

i

Contents
Abstract .. v

Acknowledgements ... vii

List of Included Papers .. ix

List of Other Papers.. xi

Chapter 1 Introduction... 1

1.1 Software Components in Embedded Real-Time Systems................................ 2

1.2 An Evolutionary Approach .. 2

1.3 Research Questions.. 4

1.4 Research Methods.. 6

1.5 Contributions and Organization of the Dissertation .. 10

1.6 References.. 13

Chapter 2 State of the Art and Related Work .. 15

2.1 Software Architecture.. 15
2.1.1 Definitions of Software Architecture ... 15
2.1.2 Architectural Design ... 17
2.1.3 Architectural Analysis and Evaluation .. 21
2.1.4 Architectural Description and Documentation .. 23

2.2 Component-Based Software Engineering... 28
2.2.1 Definitions of Software Components .. 28
2.2.2 Software Component Models and Technologies.................................... 31
2.2.3 Software Component Services ... 38
2.2.4 Component-Based Software Engineering Practices 42

2.3 Embedded Real-Time Systems .. 44
2.3.1 Definitions of Embedded Real-Time Systems.. 45
2.3.2 Industrial Control Systems.. 47
2.3.3 Software Components in Embedded Real-Time Systems 54

2.4 References.. 61

ii Contents

Chapter 3 Specification of Software Components.. 67

3.1 Introduction ... 67

3.2 Current Component Specification Techniques ... 68

3.3 Specifying the Semantics of Components .. 72

3.4 Specifying Extra-Functional Properties of Components 79

3.5 Summary... 81

3.6 Corrections to the Original Version ... 82

3.7 References.. 82

Chapter 4 Adopting a Software Component Model in Real-Time Systems
Development ... 85

4.1 Introduction ... 85

4.2 Motivation.. 86

4.3 Adopting Microsoft Models.. 87
4.3.1 COM Interfaces .. 87
4.3.2 Instantiation and Dynamic Linking.. 89
4.3.3 Location Transparency with DCOM.. 91
4.3.4 The Next Generation: .NET .. 93

4.4 Related Work .. 94

4.5 Conclusion and Future Work .. 94

4.6 References.. 95

Chapter 5 Adopting a Component-Based Software Architecture for an
Industrial Control Systems – A Case Study....................................... 97

5.1 Introduction ... 97
5.1.1 Questions Addressed by the Case Study... 98
5.1.2 Case Study Method .. 99

5.2 Context of the Case Study .. 100

5.3 Componentization ... 105
5.3.1 Reverse Engineering of the Existing Software Architecture................. 105
5.3.2 Component-Based Software Architecture .. 107
5.3.3 Interaction between Components... 109

 Contents iii

5.4 Experiences .. 113

5.5 Related Work .. 116

5.6 Conclusions and Future Work... 117

5.7 References.. 118

Chapter 6 A Prototype Tool for Software Component Services in Embedded
Real-Time Systems... 121

6.1 Introduction ... 121

6.2 Component Services... 123
6.2.1 Logging... 123
6.2.2 Execution Time Measurement.. 124
6.2.3 Synchronization .. 125
6.2.4 Execution Timeout.. 126
6.2.5 Vertical Services... 127

6.3 Prototype Tool... 127
6.3.1 Design Consideration ... 128
6.3.2 Supported Services .. 129
6.3.3 Example Application ... 130

6.4 Related Work .. 136

6.5 Conclusion and Future Work .. 138

6.6 References.. 139

Chapter 7 Use of Software Component Models and Services in Embedded
Real-Time Systems... 143

7.1 Introduction ... 143

7.2 Background ... 145
7.2.1 The Component Object Model (COM).. 145
7.2.2 Software Component Services for Embedded Real-Time Systems..... 147

7.3 Example Application.. 151

7.4 Tests ... 157
7.4.1 Test Setup .. 157
7.4.2 Results.. 158

7.5 Discussion... 161

iv Contents

7.6 Related Work .. 162

7.7 Conclusion and Future Work .. 163

7.8 References.. 164

Chapter 8 Evaluation of a Tool for Supporting Software Component Services
in Embedded Real-Time Systems... 167

