
A component-based development framework for supporting
functional and non-functional analysis in control system design∗

Johan Fredriksson
Mälardalen University

Mälardalen Real-Time Research
Centre

Västerås, Sweden

johan.fredriksson@mdh.se

Massimo Tivoli
University of L’Aquila

Computer Science Department
L’Aquila, Italy

tivoli@di.univaq.it

Ivica Crnkovic
Mälardalen University

Mälardalen Real-Time Research
Centre

Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract

The use of component-based development (CBD) is growing in the
software engineering community and it has been successfully ap-
plied in many engineering domains such as office applications and
in web-based distributed applications. Recently, the needof CBD is
growing also in other domains related to dependable and embedded
systems, namely, in the control engineering domain. Control sys-
tems constitute the core functionality of modern embedded systems
such as vehicles and consumer electronics. However, the widely
used commercial component technologies are unable to provide so-
lutions to the requirements of embedded systems as they require too
much resource and they do not provide methods and tools for de-
veloping predictable and analyzable embedded systems. There is a
need for new component-based technologies appropriate to devel-
opment of embedded systems.

In this paper we briefly present a component-based develop-
ment framework called SAVEComp. SAVEComp is developed for
safety-critical real-time systems. One of the main characteristics of
SAVEComp is syntactic and semantic simplicity which enables a
high analyzability of properties important for embedded systems.
By means of an industrial case-study, we show how SAVEComp is
able to provide an efficient support for designing and implementing
embedded control systems by mainly focusing on simplicity and
analyzability of functional requirements and of real-timeand de-
pendability quality attributes. In particular we discuss the typical
solutions of control systems in which feedback loops are used and
which significantly complicate the design process. We provide a
solution for increasing design abstraction level and stillbeing able
to reason about system properties using SAVEComp approach.Fi-
nally, we discuss an extension of SAVEComp with dynamic run-
time property checking by utilizing run-time spare capacity that is
normally induced by real-time analysis.

∗This work is an extended and revisited version of [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1 Introduction
Due to the increasing complexity of control systems, they are often
constructed performing a modular approach by means of libraries of
building blocks with high functionality and a high degree offlex-
ibility. This has lead to a need of a component-based approach
for building control systems out of a set of already implemented
“control modules” [11]. The control module concept has been im-
plemented inABB’s new control system, Control ITas a more re-
liable andeasy-to-usegeneralization of a traditional IEC61131-3
function block1 [1]. A control module might be considered a con-
trol system component and hence it is the mean to build control
systems by adopting a component-based approach supported by a
suitable component technology. Although component modelsthat
support predictability of the system behaviour exist, theyare often
not able to support the requirements of embedded systems. For ex-
ample, software components for embedded systems should provide
an interface specification that points out specific resourcerequire-
ments or other properties of interest for the target application, e.g.,
timing, memory usage and dependability-related attributes such as
reliability and safety. Specific architectural constraints should be
imposed on the system design in such a way that predictability
of properties that are relevant for the domain can be supported.
Even a component framework for embedded systems should use
predictable mechanisms and be light weight. Thus, a component-
based development framework which supports the requirements of
embedded systems is highly needed in order to be able to predict
functional and non-functional behaviour of control systems during
design-time.

In this paper, we present a component-based development frame-
work, called SAVEComp2 that supports predictability of control
system behaviour during design-time. The main purpose of SAVE-
Comp is to provide efficient support for designing and implement-
ing embedded control applications by mainly focusing on simplic-
ity and analysability of functional requirements and real-time and
dependability properties. Our reference component model is Save-
Comp Component Model(SaveCCM) [6] which is designed for
safety-critical real-time systems. SaveCCM has been thought to
support predictability of the real-time behaviour of embedded sys-
tems. We show how to extend the current version of SaveCCM in
order to incorporate the control module concept in SAVECompin
such a way that we are able to predict the system behaviour. The
design of a SaveCCM control module can be enriched with infor-

1In the reminder of the paper, we will use the term “function
block” to identify a “IEC61131-3 function block” and all itsfurther
extensions (e.g., IEC61499 function blocks [7]).

