
Present and Future Requirements in Developing Industrial Embedded
Real-Time Systems - Interviews with Designers in the Vehicle Domain

Kaj Hänninen
1Mälardalen Research and
Technology Centre (MRTC)

2Arcticus Systems
Sweden

kaj.hanninen@mdh.se

Jukka Mäki-Turja
Mälardalen Research and

Technology Centre (MRTC)
Sweden

jukka.maki-turja@mdh.se

Mikael Nolin
Mälardalen Research and

Technology Centre (MRTC)
Sweden

mikael.nolin@mdh.se

Abstract

In this paper, we aim at capturing the industrial
viewpoint of todays and future requirements in
development of embedded real-time systems. We do
this by interviewing ten senior designers at four
Swedish companies, developing embedded applications
in the vehicle domain.

This study shows that reliability and safety are the
main properties in focus during development. It also
shows that the amount of functionality has been
increasing in the examined systems. Still the present
requirements are fulfilled using considerably
homogenous development methods.

The study also shows that, in the future, there will
be even stronger requirements on dependability and
control performance at the same time as requirements
on more softer and resource demanding functionality
will continue to increase. Consequently, the complexity
will increase, and with diverging requirements, more
heterogeneous development methods are called for to
fulfil all application specific requirements.

1. Introduction
There is an increasing trend towards software

solutions in embedded systems. Replacing mechanical
functionality with computer-controlled solutions gives
opportunities for more advanced and more flexible
functionality, e.g., anti-lock braking, traction control
etc.

Over the years, a large number of publications, e.g.,
[5][6][8][10][11][12][13][18] has addressed design
issues, embedded application trends or requirements in
development of industrial embedded systems. Möller et
al [10] present the industrial requirements, both

technical as well as process related requirements, on
component technologies in the heavy vehicle domain.
Åkerholm et al [18] presents an investigation
concerning classification of quality attributes for
component technologies in the vehicle industry. The
investigation show that dependability characteristics
(safety, reliability and predictability) are considered as
the most important ones. Koopman [8] presents
attributes of four different types of embedded systems
(signal processing systems, mission critical and
distributed control systems and consumer electronic
systems). Koopman addresses requirements, life-cycle
support and business models in development of
embedded systems. Graaf et al [5] presents an
industrial inventory of seven companies developing
embedded software products. Their inventory of state
of practice addresses requirements engineering and
architectural issues such as design and analysis. The
inventory covers companies from many different
domains, e.g., developers of mobile phones and
consumer electronics, distributed data management
solutions etc.

In this paper, we investigate the industrial
requirements in the vehicle domain, especially
requirements related to real-time issues on a high
overall level, such as safety and reliability
requirements of embedded application/products, as
well as on a lower technical level, such as choice of
operating system (OS) and execution models. The
study was performed as a series of interviews with ten
senior designers at four Swedish companies.

Specifically, we address the following questions:
Q1. What characterise the embedded applications?
Q2. What are the designers concern on application
properties such as safety, maintainability, testability,
reliability, portability and reusability?

Q3. How are the applications verified/analysed?
Q4. What are the considerations in choosing an OS,
and execution model?
Q5. What resources are considered as constrained in
the systems, and to what degree?
Q6. What kind of tool support is needed in the
development of future systems?
Q7. What are the designers experiences of software
components, i.e., component based development?

The aim of this work is foremost to explore and

describe the current and future industrial requirements
as perceived by the senior designers.

The paper is organised as follows. In section 2, we
describe the framework used in the study of the
requirements. In section 3, we describe the results of
the conducted interviews. In section 4, we address the
main questions of the study and discuss our
observations of the interviews. In section 5, we
conclude our investigation. The paper ends, in section
6, with a discussion concerning verification of the
presented results.

2. Investigation setup
For this study, we adopted the investigation

framework described by Robson [15]. According to the
framework, both the purpose of a study and the theory
guiding the study should form as guidance when
developing the actual research questions. The
substance and the form of the research questions form
the basis when deciding on suitable investigation
method and sampling strategy.

