
Component Configuration Management for Frameworks

Ivica Crnkovic1, Magnus Larsson2, Kung-Kiu Lau3*

1Mälardalen University, Department of Computer Engineering, 721 23 Västerås, Sweden,
Ivica.Crnkovic@mdh.se

2ABB Automation Products AB, LAB, 721 59 Västerås, Sweden, Magnus.Larsson@mdh.se
3University of Manchester, Department of Computer Science, Manchester M13 9PL, United Kingdom,

kung-kiu@cs.man.ac.uk

Abstract: Object-oriented Design frameworks are increasingly recognized as better components than
objects. In this paper, we briefly explain the framework concept, show a COM implementation, and
discuss the accompanying configuration management issues.

Keywords: Components, configuration management, frameworks, COM, objects, CBD, CBSE

1 Introduction

Object-oriented Design (OOD) frameworks are increasingly recognized as better components in software
development than objects (see e.g. [4] and [7]). The reason for this is that in practical systems, objects
tend to have more than one role in more than one context, and OOD frameworks can capture this,
whereas existing OOD methods (e.g. Fusion [1] and Syntropy [2]) cannot. The latter use classes or
objects as the basic unit of design or reuse, and are based on the traditional view of an object, as shown in
Figure 1, which regards an object as a closed entity with one fixed role.

Figure 1. Objects with one fixed role.

On the other hand, frameworks allow objects that play different roles in different frameworks to be
composed by composing frameworks. In Catalysis [3], for instance, this is depicted in Figure 2.

Figure 2. Objects with multiple roles in different frameworks.

In this paper we discuss a possible COM implementation of framework and the accompanying
configuration management (CM) issues.

* This work was carried out while the third author was a visiting professor at Mälardalen University. He
wishes to thank Professors Hans Hansson, Bjorn Lisper and Ivica Crnkovic for their invitation and their
hospitality.

Encapsulated
internal structureVisible

functions

role A
role B

role A role B

Framework 2Framework 1 Framework 1 +2

2 Frameworks: An Example

The following example illustrates the framework concept. Consider the framework for employees as
depicted in Figure 3, in which a person plays the role of an employee of a company.

Figure 3. PersonAsEmployee and PersonAsConsumer framework.

A person as an employee has an attribute pocket representing the amount of money he possesses, and two
actions receive_pay and work. Now consider another view of a person, e.g., a person plays the role of a
consumer, as shown in the PersonAsConsumer framework in Figure 3. In this role a person also has the
attribute pocket, but he has the action buy (instead of the actions receive_pay and work). We may
compose the frameworks for PersonAsEmployee and PersonAsConsumer, to obtain a person with both
roles together. A person now has all the actions of both roles, namely receive_pay, work and buy, and the
attribute pocket in both roles. The composition is illustrated by Figure 4.

Figure 4. PersonAsEmployeeConsumer framework.

3 A COM Implementation of Frameworks

We illustrate the frameworks in Figure 3 and Figure 4 with an implementation example using COM [8].
COM suits multiple roles because it can use multiple interfaces for each role. We will use the aggregation
mechanism in COM to compose frameworks. First, we implement the Person object, which corresponds
to the encapsulated internal structure in Figure 1. The Person object is constructed so it supports
aggregation of role objects and it has one IPerson interface (see Figure 5).

Figure 5. A COM object for the person object and the consumer role.

Second, the consumer and employee roles are implemented so they support being aggregated into a
person object. Figure 5 shows the consumer role with one IConsumer interface. The consumer object
needs also a reference to the person object to be able to work on the pocket variable. The person reference
is set up when the consumer is aggregated into the person object (see Figure 6). In a similar way the
employee role is implemented. Using aggregation we can reuse the different components that we have
created. Figure 6 shows how Person aggregates the two already defined COM objects. Frameworks are
created at run-time by adding roles to an object.

PersonAsEmployeeConsumer

Person

pocket: Money

receive_pay(amt: Money)
work(…)
buy(price: Money)

Company worksfor Shopbuysfrom

ConsumerIConsumer IPerson

IUnknown

PersonIPerson

IUnknown

PersonAsEmployee

Person

pocket: Money

receive_pay(amt: Money)
work(…)

Company worksfor

PersonAsConsumer

Person

pocket: Money

buy(price: Money)

Shop
buysfrom

Figure 6. The Consumer and Employee roles are aggregated into the Person object.

