A component-based development framework for supporting
functional and non-functional analysis in control system design>k

Johan Fredriksson
Malardalen University
Malardalen Real-Time Research
Centre
Vasteras, Sweden

johan.fredriksson@mdh.se

Abstract

The use of component-based development (CBD) is growinigen t
software engineering community and it has been succegsipH
plied in many engineering domains such as office applicatéomd
in web-based distributed applications. Recently, the mé&BD is
growing also in other domains related to dependable and edielde
systems, namely, in the control engineering domain. Cosy®
tems constitute the core functionality of modern embedgstems
such as vehicles and consumer electronics. However, thelywid
used commercial component technologies are unable todwea-
lutions to the requirements of embedded systems as theiyedqa
much resource and they do not provide methods and tools for de
veloping predictable and analyzable embedded systemse Tha
need for new component-based technologies appropriatevis-d
opment of embedded systems.

In this paper we briefly present a component-based develop-
ment framework called SAVEComp. SAVEComp is developed for
safety-critical real-time systems. One of the main charéstics of
SAVEComp is syntactic and semantic simplicity which enalde
high analyzability of properties important for embeddedtsyns.

By means of an industrial case-study, we show how SAVEComp is
able to provide an efficient support for designing and imetimg
embedded control systems by mainly focusing on simplicitgl a
analyzability of functional requirements and of real-tiewed de-
pendability quality attributes. In particular we discuke typical
solutions of control systems in which feedback loops arel asel
which significantly complicate the design process. We mie\a
solution for increasing design abstraction level and Btihg able

to reason about system properties using SAVEComp appréach.
nally, we discuss an extension of SAVEComp with dynamic run-
time property checking by utilizing run-time spare capatitat is
normally induced by real-time analysis.

*This work is an extended and revisited version of [13].

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesiarmade or distributed
for profit or commercial advantage and that copies bear ttisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Massimo Tivoli
University of LAquila
Computer Science Department
L'Aquila, Italy

tivoli@di.univag.it

Ivica Crnkovic
Malardalen University
Malardalen Real-Time Research
Centre
Vasteras, Sweden

ivica.crnkovic@mdh.se

1 Introduction

Due to the increasing complexity of control systems, theycdiren
constructed performing a modular approach by means ofiésaf
building blocks with high functionality and a high degreefiei-
ibility. This has lead to a need of a component-based approac
for building control systems out of a set of already impletedn
“control modules” [11]. The control module concept has been im-
plemented inABB’s new control system, Control &s a more re-
liable andeaa/-to-usegeneralization of a traditional IEC61131-3
function block [1]. A control module might be considered a con-
trol system component and hence it is the mean to build contro
systems by adopting a component-based approach suppgréed b
suitable component technology. Although component moithels
support predictability of the system behaviour exist, taey often
not able to support the requirements of embedded system&xFo
ample, software components for embedded systems shouwlidiero
an interface specification that points out specific resotgqeire-
ments or other properties of interest for the target aptinae.g.,
timing, memory usage and dependability-related attribsteh as
reliability and safety. Specific architectural constraishould be
imposed on the system design in such a way that predictabilit
of properties that are relevant for the domain can be supgort
Even a component framework for embedded systems should use
predictable mechanisms and be light weight. Thus, a compene
based development framework which supports the requirencén
embedded systems is highly needed in order to be able tocpredi
functional and non-functional behaviour of control sysseturing
design-time.

In this paper, we present a component-based developmeneé{fra
work, called SAVECom# that supports predictability of control
system behaviour during design-time. The main purpose dESA
Comp is to provide efficient support for designing and imptein

ing embedded control applications by mainly focusing onptica

ity and analysability of functional requirements and réxale and
dependability properties. Our reference component madehve-
Comp Component Modd€BSaveCCM) [6] which is designed for
safety-critical real-time systems. SaveCCM has been thtota
support predictability of the real-time behaviour of emibed sys-
tems. We show how to extend the current version of SaveCCM in
order to incorporate the control module concept in SAVECamp
such a way that we are able to predict the system behaviow. Th
design of a SaveCCM control module can be enriched with infor

1in the reminder of the paper, we will use the term “function
block” to identify a “IEC61131-3 function block” and all ifsirther
extensions (e.g., IEC61499 function blocks [7]).