Purpose: The main objective of this study was to
investigate the typical set of industrial requirements in
development within the embedded control community
in the vehicle domain. The results are expected to form
a foundation for further research on tool support,
design, analysis and synthesis of embedded real-time
systems using multiple execution models.

Theories: Our experience is that there has been
little effort done to encapsulate novel theories by
supporting development tools and techniques in the
industrial domain. Traditionally, the development of
these systems tends to focus on the safety critical parts,
which constitutes a small fraction of the total system
functionality. Homogenous development methods are
often used for both the safety-critical and the non-
critical functionality in the systems. This results in
unnecessary complex designs and over utilised
systems, where valuable resources such as processing
time and memory resources are wasted. We believe
that there is a need for more sophisticated development
support compromising of additional tool support and
more domain and application specific development

platforms, resulting in a more heterogeneous
development environment and resource efficient run-
time structure. The development platform should aim
at handling complexity by relieving the developer of
too low details while preserving predictability for core
functionality as well as flexibility for less critical
functionality in the run-time structure.

Questions: We compromised upon a set of
quantitative and qualitative, closed and open-ended
questions. The main purpose of the quantitative
questions was to facilitate analysis of importance
among application properties.

Data collection: Due to the substance and the form
of the research questions, the study was conducted as
face-to-face interviews using a questionnaire.

A pilot study was performed at an OS and
development tool vendor. The purpose of the pilot
study was to refine the data collection plans and to
evaluate the feasibility of the chosen data collection
method. The structure of the questionnaire was refined
and additional questions were added, as a result of the
pilot study.

Sampling: In this study, we use purposive non-
probability samples, i.e., the samples are selected as to
interest (we do not make generalisation to any
population beyond the samples). Four successful and
renowned companies in the Swedish vehicle domain
were participating in the study. The samples represent
both subcontractors as well as own equipment
manufacturers. Moreover, the selection is a
representative subset of both off-road and road
vehicles. The companies range from small and
medium-sized enterprises to large corporate groups.
The thorough examination of the applications and
development processes require us for secrecy reasons
to refer the companies as A, B, C and D.

Ten software designers with several years of
experience from development of control systems for
embedded real-time systems participated in the study.
For preparation reasons, the questionnaire was mailed
in advance to each interviewee.

Analysis: Upon agreement with the interviewees,
each interview was tape-recorded. The recordings and
notes taken during the interviews were interpreted and
analysed both individually and at group basis. We did
however not use any specific software package to
interpret or analyse the collected data.

Biases: Several factors may introduce unwanted
biases in a real-world study. For example, recording
interviews may affect the respondent, welcoming or
sharing the respondents’ views may affect the
interview, and so on. To avoid or at least minimise
possible biases, we followed recommendations given
in [14][15][17] about how to construct questionnaires

and conduct face-to-face interviews in real-world
situations.

It is our experience that the research questions were
easily understood and similarly interpreted by the
interviewees, and that the recording had no or very
little effect on the respondents and the outcome of the
interviews.

3. Investigation results
In the following section, we describe: (i) Real-time

and functional characteristics of the examined
applications. (ii) The interviewees concern on selected
application properties. (iii) The currently used resource
management policies and available execution models
of the examined applications. (iv) The actual resource
situation in the examined systems i.e., availability of
computing resources such as CPU time and memory.
(v) Some desired support in development tools, as
expressed by the interviewees.

3.1. Application characteristics
The product volumes of the investigated

applications are typically less than 1000 products per
year. The applications are mainly used as control
applications for various types of vehicles. In addition
to control functionality, the applications typically
contain functionality for information handling such as
logging for diagnostic purposes and presentation of
data i.e., visual interaction with the system operators.