2SAVEComp is developed in the projectSAfety critical compo-
nents for VEhicular systems - http://www.mrtc.mdh.se/SAVE.

mation about the module quality attributes by providing theground
support for the system analysis. By means of both the extended
capabilities of SaveCCM and the analysis tools provided by SAVE-
Comp, we show how the developer is able to build control systems
by composing already implemented components in such a way that
both functional requirements and real-time attributes canbe ana-
lyzed in control systems design. We also discuss an extension of
SAVEComp with dynamic run-time property checking by utilizing
run-time spare capacity that is normally induced by real-time analy-
sis.

The remainder of the paper is organized as follows. Section 2dis-
cusses background notions of our work by referring to control mod-
ules as a solution for an “easy-to-make” component-based design
of control systems. In Section 3 the main features of SaveCCMare
summarized. In Section 4 we first outline the overall structure of
SAVEComp and then - by means of an explanatory example - we
discuss its relevant aspects in more detail. Section 5 concludes and
discusses future work.

2 Background: Control Modules
In Section 1, we said that many modern control systems are de-
signed by using a modular approach in which its constituent func-
tion blocks are combined together.

Function blocks are very complex and have many configurationpa-
rameters because the rapid development of control algorithms has
lead to a tremendous increase of the function block’s functionali-
ties. There are two main disadvantages due to the increased com-
plexity of the function blocks. The first one is that there area lot
of parameters to be set and interface points to be connected and,
hence, the developer should have a deep knowledge of the differ-
ent function blocks. The second one is the obvious risk to make
mistakes when the developer has to deal with a large amount of
parameters and interface points. In [11], a component-based solu-
tion to overcame these disadvantages has been proposed. Themain
idea is to reduce the complexity of control systems by defining a
standard interface for the signals between the building blocks.

In Figure 1.A we show an example of a control system made of a
cascade control loop [10] where its building blocks are traditional
function blocks. In Figure 1.B we show the same cascade control
loop where its building blocks are connected by means of a graphi-
cal connection of ControlConnection type. Note that a control sys-
tem is configured in a much simpler way if the blocks are con-
nected with a ControlConnection structure.As showed in thefigure,
we will hereafter refer to the simpler configuration as thetop-level
design of the control system and to the other one as itsinternal de-
sign. In order to deal with connections of ControlConnection type,
all the building blocks of the loop have to be able to transmitin-
formation forwards as well as backwards, with low delays. For this
reason, in [11], the concept of control module has been introduced
as a generalization of a traditional function block. The control mod-
ule contains two parts of code for transmitting informationforwards
and backwards respectively. Although the control module concept
considerably reduces the complexity of control loops by providing
a component-based approach, current component technologies do
not allow one to realize a control module in order to provide the
developer with facilities for supporting predictability of the control
system behaviour. This leads to a real need of a component-based
approach for designing and composing control modules in such a
way that such a support can be provided. Our aim is to provide a
mean that will make it possible to use a component-based approach
and predict the system behaviour.

3 The SaveCCM component model
In this section we briefly describe the main characteristicsof our
reference component model called SaveCCM. Refer to [6] for a
detailed description of it.

The SAVEComp Component Model (SaveCCM) [6, 2] is a restric-
tive component model for control software development.
The interface of an architectural element is defined by a set of
ports, i.e., points of interaction between the element and its envi-
ronment. SaveCCM distinguishes between input and output ports,
and there are two complementary aspects of ports: the data that
can be transferred via the port and the triggering of component ex-
ecutions. SaveCCM distinguishes between these two aspects, and
allows three types of ports: (i)data-onlyports, (ii) triggering-only
ports, and (iii)data and triggeringports. An architectural element
emits trigger signals and data at its output ports, and receives trigger
signals and data at its input ports. Systems are built by composing
architectural elements. This composition is obtained by connecting
input ports to output ports.

Since predictability and analysisability are of primary concern for
the considered application domain, the SaveCCM execution model
is rather restrictive. The basis is a control-flow (i.e., pipes-and-
filter) paradigm in which executions are triggered by clocksor ex-
ternal events, and where components have finite, possibly variable,
execution time. At the beginning a component is in anidle state
where it waits for the activation of all its triggers. Once all com-
ponent triggers have been activated, the component reads its input
ports (reading state), performs its computations (executingstate)
based on the inputs read and its internal state, writes the result of the
execution on its output ports (writing state) and finally goes back to
the idle state. A list of quality attributes and (possibly) their value
and credibility (i.e., a measure of confidence of the expressed value)
is included in the specification of components and assemblies. Ac-
tions are abstract specifications of the externally visiblebehaviour
of the component. Components are specified by their interfaces,
behaviour and quality attributes.
A subset of the UML2 component diagrams3 is adopted as graphi-
cal specification language4. The symbols showed in Figure?? are
used.