2SAVEComp is developed in the projeBifety critical compo-
nents for VEhicular systems - http://www.mrtc.mdh.seESAV

mation about the module quality attributes by providinggheund
support for the system analysis. By means of both the extende
capabilities of SaveCCM and the analysis tools provided AyES
Comp, we show how the developer is able to build control syste
by composing already implemented components in such a vedy th
both functional requirements and real-time attributes lbarana-
lyzed in control systems design. We also discuss an extensio
SAVEComp with dynamic run-time property checking by ufitig
run-time spare capacity that is normally induced by reaktanaly-
sis.

The remainder of the paper is organized as follows. Sectidis-2
cusses background notions of our work by referring to contiax-

ules as a solution for an “easy-to-make” component-bassitjicle

of control systems. In Section 3 the main features of Save@@M
summarized. In Section 4 we first outline the overall strretf
SAVEComp and then - by means of an explanatory example - we
discuss its relevant aspects in more detail. Section 5 adasland
discusses future work.

2 Background: Control Modules

In Section 1, we said that many modern control systems are de-

signed by using a modular approach in which its constituemt-f
tion blocks are combined together.

Function blocks are very complex and have many configurgtion
rameters because the rapid development of control algasithas
lead to a tremendous increase of the function block’s fonetii-
ties. There are two main disadvantages due to the increased c
plexity of the function blocks. The first one is that there aret

of parameters to be set and interface points to be conneotd a
hence, the developer should have a deep knowledge of thes-diff
ent function blocks. The second one is the obvious risk toemak

3 The SaveCCM component model

In this section we briefly describe the main characteristfceur
reference component model called SaveCCM. Refer to [6] for a
detailed description of it.

The SAVEComp Component Model (SaveCCM) [6, 2] is a restric-
tive component model for control software development.

The interface of an architectural element is defined by a Bet o
ports, i.e., points of interaction between the element énérvi-
ronment. SaveCCM distinguishes between input and outpts$,po
and there are two complementary aspects of ports: the data th
can be transferred via the port and the triggering of compbee-
ecutions. SaveCCM distinguishes between these two aspects
allows three types of ports: (gata-onlyports, (i) triggering-only
ports, and (iii)data and triggeringoorts. An architectural element
emits trigger signals and data at its output ports, andveseiigger
signals and data at its input ports. Systems are built by osing
architectural elements. This composition is obtained mneating
input ports to output ports.

Since predictability and analysisability are of primaryhcern for
the considered application domain, the SaveCCM executimem
is rather restrictive. The basis is a control-flow (i.e., gsf@and-
filter) paradigm in which executions are triggered by cloockex-
ternal events, and where components have finite, possibighla,
execution time. At the beginning a component is inidle state
where it waits for the activation of all its triggers. Oncé @m-
ponent triggers have been activated, the component resaafgiit
ports feading state), performs its computationsxgcutingstate)
based on the inputs read and its internal state, writes st &f the
execution on its output portsvfiting state) and finally goes back to
theidle state. A list of quality attributes and (possibly) theirweal
and credibility (i.e., a measure of confidence of the exgesalue)
is included in the specification of components and assesibfie-
tions are abstract specifications of the externally visii@baviour

mistakes when the developer has to deal with a large amount of of the component. Components are specified by their intesfac

parameters and interface points. In [11], a componentebaski-
tion to overcame these disadvantages has been proposethaiie
idea is to reduce the complexity of control systems by dedirdn
standard interface for the signals between the buildingkso

In Figure 1A we show an example of a control system made of a
cascade control loop [10] where its building blocks areitrawial
function blocks. In Figure B we show the same cascade control
loop where its building blocks are connected by means of phigra
cal connection of ControlConnection type. Note that a airsys-
tem is configured in a much simpler way if the blocks are con-
nected with a ControlConnection structure.As showed ifithee,

we will hereafter refer to the simpler configuration as tiye-level
design of the control system and to the other one datiésnal de-
sign In order to deal with connections of ControlConnectioretyp
all the building blocks of the loop have to be able to transmit
formation forwards as well as backwards, with low delays. this
reason, in [11], the concept of control module has beendntred

as a generalization of a traditional function block. Thetomnmod-

ule contains two parts of code for transmitting informatiorwards
and backwards respectively. Although the control modulecept
considerably reduces the complexity of control loops byjaiog

a component-based approach, current component techesldgi
not allow one to realize a control module in order to provite t
developer with facilities for supporting predictability the control
system behaviour. This leads to a real need of a componsetba
approach for designing and composing control modules ih suc
way that such a support can be provided. Our aim is to provide a
mean that will make it possible to use a component-baseapipr
and predict the system behaviour.

behaviour and quality attributes.

