
Industrial Requirements on ComponentTe
hnologies for Vehi
ular Control-SystemsAnders Möller† ⋆ Mikael Åkerholm† ⋆ Joakim Fröberg† ‡Johan Fredriksson† Mikael Nolin† ⋆

†MRTC, Mälardalen University, Sweden
⋆CC Systems, Uppsala, Sweden

‡Volvo Constru
tion Equipment, Eskilstuna, SwedenFebruary 10, 2006Abstra
tSoftware
omponent te
hnologies for automotive appli
ations are de-sired due to the envisioned bene�ts in reuse, variant handling, and port-ing; thus, fa
ilitating both e�
ient development and in
reased qualityof software produ
ts. Component based software development has hadsu

ess in the PC appli
ation domain, but requirements are di�erent inthe embedded domain and existing te
hnologies does not mat
h. Hen
e,software
omponent te
hnologies have not yet been generally a

epted byembedded-systems industries.In order to better understand why this is the
ase, we present two sep-arate
ase-studies together with an evaluation of the existing
omponentte
hnologies suitable for embedded
ontrol systems.The �rst
ase-study presents a set of requirements based on industrialneeds, whi
h are deemed de
isive for introdu
ing a
omponent te
hnology.Furthermore, in the se
ond study, we asked the
ompanies involved tograde these requirements.Then, we use these requirements to
ompare existing
omponent te
h-nologies suitable for embedded systems. One of our
on
lusions is thatnone of the studied te
hnologies is a perfe
t mat
h for the industrial re-quirements. Furthermore, no single te
hnology stands out as being asigni�
antly better
hoi
e than the others; ea
h te
hnology has its ownpros and
ons.The results
an be used to guide modi�
ations and/or extensions toexisting
omponent te
hnologies in order to make them better suited forindustrial deployment in the automotive domain. The results
an alsoserve to guide other software engineering resear
h by showing the mostdesired areas within
omponent-based software engineering.1

1 Introdu
tionDuring the last de
ade, Component-Based Software Engineering (CBSE) forembedded systems has re
eived a large amount of attention. For o�
e/Internetappli
ations, CBSE has had tremendous impa
t [1, 2, 3℄, and today
omponentsare downloaded and on the �y integrated into, e.g., word pro
essors and webbrowsers. However, in the embedded systems industry CBSE is still to a largeextent envisioned as a promising future te
hnology to meet spe
i�
 demands onimproved quality and lowered
ost, by fa
ilitating software reuse, e�
ient soft-ware development, enhan
ed system maintainability, and more reliable softwaresystems [4℄.CBSE has not yet been generally a

epted by embedded-system develop-ers. They are in fa
t, to a large extent, still using monolithi
 and platformdependent software development te
hniques, in spite of the fa
t that this makesoftware systems di�
ult to maintain, upgrade, and modify. A major reason tonot
hange to more modern te
hniques is to avoid the additional overhead withrespe
t to, e.g., memory
onsumption and pro
essor demands that new
om-mer
ial te
hnologies seem to introdu
e. A se
ond reason is to not renoun
e re-laibility and robustness aspe
ts using, e.g., polymorphism and dynami
 linking.Finally, there are also signi�
ant risks and
osts asso
iated with the adoption ofa new development te
hnique, that these
ompanies may not be willing to takewithout guarantees.The
ontributions of this arti
le are threefold. First, it straightens out somequestion-marks regarding a
tual industrial requirements pla
ed on a
omponentte
hnology. Se
ond, we have asked industry to rank these requirements in orderbe able to fo
us on the most important aspe
ts of
omponent based development.This grading
an be used to guide the resear
h
ommunity when fo
using onareas with the highest potential industrial impa
t. Third, we have used theranked requirements to evaluate a set of available
omponent te
hnologies (froma
ademia as well as from industry) that
an be used to minimise the risk whenintrodu
ing a new development pro
ess. Thus, this study
an help
ompaniesto take the step into tomorrow's te
hnology today. The list
an also be usedto guide modi�
ations and/or extensions to existing
omponent te
hnologies,in order to make them better suited for industrial deployment. Our list ofrequirements also illustrates how industrial requirements on ! produ
ts andprodu
t development impa
t requirements on a
omponent te
hnology.This arti
le summarises our work on industrial requirements [5, 6, 7℄, andextends previous work, studying the requirements for
omponent te
hnologies,in that the results are not only based on our experien
e, or experien
e froma single
ompany [8, 9℄. We base most of our results on interviews with se-nior te
hni
al sta� at the two
ompanies involved in this arti
le, but we havealso
ondu
ted interviews with te
hni
al sta� at other
ompanies. Furthermore,sin
e the embedded systems market is so diversi�ed, we have limited our studyto appli
ations for distributed embedded real-time
ontrol in safety-
riti
al en-vironments, spe
i�
ally studying
ompanies within the heavy vehi
les marketsegment [10, 11℄. This gives our results higher validity, for this
lass of appli-2

ations, than do more general studies of requirements in the embedded systemsmarket [12℄.2 Introdu
ing CBSE in the Vehi
ular IndustryComponent-based software engineering arouses interest and
uriosity in indus-try. This is mainly due to the enhan
ed development pro
ess and the improvedability to reuse software o�ered. Also, the in
reased possibility to predi
t thetime needed to
omplete a software development proje
t, due to the fa
t thatthe assignments
an be divided into smaller and more easily de�ned tasks, isseen as a driver for CBSE.CBSE
an be approa
hed from two,
on
eptually di�erent, points of view;distinguished by whether the
omponents are (1) used as a design philoso-phy independent from any
on
ern for reusing existing
omponents, or (2)seen as reusable o�-the-shelf building blo
ks used to design and implement a
omponent-based system [13℄. When talking to industrial software developerswith experien
e from using a CBSE development pro
ess [14℄, su
h as VolvoConstru
tion Equipment1, the �rst part, (1), is often seen as the most impor-tant advantage. Their experien
e is that the design philosophy of CBSE givesrise to good software ar
hite
ture and signi�
antly enhan
ed ability to dividethe software development in small,
learly-de�ned, sub-proje
ts. This, in turn,gives predi
table development times and shortens the time-to-market. The se
-ond part, (2), are by these
ompanies often seen as less important, and themain reason for this is that experien
e shows that most approa
hes to larges
ale software reuse is asso
iated with major risks and high initial
osts. Ratherfew
ompanies are willing to take these initial
osts and risks sin
e it is di�
ultto guarantee that money is saved in the end.On the other hand, when talking to
ompanies with less, or no, experien
efrom
omponent-based te
hnologies, (2) is seen as the most important motiva-tion to
onsider CBSE. This dis
repan
y between
ompanies with and withoutCBSE experien
e is striking.However,
hanging the software development pro
ess to using CBSE doesnot only have advantages. Espe
ially in the short term perspe
tive, introdu
ingCBSE represents signi�
ant
osts and risks. For instan
e, designing softwareto allow reuse requires (sometimes signi�
antly) higher e�ort than does de-signing for a single appli
ation [15℄. A

ording to
ertain experien
e it takeseven three times longer to develop a general reusable
omponent than a
hievingthe same fun
tionailty targetting a spe
i�

ase [16℄. For resour
e
onstrainedsystems, design for reuse is even more
hallenging, sin
e what are the most
riti
al resour
es may vary from system to system (e.g. memory or CPU-load).Furthermore, a
omponent designed for reuse may exhibit an overly ri
h inter-fa
e and an asso
iated overly
omplex and resour
e
onsuming implementation.Hen
e, designing for reuse in resour
e
onstrained environments requires signif-i
ant knowledge not only about fun
tional requirements, but also about extra-1Volvo Constru
tion Equipment, Home Page: http://www.volvo.
om3

fun
tional requirements. These problems may limit the possibilities of reuse,even when using CBSE.Within software engineering, having a
lear and
omplete understanding ofthe software requirements is paramount. However, pra
ti
e shows that a majorsour
e of software errors
omes from erroneous, or in
omplete, spe
i�
ations[15℄. Often in
omplete spe
i�
ations are
ompensated for by engineers hav-ing good domain knowledge, hen
e having knowledge of impli
it requirements.However, when using a CBSE approa
h, one driving idea is that ea
h
ompo-nent should be fully spe
i�ed and understandable by its interfa
e and asso
iateddo
umentation. Hen
e, the use of impli
it domain knowledge not do
umentedin the interfa
e may hinder reuse of
omponents. Also, division of labour intosmaller proje
ts fo
using on single
omponents, require good spe
i�
ations ofwhat interfa
es to implement and any
onstraints on how that implementationis done, further disabling use of impli
it domain knowledge. Hen
e, to fullyutilise the bene�ts of CBSE, a software engineering pro
ess that do not rely onengineers' impli
it domain knowledge need to be established.Also, when introdu
ing reuse of
omponents a
ross multiple produ
ts and/orprodu
t families, issues about
omponent management arise. In essen
e, ea
h
omponent has its own produ
t life-
y
le that needs to be managed. This in-
ludes version and variant management, keeping tra
k of whi
h versions andvariants is used in what produ
ts, and how
omponent modi�
ations should bepropagated to di�erent version and variants. Components need to be main-tained, as other produ
ts, during their life
y
le. This maintenan
e needs tobe done in a
ontrolled fashion, in order not to interfere aversively with ongo-ing proje
ts using the
omponents. This
an only be a
hieved using adequatetools and pro
esses for version and variant management, to fully support a
omponent-based strategy su
h tools should support version management for
omponents instead of traditional �les, and also allow the use of di�erent ver-sions of a
omponent to the same
lient (e.g., to allow a single produ
t to use anumber of di�ent versions of a
omponent).3 A Component Te
hnology for Heavy Vehi
lesExisting
omponent te
hnologies [1, 2, 3℄ are in general not appli
able to embed-ded
omputer systems, sin
e they do not
onsider aspe
ts su
h as safety, timing,and memory
onsumption that are
ru
ial for many embedded systems [1, 2℄.Some attempts have been made to adapt
omponent te
hnologies to embeddedsystems, like, e.g., MinimumCORBA [17℄. However, these adaptations have notbeen generally a