The COM implementation of the framework concept has some limitations. The COM model defines
frameworks as aggregates of the completed objects created at run-time, while a general framework model
allows us to use incomplete objects (at run-time) or classes (at build-time).

4 Configuration Management Issues

Using frameworks instead of pure objects gives several advantages, but it also introduces an additional
level of complexity when building them. Frameworks are composite types of entities – they have an
internal structure which is built from objects, or from parts of them. A framework entity also has
relations to other frameworks, and can be composed from other (sub)frameworks. The definition and
creation of such a composite entity introduces configuration problems. Some of them will be illustrated
here for a COM implementation.

Let us consider the following examples:

– Sharing objects in several frameworks;
– Composing frameworks from objects and frameworks.

4.1 Sharing objects in several frameworks

Suppose framework F1 includes objects O1 and O2 with a relation R12 between them, and framework F2

contains objects O1 and O3 with a relation R13. The object O1 is shared by two frameworks:

F1 = {O1 O2 ; R12}, F2 = {O1 O3 ; R13} (1)

Suppose we now add a new property to the object O1, a property that is required in (an improved version
of) framework F2. This creates a new version of the object O1;v2, (v2 denotes the new version) which is
included into the framework F2:

F2 = {O1;v2 O3 ;R13 } (2)

However, if we do not take versioning into consideration, then the framework specifications will remain
the same. In this case, we can be aware of the change of the object O1 in the context of framework F2, but
not necessary in that of F1. Our specification of F1 is defined by (1), but in reality we have

F1 = {O1;v2 O2 ;R12 } (3)

If the role of the object O1;v2 used in F1 is changed, then the behaviour of F1 will be changed
unpredictably, and a system using F1 can fail.

To avoid these unpredictable situations we can introduce basic configuration management methods – a
version management of objects and configuration of frameworks [9]:

PersonIPerson

Consumer
IConsumer

Employee
IEmployee

IUnknown

IPerson

IPerson

IUnknown

IUnknown

– An object is identified by its name and version.
– A framework is identified by a name and a version. A new framework version is derived from

object versions included in the framework.

These rules imply that new versions of frameworks will be configured when a new object version is
created, as shown in our example:

F1;vi={O1;vm O2;vn ; R12 }, F2;vk={O1;vm O3;vk ; R13 } (4)

F1;vi+1={O1;vm+1 O2;vn ; R12 }, F2;vk+1={O1;vm+1 O3;vk ; R13 } (5)

As several frameworks can share one object, and a framework can contain several objects, the number of
generated frameworks can grow explosively. It is, however, possible to limit the number of interesting
configurations. Typically, in a development process, we would implement the changes on all the objects
we want, collect the versions of objects we want in a baseline and derive the frameworks from the
baselined object versions. In such a case, experience for similar cases [10] shows that the number of
derived entities does not necessarily grow rapidly.

A shared object is not necessarily completely shared, but different parts of the object, defined by the
object’s roles, are used in the frameworks. In the COM implementation a complete object will be
included, but a part of it will be used. In a general framework model, a class (or an object at run-time)
includes only those parts which are specified in the object’s role.

When we define a new role for an object in a framework or re-define the existing one, we need to change
a specific part of the object class. We call this specific part an object aspect. The change of an object
aspect will affect only those frameworks where the aspect is included. Other frameworks, though
containing the object (or part of it), are not affected by the change. In this case, it is better to keep version
control on the aspect level, and relate a framework configuration to the object aspects.

If we declare an aspect as a subset of an object Ai (Ok) ⊆ Ok, then an object version is defined as a set of
aspect versions:

Oi;vk = { Aj;vl } (6)

and a framework version is defined as a set of aspect versions with relations between the aspects:

Fvk = { {A j;vl (Oi;vk)} ; Rjl } (7)

Having control over changes on the aspect level, we can gain control over the changes on the framework
level. Now we can more precisely identify the frameworks being affected by changes in object roles.

4.2 Composing frameworks from objects and frameworks

In the framework model it is possible to compose new frameworks from existing frameworks. A new
framework is a superset of the classes and relations from the frameworks involved. If a new framework is
created at run-time, as in a COM implementation, then the objects from the selected frameworks comprise
the new framework.