4 The SAVEComp development framework
In this section we outline the overall structure of the SAVEComp
development framework5 (see Figure 2). SAVEComp has been
thought to be an extensible component-based development frame-
work for design-time analysis (both functional and non-functional)
and development of safety-critical embedded real-time systems. A
part of it is the AutoComp technology [12] which is intended only
for predicting the real-time behavior of the system.

As showed in Figure 2, SAVEComp can be described by dis-
tinguishing three main phases of its utilization. During design-
time, developers may exploit the capabilities of SaveCCM [6, 2]
to specify the top-level design of the control system by adopting a
component-based software engineering process. Moreover,the ex-
tended version of SaveCCM allows the developer to enrich thesys-
tem design with: (i) functional properties of the system expressed
in terms of sequences of actions performed on component ports
and/or possible values of data ports of interest for the analysis (e.g.,
the set of possible values of a data port expressing different op-

3UML2.0 specification - http://www.omg.org/technology/documents/
modelingspeccatalog.htm#UML.

4In [6], the complete textual syntax (i.e., BNF specification) of
the specification language is reported.

5The framework is under construction

(A) internal design

AI

AI
 AO

Master

AI

Slave
 Forward

Backward

Value

Status

Range.Min

Value

Backtracking

MaxReached

MinReached

Master

Slave

ControlConnection

Range.Max

Range.Min

Range.Max

(B) top-level design

Figure 1. Two different designs of the same control system

SaveCCM top-level

design of the system

(design + quality

attributes + functional

properties)

SaveCCM internal

design of the system

(design + quality

attributes + functional

properties)

Forward = (check.a

-> check.a1 ->

read.a -> Forward).

||ControlLoop =

(master:Forward ||

master:Backward ||

sd
 Client_S1

:Client
 :Environment

PCheckOut

PCheckIn

sd
 Client_S2

:Client
 :Environment

SCheckOut

SCheckIn

sd
 Client_Overview

ref

Client_S1

ref

Client_S2

behavioral models

real-time models

other classes of models

e.g., probabilistic models

safety and

liveness

analyzer

real-time

attributes

analyzer

other kinds of

analyzer (e.g.,

reliability analyzer)

synthesizer

target application

compile-time
 run-time

design-

time

compile-

time

SaveCCM

visual editor

SaveCCM top-level

design converter

models

generator

data
 plugin-based tool

data flow (i.e., data elaboration

mechanically performed)

developer manual

intervention

possible developer

manual intervention

Figure 2. The SAVEComp development framework

erational modes of the control system); and (ii) high level tempo-
ral constraints in form of end-to-end deadlines and jitter supplied
with their credibility values. During compile-time, SAVEComp au-
tomatically produces the SaveCCM internal design corresponding
to the top-level and derives different views of the designedsystem
intended to support both different kinds of specific functional/non-
functional analysis and the mapping process to a real-time oper-
ating system (RTOS). In the figure, we show two possible classes
of system views/models: (i) behavioral models (e.g., Process Al-
gebras, LTSs, state machines, MSCs, UML2 interaction diagrams);
and (ii) real-time models (e.g., Worst-case execution timeanalysis
and Response-time analysis). The first class is intended to perform
functional analysis (i.e., checking safety and liveness properties6),
the second one to perform non-functional analysis in the specific
case of guaranteeing real-time attributes. The plug-in based nature
of SAVEComp allows us either to add new classes of system models
- whenever it is needed to perform other specific kinds of analysis -
or to extend an existent class to contain other model notations that
are needed to support/integrate other processes for the same kind
of analysis. For example, as sketched in the figure, we might need
to add a probabilistic models view (e.g., Markov Chains, Stochas-
tic Process Algebras) to perform reliability analysis by taking into
account, e.g., the credibility value of each real-time attribute. Each
specific kind of analysis/transformation is supported by a plug-in
based tool within SAVEComp. Each “plug-in” might be either
an existent tool suitably integrated with SAVEComp or builtfrom
scratch. By looking at the result of each particular analysis, the
developer can either refine the top-level design since a functional
or non-functional requirement has not been met or - if the design
matches every requirement - execute a synthesis step. In each uti-
lization phase, the developer has the possibility to interact with a
particular plug-in based tool to set specific configuration parameters