epted in the embedded system segments. The reason for thisis mainly due to the diversi�ed nature of the embedded systems domain. Dif-ferent market segments have di�erent requirements on a
omponent te
hnology,and often, these requirements are not ful�lled simply by stripping down existing
omponent te
hnologies; e.g. MinimumCORBA requires less memory then doesCORBA, however, the need to stati
ally predi
t memory usage is not addressed.It is important to keep in mind that the embedded systems market is ex-4

tremely diversi�ed in terms of requirements pla
ed on the software. For in-stan
e, it is obvious that software requirements for
onsumer produ
ts, tele
omswit
hes, and avioni
s are quite di�erent. Hen
e, we will fo
us on one singlemarket segment: the segment of heavy vehi
les, in
luding, e.g., wheel loadersand forest harvesters. It is important to realise that the development and eval-uation of a
omponent te
hnology is substantially simpli�ed by fo
using on aspe
i�
 market segment. Within this market segment, the
onditions for soft-ware development should be similar enough to allow a lightweight and e�
ient
omponent te
hnology to be established.3.1 The Business Segment of Heavy Vehi
lesDevelopers of heavy vehi
les fa
es a situation of (1) high demands on reliabilityand performan
e, (2) requirements on low produ
t
ost, and (3) supportingmany
on�gurations, variants and suppliers. Computers o�er the performan
eneeded for the fun
tions requested in a modern vehi
le, but at the same timevehi
le reliability must not su�er. Computers and software add new sour
esof failures and, unfortunately,
omputer engineering is less mature than manyother �elds in vehi
le development and
an
ause lessened produ
t reliability.This yields a strong fo
us on the ability to model, predi
t, and verify
omputerfun
tionality.At the same time, the produ
t
ost for volume produ
ts must be kept low.Thus, there is a need to in
lude a minimum of hardware resour
es in a produ
t(only as mu
h resour
es as the software really needs). The stringent
ost re-quirements also drive vehi
le developers to integrate low
ost
omponents fromsuppliers rather than develop in-house. On top of these demands on reliabil-ity and low
ost, vehi
le manufa
turers make frequent use of produ
t variantsto satisfy larger groups of
ustomers and thereby in
rease market share andprodu
t volume.In order to a

ommodate (1)-(3), as well as an in
reasing number of featuresand fun
tions, the ele
troni
 system of a modern vehi
le is a
omplex
onstru
-tion whi
h
omprise ele
troni
 and software
omponents from many vendorsand that exists in numerous
on�gurations and variants.The situation des
ribed
ause
hallenges with respe
t to veri�
ation andmaintenan
e of these variants, and integration of
omponents into a system.Using software
omponents, and a CBSE approa
h, is seen as a promising wayto address
hallenges in produ
t development, in
luding integration, �exible
on�guration, as well as good reliability predi
tions, s
alability, software reuse,and fast development. Further, the
on
ept of
omponents is widely used in thevehi
ular industry today. Using
omponents in software would be an extensionof the industry's
urrent pro
edures, where the produ
ts today are asso
iatedwith the
omponents that
onstitute the parti
ular vehi
le
on�guration.What distinguishes the segment of heavy vehi
les in the automotive indus-try is that the produ
t volumes are typi
ally lower than that of, e.g., tru
ksor passenger
ars [10℄. Also the
ustomers tend to be more demanding withrespe
t to te
hni
al spe
i�
ations su
h as engine torque, payload et
, and less5

demanding with respe
t to style. This
auses a lower emphasis on produ
t
ostand optimisation of hardware than in the automotive industry in general. Thelower volumes also make the manufa
turers more willing to design variants tomeet the requests of a small number of
ustomers.3.2 System Des
riptionIn order to des
ribe the
ontext for software
omponents in the vehi
ular in-dustry, we will �rst explore some
entral
on
epts in vehi
le ele
troni
 systems.Here, we outline some
ommon and typi
al solutions and prin
iples used in thedesign of vehi
le ele
troni
s. The purpose is to des
ribe
ommonly used solu-tions, and outline the de fa
to
ontext for appli
ation development and therebyalso requirements for software
omponent te
hnologies.The system ar
hite
ture
an be des
ribed as a set of
omputer nodes
alledEle
troni
 Control Units (ECUs). These nodes are distributed throughout thevehi
le to redu
e
abling, and to provide lo
al
ontrol over sensors and a
tuators.The nodes are inter
onne
ted by one or more
ommuni
ation busses formingthe network ar
hite
ture of the vehi
le. When several di�erent organisationsare developing ECUs, the bus often a
ts as the interfa
e between nodes, andhen
e also between the organisations. The
ommuni
ation bus is typi
ally low
ost and low bandwidth, su
h as the Controller Area Network (CAN) [18℄.

ECU
1

ECU
2

ECU
3

I/O

Sensor
Actuator

Bus 1

Gateway

ECU
5

ECU
4

Bus 2

Service
Computer

Intelligent
Sensor

Figure 1: Example of a vehi
le network ar
hite
tureIn the example shown in Fig. 1, the two
ommuni
ation busses are separatedusing a gateway. This is a
ommon ar
hite
tural pattern that are used forseveral reasons, e.g., separation of
riti
ality, in
reased total
ommuni
ation6

bandwidth, fault toleran
e,
ompatibility with standard proto
ols [19, 20, 21℄,et
. Also, safety
riti
al fun
tions may require a high level of veri�
ation, whi
his usually very
ostly. Thus, non-safety related fun
tions might be separated toredu
e
ost and e�ort of veri�
ation. In some systems the network is requiredto give syn
hronisation and provide fault toleran
e me
hanisms.The hardware resour
es are typi
ally s
ar
e due to the requirements on lowprodu
t
ost. Addition of new hardware resour
es will always be defensive, evenif
ustomers are expe
ted to embra
e a
ertain new fun
tion. Be
ause of theun
ertainty of su
h expe
tations, manufa
turers have di�
ulties in estimatingthe
ustomer value of new fun
tions and thus the general approa
h is to keepresour
es at a minimum.
Example Power train ECU in a Vehicular Control-System�

Processor: 25 MHz 16-bit processor�
Memory devices:�

Flash: 1 MB used for application code�
RAM: 128 kB used for the run-time memory usage�
EEPROM: 64 kB used for system parameters�

Serial interfaces: RS232 or RS485, used for service purpose�
Communications: Controller Area Network (CAN) (one or more interfaces)�
I/O: A number of digital and analogue in and out ports

Example Power train ECU in a Vehicular Control-System�
Processor: 25 MHz 16-bit processor�
Memory devices:�

Flash: 1 MB used for application code�
RAM: 128 kB used for the run-time memory usage�
EEPROM: 64 kB used for system parameters�

Serial interfaces: RS232 or RS485, used for service purpose�
Communications: Controller Area Network (CAN) (one or more interfaces)�
I/O: A number of digital and analogue in and out portsFigure 2: Spe
i�
ation of an embedded system ECUIn order to exemplify the settings in whi
h software
omponents are
onsid-ered, we have studied our industrial partner's
urrently used nodes. In Figure 2we list the hardware resour
es of a typi
al ECU with requirements on sensingand a
tuating, and with a relatively high
omputational
apa
ity (this exampleis from a typi
al power train ECU).Also, in
luded in a vehi
le's ele
troni
 system
an be display
omputer(s)with varying amounts of resour
es depending on produ
t requirements. Theremay also be PC-based ECU's for non-
ontrol appli
ations su
h as telemati
s,and information systems. Furthermore, in
ontrast to these resour
e intenseECU's, there typi
ally exists a number of small and lightweight nodes, su
h as,intelligent sensors (i.e. pro
essor equipped, bus enabled, sensors).Figure 3 on the following page depi
ts the typi
al software ar
hite
ture of anECU. Current pra
ti
e typi
ally builds on top of a reusable "software platform",whi
h
onsists of a hardware abstra
tion layer with devi
e drivers and otherplatform dependent
ode, a Real-Time Operating System (RTOS), one or more
ommuni
ation proto
ols, and possibly a software (
omponent) framework thatis typi
ally
ompany (or proje
t) spe
i�
. This software platform is a

essible toappli
ation programmers through an Appli
ation Programmers Interfa
e (API).Di�erent nodes, presenting the same API,
an have di�erent realisation of thedi�erent parts in the software platform (e.g. using di�erent RTOSs).Today it is
ommon to treat parts of the software platform as
omponents,e.g. the RTOS, devi
e drivers, et
, in the same way as the ECU's bus
onne
tors7