A subset of the UML2 component diagrafris adopted as graphi-
cal specification languaje The symbols showed in Figu® are
used.

4 The SAVEComp development framework

In this section we outline the overall structure of the SAUED
development framewopk(see Figure 2). SAVEComp has been
thought to be an extensible component-based developnamefr
work for design-time analysis (both functional and nonefiional)
and development of safety-critical embedded real-timéesys. A
part of it is the AutoComp technology [12] which is intendedyo
for predicting the real-time behavior of the system.

As showed in Figure 2, SAVEComp can be described by dis-
tinguishing three main phases of its utilization. Duringide-
time, developers may exploit the capabilities of SaveCCIM2[6
to specify the top-level design of the control system by &idgpa
component-based software engineering process. Morgbeeex-
tended version of SaveCCM allows the developer to enricisyse
tem design with: (i) functional properties of the systemresged
in terms of sequences of actions performed on componens port
and/or possible values of data ports of interest for theyais(e.g.,
the set of possible values of a data port expressing diffespn

SUML2.0 specification - http://www.omg.org/technologyfdonents/
modelingspeccatalog.htm#UML.

4In [6], the complete textual syntax (i.e., BNF specificajioh
the specification language is reported.

5The framework is under construction

(A) internal design

Master | CogirolConnection

Slave

MinReached
Range.Min
Range.Max

(B) top-level design

Figure 1. Two different designs of the same control system

' s !
visual editor behavioral models +
design-/ 5aveCCM top-level @ s?fety and
time de:;|gn of the system) ?"q ::> ;:Zlnezsesr
atmbutes + functional ! % . araet anplication
I\ properties) @ + -ti % :,\V% : get app!
. —-—— " A\ 1] i] 0o
SaveCCM top-level models 1] l% IZD real-time |—|
design converter generator ::> E" ;b attributes synthesizer 'I“> =
analyzer ﬂ RTOS
compile- |:‘>
time SaveCCM internal other classes of models
design of the system other kinds of
(design + quality X e.g., probabilistic models 'ﬂ gnglyzer (e.g.
attributes + functional reliability analyzer)
LK properties) —)

LY
compile-time

! run-time

. data flow (i.e., data elaboration
data lugin-based tool |:‘ > ’
‘ D I:l plugin-based too mechanically performed)

developer manual
intervention

possible developer
manual intervention

Figure 2. The SAVEComp development framework

erational modes of the control system); and (ii) high leeshpo-
ral constraints in form of end-to-end deadlines and jittgypdied
with their credibility values. During compile-time, SAVEGp au-
tomatically produces the SaveCCM internal design corneding
to the top-level and derives different views of the desigsgstem
intended to support both different kinds of specific funetidnon-
functional analysis and the mapping process to a real-tipgg-o
ating system (RTOS). In the figure, we show two possible ekss
of system views/models: (i) behavioral models (e.g., Pssdal-
gebras, LTSs, state machines, MSCs, UML2 interaction dragy;
and (ii) real-time models (e.g., Worst-case execution tmalysis
and Response-time analysis). The first class is intendedrform
functional analysis (i.e., checking safety and livenesmertie§),
the second one to perform non-functional analysis in theifipe
case of guaranteeing real-time attributes. The plug-iedasture
of SAVEComp allows us either to add new classes of system lmode
- whenever it is needed to perform other specific kinds ofyaist
or to extend an existent class to contain other model notsitioat
are needed to support/integrate other processes for the lsaoh
of analysis. For example, as sketched in the figure, we migéd n
to add a probabilistic models view (e.g., Markov Chains cB&s-
tic Process Algebras) to perform reliability analysis bing into
account, e.g., the credibility value of each real-timeiaite. Each
specific kind of analysis/transformation is supported byuain
based tool within SAVEComp. Each “plug-in” might be either
an existent tool suitably integrated with SAVEComp or biriétm
scratch. By looking at the result of each particular analyie
developer can either refine the top-level design since atifurad
or non-functional requirement has not been met or - if thegtes
matches every requirement - execute a synthesis step. nudiac
lization phase, the developer has the possibility to imtevdth a
particular plug-in based tool to set specific configuratiarameters