The following example illustrates the merging process of two frameworks F1 and F2 into F3:

F1 = {O1 O2 ; R12 }, F2 = {O1 O3 ; R13 }, F3 = {O1 O2 O3 ;R12 , R13, R23} (8)

The composition works fine as long as we do not need to consider the changes of objects within one
framework.

Suppose we create a new object version (or a new object aspect version) in F2 and keep the old version of
the same object in F1:

F1;vi = {O1;v1 O2;vk ; R12 }, F2;vj = {O1;v1+1 O3;vl ; R13 } (9)

In the merging process we have to recognise if different versions of the same objects are included in the
frameworks being merged. If that is the case, we have two possible solutions:

– Selecting one specific version of the object (for example the latest):

 F3;v1 = { O1;v1+1 O2;vk O3 ;v1 ;R12 , R13, R23} (10)

– Selecting both versions and enable their consistence in the new framework:

F3;v1 = { O1;v1 , O1;v1+1 , O2;vk O3 ;v1 ;R12 , R13, R23} (11)

For the second case there must be support for identifying object versions. This support can be provided by
introducing an identification interface [12] as the standard interface of an object. There must also be
support for managing different versions of the same object in the running system.

5 Discussion

The framework approach gives a better possibility to reuse components in composing systems. A
discussion on formal description of frameworks can be found in [5] and [6]. In this paper we have
presented a possible implementation of the framework model using the COM technology. This
implementation shows some limitations. Further investigation on how to improve the implementation
should be carried out.

The second topic discussed in this paper is configuration management for frameworks. The paper
emphasises a need for using CM methods for managing frameworks as composite objects. The CM issues
are complicated and need further investigations: Questions of managing relations, concurrent versions of
frameworks, inclusion of change management [11], etc., must be addressed. Since aspects and objects
are not entities recognised as CM-items by standard CM tools (which recognise entities such as files,
directories, etc.), new, semantic-based rules must be incorporated into the CM tools. For different OO and
component-technologies, different tools have to be made. How different do they need to be, and are there
possibilities to define common rules and implementation? These are questions for future investigation.

6 References

[1] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes: Object-
Oriented Development: The Fusion Method, Prentice-Hall, 1994.

[2] S. Cook and J. Daniels: Designing Object Systems, Prentice-Hall, 1994.

[3] D.F. D'Souza and A.C. Wills: Objects, Components, and Frameworks with UML: The Catalysis
Approach, Addison-Wesley, 1998.

[4] R. Helm, I.M. Holland, and D. Gangopadhay: Contracts - Specifying behavioral compositions in OO
systems, Sigplan Notices 25(10) (Proc. ECOOP/OOPSLA 90).

[5] K.-K. Lau, S. Liu, M. Ornaghi, and A. Wills: Interacting frameworks in Catalysis. In J. Staples, M.
Hinchey and S. Liu, editors, Proc.Second IEEE Int. Conf. on Formal Engineering Methods, pages
110-119, IEEE Computer Society Press, 1998.

[6] K.-K. Lau, M. Ornaghi, and A. Wills: Frameworks in catalysis: Pictorial notation and formal
semantics, In M. Hinchey and S. Liu, editors, Proc. 1st IEEE Int. Conf. on Formal Engineering
Methods, pages 213-220, IEEE Computer Society Press, 1997.

[7] R. Mauth: A better foundation: development frameworks let you build an application with reusable
objects. BYTE 21(9):40IS 10-13, September 1996.

[8] D. Box, Essential COM, Addison-Wesely, 1998

[9] R. Conradi, B. Westfechtel, Version Models for Software Configuration Management, ACM
Computing Surveys, Vol. 30, No.2, June 1998

[10] U. Asklund, L. Bendix, H.B. Cristensen, B. Magnusson - The Unified Extensional
Versioning Model, System Configuration Managemnt SCM-9, Springer, 1999

[11] I. Crnkovic, Experience with Change Oriented SCM Tools, Software Configuration
Management SCM-7, Springer, 1997

[12] M. Larsson, I. Crnkovic, New Challenges for Configuration Management, System
Configuration Management SCM-9, Springer, 1999