 Application

Application Programmers Interface

Software Framework
RTOS

Hardware

Communication

Hardware Abstraction Layer

Device Drivers

Software
Platform

Figure 3: Internals of an ECU - A software platformand other hardware modules. That is, some form of
omponent managementpro
ess exists; trying to keep tra
k of whi
h version, variant, and
on�gurationof a
omponent is used within a produ
t. This
omponent-based view of thesoftware platform is however not to be
onfused with the
on
ept of CBSE sin
ethe
omponents does not
onform to standard interfa
es or
omponent models.4 Component Te
hnology RequirementsThere are many di�erent aspe
ts and methods to
onsider when looking intoquestions regarding how to
apture the most important requirements on a
om-ponent te
hnology spe
ially fo
using on heavy vehi
les. Our approa
h has beento
ooperate with our industrial partners (CC Systems and Volvo Constru
tionEquipment) very
losely, both by performing interviews and by parti
ipatingin software development proje
ts. In doing so, we have extra
ted the most im-portant requirements on a
omponent-based te
hnique from the developers ofheavy vehi
les point of view. The results from this study was �rst presented in[5℄. The requirements are divided into two main groups, the te
hni
al require-ments (Se
t. 4.2) and the development pro
ess related requirements (Se
t. 4.3).Also, in Se
t. 4.4 we present some implied (or derived) requirements, i.e. require-ments that we have synthesised from the requirements in se
tions 4.2 and 4.3,but that are not expli
it requirements from industry.4.1 Resear
h MethodThe goal of this study was to extra
t all
hallenges of relevan
e when intro-du
ing a
omponent te
hnology, and �nd the most important requirements. Itseems natural to seek answers where the requirements are de�ned, i.e. at theautomotive software developing organisations. Se
ondly, the answers are likelyqualitative with a
ontext full of details from development setting, produ
ts,8

organisation et
. These two fa
ts led us to perform a
ase study [22℄ for the two
ases represented by two developing organizations.A

ording to [22℄ a
ase study is an empiri
al inquiry that investigates a
ontemporary phenomenon in its real life
ontext and
opes with situationswhere there are more variables of interest than data points. In this study thephenomenon is the relu
tan
e to adopt a
omponent te
hnology in automotivedevelopment and thereby the requirements put on su
h a te
hnology. It is
learlya
ontemporary phenomenon and the situation in a development organisation
omprises many variables with no hope of sampling enough data points to maprelations.The
ase-study was performed at Volvo Constru
tion Equipment and at CCSystems. The respondents were senior te
hni
al sta� from di�erent parts ofthe organisation, like proje
t managers, development pro
ess spe
ialists, pro-grammers, and testing spe
ialists. The
ase-study proto
ol questions were openended to en
ourage respondents to report on any issues they might attribute to
omponent te
hnologies.4.2 Te
hni
al RequirementsThe te
hni
al requirements des
ribe the needs and desires that our industrialpartners have regarding the te
hni
ally related aspe
ts and properties of a
om-ponent te
hnology.4.2.1 AnalysableThe vehi
ular industry strives for better analyses of
omputer system behaviourin general. This striving naturally a�e
ts requirements pla
ed on a
omponentmodel. System analysis, with respe
t to extra-fun
tional properties, su
h asthe timing behaviour and the memory
onsumption, of a system built up fromwell-tested
omponents is
onsidered attra
tive.When analysing a system, built from well-tested and fun
tionally
orre
t
omponents, the main issue is asso
iated with
omposability. The
omposabilityproblemmust guarantee extra-fun
tional properties, su
h as the
ommuni
ation,syn
hronisation, memory, and timing
hara
teristi
s of the system [4℄.When
onsidering, e.g., timing analysability, it is important to be able toverify (1) that ea
h
omponent meet its timing requirements, (2) that ea
h node(whi
h is built up from several
omponents) meet its deadlines (i.e. s
hedulabil-ity analysis), and (3) to be able to analyse the end-to-end timing behaviour ofdistributed fun
tions (e.g. distributed over several nodes in a distributed
ontrolsystem).Be
ause of the fa
t that the systems are resour
e
onstrained (Se
t. 3), itis important to be able to analyse the memory
onsumption. To
he
k thesu�
ien
y of the appli
ation memory, as well as the paramater memory (typ-
ially EEPROM), is important. This
he
k should be done pre-runtime to avoidfailures during runtime. 9

4.2.2 Testable and debuggableIndustry requires tools that support fun
tional debugging, both at
omponentlevel (e.g. a graphi
al debugging tool showing the
omponents in- and out-portvalues) and at the traditional white-box sour
e
ode level. The test and debugenvironment needs to be "
omponent aware" in the sense that port-values
anbe monitored and tra
ed and that breakpoints
an be set on
omponent level.Testing and debugging is by far the most
ommonly used te
hnique to ver-ify software systems fun
tionality. Testing is a very important
omplement toanalysis, and it should not be
ompromised when introdu
ing a
omponentte
hnology.In fa
t, the ability to test embedded-system software
an be improved whenusing CBSE. This is possible be
ause the
omponent fun
tionality
an be testedin isolation. This is a desired fun
tionality asked for by our industrial partners.This test should be used before the system tests, and this approa
h
an help�nding fun
tional errors and sour
e
ode bugs at the earliest possible opportu-nity.4.2.3 PortableThe
omponents, and the infrastru
ture surrounding them, should be platformindependent to the highest degree possible. Here, platform independent meanshardware independent, RTOS independent and
ommuni
ation proto
ol inde-pendent.Components are kept portable by minimising the number of dependen
iesto the supporting software platform. Su
h dependen
ies are o�
ourse, to someextent, ne
essary in order to
onstru
t an exe
utable system. However, thedependen
ies should be kept to an absolute minimum, and whenever possibledependen
ies should be generated automati
ally by
on�guration tools.Ideally,
omponents should also be independent of the
omponent frame-work used during run-time. This may seem far fet
hed, sin
e traditionally a
omponent model has been tightly integrated with its
omponent framework.However, support for migrating
omponents between
omponent frameworks isimportant for
ompanies
ooperating with di�erent
ustomers, using di�erenthardware and operating systems.4.2.4 Resour
e ConstrainedThe
omponents should be small and light-weighted and the
omponents in-frastru
ture and framework should be minimised. Ideally, there should no run-time overhead
ompared to not using a
omponent based approa
h.Embedded vehi
ular systems are typi
ally resour
e
onstrained in order tolower the produ
tion
osts. When
ompanies design new ECUs, future pro�t isthe main
on
ern. Therefore the hardware is dimensioned for anti
ipated usebut not more.One possibility, that
an redu
e resour
e
onsumption of
omponents and the
omponent framework signi�
antly, is to limit the possible run-time dynami
s.10

This means that it is desirable to allow only stati
, o�-line,
on�gured systems.Many existing
omponent te
hnologies have been design to support high run-time dynami
s, where
omponents are added, removed and re
on�gured at run-time. However, this dynami
 behaviour
omes at the pri
e of in
reased resour
e
onsumption.4.2.5 Component ModellingA
omponent te
hnology should be based on a standard modelling language likeUML [23℄ or UML 2.0 [24℄. The main reason for
hoosing UML is that it is awell known and thoroughly tested modelling te
hnique with tools and formatssupported by third-party developers.The reason for our industrial partners to have spe
i�
 demands in thesedetails, is that it is belived that the business segment of heavy vehi
les doesnot have the possibility do develop their own standards and pra
ti
es. Insteadthey preferably relay on the use of simple and mature te
hniques supported bya welth of third party suppliers.4.2.6 Computational ModelComponents should preferably be passive, i.e. they should not
ontain their ownthreads of exe
ution. A view where
omponents are allo
ated to threads during
omponent assembly is preferred, sin
e this is believed to enhan
e reusability,and to limit resour
e
onsumption. The
omputational model should be fo
usedon a pipe-and-�lter model [25℄. This is partly due to the well known ability tos
hedule and analyse this model o�-line. Also, the pipes-and-�lters model is agood
on
eptual model for
ontrol appli
ations.4.3 Development RequirementsWhen dis
ussing CBSE requirements, the resear
h
ommunity often overlooksrequirements related to the development pro
ess. For software developing
om-panies, however, these requirements are at least as important as the te
hni-
al requirements. When talking to industry, earning money is the main fo
us.However, this
annot be done without having an e�
ient development pro
essesdeployed. Hen
e � to obtain industrial relian
e, the development requirementsneed to be
onsidered and addressed by the
omponent te
hnology.4.3.1 Introdu
ibleIt should be possible for
ompanies to gradually migrate into a new develop-ment te
hnology. It is important to make the
hange in te
hnology as safe andinexpensive as possible.Revolutionary
hanges in the development te
hnique used at a
ompany areasso
iated with high risks and
osts. Therefore a new te
hnology should bepossible to divide into smaller parts, whi
h
an be introdu
ed separately. Forinstan
e, if the ar
hite
ture des
ribed in Fig. 3 is used, the
omponents
an11

be used for appli
ation development only and independently of the real-timeoperating system. Or, the infrastru
ture
an be developed using
omponents,while the appli
ation is still monolithi
.One way of introdu
ing a
omponent te
hnology in industry, is to startfo
using on the development pro
ess related requirements. When the developershave a

epted the CBSE way of thinking, i.e. thinking in terms of reusablesoftware units, it is time to look at available
omponent te
hnologies. Thisapproa
h should minimise the risk of spending too mu
h money in an initialphase, when swit
hing to a
omponent te
hnology without having the CBSEway of thinking.4.3.2 ReusableComponents should be reusable, e.g., for use in new appli
ations or environmentsthan those for whi
h they where originally designed [26℄. The requirement ofreusability
an be
onsidered both a te
hni
al and a development pro
ess relatedrequirement. Development pro
ess related sin
e it has to deal with aspe
tslike version and variant management, initial risks and
ost when building up a
omponent repository, et
. Te
hni
al sin
e it is related to aspe
ts su
h as, howto design the
omponents with respe
t to the RTOS and HW
ommuni
ation,et
.Reusability
an more easily be a
hieved if a loosely
oupled
omponent te
h-nology is used, i.e. the
omponents are fo
using on fun
tionality and do not
ontain any dire
t operating system or hardware dependen
ies. Reusability issimpli�ed further by using input parameters to the
omponents. Parametersthat are �xed at
ompile-time, should allow automati
 redu
tion of run-timeoverhead and
omplexity.A
lear, expli
it, and well-de�ned
omponent interfa
e is
ru
ial to enhan
ethe software reusability. To be able to repla
e one
omponent in the softwaresystem, a minimal amount of time should be spent trying to understand the
omponent that should be inter
hanged.It is, however, both
omplex and expensive to build reusable
omponents foruse in distributed embedded real-time systems [4℄. The reason for this is thatthe
omponents must work together to meet the temporal requirements, the
omponents must be light-weighted sin
e the systems are resour
e
onstrained,the fun
tional errors and bugs must not lead to erroneous outputs that followthe signal �ow and propagate to other
omponents and in the end
ause unsafesystems. Hen
e, reuse must be introdu
ed gradually and with grate
are.4.3.3 MaintainableThe
omponents should be easy to
hange and maintain, meaning that devel-opers that are about to
hange a
omponent need to understand the full impa
tof the proposed
hange. Thus, not only knowledge about
omponent interfa
esand their expe
ted behaviour is needed. Also, information about
urrent de-ployment
ontexts may be needed in order not to break existing systems where12