6As usual, for safety and liveness we meannothing bad happens
andsomething good eventually happens, respectively.

of it or to apply refinements (that are dictated by the analysis results)
directly on the generated data/models rather than being forced to go
back to the original design. We chooseEclipseplatform7 as imple-
mentation environment since it provides us with all the integration
features we need to build SAVEComp. Eclipse facilitates theinte-
gration of different tools, that usually manipulate different content
types. SAVEComp is built on a XML-based core which is the sub-
strate providing an intermediate XML-based representation of sys-
tem models that may work as a common ground to apply functional
and non-functional analysis. To make SAVEComp as extensible as
possible the XML core is kept general enough to allow its further
extensions needed to manage new system model notations and new
analysis processes and tools. In the reminder, we will only focus on
the parts of SAVEComp that implement the approach presentedin
this paper. We consider the following SAVEComp plug-ins:

SaveCCM Visual Editor. A visual editor supporting the
SaveCCM graphical specification language for designing the
system architecture and for specifying functional properties
and real-time attributes that must be analyzed. It is also
responsible for generating XML code.

SaveCCM top-level (to internal) Design Converter. Control
loops are often used to deliver the response for the time-
critical computation as fast as possible. This plug-in is
responsible for automatically deriving from the top-level
design its corresponding internal design consistent of
SaveCCM components, switches and their connections.
Since top-level components, as SaveCCM assemblies, do
not reflect the execution model of a basic component, this
translation is required in order to perform functional and non-
functional analysis of the system. The translation algorithm
exploits the implicit internal structure and semantics of a
ControlComponent and a ControlConnection.

7The Eclipse project. Eclipse platform technical overview.
Technical report, 2001 - http://www.eclipse.org.

Functional behaviors Models Generator. A part of the models
generatorplug-in based tool. It is responsible for generat-
ing models of the functional behavior of the designed system.
The kind of generated model (e.g., Process Algebras, LTSs,
state machines, MSCs, UML2 interaction diagrams) depends
on the XML template used. the model is generated by taking
into account the system’s internal design, the execution model
of the SaveCCM components forming the system, the set of
possible actions performable on a SaveCCM port and its pos-
sible values. Furthermore, a consistent model (with respect
to both the notation used to model the system’s functional be-
havior and the analyzer that will be used) of the functional
properties is generated.

Safety and Liveness Analyzer. It is a plug-in based tool integrat-
ing an analyzer for each kind of model of the system’s func-
tional behavior that can be generated. In order to mechani-
cally verify the specified safety and liveness properties. For
example, the developer can verify that deadlocks do not occur
or that the system always progresses (i.e., can every action
eventually be performed?) or other specific functional proper-
ties of the system (e.g., a specific component must be disabled
if the system is running in a specific operational mode).

Component to Task Converter. A part of themodels generator
plug-in based tool. In cooperation with theTask Attribute As-
signment, it is responsible for generating a real-time model.
The algorithm strives to reduce the number of operating sys-
tem tasks by allocating components to the same task accord-
ing to a set of rules.

Task Attribute Assignment. It is part of themodels generator
plug-in based tool. In cooperation with theComponent to
Task Converter, it assigning attributes considering platform
and analysis goal.

Real-Time Analyzer. The analysis step is dependent on the under-
lying platform, e.g., schedulability analysis is limited to the
algorithms available in the OS used. In the current prototype
implementation, response-time analysis according to FPS the-
ory is performed.

Code Synthesizer. The code generation module of the compile-
time activities generates all source code that is dependent
on the underlying operating system. Each operating system
needs to have a transformation API where platform indepen-
dent system calls can be translated to OS specific.