8.1 Introduction ... 167

8.2 Background ... 168

8.3 Case Study Design ... 172

8.4 Data Collection.. 174

8.5 Analysis... 176

8.6 Related Work .. 178

8.7 Conclusion and Future Work .. 179

8.8 References.. 180

Chapter 9 Conclusion .. 183

9.1 Summary of Results.. 183

9.2 Research Questions Revisited.. 188

9.3 Future Work .. 193

v

Abstract
Component-based software engineering denotes the practice of building soft-
ware from pre-existing smaller products, in particular when this is done using
standardized software component models. The main expected benefits of this
practice over traditional software engineering approaches are increased pro-
ductivity and timeliness of development projects. While the use of software
component models has become common for desktop and server-side software,
this is not the case in the domain of embedded real-time systems, presumably
due to the special requirements such systems have to meet with respect to
predictable timing and limited use of resources. Much research exists that
aims to define new component models for this domain, typically focusing on
source code components, static system configuration, and relatively narrow
application domains.

This dissertation explores the alternative approach of using components based
on binary code, allowing dynamic configuration, and targeting a broader do-
main. A study of a general purpose component model shows that the model is
compatible with real-time requirements, although putting some restrictions on
its use may be necessary to ensure predictability. A case study demonstrates
how the model has been beneficially used in an industrial control system. The
dissertation furthermore proposes an approach for extending the component
model with run-time services for embedded real-time systems. It presents a
prototype tool for supporting such services, along with two empirical studies
to evaluate the approach and the tool as well as the component model itself.
One study shows that both the component model and the services provided
by the tool result in very modest and predictable run-time overheads. The
other study, evaluating the effects on productivity and quality of using the
approach in a software development project, did not produce quantitative
evidence, but concludes that the approach is promising and identifies possible
adjustments to it and opportunities for further studies.

vii

Acknowledgements
I would like to thank my supervisor Ivica Crnkovic for all his help and sup-
port during my work with this dissertation. The first half of this work was
conducted within the project Standard Technologies in Industrial Applications,
run jointly by Mälardalen University’s Department of Computer Engineering
and ABB Automation Products. It was funded by the company and the Swed-
ish Knowledge Foundation. I was at that time employed part-time by ABB and
I am grateful to Ivica and Erik Gyllenswärd (formerly of ABB) for hiring me
and giving me the opportunity to pursue my research interests. I greatly ap-
preciate the helpful cooperation of former colleagues at ABB in Malmö and
Västerås, and I would particularly like to thank Staffan Andersson for his
valuable input.

The second half of the research was conducted within the Industrial Software
Engineering project at Mälardalen University’s Department of Computer Sci-
ence and Electronics, funded by ABB Sweden and the Swedish Knowledge
Foundation. I am grateful to the many students that have contributed to the
research. A prototype software tool was initially developed by participants of
the course on Software Engineering in 2005 and evaluated by the help of par-
ticipants of the same course in 2006. The tool was developed further and
evaluated by several students as part of their Master thesis projects. I want to
thank everybody at the department for making it such a pleasant and inspir-
ing place to work. Special thanks to my current and former colleagues in the
Industrial Software Engineering group. Thanks also to my assistant supervi-
sors Per Runeson and Björn Lisper for their help and to Per for fruitful collabo-
ration on several papers.

Finally, I wish to thank my family and friends who have been there for me
over these years and ask their forgiveness for the times I have been “too busy”
to be there for them. Most of all, I am grateful beyond words to Elise for her
invaluable help and support and for the brightness she brings to my life.

Frank Lüders
Västerås, November 2006

ix

List of Included Papers
• F. Lüders, K.-K. Lau, and S.-M. Ho, “Specification of Software Compo-

nents.” In I. Crnkovic and M. Larsson (editors), Building Reliable Compo-
nent-Based Software Systems. Artech House Books, 2000.

• F. Lüders, “Adopting a Software Component Model in Real-Time Sys-
tems Development.” In Proceedings of the 28th Annual IEEE/NASA Soft-
ware Engineering Workshop, 2004.