The architectures of the examined systems are of
distributed character where several nodes, Electronic
Control Units (ECUs), perform computations and
communicate with each other mainly via CAN buses.
Each ECU is usually dedicated to handle specific type
of functionality e.g., an engine controller is mainly
responsible for controlling engine specific functionality
such as fuel injection, ignition etc. The number of
ECUs in the systems has typically been increasing over
the years. For example, Table 1 shows the amount of
software and the number of control units in evolution
of a single product at one of the investigated
companies.

Table 1. An example of the amount of software
and the number of ECUs in a single vehicle, at
company A.

Year 1991 1997 2002
Lines of code 20,000 55,000 140,000
Files (.c, .h) 50 400 700
ECUs 1 2 3

Current characteristics: The examined applications

are realized by hard and soft real-time tasks. In several
systems, hard real-time tasks are used to model the

majority of all functionality. In extreme cases, as much
as 95% of the functionality is modelled by hard real-
time tasks. In addition, functionality with requirements
that are neither hard nor soft, but somewhere in-
between, is often modelled as hard. In context to this,
the designers stress that development of hard
application tasks is considered as more controllable
and simpler than development of soft application tasks.
In addition, several interviewees consider time-
triggered systems to be the most convenient way to
model hard real-time functionality.

Typical technical requirements in the examined
applications include; jitter requirements and
precedence relations among tasks. The timing
constraints, e.g., deadlines on different functionality,
can vary as much as three orders of magnitude in a
single application, typically from milliseconds to
several seconds.

The amount of safety critical functionality varies in
the investigated applications. In all of the examined
applications, the control functionality is considered as
being most safety critical and developed mainly using
the time-triggered paradigm.

Several interviewees consider their systems being
I/O intensive. In some systems, as much as 30% of the
available processing time and hundreds of I/O pins is
used to handle I/O functionality. The I/O functionality
is realised by both time and event-triggered execution
models. However, it is most commonly realised using
the time-triggered model, i.e., through polling.

The information intensity in the investigated
applications varies. In some applications, the
information originates from logging and diagnostics of
the systems operational conditions, whereas other
applications receive and process external information
that is presented to the users during operation.

Future characteristics: The interviewees believe
that the information intensity and number of control
functionality will increase in the future. They state that
in the future both legislation and insurance reasons will
force development of more sophisticated control
algorithms and require an increasing amount of
information to be saved for diagnostic reasons. In
addition, designers from one company predicts that
legislations, especially non-pollution laws, and future
trends in development of vehicle engines will require
better control precision. This will result in an increased
transformation from open to closed loop controlling.
Furthermore, some interviewees predict that
functionality interacting with the environment will be
developed using fewer sensors in the future and that
certain conditions/states of the environment will be
derived using the remaining set of sensors.
Classification of functionality in Safety Integrity

Levels (SIL) [7] is also believed to be an important
activity in the future.

3.2. Functional application properties

In this section, we present the interviewees concern
on the following application properties: safety,
maintainability, testability, reliability, portability and
reusability.

Safety: Safety is considered as a derived property
originating foremost from analysis and testing. In some
of the examined systems, redundancy and certain
safety properties are solved outside the actual software
implementation, by physical cabling etc. The software
in these systems can be overridden by mechanics in
case the software malfunctions and a safety critical
situation occurs.

Maintainability: Some interviewees state that the
developers consider and try to facilitate future
maintainability of applications. Some interviewees also
state that they have very strong requirements
(economical and quality) on applications being error
free since withdrawing an erroneous application would
be very costly due to the product volumes. There
seems to be an agreement on that maintainability will
have to be considered as a more important property in
the future, specifically in the context of upgradeability.
The lifespan of the examined systems can be several
decades and customers put demand on new features
and require hardware replacement parts to be available
during the entire lifespan of a system. This requires
applications to be well structured and easy to
understand for future developers (maintainers).

Testability: Testability is stated as an important and
necessary property to achieve reliability and safety.
Today testing is the main technique to verify functional
requirements.