4.1 Extending SaveCCM to design and use
control modules

The control module concept [11] can be implemented in SaveCCM
by means of a new type of assembly which composes two compo-
nents. We denote this new assembly type as “ControlComponent”
type. One component within a ControlComponent is denoted as
“Forward”, the other one is denoted as “Backward”. Forward and
Backward are for transmitting information forwards and backwards
(within a loop in a control system), respectively. In other words,
Forward is responsible - given input values and taking into account
the state of its ControlComponent - for calculating the output value
of the ControlComponent. Analogously, Backward is responsible
for updating the state of its ControlComponent depending onthe
feedback signals. Forward exports an interface made of input and
output data-and-triggering ports and, possibly, other ports explic-
itly specified by the developer for specific purposes depending on
the system functionality. The same is for Backward. ControlCom-
ponent, in turn, exports the same interface of Forward and Back-
ward. As it is usual in SaveCCM, the ports of ControlComponent
are connected to the corresponding ports of Forward and Backward
through delegation. The type of a data transmitted through aport
of the ControlComponent is a structured data type as defined by the

ControlConnection structure. The triggering data are usedfor acti-
vating a Forward or Backward component depending on the control
flow of the system. The information required to update the state of
all the ControlComponents in a loop is not available until all the
Forward components have executed their code. This is required for
a correct functioning of the control system. Note that a Control-
Component can handle outer control loops as well as inner loops.
These inner connections are internally generated - after the genera-
tion of Forward and Backward - by the“SaveCCM top-level design
converter” (see Figure 2).

4.2 Analyzing functional requirements
In this section we formalize the execution model of a ControlCom-
ponent. This formalization is intended to support functional analy-
sis of control systems during design-time. We are interested in
proving safety and liveness properties. To formalize the execution
model of a ControlComponent we look at (i) its internal design; (ii)
the execution model of a SaveCCM component; (iii) the set of pos-
sible actions performable on a SaveCCM port and, in some cases8,
(iv) its possible values. By referring to Section 3, the execution
model of a component may be expressed as a combination of ac-
tions that can be executed on its ports. The only action that can be
performed on an input (output) data port is a reading (writing) ac-
tion. We denote it as “read” (“write”). “read” and “write” are non-
blocking actions (i.e., there will always be a value on a dataport and
it will always be possible to overwrite that value). On an input (out-
put) triggering port we can perform a checking (activating)action
that we denote as “check” (“activate”). “check” is a blocking action,
that is it makes a component waiting for the activation of an input
triggering port. “activate” simply activates the trigger associated to
an output triggering port. On an input (output) data-and-triggering
port a component executes “check” followed by “read” (“write” fol-
lowed by “activate”). These rules can be combined in the obvious
way in order to specify the execution behavior of a component, with
an arbitrary number of ports of different type, by means of a process
algebra. Note only that if a componentC hasp1, ..., pn input data-
and-triggering ports then - during the initial part of its execution -C
will execute a sequence ofn “check” (each of them for eachpi) fol-
lowed by a sequence ofn “read”. We choose FSP [8] (Finite State
Processes) as process algebra to model the execution behavior of
components and assemblies at design level. FSP fits our purposes
because it is notoriously easier to use than other more expressive
process algebras and it is supported by LTSA [8] (Labeled Transi-
tion System Analyser). LTSA is a plug-in based verification tool for
concurrent systems. It mechanically checks that the specification
of a concurrent system satisfies required properties of its behavior.
In addition, LTSA supports simulation to facilitate the interactive
exploration of the system behavior. Thus the FSP specification of
a SaveCCM system represents the mean to integrate SAVEComp
with LTSA in order to support functional analysis. The FSP specifi-
cation is mechanically derived by the“functional behaviors model
generator” taking into account the loop’s internal design, the ex-
ecution model of a SaveCCM component and by combining the
above mentioned rules (defining the set of actions that can beper-
formed on a port) in the obvious way. Every functional property
- that must be checked - has been included in the system top-level
design (in a XML format) and it has been mechanically translated
in the LTSA property notation by the“functional behaviors model
generator”. Integrating SAVEComp with LTSA (i.e., a possible
“safety and liveness analyzer”) allow us to easily verify functional
properties of the system’s FSP specification. For example, we can

8This is required only for specific data ports of interest, e.g.,
boolean data ports used to set different operational modes of the
control system.

mechanically verify that deadlocks do not occur in the execution of
the control system (i.e., safety).