the
omponent is used.In essen
e, this requirement is a produ
t of the previous requirement onreusability. The �ip-side of reusability is that the ability to reuse and re
on�g-ure the
omponents using parameters leads to an abundan
e of di�erent
on�g-urations used in di�erent vehi
les. The same type of vehi
le may use di�erentsoftware settings and even di�erent
omponent or software versions. So, byintrodu
ing reuse we introdu
e more administrative work.Reusing software
omponents lead to a
ompletely new level of softwaremanagement. The
omponents need to be stored in a repository where di�erentversions and variants need to be managed in a su�
ient way. Experien
es fromtrying to reuse software
omponents show that reuse is very hard and initiallyrelated with high risks and large overheads [4℄. These types of
osts are usuallynot very attra
tive in industry.The maintainability requirement also in
ludes su�
ient tools supporting theservi
e of the delivered vehi
les. These tools need to be
omponent aware andhandle error diagnosti
s from
omponents and support for updating software
omponents.4.3.4 UnderstandableThe
omponent te
hnology and the systems
onstru
ted using it should be easyto understand. This should also in
lude making the te
hnology easy and intu-itive to use in a development proje
t.The reason for this requirement is to simplify evaluation and veri�
ationboth on the system level and on the
omponent level. Also, fo
using on anunderstandable model makes the development pro
ess faster and it is likelythat there will be fewer bugs.It is desirable to hide as mu
h
omplexity as possible from system develop-ers. Ideally,
omplex tasks (su
h as mapping signals to memory areas or busmessages, or produ
ing s
hedules or timing analysis) should be performed bytools. It is widely known that many software errors o

ur in
ode that deals withsyn
hronisation, bu�er management and
ommuni
ations. However, when using
omponent te
hnologies su
h
ode
an, and should, be automati
ally generated;leaving appli
ation engineers to deal with appli
ation fun
tionality.4.4 Derived RequirementsHere, we present two implied requirements, i.e. requirements that we have syn-thesised from the requirements in se
tions 4.2 and 4.3, but that are not expli
itrequirements from the vehi
ular industry.4.4.1 Sour
e Code ComponentsA
omponent should be sour
e
ode, i.e., no binaries. The reasons for thisin
lude that
ompanies are used to have a

ess to the sour
e
ode, to �ndfun
tional errors, and enable support for white box testing (Se
t. 4.2.2). Sin
e13

sour
e
ode debugging is demanded, even if a
omponent te
hnology is used,bla
k box
omponents is undesirable.Using bla
k-box
omponents would, regarding to our industrial partners,lead to a feeling of not having
ontrol over the system behaviour. However,the possibility to look into the
omponents does not ne
essary mean that youare allowed to modify them. In that sense, a glass-box
omponent model issu�
ient.Sour
e
ode
omponents also leaves room for
ompile-time optimisations of
omponents, e.g., stripping away fun
tionality of a
omponent that is not usedin a parti
ular appli
ation. Hen
e, sou
e
ode
omponents will
ontribute tolower resour
e
onsumption (Se
t. 4.2.4).4.4.2 Stati
 Con�gurationFor a
omponent model to better support the te
hni
al requirements of analysabil-ity (Se
t. 4.2.1), testability (Se
t. 4.2.2), and light-weightiness (Se
t. 4.2.4), the
omponent model should be
on�gured pre-runtime, i.e. at
ompile time. Com-ponent te
hnologies for use in the o�
e/Internet domain usually fo
us on adynami
 behaviour [1, 2℄. This is of
ourse appropriate in this spe
i�
 domain,where powerful
omputers are used. Embedded systems, however, fa
e anotherreality - with resour
e
onstrained ECU's running
omplex, dependable,
ontrolappli
ations. Stati

on�guration should also improve the development pro
essrelated requirement of understandability (Se
t. 4.3.4), sin
e there will be no
omplex run-time re
on�gurations.Another reason for the stati

on�guration is that a typi
al
ontrol node,e.g. a power train node, does not intera
t dire
tly with the user at any time.The node is started when the ignition key is turned on, and is running as aself-
ontained
ontrol unit until the vehi
le is turned o�. Hen
e, there is noneed to re
on�gure the system during runtime.4.5 Dis
ussionReusability is perhaps the most obvious reason to introdu
e a
omponent te
h-nology for a
ompany developing embedded real-time
ontrol systems. Thismatter has been the most thoroughly dis
ussed subje
t during our interviews.However, it has also been the most separating one, sin
e it is related to thequestion of de
iding if money should be invested in building up a repository ofreusable
omponents.Two important requirements that have emerged during the dis
ussions withour industrial partners are safety and reliability. These two are, as we see it,not only asso
iated with the
omponent te
hnology. Instead, the responsibilityof designing safe and reliable system rests mainly on the system developer. Thete
hnology and the development pro
ess should, however, give good support fordesigning safe and reliable systems.Another part that has emerged during our study is the need for a quality rat-ing of the
omponents depending on their su

ess when used in target systems.14

This requirement
an, e.g., be satis�ed using Exe
ution Time Pro�les (ETP's),dis
ussed in [27℄. By using ETPs to represent the timing behaviour of software
omponents, tools for sto
hasti
 s
hedulability analysis
an be used to make
ost-reliability trade o�s by dimensioning the resour
es in a
ost e�
ient wayto a
hieve the reliability goals. There are also emerging requirements regardingthe possibilities to grade the
omponents depending on their software quality,using for example di�erent SIL (Safety Integrity Levels) [28℄ levels.5 Requirements GradingIn order to better understand whi
h of the requirements that is of most impor-tan
e to industry we
ondu
ted a se
ond study [7℄. The motivation of gradingrequirements is that the results
an be used to guide resear
hers and tool ven-dors to put fo
us on the most relevant industrial requirements, and to resolve
on�i
ts between requirements.5.1 MethodThe �rst
ase study identi�ed many areas of interests and many were
losely re-lated to the development pro
ess. Open ended dis
ussions gave us the eli
itationof the most important requirements but no notion of relative importan
e
anbe analysed based on these results. In order to grade requirements a

ording toimportan
e we performed a se
ond study.The requirement grading was performed in a workshop with a short presen-tation, de�nition of terms, questions and a numeri
al grading of requirementswhere the average sum was bounded. Thus, respondents
ould not grade allrequirements high in order to get a sum average in the prede�ned range. Thepro
edure was the following:1. The workshop started with a short presentation of the study and of
ompo-nent te
hnologies basi
s. A very brief ba
kground was presented with PCsoftware bene�ts while automotive software engineers are still relu
tant.Furthermore the development pro
ess of working with
omponents in a
omponent repository rather than developing in a normal V model wasdes
ribed. The terms; Tool, Components, Platform, Component Frame-work and Repository was explained. Finally the results from the earlierstudy were presented.2. Se
ondly, the de�nitions of all the requirements that were to be gradedwere presented and respondents were given handouts with the de�nitions.Respondents were allowed to ask questions on the de�nitions.3. The data
olle
tion was made by the respondents �lling in a spreadsheetform on a laptop
omputer where all the twelve listed requirements were tobe graded with a number 1-4 indi
ating from "interesting" to "absolutelyde
isive". The respondents were to make sure that the sum average of all15

their grades was in the range 2.4 - 2.6. The sum, average of grades, wasshown and re
al
ulated throughout the grading.5.2 ResultsIn this se
tion we present the results (see Figure 1) from the se
ond study, i.e.the industry grading of the requirements in se
tion 4. We present the resultby �rst dis
ussing the requirements separately, and then in se
tion 5.1 we drawsame general
on
lusions from our work.5.2.1 AnalysableAnalysability is in general
onsidered to be important, but the results fromour
ase-study expose that it is not amongst the most important issues of
omponent-based development. For example, it is worth noti
ing that our part-ners
onsider testability and the means to debug the appli
ation as mu
h moreimportant. Reasons for this might be that the business segment of heavy ve-hi
les has low series (
ompared to, e.g., tru
ks or passenger
ars) and that is
heaper to add extra pro
essing power (faster CPU and more memory) in orderto avoid timing or memory problems. It may be that a
ommon view amongstindustrial developers that analysability is
omplex and that it leads to a lot ofmanual information managing. Perhaps timing and memory
onsumption is nota problem in today's appli
ations whereas testability gives dire
t feedba
k tothe software developer and might hen
e be seen as more important. Yet anotherreason might be that analysability is not believed to be feasible or pra
ti
al fordistributed and
omplex industrial systems.5.2.2 Test and DebugTest and debug is the most important quality attribute seen in the requirementgrades (see �gure 1). This is most likely due to the fa
t that testing of embeddedsystems is extremely time
onsuming today. Hen
e, from a
ompany perspe
tive- there is a huge amount of time (and money) to save if a
omponent te
hnology
ould de
rease the time it takes to verify software fun
tionality.Another important issue is the rising requirement from Original EquipmentManufa
turers (OEMs) that sub-
ontra
tors deliver "error-free" software. Lateor erroneous deliveries are typi
ally punished by an OEM �ne. This entail thattesting of software (typi
ally not
omplete systems but rather
omponents) ofthe system gets more and more important.It is also worth noti
ing that both CCS and VCE have spent huge amountsof money on developing test and debug equipment for their respe
tive systems.Hen
e, the results might be a bit biased, i.e., that these
ompanies
onsider itmore important than the typi
al embedded software developer.
16