Reliability: Several interviewees state that a
company’s reputation is very much dependent on the
reliability of the delivered systems; i.e., it is considered
as being of utmost importance to develop systems that
actually are, and perceived by customers as, reliable.
Failure in producing reliable systems is often stated to
origin from erroneous requirement specifications, i.e.,
not from the implementation itself.

Portability: Some interviewees do not consider
portability during development, simply because they
seldom change hardware or OSs. Other respondents
claim that portability is an increasing concern and that
it is mainly facilitated by separation of hardware and
software dependent functionality.

Reusability: Reusability of both soft- and hardware
is an ongoing activity in all of the examined systems.
However, the amount of reusable software varies in the
examined systems. Some interviewees’ state that

reusability of architectures is not achieved until they
have undergone several modifications, hence it may
takes years before certain parts of architectures are
actually reusable. To facilitate reusability among
different systems, some of the companies have
developed common software platforms. The platforms
contain all common functionality and have
standardised interfaces. General software components
are also mentioned as reusable entities. The
components are general in the sense that they are, to a
large degree, application independent.

Additional properties: When asked for additional
properties that are considered as important for their
applications, the interviewees mentioned robustness,
scalability and usability. Robustness is defined by the
respondents as ‘the absence of unexpected behaviour’
or as ‘an additional degree of reliability’. Scalability is
considered in the context of development as the ability
to scale systems using the available development tools.
Usability of architectures is mentioned as a process
related issue. In that context, the usability of
architectures is said to be dependent on whether it
facilitates understanding and communication between
developers. All of the respondents stress the
importance of architectural descriptions as means of
communication between people i.e., not only as logical
or structural system description.

3.3. Temporal application properties

This section describes the interviewees view on the
temporal analysability of the applications and
verification of functional/temporal behaviour. It also
addresses the verification of resource utilisation in the
examined applications.

Analysability and verification: Analysis of real-
time properties such as response-times, jitter, and
precedence relations, are commonly performed in
development of the examined applications. In this
context, some interviewees stress the desire of better
analysis support in development tools and state that
analysing a whole system with respect to temporal and
spatial attributes is very difficult, sometimes even
intractable. Due to the difficulties in analysing a
complete system, and for upgradeability reasons, some
of the examined systems are intentionally over-
dimensioned with respect to processing power and
memory resources.

The emphasis on verification is foremost on the
functional behaviour. Our experience is that the
temporal attributes are not serving as direct guiding
factors (albeit they are more or less considered) during
development.

Functional behaviour: All of the respondents had a
unanimous opinion that analysis and verification of the

functional behaviour was the most important activity in
the verification and analysis processes (more important
than analysis and verification of temporal behaviour).
The functional behaviour is mainly verified by manual
and automatic module and systems tests. Failure mode
and effect analysis (FMEA) are commonly performed
both during development and on complete systems.
Several interviewees state that source code inspection
is performed among the developers and that it serves as
analysis/verification of functional behaviour.

Temporal behaviour: The verification of temporal
behaviour was said to have lower importance than of
functional behaviour. The temporal verification of the
examined systems commonly involves verification of
precedence relations among functions and verifying
that deadlines are met i.e., that estimated worst-case
execution times holds and that calculated worst case
response-times are met.

Verification of resource utilisation: Many of the
examined systems have been evolving for several
years. The amount of resources, e.g., the number of
control units, has been increasing over the years.
Currently, all of the examined systems have more than
enough processing time and available memory to
perform the intended computations. Hence, verification
of resource utilisation, such as memory consumption,
is considered of lower importance. However, some
interviewees desire possibilities to analyse memory
consumption, mainly to be used when the available
resources are running low, i.e., before additional
resources (ECUs) have to be added to the system.

3.4. Operating systems
In this section, we describe the issues involved in

choosing operating system and the execution models
used in the examined applications. We describe the
main motivations to why these operating systems were
chosen and the interviewees expressed experience of
the used execution models.