6As usual, for safety and liveness we memthing bad happens
andsomething good eventually happeresspectively.

of it or to apply refinements (that are dictated by the analyesults)
directly on the generated data/models rather than beingddo go
back to the original design. We chodBelipseplatform’ as imple-
mentation environment since it provides us with all thegnétion
features we need to build SAVEComp. Eclipse facilitatesitie-
gration of different tools, that usually manipulate di#at content
types. SAVEComp is built on a XML-based core which is the sub-
strate providing an intermediate XML-based represematicsys-
tem models that may work as a common ground to apply fundtiona
and non-functional analysis. To make SAVEComp as extensibl
possible the XML core is kept general enough to allow itsHert
extensions needed to manage new system model notationgand n
analysis processes and tools. In the reminder, we will aydy$ on
the parts of SAVEComp that implement the approach presented
this paper. We consider the following SAVEComp plug-ins:

SaveCCM Visual Editor. A visual editor supporting the
SaveCCM graphical specification language for designing the
system architecture and for specifying functional prapert
and real-time attributes that must be analyzed. It is also
responsible for generating XML code.

SaveCCM top-level (tointernal) Design Converter. Control
loops are often used to deliver the response for the time-
critical computation as fast as possible. This plug-in is
responsible for automatically deriving from the top-level
design its corresponding internal design consistent of
SaveCCM components, switches and their connections.
Since top-level components, as SaveCCM assemblies, do
not reflect the execution model of a basic component, this
translation is required in order to perform functional andn
functional analysis of the system. The translation alganit
exploits the implicit internal structure and semantics of a
ControlComponent and a ControlConnection.

’The Eclipse project. Eclipse platform technical overview.
Technical report, 2001 - http://www.eclipse.org.

Functional behaviors Models Generator. A part of the models ControlConnection structure. The triggering data are fisedcti-
generatorplug-in based tool. It is responsible for generat- vating a Forward or Backward component depending on theaont
ing models of the functional behavior of the designed system flow of the system. The information required to update theesth
The kind of generated model (e.g., Process Algebras, LTSs, all the ControlComponents in a loop is not available untiltiaé
state machines, MSCs, UML2 interaction diagrams) depends Forward components have executed their code. This is edjtor
on the XML template used. the model is generated by taking a correct functioning of the control system. Note that a @unt
into account the system'’s internal design, the executiodeho =~ Component can handle outer control loops as well as inngsloo
of the SaveCCM components forming the system, the set of These inner connections are internally generated - aftegeinera-
possible actions performable on a SaveCCM port and its pos- tion of Forward and Backward - by tH8aveCCM top-level design
sible values. Furthermore, a consistent model (with respec converter” (see Figure 2).

to both the notation used to model the system’s functional be . . .
havior and the analyzer that will be used) of the functional 4-2 ~Analyzing functional requirements

properties is generated. _ , In this section we formalize the execution model of a Cofitavh-
Safety and Liveness Analyzer. It is a plug-in based tool integrat- — ponent, This formalization is intended to support funcéicanaly-

ing an analyzer for each kind of model of the system's func- gis of control systems during design-time. We are intededte

tional behavior that can be generated. In order to mechani- 6\ing safety and liveness properties. To formalize thecetion

cally verify the specified safety and liveness propertiest F)5qe| of a ControlComponent we look at (i) its internal desigj)

example, the developer can verify that deadlocks do NOtrocCU the execution model of a SaveCCM component; (jii) the sebst p

or that the system always progresses (i.e., can every actiongjpje actions performable on a SaveCCM port and, in somease

eventually be performed?) or other specific functional prep () its possible values. By referring to Section 3, the estiem

ties of the system (e.g., a specific component must be disable mode| of a component may be expressed as a combination of ac-

if the system is running in a specific operational mode). tions that can be executed on its ports. The only action #rate
Component to Task Converter. A part of themodels generator performed on an input (output) data port is a reading (wgjtiac-

plug-in based tool. In cooperation with thiask Attribute As- tion. We denote it as “read” (“write”). “read” and “write” amon-

signment ?t is res_ponsible for generating a real-time !“Ode'- blocking actions (i.e., there will always be a value on a gataand