5.2.3 PortabilityPortability is
onsidered very important, mainly due to the fa
t that it is desiredto keep hardware upgrading
osts to an absolute minimum. But it is of
oursealso important to be �exible in the
hoi
e of software platform.For CCS, working with many di�erent OEMs (and many di�erent platforms),the requirements of portability is obvious - but it is striking to see that also VCE
onsider portability as being very important (see Figure 2). The reason for thisis essentially that it is very important not to be too dependent on tool vendorsand hardware platforms.5.2.4 Resour
e ConstrainedSurprisingly, and in quite
ontrary to what one
ould expe
t from developers ofresour
e
onstrained embedded systems, this requirements is
onsidered to bethe least important in this study. The reason for this might be the fa
t that
urrent state-of-pra
tise development methods used by the vehi
ular industryare rather resour
e
onstrained. Hen
e, there is not mu
h fo
us on this require-ment in the daily work. It might be the
ase that developers take things theyhave for granted, and see things they do not have.Another reason is Moore's law, it is
heaper to by more pro
essing powerthan it is to spend money on analysing timing and memory
onsumption. Thisis also dependent on the produ
t volumes, for low series produ
ts it might beworth spending some extra money on hardware in order to fa
ilitate the use ofmore advan
ed development methods.5.2.5 Component ModellingThis requirement is not
onsidered to be very important; meaning that otheraspe
ts of modelling is more important than using business standards. For ex-ample, simpli
ity is more important than using a standard modelling language.However, it is interesting to noti
e that the requirement on using a standardisedmodelling language is more important relative to the requirement on resour
eusage.5.2.6 Computational ModelThe requirement on the
omputational model, meaning that the
omponentsshould be passive (not having their own threads of exe
ution) and that pipe-and-�lter should be used as an ar
hite
tural pattern, is the most deviatingrequirement (see Figure 2). This might be be
ause VCE is
urrently using theRubus Component Model [29℄ using a pipe-and-�lter ar
hite
ture, whilst CCSuse di�erent ar
hite
tural patterns in di�erent appli
ations.
17

An
aly

sa
ble

Te
sta

ble
 an

d d
eb

ug
ga

ble

Po
rta

ble

Re
so

urc
e C

on
str

ain
ed

Co
mp

on
en

t M
od

elli
ng

Co
mp

uta
tio

na
l M

od
el

Int
rod

uc
ible

Re
us

ab
le

Ma
int

ain
ab

le

Un
de

rst
an

da
ble

So
urc

e C
od

e C
om

po
ne

nts

Sta
tic

 Co
nfi

gu
rat

ion

An
aly

sa
ble

Te
sta

ble
 an

d d
eb

ug
ga

ble

Po
rta

ble

Re
so

urc
e C

on
str

ain
ed

Co
mp

on
en

t M
od

elli
ng

Co
mp

uta
tio

na
l M

od
el

Int
rod

uc
ible

Re
us

ab
le

Ma
int

ain
ab

le

Un
de

rst
an

da
ble

So
urc

e C
od

e C
om

po
ne

nts

Sta
tic

 Co
nfi

gu
rat

ion

Figure 4: Requirements grades5.2.7 Introdu
ibleIt is
onsidered relatively important that the
omponent te
hnology is easy tointrodu
e in new and existing proje
ts/produ
ts. This requirement also in
ludesthe possibility to use parts of a
omponent te
hnology, e.g., together with variousoperating systems depending on
ustomer needs.One would expe
t to see a
ertain di�eren
e between a sub-
ontra
tor andan OEM - but as
an be seen in Figure 2 both
ompanies agree on the relativeimportan
e of this requirement.5.2.8 ReusableIt is very interesting to see that reusability whi
h is one of the fundamentalreasons for moving towards CBSE is
onsidered to be the se
ond most importantoverall requirement. The reason for this is likely the large potential of softwarereuse in terms of development time and
ost.Reusability is typi
ally
onsidered to be very demanding, so it is worthnoti
ing that the
ompanies are willing to spend the extra money on morepro
essing power (low emphasis on the requirement of resour
e usage) in orderto fa
ilitate reusability.5.2.9 MaintainabilityMaintainability is ranked as the third most important requirement. The reasonfor this is most likely the high
osts that arise when upgrading or updating18

software. Support for software
on�guration management is
onsidered a pre-requisite in order to fa
ilitate
ross platform and produ
t reuse, and hen
e theserequirements are tightly
oupled. Also, updating existing software by repla
ingerroneous software
omponents requires e�
ient tool support.5.2.10 UnderstandableUnderstandability is not a primary requirement. This means that the
ompaniesare willing to spend some money on training personnel in software developmentin order to rea
h primary goals like reusability, portability and testability.5.2.11 Sour
e Code and Stati
 Con�gurationNot mu
h fo
us is spent on the derived requirements. These requirements shouldperhaps not be
ompared with the other requirement sin
e they are tightly
oupled to primary requirements. This is rather to be seen as means to rea
hother requirements. For example, it is not possible to debug the appli
ationsour
e
ode if the software
omponents are delivered in a binary format.This might be
onsidered a weakness of the study, but we in
lude the resultsfor
onsisten
y reasons.5.3 Dis
ussionIt is interesting to see that the basi
 properties of CBSE (e.g. reusability, main-tainability, and portability) are highly valued by industry. This might be biaseddue to the fa
t that this
ase-study deals with
omponent-based development.However, the relative importan
es between the listed requirements are obviousand should be seen as a driver for
omponent-based software.

A
na

ly
sa

bl
e

T
es

ta
bl

e
an

d
de

bu
gg

ab
le

P
or

ta
bl

e

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

l
M

od
el

In
tr
od

uc
ib

le

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

S
ta

tic
C

on
fig

ur
at

io
n

CCS

VCE

A
na

ly
sa

bl
e

T
es

ta
bl

e
an

d
de

bu
gg

ab
le

P
or

ta
bl

e

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

l
M

od
el

In
tr
od

uc
ib

le

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

S
ta

tic
C

on
fig

ur
at

io
n

CCS

VCE

Figure 5: Requirements from the two
ompanies19

Also, it is interesting to see that the results from the two
ompanies (seeFigure 2)
orrespond with ea
h other very well. Bearing in mind that the two
ompanies represent two di�erent types of
ontrol system developers, OEM andsub-
ontra
tor, these similarities are even more striking. Another interesting
on
lusion from this
ase-study is that the development pro
ess related require-ments (i.e. introdu
ible, reusable, maintainable, and understandable) is
onsid-ered to be substantially more important then the te
hni
al requirements. Hen
e,the resear
h
ommunity should not overlook these problems but rather spendmore fo
us on issues like, e.g., support for software
on�guration management.6 Component Te
hnology EvaluationIn this se
tion, existing
omponent te
hnologies for embedded systems are de-s
ribed and evaluated. The te
hnologies originate both from a
ademia andindustry. The sele
tion
riterion for a
omponent te
hnology has �rstly beenthat there is enough information available, se
ondly that the authors
laim thatthe te
hnology is suitable for embedded systems, and �nally we have tried toa
hieve a
ombination of both a
ademi
 and industrial te
hnologies.The te
hnologies des
ribed and evaluated are PECT, Koala, Rubus Compo-nent Model, PBO, PECOS and CORBA-CCM. We have
hosen CORBA-CCMto represent the set of te
hnologies existing in the PC/Internet domain (otherexamples are COM, .NET [1℄ and Java Enterprise Beans [2℄) sin
e it is theonly te
hnology that expli
itly address embedded and real-time issues. Also,the Windows CE version of .NET [1℄ is omitted, sin
e it is targeted towardsembedded display-devi
es, whi
h only
onstitute a small subset of the devi
esin vehi
ular systems. The evaluation is based on existing, publi
ally available,do
umentation.6.1 Resear
h MethodThe resear
h presented in this arti
le started with a preliminary literature study,summarised in the state-of-the-art report [30℄. The report is based on about30 arti
les summarising the area of
omponent-based software engineering forsafety
riti
al embedded appli
ations. Understanding the state-of-the-art andstate-of-pra
ti
e
omponent te
hnologies was a prerequisite for the subsequentwork. Based on the preliminary literature study � a qualitative
ase-studyinterview proto
ol (i.e. a
ase-study questionnaire) [22℄ was put together.6.2 PECTA Predi
tion-Enabled Component Te
hnology (PECT) [12℄ is a development in-frastru
ture that in
orporates development tools and analysis te
hniques. PECTis an ongoing resear
h proje
t at the Software Engineering Institute (SEI) atthe Carnegie Mellon University.2 The proje
t fo
uses on analysis; however, the2Software Engineering Institute, CMU; http://www.sei.
mu.edu20