4.3 Analyzing Real-Time properties
In this section we will discuss the non-functional model of
SaveCCM. We will show how we can analyze SaveCCM consider-
ing real-time properties in an automated way, and discuss aresource
reclaiming-extension to SaveComp that utilizes spare capacities in-
troduced by pessimistic real-time predictions. Further, we will also
discuss analysis techniques and synthesis. In order to reason about
real-time behaviour we need to transform the design-time compo-
nents into tasks conforming to a real-time model. The tasks can
then be analyzed considering the design requirements. The process
is performed in the steps:
Model transformation: Model transformation involves the steps

(i) component to task allocationand(ii) attribute assignment
which are necessary in order to transit from the component
model, to a run-time model enabling verification of temporal
constraints and usage of efficient and deterministic execution
environments.

Real-Time Analysis: To show that the run-time tasks will meet
their stipulated timing constraints, schedulability analysis
must be performed. We assume a fixed-priority systems (FPS)
(the predominant scheduling method in today’s real-time op-
erating systems).

Synthesis: Synthesis involves mapping the tasks to operating sys-
tem specific entities, mapping data connections to an OS spe-
cific communication, generating glue code, compiling, link-
ing and bundling the program code.

4.3.1 Model transformation
When designing a control system with components, the designer is
not required to consider the schedulability of the system, but should
rather focus on the functionality. The components should beanno-
tated with non-functional information corresponding to the control
performance, e.g., periods and jitter constraints. Transformation of
components to tasks and scheduling the tasks on a real-time oper-
ating are automated processes.

In order to reason about, e.g., real-time each component must be an-
notated with appropriate quality attributes. These quality attributes
are; A finite worst-case execution time (WCET). A nominal period
(T), and in the case it is appropriate jitter constraint (Jitter). The
SaveCCM model also has transactions that can be used for defin-
ing timing constraints of data and/or control paths. Transactions
has end-to-end deadlines (E2ED), that define the longest allowed
latency between two components in the system.

Components can be mapped to tasks in numerous ways and when
constructing systems the developer is often required to manually set
task attributes such as priorities. Since the priorities directly decides
how the tasks are scheduled, this is a hard task. In our approach this
process is automated in the task attribute assignment plug-in.

The context-switch time is increasing with the number of tasks,
and the ideal mapping considering stack usage and task switch-
overhead is to map all components to one task. However, in most
cases this is not feasible due to the real-time constraints of the sys-
tem.

A common approach to preserve the notion of components also af-
ter deployment is to use a one-to-one mapping between components
and tasks, i.e., map one component to one task. However, the one-
to-one mapping often implies worse resource usage than necessary.

In [5] a framework is proposed to facilitate the mapping between
components and tasks by setting up mapping rules and exploitGe-
netic Algorithms(GA) to find feasible mappings that is optimized

considering stack usage and context-switch overhead. Thisframe-
work also constitutes the proposed plug-insComponent to Task
Converter, Task Attribute AssignmentandReal-Time Analyzer.

4.3.2 Real-Time Analysis
An important issue in obtaining high resource utilization is to de-
ploy an efficient and tight schedulability analysis. The analy-
sis need to faithfully model the complex execution behaviour that
arises in control systems. Especially, the analysis shouldbe able
to handle arbitrary large jitter and deadlines , task synchronization
and shared resources, and operating systems overhead.

For fixed-priority systems (the predominant scheduling method
in today’s real-time operating systems), the recent fast and tight
response-time analysis (RTA) for tasks with offsets provides a suit-
able efficient and tight analysis [9]. This technique can model the
precedence relations between tasks and hence gives a very accurate
model of the system behaviour. Furthermore, the execution speed
of this technique widely outperforms previous methods and is hence
highly suitable for deployment in an optimization algorithm.

4.3.3 Synthesis
For synthesizing an assembly, platform specific API calls have
to be inserted in the code. SaveCCM uses a general API and
an API-translator (Code generator) The code generator resolves
communication within and between tasks by translating platform-
independent system calls with platform-specific system calls and
adds platform specific glue code.

4.3.4 Resource Reclaiming Extension
Real-Time Analysis is based on worst-case behaviour in order to
guarantee correct behaviour in all situations. Due to this,the analy-
sis often becomes pessimistic because the worst-case scenario does
not always reflect the actual case. Thus, when the worst case does
not occur, there are left over resources in terms of processing time,
i.e., residual time. The residual can be dynamically reclaimed and
used for, e.g., dynamic property checking or other types of moni-
toring in low priority tasks.

