Devices. In Proceedings of the First International IFIP/ACM Working
Conference on Component Deployment, June 2002. Germany.

R. Wuyts and S. Ducasse. Non-functional requirements in a component
model for embedded systems. In International Workshop on Specification
and Verification of Component-Based Systems, 2001. OPPSLA.

D.C. Schmidt, D.L. Levine, and S. Mungee. The Design of the tao real-time
object request broker. Computer Communications Journal, Summer 1997.

31