framework does not in
lude any
on
rete theories - rather de�nitions of howanalysis should be applied. To be able to analyse systems using PECT, properanalysis theories must be found and implemented and a suitable underlying
omponent te
hnology must be
hosen.A PECT in
lude an abstra
t model of a
omponent te
hnology,
onsisting ofa
onstru
tion framework and a reasoning framework. To
on
retise a PECT, itis ne
essary to
hoose an underlying
omponent te
hnology, de�ne restri
tionson that te
hnology (to allow predi
tions), and �nd and implement proper analy-sis theories. The PECT
on
ept is highly portable, sin
e it does not in
lude anyparts that are bound to a spe
i�
 platform, but in pra
tise the underlying te
h-nology may hinder portability. For modelling or des
ribing a
omponent-basedsystem, the Constru
tion and Composition Language (CCL) [12℄ is used. TheCCL is not
ompliant to any standards. PECT is highly introdu
ible, in prin
i-ple it should be possible to analyse a part of an existing system using PECT. Itshould be possible to gradually model larger parts of a system using PECT. Asystem
onstru
ted using PECT
an be di�
ult to understand; mainly be
auseof the mapping from the abstra
t!
omponent model to the
on
rete
omponentte
hnology. It is likely that systems looking identi
al at the PECT-level behavedi�erently when realised on di�erent
omponent te
hnologies.PECT is an abstra
t te
hnology that requires an underlying
omponent te
h-nology. For instan
e, how testable and debugable a system is depends on thete
hni
al solutions in the underlying run-time system. Resour
e
onsumption,
omputational model, reusability, maintainability, bla
k- or white-box
ompo-nents, stati
- or dynami
-
on�guration are also not possible to determine with-out knowledge of the underlying
omponent te
hnology.6.3 KoalaThe Koala
omponent te
hnology [9℄ is designed and used by Philips3 for devel-opment of software in
onsumer ele
troni
s. Typi
ally,
onsumer ele
troni
s areresour
e
onstrained sin
e they use
heap hardware to keep development
ostslow. Koala is a light weight
omponent te
hnology, tailored for Produ
t LineAr
hite
tures [31℄. The Koala
omponents
an intera
t with the environment,or other
omponents, through expli
it interfa
es. The
omponents sour
e
odeis fully visible for the developers, i.e. there are no binaries or other intermediateformats. There are two types of interfa
es in the Koala model, the provides-and the requires- interfa
es, with the same meaning as in UML 2.0 [24℄. Theprovides interfa
e spe
ify methods to a

ess the
omponent from the outside,while the required interfa
e de�nes what is required by the
omponent from itsenvironment. The interfa
es are stati
ally
onne
ted at design time.One of the primary advantages with Koala is that it is resour
e
onstrained.In fa
t, low resour
e
onsumption was one of the requirements
onsidered whenKoala was
reated. Koala use passive
omponents allo
ated to a
tive threadsduring
ompile-time; they intera
t through a pipes-and-�lters model. Koala uses3Phillips International, In
; Home Page http://www.phillips.
om21

a
onstru
tion
alled thread pumps to de
rease the number of pro
esses in thesystem. Components are stored in libraries, with support for version numbersand
ompatibility des
riptions. Furthermore
omponents
an be parameterisedto �t di�erent environments.Koala does not support analysis of run-time properties. Resear
h has pre-sented how properties like memory usage and timing
an be predi
ted in general
omponent-based systems, but the thread pumps used in Koala might
ausesome problems to apply existing timing analysis theories. Koala has no expli
itsupport for testing and debugging, but they use sour
e
ode
omponents, anda simple intera
tion model. Furthermore, Koala is implemented for a spe
i�
operating system. A spe
i�

ompiler is used, whi
h routes all inter-
omponentand
omponent to operating system intera
tion through Koala
onne
tors. Themodelling language is de�ned and developed in-house, and it is di�
ult to seean easy way to gradually introdu
e the Koala
on
ept.6.4 Rubus Component ModelThe Rubus Component Model (Rubus CM) [29℄ is developed by Ar
ti
us sys-tems.4 The
omponent te
hnology in
orporates tools, e.g., a s
heduler and agraphi
al tool for appli
ation design, and it is tailored for resour
e
onstrainedsystems with real-time requirements. The Rubus Operating System (Rubus OS)[32℄ has one time-triggered part (used for time-
riti
al hard real-time a
tivities)and one event-triggered part (used for less time-
riti
al soft real-time a
tivities).However, the Rubus CM is only supported by the time-triggered part.The Rubus CM runs on top of the Rubus OS, and the
omponent modelrequires the Rubus
on�guration
ompiler. There is support for di�erent hard-ware platforms, but regarding to the requirement of portability (Se
t. 4.2.3),this is not enough sin
e the Rubus CM is too tightly
oupled to the RubusOS. The Rubus OS is very small, and all
omponent and port
on�guration isresolved o�-line by the Rubus
on�guration
ompiler.Extra-fun
tional properties
an be analysed during desing-time sin
e the
omponent te
hnology is stati
ally
on�gured, but timing analysis on
ompo-nent and node level (i.e. s
hedulability analysis) is the only analysable propertyimplemented in the Rubus tools. Testability is fa
ilitated by stati
 s
heduling(whi
h gives predi
table exe
ution patterns). Testing the fun
tional behaviouris simpli�ed by the Rubus Windows simulator, enabling exe
ution on a regularPC.Appli
ations are des
ribed in the Rubus Design Language, whi
h is a non-standard modelling language. The fundamental building blo
ks are passive. Theintera
tion model is the desired pipes-and-�lters (Se
t. 4.2.6). The graphi
alrepresentation of a system is quite intuitive, and the Rubus CM itself is also easyto understand. Complexities su
h as s
hedule generation and syn
hronisationare hidden in tools.The
omponents are sour
e
ode and open for inspe
tion. However, there is4Ar
ti
us Systems; Home Page http://www.ar
ti
us.se22

no support for debugging the appli
ation on the
omponent level. The
ompo-nents are very simple, and they
an be parameterised to improve the possibilityto
hange the
omponent behaviour without
hanging the
omponent sour
e
ode. This enhan
es the possibilities to reuse the
omponents.Smaller pie
es of lega
y
ode
an, after minor modi�
ations, be en
apsulatedin Rubus
omponents. Larger systems of lega
y
ode
an be exe
uted as ba
k-ground servi
e (without using the
omponent
on
ept or timing guarantees).6.5 PBOPort Based Obje
ts (PBO) [33℄
ombines obje
t oriented design, with port au-tomaton theory. PBO was developed as a part of the Chimera Operating Sys-tem (Chimera OS) proje
t [34℄, at the Advan
ed Manipulators Laboratory atCarnegie Mellon University.5 Together with Chimera, PBO forms a frameworkaimed for development of sensor-based
ontrol systems, with spe
ialisation in re-
on�gurable roboti
s appli
ations. One important goal of the work was to hidereal-time programming and analysis details. Another expli
it design goal fora system based on PBO was to minimise
ommuni
ation and syn
hronisation,thus fa
ilitating reuse.PBO implements analysis for timeliness and fa
ilitates behavioural modelsto ensure predi
table
ommuni
ation and behaviour. However, there are fewadditional analysis properties in the model. The
ommuni
ation and
ompu-tation model is based on the pipes-and-�lters model, to support distributionin multipro
essor systems the
onne
tions are implemented as global variables.Easy testing and debugging is not expli
itly addressed. However, the te
hnologyrelies on sour
e
ode
omponents and therefore testing on a sour
e
ode levelis a
hievable. The PBOs are modular and loosely
oupled to ea
h other, whi
hadmits easy unit testing. A single PBO-
omponent is tightly
oupled to theChimera OS, and is an independent
on
urrent pro
ess.Sin
e the
omponents are
oupled to the Chimera OS, it
an not be easilyintrodu
ed in any lega
y system. The Chimera OS is a large and dynami
ally
on�gurable operating system supporting dynami
 binding, it is not resour
e
onstrained.PBO is a simple and intuitive model that is highly understandable, both atsystem level and within the
omponents themselves. The low
oupling betweenthe
omponents makes it easy to modify or repla
e a single obje
t. PBO isbuilt with a
tive and independent obje
ts that are
onne
ted with the pipes-and-�lters model. Due to the low
oupling between
omponents through simple
ommuni
ation and syn
hronisation the obje
ts
an be
onsidered to be highlyreusable. The maintainability is also a�e
ted in a good way due to the loose
oupling between the
omponents; it is easy to modify or repla
e a single
om-ponent.5Carnegie Mellon University; Home Page http://www.
mu.edu
23