The resource-reclaiming strategy is performed with an on-line ser-
vice scheduler that uses hybrid scheduling to choose appropriate
actions considering a residual time and. Low priority monitoring-
tasks can use the residual time. The residual time can also beused
for scheduling higher quality versions of the normal tasks as de-
scribed in [4].

5 Conclusion and future work
Although component models that support predictability of the sys-
tem behaviour there exist, they are found to be inappropriate for the
control systems application domain since they do not support the
requirements of embedded systems and, hence, are not able topre-
dict the behaviour of control systems. The approach presented in
this paper represents a possible solution to this problem. By means
of it, we can build/compose control systems components (i.e., in
designing the control system we can use a component-based ap-
proach by exploiting all its notorious advantages) and - in the same
time - predict the functional/non-functional behaviour ofthe com-
posed system. Although extending SaveCCM with the possibility
to specify a top-level design of the system considerably simplify
the developer tasks, it internally adds complexity at levelof system
implementation. To validate the real feasibility of our approach, as
future work, we plan to apply SAVEComp to real-scale case stud-
ies. Moreover, SAVEComp, as it is currently structured, still lacks
of integration between functional and non-functional analysis. That
is, functional and non-functional analysis are separatelyperformed.

We also plan to incorporate SAVEComp into TOOL•ONE frame-
work [3] which supports functional and non-functional analysis in-
tegration, and implement the SAVEComp parts that go beyond the
approach presented in this paper.

Acknowledgements
This work is supported by SSF within both SAVE
(SAfety critical components for VEhicular systems -
http://www.mrtc.mdh.se/SAVE/) and FLEXCON (FLEXible em-
bedded CONtrol systems - http://www.control.lth.se/FLEXCON/)
project.

6 References

[1] International Electrotechnical Commission, IEC 61131 Pro-
grammable Controllers. Part 1 - 5, January 1992.

[2] M. Akerholm, A. Möller, H. Hansson, and M. Nolin. Towards
a Dependable Component Technology for Embedded System
Applications. InProceedings of the 10th IEEE International
Workshop on Object-oriented Real-Time Dependable Systems
(WORDS05), February 2005. Sedona, Arizona, USA.

[3] V. Cortellessa, A. Marco, P. Inverardi, F. Macinelli, and P. Pel-
liccione. A framework for the integration of functional and
non-functional analysis of software architectures. InTACoS,
2004.

[4] J. Fredriksson, M. Akerholm, K. Sandström, and R. Do-
brin. Attaining flexible real-time systems by bringing to-
gether component technologies and real-time systems theory.
In Proceedings of the 29th Euromicro Conference, Component
Based Software Engineering Track, September 2003. Belek,
Turkey.

[5] J. Fredriksson, K. Sandström, and M. Akerholm. Calculat-
ing resource trad-offs when mapping components to real-time
tasks. InIn the 8th International Symposium on Component-
Based Software Engineering (CBSE8), St.Louis, USA, May
2005.

[6] H. Hansson, M. Akerholm, I. Crnkovic, and M. Törngren.
SaveCCM - a Component Model for Safety-Critical Real-
Time Systems. InProceedings of 30th Euromicro Conference,
Special Session Component Models for Dependable Systems,
September 2004.

[7] B. Lewis. IEC 61499 Function Blocks: A new way to design
control systems?Control Engineering Europe, April 2002.

[8] J. Magee and J. Kramer.Concurrency: State Models and Java
Programs. John Wiley and Sons, 1999.

[9] J. Mäki-Turja and M. Nolin. Fast and Tight Response-Times
for Tasks with Offsets. In17th EUROMICRO Conference on
Real-Time Systems. IEEE, July 2005. Accepted for publica-
tion.

[10] E. Parr. Programmable Controllers - An Engineer’s Guide
(2nd Edition). Butterworth-Heinemann Ltd, 2001.

[11] L. Pernebo and B. Hansson. Plug and play in control loop
design. InPreprints Reglermöte 2002, Linköping, Sweden,
May 2002.

[12] K. Sandström, J. Fredriksson, and M. Akerholm. Introduc-
ing a component technology for safety critical embedded real-
time systems. InSpringer - LNCS 3054, May 2004.

[13] M. Tivoli, J. Fredriksson, and I. Crnkovic. A component-
based approach for supporting functional and non-functional

analysis in control loop design. Malardalen University,
Malardalen Real-Time Research Centre. Technical Report,
May 2005.