The algorithm strives to reduce the number of operating sys- 3 always be possible to overwrite that value). On anuhfout-

tem tasks byfallcl)catlng components to the same task accord-put) triggering port we can perform a checking (activatiagjion
Task X?trt?bﬁtseeAt;ié%r?%ht. It is part of the models generator that we denote as “check” (“activa_tt_a"). “check” is _ablpcgia\ction,
plug-in based tool. In cooperation with ti@omponent to that is it makes a component waiting for the activation of guui
triggering port. “activate” simply activates the triggessaciated to

;ﬁzkaﬁglg\é?srtgégl assigning attributes considering platiorm an output triggering port. On an input (output) data-afgigering

Real-Time Analyzer. The analysis step is dependent on the under- POrtacomponent executes “check” followed by “read” (“efifol-
lying platform, e.g., schedulability analysis is limited the lowed by *activate”). These rules can be combined in the @il
algorithms available in the OS used. In the current prowtyp Way in order to specify the execution behavior of a companeith
implementation, response-time analysis according to ReSt ~ an arbitrary number of ports of different type, by means ai@ess
ory is performed. algebr_a. Ngte only that if a co_mpone’._ath_aspl, -, Pn input data-

Code Synthesizer. The code generation module of the compile- and-triggering ports then - during the initial part of iteextion -C
time activities generates all source code that is dependentWill execute a sequence of‘check” (each of them for each) fol-
on the underlying operating system. Each operating system lowed by a sequence of‘read”. We choose FSP [8FHnite State
needs to have a transformation APl where platform indepen- Processesas process algebra to model the execution behavior of
dent system calls can be translated to OS specific. components and assemblies at design level. FSP fits ourgrgpo

because it is notoriously easier to use than other more ssipee

4.1 Extending SaveCCM to des gn and use process algebras and it is supported by LTSA [&Heled Transi-

control modules tion System AnalyserLTSA is a plug-in based verification tool for
concurrent systems. It mechanically checks that the spatith

The control module concept [11] can be implemented in Sa#¢CC of a concurrent system satisfies required properties okttsbior.

by means of a new type of assembly which composes two compo- |n addition, LTSA supports simulation to facilitate thedractive

nents. We denote this new assembly type as “ControlComgionen exploration of the system behavior. Thus the FSP specificatf

type. One component within a ControlComponent is denoted as a SaveCCM system represents the mean to integrate SAVEComp

“Forward”, the other one is denoted as “Backward”. Forward a with LTSA in order to support functional analysis. The FSEGfi-

Backward are for transmitting information forwards andkveards cation is mechanically derived by thiinctional behaviors model
(within a loop in a control system), respectively. In othesrds, generator” taking into account the loop’s internal design, the ex-
Forward is responsible - given input values and taking ictmant ecution model of a SaveCCM component and by combining the
the state of its ControlComponent - for calculating the atit@lue above mentioned rules (defining the set of actions that cgrebe

of the ControlComponent. Analogously, Backward is resi@s formed on a port) in the obvious way. Every functional praper
for updating the state of its ControlComponent dependinghen - that must be checked - has been included in the systemvep-le
feedback signals. Forward exports an interface made ot izupa design (in a XML format) and it has been mechanically traesla
output data-and-triggering ports and, possibly, othetspexplic- in the LTSA property notation by théunctional behaviors model
itly specified by the developer for specific purposes depgndn generator”. Integrating SAVEComp with LTSA (i.e., a possible
the system functionality. The same is for Backward. CoGtooh- “safety and liveness analyzeyallow us to easily verify functional

ponent, in turn, exports the same interface of Forward arekBa properties of the system’s FSP specification. For exampéecam
ward. As itis usual in SaveCCM, the ports of ControlCompadnen
are connected to the corresponding ports of Forward andvigarck 8This is required only for specific data ports of interest,.e.g
through delegation. The type of a data transmitted througbre. boolean data ports used to set different operational mofidseo
of the ControlComponent is a structured data type as defipdaeb control system.

mechanically verify that deadlocks do not occur in the ekeawf
the control system (i.e., safety).