6.6 PECOSPECOS6 (PErvasive COmponent Systems) [8, 35℄ is a
ollaborative proje
tbetween ABB Corporate Resear
h Centre7 and a
ademia. The goal for thePECOS proje
t was to enable a
omponent-based te
hnology with appropriatetools to spe
ify,
ompose, validate and
ompile software for embedded systems.The
omponent te
hnology is designed espe
ially for �eld devi
es, i.e. rea
tiveembedded systems that gathers and analyse data via sensors and rea
t by
on-trolling a
tuators, valves, motors et
. Furthermore, PECOS is analysable, sin
emu
h fo
us has been put on extra-fun
tional properties su
h as memory
on-sumption and timeliness.Extra-fun
tional properties like memory
onsumption and worst-
ase exe
ution-times are asso
iated with the
omponents. These are used by di�erent PECOStools, su
h as the
omposition rule
he
ker and the s
hedule generating and ver-i�
ation tool. The s
hedule is generated using the information from the
ompo-nents and information from the
omposition. The s
hedule
an be
onstru
tedo�-line, i.e. a stati
 pre-
al
ulated s
hedule, or dynami
ally during run-time.PECOS has an exe
ution model that des
ribes the behaviour of a �eld devi
e.The exe
ution model deals with syn
hronisation and timing related issues, and ituses Petri-Nets [36℄ to model
on
urrent a
tivities like
omponent
ompositions,s
heduling of
omponents, and syn
hronisation of shared ports [37℄. Debugging
an be performed using COTS debugging and monitoring tools. However, the
omponent te
hnology does not support debugging on
omponent level as de-s
ribed in Se
t. 4.2.2.The PECOS
omponent te
hnology uses a layered software ar
hite
ture,whi
h enhan
e portability (Se
t. 4.2.3). There is a Run-Time Environment(RTE) that takes
are of the
ommuni
ation between the appli
ation spe
i�
parts and the real-time operating system. PECOS use a modelling languagethat is easy to understand, however no standard language is used. The
om-ponents
ommuni
ate using a data-�ow-oriented intera
tion, it is a pipes-and-�lters
on
ept, but the
omponent te
hnology uses a shared memory,
ontainedin a bla
kboard-like stru
ture.Sin
e the software infrastru
ture does not depend on any spe
i�
 hardwareor operating system, the requirement of introdu
ability (Se
t. 4.3.1) is to someextent ful�lled. There are two types of
omponents, leaf
omponents (bla
k-box
omponents) and
omposite
omponents. These
omponents
an be passive,a
tive, and event triggered. The requirement of openness is not
onsideredful�lled, due to the fa
t that PECOS uses bla
k-box
omponents. In laterreleases, the PECOS proje
t is
onsidering to use a more open
omponent model[38℄. The devi
es are stati
ally
on�gured.6PECOS Proje
t, Home Page: http://www.pe
os-proje
t.org/7ABB Corporate Resear
h Centre in Ladenburg, Home Page: http://www.abb.
om/
24

 A
na

ly
sa

bl
e

 T
es

ta
bl

e
an

d
de

bu
ga

bl
e

 P
or

ta
bl

e

 R
es

ou
rc

e
C

on
st

ra
in

ed

 C
om

po
ne

nt
 M

od
el

lin
g

 C
om

pu
ta

tio
na

l M
od

el

 In
tr

od
uc

ib
le

 R
eu

sa
bl

e

 M
ai

nt
ai

na
bl

e

 U
nd

er
st

an
da

bl
e

 S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

 S
ta

tic
 C

on
fig

ur
at

io
n

A
ve

ra
ge

N
um

be
r

of
 2

’s

N
um

be
r

of
 0

’s

PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA 1.2 3 2

Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3

Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2 1.3 5 2

PBO 2 1 0 0 0 1 1 1 1 2 2 0 0.9 3 4

PECOS 2 1 2 2 0 2 1 2 1 2 0 2 1.4 7 2

CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 0 0.5 2 8

Average 1.2 1.0 1.2 1.2 0.0 1.4 1.4 1.2 1.0 1.5 1.2 1.2 1.1 4.3 3.5

 Figure 6: Grading of
omponent te
hnologies with respe
t to the requirements6.7 CORBA Based Te
hnologiesThe Common Obje
t Request Broker Ar
hite
ture (CORBA) is a middlewarear
hite
ture that de�nes
ommuni
ation between nodes. CORBA provides a
ommuni
ation standard that
an be used to write platform independent appli-
ations. The standard is developed by the Obje
t Management Group8 (OMG).There are di�erent versions of CORBA available, e.g., MinimumCORBA [17℄for resour
e
onstrains systems, and RT-CORBA [39℄ for time-
riti
al systems.RT-CORBA is a set of extensions tailored to equip Obje
t Request Brokers(ORBs) to be used for real-time systems. RT-CORBA supports expli
it threadpools and queuing
ontrol, and
ontrols the use of pro
essor, memory and net-work resour
es. Sin
e RT-CORBA adds
omplexity to the standard CORBA,it is not
onsidered very useful for resour
e-
onstrained systems. Minimum-CORBA de�nes a subset of the CORBA fun
tionality that is more suitable forresour
e-
onstrained systems, where some of the dynami
s is redu
ed.CORBA is a middleware ar
hite
ture that de�nes
ommuni
ation betweennodes, independent of
omputer ar
hite
ture, operating system or programminglanguage. Be
ause of the platform and language independen
e CORBA be
omeshighly portable. To support the platform and language independen
e, CORBAimplements an Obje
t Request Broker (ORB) that during run-time a
ts as avirtual bus over whi
h obje
ts transparently intera
t with other obje
ts lo
atedlo
ally or remote. The ORB is responsible for �nding a requested obje
ts imple-mentation, make the method
alls and
arry the response ba
k to the requester,all in a transparent way. Sin
e CORBA run on virtually any platform, lega
y
ode
an exist together with the CORBA te
hnology. This makes CORBAhighly introdu
ible.OMG has de�ned a CORBA Component Model (CCM) [3℄, whi
h extends8Obje
t Management Group. CORBA Home Page. http://www.omg.org/
orba/25

the CORBA obje
t model by de�ning features and servi
es that enables ap-pli
ation developers to implement, mange,
on�gure and deploy
omponents.In addition the CCM allows better software reuse for server-appli
ations andprovides a greater �exibility for dynami

on�guration of CORBA appli
ations.While CORBA is portable, and powerful, it is very run-time demanding,sin
e bindings are performed during run-time. Be
ause of the run-time de
isions,CORBA is not very deterministi
 and not analysable with respe
t to timing andmemory
onsumption. There is no expli
it modelling language for CORBA.CORBA uses a
lient server model for
ommuni
ation, where ea
h obje
t isa
tive. There are no extra-fun
tional properties or any spe
i�
ation of interfa
ebehaviour. All these things together make reuse harder. The maintainability isalso su�ering from the la
k of
learly spe
i�ed interfa
es.7 Summary of Component Te
hnology Evalua-tionIn this se
tion we assign numeri
al grades to ea
h of the
omponent te
hnologiesdes
ribed in Se
t. 6, grading how well they ful�l ea
h of the requirements ofSe
t. 4. The grades are based on the dis
ussion summarised in Se
t. 6. We usea simple 3 level grade, where 0 means that the requirement is not addressedby the te
hnology and is hen
e not ful�lled, 1 means that the requirement isaddressed by the te
hnology and/or that is partially ful�lled, and 2 means thatthe requirement is addressed and is satisfa
tory ful�lled. For PECT, whi
h isnot a
omplete te
hnology, several requirements depended on the underlyingte
hnology. For these requirements we do not assign a grade (indi
ated withNA, Not Appli
able, in Fig. 6). For the CORBA-based te
hnologies we havelisted the best grade appli
able to any of the CORBA �avours mentioned inSe
t. 6.7.For ea
h requirement we have also
al
ulated an average grade. This gradeshould be taken with a grain of salt, and is only interesting if it is extremelyhigh or extremely low. In the
ase that the average grade for a requirement isextremely low, it
ould either indi
ate that the requirement is very di�
ult tosatisfy, or that
omponent-te
hnology designers have paid it very little attention.In the table we see that only two requirements have average grades below1.0. The requirement "Component Modelling" has the grade 0 (!), and "Testingand debugging" has 1.0. We also note that no requirements have a very highgrade (above 1.5). This indi
ate that none of the requirement we have listedare general (or important) enough to have been
onsidered by all
omponent-te
hnology designers. However, if ignoring CORBA (whi
h is not designed forembedded systems) and PECT (whi
h is not a
omplete
omponent te
hnology)we see that there are a handful of our requirements that are addressed and atleast partially ful�lled by all te
hnologies.We have also
al
ulated an average grade for ea
h
omponent te
hnology.Again, the average
annot be dire
tly used to rank te
hnologies amongst ea
h26

other. However, the two te
hnologies PBO and CORBA stand out as havingsigni�
antly lower average values than the other te
hnologies. They are alsodistinguished by having many 0's and few 2's in their grades, indi
ating thatthey are not very attra
tive
hoi
es. Among the
omplete te
hnologies withan average grade above 1.0 we noti
e Rubus and PECOS as being the most
omplete te
hnologies (with respe
t to this set of requirements) sin
e they havethe fewest 0's. Also, Koala and PECOS
an be re
ognised as the te
hnologieswith the broadest range of good support for our requirements, sin
e they havethe most number of 2's.However, we also noti
e that there is no te
hnology that ful�ls (not evenpartially) all requirements, and that no single te
hnology stands out as beingthe preferred
hoi
e.8 Con
lusionsIn this arti
le we have
ompared some existing
omponent te
hnologies for em-bedded systems with respe
t to industrial requirements. The requirements havebeen
olle
ted from industrial a
tors within the business segment of heavy ve-hi
les. The software systems developed in this segment
an be
hara
terisedas resour
e
onstrained, safety
riti
al, embedded, distributed, real-time,
on-trol systems. Our �ndings should be appli
able to software developers whosesystems have similar
hara
teristi
s.We have noti
ed that, for a
omponent te
hnology to be fully a

epted byindustry, the whole systems development
ontext needs to be
onsidered. Itis not only the te
hni
al properties, su
h as modelling,
omputation model,and openness, that needs to be addressed, but also development requirementslike maintainability, reusability, and to whi
h extent it is possible to graduallyintrodu
e the te
hnology. It is important to keep in mind that a
omponentte
hnology alone
annot be expe
ted to solve all these issues; however a te
h-nology
an have more or less support for handing the issues.The result of the investigation is that there is no
omponent te
hnologyavailable that ful�l all the requirements. Further, no single
omponent te
h-nology stands out as being the obvious best mat
h for the requirements. Ea
hte
hnology has its own pros and
ons. It is interesting to see that most require-ments are ful�lled by one or more te
hniques, whi
h implies that good solutionsto these requirements exist.We
on
lude that using software
omponents and
omponent-based devel-opment is seen as a promising to address
hallenges in produ
t development,in
luding integration, �exible
on�guration as well as support for software reuse.One of the main
ontributions is that we show the relative importan
e ofindustrial requirements, in addition to the industrial requirements on a
om-ponent te
hnology for use in automotive appli
ations. We des
ribe and graderequirements on a
omponent te
hnology as eli
ited from two Swedish
ontrol-system developers. The requirements are divided into two main groups, thete
hni
al requirements and the development pro
ess related requirements. The27