• F. Lüders, I. Crnkovic, and P. Runeson, “Adopting a Component-Based
Software Architecture for an Industrial Control System – A Case Study.”
In C. Atkinson, C. Bunse, H. Gross, and C. Peper (editors), Component-
Based Software Development for Embedded Systems: An Overview of Current
Research Trends. Springer, 2005.

• F. Lüders, D. Flemström, A. Wall, and I. Crnkovic, “A Prototype Tool
for Software Component Services in Embedded Real-Time Systems.” In
Proceedings of the 9th International Symposium on Component-Based Software
Engineering, 2006.

• F. Lüders, S. Ahmad, F. Khizer, and G. Singh-Dhillon, “Use of Software
Component Models and Services in Embedded Real-Time Systems.” In
Proceedings of the 40th Hawaii International Conference on System Sciences,
2007.

• F. Lüders, I. Crnkovic, and P. Runeson, “Evaluation of a Tool for Sup-
porting Software Component Services in Embedded Real-Time Sys-
tems.” In Proceedings of the 6th Conference on Software Engineering Research
and Practice in Sweden, 2006.

xi

List of Other Papers
• I. Crnkovic, M. Larsson, and F. Lüders, “State of the Practice: Compo-

nent-based Software Engineering Course.” In Proceedings of the 3rd Inter-
national Workshop on Component-Based Software Engineering, 2000.

• I. Crnkovic, M. Larsson, and F. Lüders, “The Different Aspects of Com-
ponent Based Software Engineering.” In Proceedings of the Microprocessor
Systems, Process Control and Information Systems Conference, 2000.

• I. Crnkovic, M. Larsson, and F. Lüders, “Software Process Measure-
ments using Software Configuration Management.” In Proceedings of the
11th European Software Control and Metrics Conference, 2000.

• I. Crnkovic, M. Larsson, and F. Lüders, “Implementation of a Software
Engineering Course for Computer Science Students.” In Proceedings of
the 7th Asia-Pacific Software Engineering Conference, 2000.

• F. Lüders and I. Crnkovic, “Experiences with Component-Based Soft-
ware Development in Industrial Control.” In Proceedings of the 1st Swedish
Conference on Software Engineering Research and Practice, 2001.

• F. Lüders, I. Crnkovic, and A. Sjögren, “A Component-Based Software
Architecture for Industrial Control.” In Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture, 2002.

• F. Lüders, I. Crnkovic, and A. Sjögren, “Case Study: Componentization
of an Industrial Control System.” In Proceedings of the 26th Annual Com-
puter Software and Application Conference, 2002.

• F. Lüders, Use of Component-Based Software Architectures in Industrial Con-
trol Systems. Technology Licentiate Thesis, Mälardalen University, 2003.

• F. Lüders, D. Flemström, and A. Wall, “Software Component Services
for Embedded Real-Time Systems.” In Proceedings of the 5th Conference on
Software Engineering Research and Practice in Sweden, 2005.

• F. Lüders, D. Flemström, and A. Wall, “Software Component Services
for Embedded Real-Time Systems.” In Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture, 2005.

1

Chapter 1

Introduction

Component-based software engineering denotes the disciplined practice of build-
ing software from pre-existing smaller products, generally called software com-
ponents, in particular when this is done using standard or de-facto standard
component models [1, 2]. A component model generally defines a concept of
components and rules for their design-time composition and/or run-time in-
teraction, and is usually accompanied by one or more component technolo-
gies, implementing support for composition and/or interoperation. The main
expected benefits of component-based software engineering are increased
productivity and timeliness of software development projects.

The use of software component models has become increasingly popular dur-
ing the last decade, in particular in the development of software for desktop
applications and distributed information systems. Popular component models
include JavaBeans [3] and ActiveX [4] for desktop applications and Enterprise
Java Beans (EJB) [5] and COM+ [6] for distributed information systems. In addi-
tion to basic standards for naming, interfacing, binding, and other concepts
related to composition and interoperation, these models also define standard-
ized sets of run-time services oriented towards the application domains they
target. This concept is termed software component services [2].