4.3 Analyzing Real-Time properties

In this section we will discuss the non-functional model of

considering stack usage and context-switch overhead. fiigise-
work also constitutes the proposed plug-i@emponent to Task
Converter Task Attribute AssignmeandReal-Time Analyzer

4.3.2 Real-Time Analysis

SaveCCM. We will show how we can analyze SaveCCM consider- An important issue in obtaining high resource utilizatisrtoé de-

ing real-time properties in an automated way, and discussairce

reclaimingextension to SaveComp that utilizes spare capacities in-

troduced by pessimistic real-time predictions. Furtherwill also
discuss analysis techniques and synthesis. In order tonmedmut
real-time behaviour we need to transform the design-tinmepm
nents into tasks conforming to a real-time model. The tasks c
then be analyzed considering the design requirements. rblce$s
is performed in the steps:

Model transformation: Model transformation involves the steps
(i) component to task allocatioand (ii) attribute assignment

ploy an efficient and tight schedulability analysis. The lgna
sis need to faithfully model the complex execution behavibat
arises in control systems. Especially, the analysis shbealdble
to handle arbitrary large jitter and deadlines , task syowization
and shared resources, and operating systems overhead.

For fixed-priority systems (the predominant scheduling hodt
in today’s real-time operating systems), the recent fadt taght
response-time analysis (RTA) for tasks with offsets presid suit-
able efficient and tight analysis [9]. This technique can ehdbe
precedence relations between tasks and hence gives a cenatec

which are necessary in order to transit from the component model of the system behaviour. Furthermore, the execupieed

model, to a run-time model enabling verification of temporal
constraints and usage of efficient and deterministic ei@tut
environments.

Real-Time Analysis. To show that the run-time tasks will meet
their stipulated timing constraints, schedulability as&

of this technique widely outperforms previous methods arnce
highly suitable for deployment in an optimization algonith

4.3.3 Synthesis

must be performed. We assume a fixed-priority systems (FPS) For synthesizing an assembly, platform specific API callseha
(the predominant scheduling method in today’s real-time op t0 be inserted in the code. SaveCCM uses a general APl and

erating systems).

Synthesis: Synthesis involves mapping the tasks to operating sys-

an API-translator (Code generator) The code generatofvesso
communication within and between tasks by translatingfquiat-

tem specific entities, mapping data connections to an OS spe-independent system calls with platform-specific systenis @id

cific communication, generating glue code, compiling, dink
ing and bundling the program code.
4.3.1 Model transformation

When designing a control system with components, the design
not required to consider the schedulability of the systamshould
rather focus on the functionality. The components shouldrbe-
tated with non-functional information corresponding te ttontrol
performance, e.g., periods and jitter constraints. Tansdtion of
components to tasks and scheduling the tasks on a real-pere o
ating are automated processes.

In order to reason about, e.g., real-time each componertthaus-
notated with appropriate quality attributes. These gualitributes
are; A finite worst-case execution timé&/CET). A nominal period
(T), and in the case it is appropriate jitter constrailitter). The

adds platform specific glue code.

4.3.4 Resource Reclaiming Extension

Real-Time Analysis is based on worst-case behaviour inrdale
guarantee correct behaviour in all situations. Due to thissanaly-
sis often becomes pessimistic because the worst-caseiscdoas
not always reflect the actual case. Thus, when the worst cese d
not occur, there are left over resources in terms of prooggsie,
i.e., residual time. The residual can be dynamically rectal and
used for, e.g., dynamic property checking or other types afim
toring in low priority tasks.

The resource-reclaiming strategy is performed with anioa-der-
vice scheduler that uses hybrid scheduling to choose apatep
actions considering a residual time and. Low priority moriitg-
tasks can use the residual time. The residual time can alsedit

SaveCCM model also has transactions that can be used for defin for scheduling higher quality versions of the normal tasksle-

ing timing constraints of data and/or control paths. Tratieas
has end-to-end deadlineBZED), that define the longest allowed
latency between two components in the system.

scribed in [4].

5 Conclusion and future work

Components can be mapped to tasks in numerous ways and whenjthough component models that support predictabilityhe sys-

constructing systems the developer is often required taualbnset
task attributes such as priorities. Since the prioritiesally decides
how the tasks are scheduled, this is a hard task. In our agiptbis
process is automated in the task attribute assignmentiplug-

The context-switch time is increasing with the number oksas
and the ideal mapping considering stack usage and taskhswitc

overhead is to map all components to one task. However, it mos

cases this is not feasible due to the real-time constrafrtteesys-
tem.