When investigating the type of technical
considerations that has bearing on the choice of OS for
the embedded applications, we discovered several non-
technical considerations that are strong motivators to
the choice of a specific OS, e.g., requirements on
coordination to use a common OS at different
departments of a company. These requirements do not
directly reflect the technical need in development. The
technical requirements are commonly considered later
on. However, the requirements on simplicity, i.e., ease
of use, is a motivator both when choosing OS and
among available execution models

The commercial operating systems that are used, or
have been used, in the embedded applications by the
investigated companies are Rubus [1], VxWorks [16],

OSE [4], O’Tool [1], RTX [2] and WinCE [9]. In
addition, one of the investigated companies develops
their own operating systems, used in a majority of their
applications. The main motivation for this is that their
own operating systems are claimed to be simpler, more
robust and have less run-time footprint (timing and
memory overhead) than the commercial OSes.

The interviewees’ state that the main considerations
when choosing a commercial operating system include:

 Cost (royalties, licenses).
 Availability of supported development tools
related to the OS .

 The supported execution models in the OS, i.e., its
suitability for the application domain.

 Coordination within a corporate group or
subsidiaries to use a common OS.

 The availability of fast and skilful technical
support.

 Recommendations originating from other
companies evaluating the OS.

 The popularity of the OS, i.e., to what extent is
the OS used by other companies.

 The OSs internal timing and memory overhead.
 Safety classification issues.

3.5. Execution models
Both time- and event-triggered execution models

are used in all of the examined applications. The time-
triggered model is commonly used for control
functionality whereas the even-triggered model is used
mainly for information handling for diagnostic reasons.
The interviewees state that the choice of execution
model in development is mainly dependent on: (i)
Verification possibilities, both functional and temporal.
(ii) Flexibility of adding new functionality. (iii)
Required response-time on functionality. (iv)
Simplicity of use in development.

3.6. Resource limitations
This section describes the current resource situation

in the examined systems, as expressed by the
interviewees. We investigated whether and to what
degree, the amount of processing time, RAM, ROM
and communication bandwidth, were considered
constrained in the systems.

As described in section 3.3, many of the examined
systems are intentionally over-dimensioned; hence, the
interviewees did not consider any of the resources as
being particularly constrained during software
development. However, in case the systems would run
out of resources, the interviewees’ state that they
would most probably consider installing additional
hardware resources rather than redesigning the way the
applications utilises the resources. This is however,

said to be dependent on the urgency of system
delivery. In extreme cases, functionality has been
removed from the examined systems, when the
available resources have been fully utilised.

3.7. Desired tool support
In this section, we present the interviewees

expressed desire concerning support in development
tools and their experiences of software components,
i.e., component-based development [3].

The expressed wishes, concerning support in
development tools, amplify the requirements on
verification, safety and reliability aspects. The concise
picture seems to be requirements on simulation and
verification possibilities of applications on PCs.
Moreover, an integrated possibility for model-based
development with Matlab and Simulink together with
automated code generation is another common desire
expressed by the interviewees.

The following is a list of desired tool support, as
expressed by the interviewees. The desired support
addresses both technical and process related issues.
The interviewees would like to see:

 Simulation of the embedded applications on PCs.
 Replacing of text based user interfaces with
graphical user interfaces.

 Support for model based development with
possibilities to exchange information between
tools from different vendors.

 Abstractions of graphical models i.e.,
visualisation of architectures at different levels
and from different views.

 Automatic code generation e.g., from models to
source code.

 Support for formal verification of source code.
 Support for execution time analysis.
 Possibilities to identify or trace the requirement
specifications from the source code, and vice
versa.
The current support in development tools varies at

the companies. For example, one company has
extensive support for simulation of embedded
applications on a PC, whereas others do not have
simulation possibilities at all. However, none of the
examined companies has all of the listed support in
their development tools.

