You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A Service-Oriented Digital Twin Framework for Dynamic and Robust Distributed Systems

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

IEEE SSE 2024: IEEE International Conference on Software Services Engineering

Publisher:

IEEE

DOI:

10.1109/SSE62657.2024.00021


Abstract

Digital Twins (DTs) are virtual representations of physical products in many dimensions, such as geometry and behaviour. As a backbone of Industry 4.0, DTs help interpret and even predict the behaviour of physical processes, provide a virtual testbed for maintenance and upgrade, and enable automatic decision-making supported by artificial intelligence. Despite the promising future, challenges exist, such as the absence of a framework that facilitates the development and application of DTs in industrial contexts. We propose a service-oriented architecture (SOA) DT framework for dynamic and robust distributed systems. The framework contains two types of services. One includes the services provided to the users and is supported by an orchestration mechanism to ensure a quality of service (QoS). The other one refers to the common functions of all DTs. Further, we describe the DT-based decision-making enabled by our QoS-oriented learning of the framework and a Hoare-logic-based verification of QoS.

Bibtex

@inproceedings{Gu7110,
author = {Rong Gu and Tiberiu Seceleanu and Ning Xiong and Muhammad Naeem},
title = {A Service-Oriented Digital Twin Framework for Dynamic and Robust Distributed Systems},
pages = {66--73},
booktitle = {IEEE SSE 2024: IEEE International Conference on Software Services Engineering},
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/7110-}
}