A common approach to preserve the notion of components &lso a
ter deployment is to use a one-to-one mapping between ceenpon
and tasks, i.e., map one component to one task. Howevernthe o
to-one mapping often implies worse resource usage tharssage

In [5] a framework is proposed to facilitate the mapping lesw
components and tasks by setting up mapping rules and exgéoit
netic Algorithms(GA) to find feasible mappings that is optimized

tem behaviour there exist, they are found to be inapprapfatthe
control systems application domain since they do not supper
requirements of embedded systems and, hence, are not girke to
dict the behaviour of control systems. The approach predeint
this paper represents a possible solution to this problgmm&ans
of it, we can build/compose control systems components (nhe

designing the control system we can use a component-based ap

proach by exploiting all its notorious advantages) and hingame
time - predict the functional/non-functional behaviourtieé com-
posed system. Although extending SaveCCM with the pogyibil
to specify a top-level design of the system considerablypbfyn
the developer tasks, it internally adds complexity at l@fedystem
implementation. To validate the real feasibility of our eqgch, as
future work, we plan to apply SAVEComp to real-scale casd-stu
ies. Moreover, SAVEComp, as it is currently structured| ktcks
of integration between functional and non-functional gsisl That
is, functional and non-functional analysis are separgtetjormed.

We also plan to incorporate SAVEComp into TOEDNE frame-
work [3] which supports functional and non-functional grs# in-
tegration, and implement the SAVEComp parts that go beybad t
approach presented in this paper.

Acknowledgements

This work is supported by SSF within both SAVE
(SAfety critical components for VEhicular systems -
http://www.mrtc.mdh.se/SAVE&Gnd FLEXCON ELEXible em-
bedded CONtrol systems - http://www.control.lth.se/FCEX/)
project.

6 References

[1] International Electrotechnical Commission, IEC 61131 Pro
grammable Controllers. Part 1 -, Sanuary 1992.

[2] M. Akerholm, A. Mbller, H. Hansson, and M. Nolin. Towasd

a Dependable Component Technology for Embedded System

Applications. InProceedings of the 1DIEEE International

Workshop on Object-oriented Real-Time Dependable Systems

(WORDSO05)February 2005. Sedona, Arizona, USA.

[3] V.Cortellessa, A. Marco, P. Inverardi, F. Macinelli,cBR. Pel-
liccione. A framework for the integration of functional and
non-functional analysis of software architectures. TACoS
2004.

[4] J. Fredriksson, M. Akerholm, K. Sandstrom, and R. Do-
brin. Attaining flexible real-time systems by bringing to-
gether component technologies and real-time systemsytheor
In Proceedings of the #9Euromicro Conference, Component
Based Software Engineering Trackeptember 2003. Belek,
Turkey.

[5] J. Fredriksson, K. Sandstrom, and M. Akerholm. Caltula
ing resource trad-offs when mapping components to rea-tim
tasks. Inin the 8th International Symposium on Component-
Based Software Engineering (CBSES8), St.Louis, UBay
2005.

[6] H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren.
SaveCCM - a Component Model for Safety-Critical Real-
Time Systems. IfProceedings of 38 Euromicro Conference,

Special Session Component Models for Dependable Systems

September 2004.

[7] B. Lewis. IEC 61499 Function Blocks: A new way to design
control systems®ontrol Engineering EuropeApril 2002.

[8] J. Magee and J. KrameEoncurrency: State Models and Java
Programs John Wiley and Sons, 1999.

[9] J. Maki-Turja and M. Nolin. Fast and Tight Response-&sn
for Tasks with Offsets. 117" EUROMICRO Conference on
Real-Time SystemiEEE, July 2005. Accepted for publica-
tion.

[10] E. Parr. Programmable Controllers - An Engineer’'s Guide
(2nd Edition) Butterworth-Heinemann Ltd, 2001.

[11] L. Pernebo and B. Hansson. Plug and play in control loop

design. InPreprints Reglermdte 2002.inkdping, Sweden,
May 2002.

[12] K. Sandstrom, J. Fredriksson, and M. Akerholm. Intred
ing a component technology for safety critical embeddet rea
time systems. Iispringer - LNCS 3054May 2004.

[13] M. Tivoli, J. Fredriksson, and I. Crnkovic. A component
based approach for supporting functional and non-funation

analysis in control loop design. Malardalen University,
Malardalen Real-Time Research Centre. Technical Report
May 2005.