3.8. Software components
Only one of the examined companies explicitly

state that they use software components in the
development of their applications. The company uses
both in-house as well as third party developed
components. The reasons to why the other investigated

companies do not use software components are related
to facts such as difficulties in understanding the
concept of component-based development.
Furthermore, issues such as modifiability of
functionality are stated as a restricting factor for use of
software components.

However, all of the interviewees’ state that the
abstraction possibilities that components provide, is
one of the main motivators of component based
development, simply because it facilitates
understanding and communication between developers.

4. Discussion - our observations
In this section, we address the main questions of the

study and present our own observations and
conclusions of the interviews.

Q1. What characterise the embedded applications?

The fact that more and more mechanical solutions

are replaced with software, results in an increasing
complexity both in size and in diversity. The
applications are evolving and contain more
heterogeneous functionality that before. In the future,
this requires abilities to cope with (i) increasing data
handling and (ii) increasing complexity in control
functionality. It is common that applications contain a
mix of hard and soft real-time tasks. We observed that
a surprisingly small fraction (e.g., ~25% at company
A) of the requirements reflects need of hard real-time
tasks. Still, the use of hard real-time tasks is very high
(~75% at company A). We believe that the high
utilisation of hard tasks is mainly related to three
reasons:

(i) simplicity in development
(ii) for verifications/reproducibility reasons
(iii) tradition in development.

The simplicity in development originates from years of
evolving support in development tools that to large
extents is intended for development of safety critical
real-time systems. There is also a tradition in using
hard real-time tasks for the majority of functionality,
simply because developers tend to rely on designs from
previous projects, instead of scrutinizing and
considering the designs appropriateness for the
diverging type of functionality found in today’s and in
future applications.

Hence, the predicted increase in information
intensity and diversity of functionality, require use of
more suitable development models, i.e., models for
diverging strategies that can handle both safety critical
functionality as well as more flexible and resource
efficient functionality in the same system.

Q2. What are the designers concern on application
properties such as safety, maintainability, testability,
reliability, portability and reusability?

The future classification of functionality in Safety

Integrity Levels (SIL) implies that reliability, safety,
analysability and testability will continue to be very
important application properties in the future.
Moreover, we believe that facilitating maintainability
of the applications will be a more important activity to
consider due to the increasing complexity, long
product life cycles and demand on upgradeability of
the applications. However, moving into the area of
more maintainable systems, through, e.g., raising the
level of abstraction and introducing reusable
frameworks, introduces challenges since it must be
done without compromising the systems safety or
reliability.

Q3. How are the applications verified/analysed?

Functional behaviour is typically verified through

testing on the target platform, whereas properties such
as temporal behaviour are mainly verified with support
of software analysis tools. Worst-case execution times
are commonly estimated during development, and later
on, verified through measurements on the target
platform.

The interviewees desire tools for verification of
both functional and temporal behaviour of embedded
applications on PCs. We believe that for the large
fraction of future functionality, predictable and flexible
execution models, where combinations of different
analysis techniques that focus more on average case
behaviour and quality of service rather than on worst-
case behaviour, will be significant.

Q4. What are the considerations in choosing an OS,

and execution model?

Politics and non-technical aspects are strong

motivators in choosing OS. It is obvious that such
issues could motivate the use of an OS that is more or
less suitable to fulfil the technical issues in an
application domain or specific needs within a corporate
group. We believe that the increasing complexity in the
examined application domain require more focus on
technical issues, such as availability of novel tool
support related to the OS and possibility to utilise more
suitable execution models in the OS. For example, with
increasing demand on safety classification such as SIL,
the OS must be able to support the trade off between
technical aspects such as verifiability and efficiency.
For example, the small core of safety critical
functionality should be allowed to use more resources

if it must fulfil the SIL classification and be verifiable
(testable and analysable), whereas the rest of the
functionality (non-safety-critical) should utilise more
resource efficient run-time mechanism to implement
the functionality.