The remainder of this chapter first addresses the use of software components
and component models in embedded real-time systems in Section 1.1 and pre-
sents an evolutionary approach to this challenge in Section 1.2. Next, a number
of research questions are formulated in Section 1.3, followed by a discussion of
the research methods used to address these questions in Section 1.4. Finally,
Section 1.5 discusses the research contributions of this dissertation and pre-
sents an outline of the rest of the dissertation, including the published papers
and their individual contributions. Particular care is taken to distinguish my
own contributions to each paper from those of the coauthors.

2 Chapter 1 Introduction

1.1 Software Components in Embedded Real-Time Systems
Unlike for desktop applications and distributed information systems, there has
been no widespread use of software component models in the domain of em-
bedded real-time systems. It is generally assumed that this is due to the special
requirements such systems have to meet, in particular with respect to timing
predictability and limited use of resources such as memory and CPU time.
Much research has therefore been directed towards defining new component
models for real-time and embedded systems, typically focusing on relatively
small and statically configured systems. Most of the published research pro-
poses models based on source code components. Typically, these models tar-
get relatively narrow application domains. Examples of such models include
the Koala component model for consumer electronics [7], PECOS for industrial
field devices [8], and SaveCCM for vehicle control systems [9].

The focus on statically configured systems of source code components is moti-
vated by efficiency as well as by the possibility of ensuring predictable be-
havior through source code analysis and white-box testing. A potential liabil-
ity of using source code components is that application developers rely on
component properties that may be inferred from the source code but are not
guaranteed by component specifications. Thus, a system may break if a com-
ponent is updated with a new version that does not have the same inferred
properties, although the component specifications are compatible. Other pos-
sible problems related to source code components are exposure of intellectual
property and complication of deployment as such components must be com-
piled and linked with the rest of the system. The restriction to static configu-
ration is increasingly at odds with requirements for flexibility, adaptiveness,
etc. The development of component models for relatively narrow application
domains is motivated by the desire to optimize systems for attributes consid-
ered particularly important for those domains. Typically, such narrow models,
as well as supporting tools and run-time infrastructures, have to be developed
by the application developing organizations themselves.

1.2 An Evolutionary Approach
An alternative approach is to strive for a component model for embedded real-
time systems based on binary components and targeting a broader domain of
applications, similarly to the domain targeted by a typical real-time operating
system. Support for such a model could suitably be provided by platform

 1.2 An Evolutionary Approach 3

vendors, as is the norm for component models used for desktop applications
and information systems. Although any model based on binary components is
likely to incur some overhead, efficient use of resources should be a primary
concern in the design of such a model for embedded real-time systems. When
it comes to ensuring predictable behavior, the vision of this approach is that
analysis of systems should be based on specifications (i.e. models) of the in-
cluded components rather than relying on access to source code. Realizing this
vision requires methods for ensuring that components comply with specifica-
tions as well as for predicting the properties of a system based on properties of
its constituent components [10]. Further investigation of such methods is out-
side the scope of this dissertation, however.

The possibility explored in this dissertation is to use a mainstream component
model as the starting point for developing a component model for embedded
real-time system. Benefits of adopting an existing component model include
that it may be possible to use existing development environments, existing
components can be re-used or adapted for the real-time domain, and integra-
tion with application from other domains becomes significantly simpler. As a
concrete example of a component model, Microsoft's Component Object Model
(COM) [11] has been selected. Some reasons that COM is an attractive starting
point are that the model is relatively simple, commercial COM implementa-
tions are already available for a few real-time operating systems, and the
model is well-known and accepted in industry. While COM is increasingly
being replaced by the newer .NET technologies [12] in the desktop and infor-
mation systems domains, .NET is not easily adapted to the domain of embed-
ded real-time systems. In particular, the loss of predictability resulting from
automatic memory management (i.e. garbage collection) is a serious barrier.

