You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Inter-release defect prediction with feature selection using temporal chunk-based learning : An empirical study


Kabir M Alamgir, Jacky Keung , Burak Turhan , Kwabena Ebo Bennin

Publication Type:

Journal article


Applied Soft Computing


Inter-release defect prediction (IRDP) is a practical scenario that employs the datasets of the previous release to build a prediction model and predicts defects for the current release within the same software project. A practical software project experiences several releases where data of each release appears in the form of chunks that arrive in temporal order. The evolving data of each release introduces new concept to the model known as concept drift, which negatively impacts the performance of IRDP models. In this study, we aim to examine and assess the impact of feature selection (FS) on the performance of IRDP models and the robustness of the model to concept drift. We conduct empirical experiments using 36 releases of 10 open-source projects. The Friedman and Nemenyi Post-hoc test results indicate that there were statistical differences between the prediction results with and without FS techniques. IRDP models trained on the data of most recent releases were not always the best models. Furthermore, the prediction models trained with carefully selected features could help reduce concept drifts.


@article{M Alamgir6535,
author = {Kabir M Alamgir and Jacky Keung and Burak Turhan and Kwabena Ebo Bennin},
title = {Inter-release defect prediction with feature selection using temporal chunk-based learning : An empirical study},
volume = {113},
month = {September},
year = {2021},
journal = {Applied Soft Computing},
url = {}