Q5. What resources are constrained in the systems,

and to what degree?

Our investigation revealed that the computational

resources are not considered as constrained during
software development. We believe there are two
possible reasons for this.

(i) The investigated companies are already using
resource efficient development methods
(legacy methods), originating from times when
all functionality was homogenously
implemented.

(ii) The systems are over-dimensioned at the same
time as the developers put most effort in
implementing complex functionality without
having tool support to analyse resource
consumption, e.g., memory usage.

The increasing number of ECUs reveal that the
computational resources are highly utilised from time
to time, i.e., before addition of hardware. With an
increase in diverging functionality, the current situation
where a static schedule is used for the majority of all
functionality, will either be intractable or overly
resource demanding (ending up in new ECUs being
added) in the future. Instead, the future development
tools need to support an efficient and verifiable way to
allocate resources, so that the developers either can:

(i) Continue their efficient way of developing
with efficient tool support adapted to the
diverging functionality in the application
domain, or

(ii) Have novel tool support that allows them to
begin developing systems using efficient and
resource saving models.

Some interviewees experience that the quality of
software increases when developers do not have to
worry about resource consumption. Hence, future
support for resource efficient development needs to be
automated to as large extents as possible.

Q6. What kind of tool support is needed in the

development of future systems?

The view on future requirements is that safety

critical functionality needs to be certifiable and the
emphasis on less critical functionality will be on more
efficient resource usage (e.g., average resource
utilisation rather than worst case utilisation). This

requires system integration tools with possibilities to
take domain specific models that support efficient
automatic code generation, reproducibility for the
safety critical functionality and efficient resource usage
for the rest. In addition, to cope with the increasing
complexity developers need tools that lift the level of
abstraction, i.e., tools that provide both different levels
of abstraction as well as different views (e.g., temporal
and functional) at each level of abstraction. It is
imperative that the tools relieve some burden of
developers (our study show that simplicity is a strong
motivator in development) for example by letting
synthesis tools provide details (such as assigning
temporal attributes, priorities etc.) so that requirements
are met.

Q7. What are the designers experiences of software

components, i.e., component based development

There is an ongoing activity at one of the

investigated companies concerning reusability of
general type (application independent) software
components. We believe that general components
facilitate development and may increase the software
quality since they are often adapted in several
applications and being subject to extensive testing.
However, to be resource efficient, or predictable for
safety critical parts, these type of components need to
be efficiently, and/or predictably, synthesised, i.e.,
become application specific in the run time system.
Hence, the components should be general and
execution model independent during development, and
then mapped to an application specific run-time
structure.

5. Conclusions
In this paper, we presented some requirements in

development of industrial embedded systems in the
vehicle domain. The requirements were collected by a
number of interviews with ten senior designers at four
companies in Sweden.

Many of the investigated applications are
developed using methods that are adequate for the
(relatively small) parts that are safety critical. Less
critical parts are adapted to fit into the framework of
the critical parts. With the increasing size and
complexity of software, this homogenous way of
developing applications will, we believe, be
inadequate. In the future software development
strategies, methods and tools must be able to capture
the different diverse requirements of the applications
and trends in the application domains. Ranging from a
small core part of the application that is safety critical
to a larger part of the system focused on, for example,

quality of service and average case behaviour. The
characteristics of the examined systems and the
predicted increase in information intensity and higher
precision on control functionality, would allow for
more suitable execution models, i.e., resource saving
and quality enhancing, to be introduced (one company
even expressed their interest in execution models
addressing variable quality of service levels).

A wide spectrum of different kind of tool support is
desired in development of the applications. For
example, tools for model-based development with
simulation possibilities and automatic code generation
are considered as highly desirable. Furthermore, the
use of software components and CBSE in general,
provides possibilities for architectural descriptions at a
high level. The importance of architectural descriptions
as means of communication between developers, i.e.,
not only as logical or structural system descriptions,
implies that a strong motivator to use software
components is their ability to serve as descriptive
entities, i.e., not only as reusable entities.