The assumption that COM is a suitable starting point for the effort outlined
above was strengthened by positive results from the earlier phases of the work
presented in this dissertation. A study of COM and its extension Distributed
COM (DCOM) [13] has shown that these models are not inherently incompati-
ble with real-time requirements, although some restrictions on how the mod-
els are used may be necessary to ensure predictability, and an industrial case
study has demonstrated that the key concepts of COM can be beneficially used
in the development of an embedded real-time system. The latter study fur-
thermore demonstrates the possibility of adopting COM for parts of a system
without requiring the rest of the system to be changed, thus allowing a grad-
ual adoption of the model.

4 Chapter 1 Introduction

Putting restrictions on the use of the component model to improve predict-
ability is not enough to make it an attractive option for industrial-scale appli-
cations. In addition, there must be efficient support for creating software (i.e.
building new components and applications) and reusing software (i.e. reusing
components across applications). The approach suggested is a combination of
restrictions and extensions of the existing component model to adopt it to the
target domain. The goal is to lay the groundwork for a software component
model for embedded real-time systems, using the basic concepts of COM as
the starting point and extending this basic model with standardized services of
general use for this application domain, much like COM+ extends COM with
services for distributed information systems. This is termed an evolutionary
approach, partly because it is based on adaptation of an existing model and
partly because it is intended to support a gradual evolution of existing mono-
lithic systems into component-based systems. In contrast, approaches pro-
posing new domain-specific component models may be termed revolutionary.
Furthermore, such models often require all the software in a system to be in
the form of compliant components, thereby hindering an evolutionary adop-
tion of the model in existing systems.

1.3 Research Questions
The overall question addressed by this dissertation is whether a software
component model can be beneficially used in the development of software for
embedded real-time systems; more specifically, whether a model based on bi-
nary components can be beneficially used and whether an extension of such a
model with support for run-time services of general use for the application
domain can bring additional benefits. By “beneficially” is meant that using the
model results in savings in software development effort while not having un-
acceptable effects on important quality attributes of the developed software.
The most obvious of these quality attributes is the software’s ability to exhibit
the predictable timing and use of resources required for embedded real-time
systems.

This overall question can be decomposed into more detailed questions. The
first to be addressed in this dissertation is formulated as follows:

Research Question 1
What are the advantages and liabilities of using a software component model based on
binary components in the development of embedded real-time systems?

 1.3 Research Questions 5

More specifically, the use of COM and DCOM is investigated in Chapter 4 of
this dissertation. In addition to the question of whether it is possible to use
these models for systems with real-time requirements at all, the question of
how they should be used to ensure real-time predictability is addressed. This
leads to the following two sub-questions:

Research Question 1-1
Is it possible to use COM/DCOM in the development of software for systems with
real-time constraints?

Research Question 1-2
What restrictions (if any) should be placed on the use of COM/DCOM in software for
systems with real-time constraints to ensure predictability?

The next question addresses the use of COM in a concrete system where a part
of the system’s software architecture is redesigned to allow functionality to be
implemented in independently developed components:

Research Question 2
What are the effects of adopting a component-based software architecture for an em-
bedded real-time system?

This question has been addressed by an industrial case study, described in
Chapter 5. Based on the challenges of the studied project, the following two
sub-questions were formulated:

Research Question 2-1
What are the effects on the effort required to make extension to the system?

Research Question 2-2
What are the effects on the real-time predictability of the system?

Since the aim of the project was to make it easier to make extensions to the sys-
tem and adopting the new software architecture required a development effort
in itself, it is interesting to compare this effort to the reduction in efforts re-
quired for extensions to determine if, and after how many extensions, the ef-
fort invested in adopting the new architecture is regained.

Another question is related to the extension of a basic component model with
automatically generated support for run-time services of general use for em-
bedded real-time systems:

6 Chapter 1 Introduction

Research Question 3
What are the effects of using automatically generated support for software component
services in the development of an embedded real-time system?

This question is addressed by two empirical studies using a prototype tool for
proxy-based software component services, introduced in Chapter 6. The first
of these studies, described in Chapter 7, addresses the following sub-question:

Research Question 3-1
What are the effects on the software’s size, resource usage, and predictability?

The second study, described in Chapter 8 of this dissertation, addresses the
following two sub-questions:

Research Question 3-2
What are the effects on the quality of the produced software?

Research Question 3-3
What are the effects on the software development effort?