reason for this is to
larify that the industrial a
tors are not only interestedin te
hni
al solutions, but also in improvements regarding their developmentpro
ess.The result
an be used to guide modi�
ations and/or extensions to exist-ing
omponent te
hnologies in order to make them better suited for industrialdeployment. The results
an also serve as a platform for software engineeringresear
h, sin
e resear
hers
an be guided to put fo
us on the most desired areaswithin
omponent-based software engineering.A
knowledgementsWe would like to thank CC Systems and Volvo Constru
tion Equipment fortheir great support during our resear
h. Espe
ially we would likt to thankJörgen Hansson (CCS), Nils-Erik Bånkestad (VCE) and Robert Larsson (VCE).Thank you!Referen
es[1℄ Mi
rosoft Component Te
hnologies. COM/DCOM/.NET. http://www.-mi
rosoft.
om.[2℄ Sun Mi
rosystems. Enterprise Java Beans Te
hnology. http://java.sun.-
om/produ
ts/ejb/.[3℄ CORBA Component Model 3.0. Obje
t Management Group, June 2002.http://www.omg.org/te
hnology/do
uments/formal/
omponents.htm.[4℄ I. Crnkovi
 and M. Larsson. Building Reliable Component-Based SoftwareSystems. Arte
h House publisher, 2002. ISBN 1-58053-327-2.[5℄ A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Compo-nent Te
hnologies for Embedded Systems. In Pro
eedings of the 7th Inter-national Symposium on Component-Based Software Engineering (CBSE7).2004 Pro
eedings Series: Le
ture Notes in Computer S
ien
e, Vol. 3054,May 2004. Edinburgh, S
otland.[6℄ Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael Nolin.Evaluation of Component Te
hnologies with Respe
t to Industrial Require-ments. In Euromi
ro Conferen
e, Component-Based Software EngineeringTra
k, August 2004.[7℄ Anders M"oller, Mikael Åkerholm, Joakim Fr"oberg, and Mikael Nolin. In-dustrial grading of quality requirements for automotive software
omponentte
hnologies. In Embedded Real-Time Systems Implementation Workshopin
onjun
tion with the 26th IEEE International Real-Time Systems Sym-posium, 2005 Miami, USA, De
ember 2005.28

[8℄ M. Winter, T. Genssler, et al. Components for Embedded Software � ThePECOS Appora
h. In The 2nd International Workshop on CompositionLanguages, in
onjun
tion with the 16th ECOOP, June 2002. Malaga,Spain.[9℄ R. van Ommering et al. The Koala Component Model for Consumer Ele
-troni
s Software. IEEE Computer, 33(3):78�85, Mar
h 2000.[10℄ J. Fröberg. Engineering of Vehi
le Ele
troni
 Systems: Requirements Re-�e
ted in Ar
hite
ture. Mälardalen University Te
hnology Li
entiate ThesisNo.26, ISSN 1651-9256, ISBN 91-88834-41-7. Mälardalen Real-Time Re-sear
h Centre, Mälardalen University, Mar
h, 2004, Västerås, Sweden.[11℄ A. Möller. Software Component Te
hnologies for Heavy Vehi
les.Mälardalen University Te
hnology Li
entiate Thesis No.42, ISSN 1651-9256, ISBN 91-88834-88-3. Mälardalen Real-Time Resear
h Centre,Mälardalen University, January, 2005, Västerås, Sweden.[12℄ K. C. Wallnau. Volume III: A Component Te
hnology for Predi
tableAssembly from Certi�able Components. Te
hni
al report, Software Engi-neering Institute, Carnegie Mellon University, April 2003. Pittsburg, USA.[13℄ A. Brown and K. Wallnau. The Current State of CBSE. IEEE Software,September/O
tober 1998.[14℄ C. Nordström, M. Gustafsson, et al. Experien
es from Introdu
ing State-of-the-art Real-Time Te
hniques in the Automotive Industry. In Eigth IEEEInternational Conferen
e and Workshop on the Engineering of Computer-Based Systems, April 2001. Washington, USA.[15℄ S. R. S
ha
h. Classi
al and Obje
t-Oriented Software Engineering.M
Graw-Hill S
ien
e/Engineering/Math; 3rd edition, 1996. ISBN 0-256-18298-1.[16℄ Ivi
a Crnkovi
 and Magnus Larsson. A
ase study: Demands on
omponent-based development. In Pro
eedings, 22th International Confer-en
e of Software Engineering, Limeri
k, Ireland, May 2000. ACM, IEEE.[17℄ Obje
t Management Group. MinimumCORBA 1.0, August 2002. http://-www.omg.org/te
hnology/do
uments/formal/minimum_CORBA.htm.[18℄ International Standards Organisation (ISO). Road Vehi
les � Inter
hangeof Digital Information � Controller Area Network (CAN) for High-SpeedCommuni
ation, November 1993. vol. ISO Standard 11898.[19℄ CiA. CANopen Communi
ation Pro�le for Industrial Systems, Based onCAL, O
tober 1996. CiA Draft Standard 301, rev 3.0, http://www.-
anopen.org.[20℄ SAE Standard. SAE J1939 Standards Colle
tion. http://www.sae.org.29

[21℄ SAE Standard. SAE J1587, Joint SAE/TMC Ele
troni
 Data Inter
hangeBetween Mi
ro
omputer Systems In Heavy-Duty Vehi
le Appli
ations.http://www.sae.org.[22℄ R.K. Yin. Case Study Resear
h � Design and Methods. Applied So
ialResear
h Methods Series, Volume 5, SAGE Publi
ations, 2003. ISBN 0-7619-2553-8.[23℄ B. Seli
 and J. Rumbaugh. Using UML for modelling
omplex real-timesystems, 1998. Rational Software Corporation.[24℄ Obje
t Management Group. UML 2.0 Superstru
ture Spe
i�
ation, TheOMG Final Adopted Spe
i�
ation, 2003. http://www.omg.
om/uml/.[25℄ M. Shaw and D. Garlan. Software Ar
hite
ture: Perspe
tives on an Emerg-ing Dis
ipline. Prenti
e Hall; 1 edition, 1996. ISBN 0-131-82957-2.[26℄ D. Garlan, R. Allen, and J. O
kerbloom. Ar
hite
tural mismat
h or whyit's hard to build systems out of existing parts. In Pro
eedings of the 17thInternational Conferen
e on Software Engineering, April 1995. Seattle,USA.[27℄ T. Nolte, A. Möller, and M. Nolin. Using Components to Fa
ilitate Sto-
hasti
 S
hedulability. In Pro
eedings of the 24th Real-Time System Sympo-sium � Work-in-Progress Session. IEEE Computer So
iety, De
ember 2003.Can
un, Mexi
o.[28℄ SIL. Safety Integrity Levels � Does Reality Meet Theory?, 2002. Report f.seminar held at the IEE, London, on 9 April 2002.[29℄ K.L. Lundbä
k, J. Lundbä
k and M. Lindberg. Component-Based Devel-opment of Dependable Real-Time Appli
ations. In Real-Time in Sweden� Presentation of Component-Based Software Development Based on theRubus
on
ept, Ar
ti
us Systems: http://www.ar
ti
us.se, August 2003.Västerås, Sweden.[30℄ M. Nolin et al. Component-Based Software for Embedded Systems - ALiterature Survey. Te
hni
al report, MRTC Report No 104, ISSN 1404-3041, ISRN MDH-MRTC-104/203-1-SE, Mälardalen Real-Time Resea
hCentre, Mälardalen University, June 2003. Västerås, Sweden.[31℄ P. Clements and L. Northrop. Software Produ
t Lines: Pra
ti
es and Pat-terns. Addison-Wesley, 2001. ISBN 0-201-70332-7.[32℄ K.L. Lundbä
k. Rubus OS Referen
e Manual � General Con
epts. Ar
ti
usSystems: http://www.ar
ti
us.se.[33℄ D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynami
ally Re-
on�gurable Real-Time Software Using Port-Based Obje
ts. IEEE Trans-a
tions on Software Engineering, pages 759 � 776, De
ember 1997.30

[34℄ P.K. Khosla et al. The Chimera II Real-Time Operating System for Ad-van
ed Sensor-Based Control Appli
ations. IEEE Transa
tions on Systems,1992. Man and Cyberneti
s.[35℄ T. Genssler, A. Christoph, B. S
huls, M. Winter, et al. PECOS in a Nut-shell. PECOS proje
t http://www.pe
os-proje
t.org.[36℄ M. Sgroi. Quasi-Stati
 S
heduling of Embedded Software Using Free-Choi
ePetri Nets. Te
hni
al report, University of California at Berkely, May 1998.Berkely, USA.[37℄ O. Nierstrass, G. Arevalo, S. Du
asse, et al. A Component Model for FieldDevi
es. In Pro
eedings of the First International IFIP/ACM WorkingConferen
e on Component Deployment, June 2002. Germany.[38℄ R. Wuyts and S. Du
asse. Non-fun
tional requirements in a
omponentmodel for embedded systems. In International Workshop on Spe
i�
ationand Veri�
ation of Component-Based Systems, 2001. OPPSLA.[39℄ D.C. S
hmidt, D.L. Levine, and S. Mungee. The Design of the tao real-timeobje
t request broker. Computer Communi
ations Journal, Summer 1997.

31