6. Verification of the investigation results
According to Robson [15] there are no standardised

means of assuring complete reliability in a study that
use flexible design strategy. We did however follow
recommendations in [15] to minimise threats to the
reliability of the conducted study by:

 Studying and minimising possible sources of
biases.

 Describing the application characteristics,
properties etc. (section 3) based on information
from notes and tape recordings taken during the
interviews.

 Interpreting the respondents answers at a group
basis when necessary.

 Verifying the observations (section 4 and 5), with
the help of a senior designer with expertise in
vehicular real-time systems.

 Verifying our observations (section 4) with
representatives from two of the participating
companies.

References
[1] Arcticus Systems. Home page. http://www.arcticus.se

[2] Ardence, Home page, http://www.vci.com

[3] I. Crnkovic, M. Larsson, Building Reliable Component-

Based Software Systems, Artech House, 2002, ISBN 1-
58053-327-2

[4] Enea Embedded Technology, Home page,
http://www.ose.com

[5] B. Graaf, M. Lormans, H. Toetenel, “Embedded
Software Engineering: The State of the Practice”, IEEE
Software, Volume 20, Issue 6, 2003

[6] B. Graaf, M. Lormans, H. Toetenel, “Software
Technologies for Embedded Systems: An Industry
Inventory”, 4th International Conference on Product
Focused Software Process Improvement, Rovaniemi,
Finland, 2002

[7] International Electrotechnical Commission (IEC),
“Functional Safety and IEC 61508”, May 2000, Geneva,
Switzerland

[8] P. Koopman, “Embedded System Design Issues (the
Rest of the Story)”, Proceedings of the International
Conference on Computer Design (ICCD), Austin,
October, 1996

[9] Microsoft, Win CE.NET Home page,
http://msdn.microsoft.com/embedded/prevver/ce.net/

[10] A. Möller, J. Fröberg, M. Nolin, “Industrial
Requirements on Component Technologies for
Embedded Systems”, International Symposium on
Component-based Software Engineering (CBSE7),
Edinburgh, Scotland, May, 2004

[11] A. Möller, M. Åkerholm, J. Fröberg, M. Nolin,
“Industrial Grading of Quality Requirements for
Automotive Software Component Technologies”,
Embedded Real-Time Systems Implementation
Workshop in conjunction with the 26th IEEE

International Real-Time Systems Symposium, Miami,
USA, December, 2005

[12] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-
Turja, N-E,. Bånkestad, ”Experiences from Introducing
State-of-the-art Real-Time Techniques in the
Automotive Industry”, Eight Annual IEEE International
Conference and Workshop on the Engineering of
Computer-Based Systems, Washington, US, April, 2001

[13] P.G. Paulin, C. Liem, M. Cornero, F. Nacabal, G.
Goossens, “Embedded Software in Real-Time Signal
Processing Systems: Application and Architecture
Trends”, Proceedings of the IEEE, Volume 85, Issue 3,
1997

[14] M G.E. Peterson, “User satisfaction surveys, what the
engineer should know”, Proceedings of the Ninth IEEE
Symposium on Computer-Based Medical Systems, June
1996

[15] C. Robson, Real World Research, 2nd edition, Blackwell
Publishing, 2002, ISBN 0-631-21305-8

[16] Wind River, Home page, http://www.windriver.com

[17] R. Yin, Case Study Research, 3rd edition, Sage
Publications, 2003, ISBN 0-7619-2553-8

[18] M. Åkerholm, J. Fredriksson, K. Sandström, I.
Crnkovic, “Quality Attribute Support in a Component
Technology for Vehicular Software”, Fourth Conference
on Software Engineering Research and Practice in
Sweden, Linköping, Sweden, October, 2004