1.4 Research Methods
This dissertation, like most software engineering research, belongs to the do-
main of empirical research. As such, it differs from much computer science re-
search, which is mathematical or logical in nature and strive to present formal
proofs. In their treatment of software metrics, Fenton and Pfleeger [14] discuss
empirical investigation in software engineering. Although they focus on in-
vestigations in software developing organizations as a tool for making scien-
tific and objective assessments or decisions, the applicability to research is also
stated. Formal experiments, case studies, and surveys are identified as three dif-
ferent ways of conducting empirical investigations.

Formal experiments are used to investigate causal relationships in controlled
settings. An example might be the effect of two different programming lan-
guages on productivity. An experiment would vary the language and measure
the productivity in the development of two equivalent pieces of software. It
would furthermore be necessary to control that other parameters, such as pro-
grammer skill and motivation, that may affect the productivity is kept con-
stant. In addition, formal experiments are, by definition, replicable. Due to
these requirements on control and replicability, experimentation is most suita-

 1.4 Research Methods 7

bly performed with fairly limited activities. In fact, most formal experiments
reported in the software engineering literature have been performed in aca-
demic settings with students as subjects. Thus, the validity of their results to
industrial scale software development is often questioned, although some such
experiments are accompanied by arguments for wider validity [15, 16].

In settings such as industrial projects, where the researcher does not have the
level of control required for formal experiments, case studies or surveys can be
used. A survey is retrospective in nature and samples the results of activities
after they are completed. This is often performed on a large set of information,
for instance obtained from a set of projects from one or more organizations. A
case study is usually not retrospective, and the researcher will decide in ad-
vance what to study and plan how to capture the necessary data. A typical
software engineering case study follows a development project, using direct
observation as an important source of data. The projects selected for such
studies are often those that are believed to be typical for an organization or an
application area. Thus, there is a difference in scale between the different tech-
niques where formal experiments can be viewed as research in the small, case
studies as research in the typical, and surveys as research in the large. Based on
the description by Fenton and Pfleeger [14], Table 1-1 summarizes some of the
aspects in which the three forms of empirical investigation differ.

Table 1-1 Differences between three empirical investigation techniques

Aspect Experiments Case studies Surveys

Level of control High Low Low

Replicable? Yes No No

Retrospective? No Usually not Yes

Scale Small Typical Large

The goal of the research described in this dissertation has been to use empiri-
cal methods to answer the research questions presented in the previous sec-
tion. Research Question 1 has been addressed by studying the specifications of
the component models in question. Although this is not an empirical investi-
gation in itself, the results of the study have been instrumental when planning
the subsequent empirical studies.

8 Chapter 1 Introduction

Research Question 2 has been addressed by a case study conducted in an in-
dustrial setting. This technique is discussed in more detail by Robson [17],
who provide the following definition:

Case study is a strategy for doing research which involves an empirical investi-
gation of a particular contemporary phenomenon within its real life context us-
ing multiple sources of evidence.

Thus, rather than a single method, a case study represents a strategy that can
include several methods, such as observation and interviews. In this particular
study, the investigated phenomenon was the use of a component-based soft-
ware architecture and the context an industrial development project. This is a
typical example in that the phenomenon is not easily separated from the con-
text. The sources of evidence have included direct observation through project
participation, interviews with project members, documentation, and software
artifacts. Clearly, this kind of strategy cannot be expected to lead to a defini-
tive answer to the research question supported by anything like a formal
proof. Instead, an overall analysis of the collected data can be expected to pro-
vide evidence in support of one or more possible answers to the question.

More specifically, the employed strategy can be called a participatory case
study, since I have been an active member of the project under investigation.
This is similar to what Robson calls action research [17]. An advantage of such a
participatory study is that the researcher has opportunities to make observa-
tions that yield information that might be hard to obtain in other ways. There
is also a risk, however, that the researcher may loose the required distance and
objectivity. A possible way to mitigate this risk is to analyze and report the
study in cooperation with other researchers that can contribute with an out-
sider’s view. This approach was taken in the preparation of this dissertation.

Research Question 3 has been addressed by two different empirical studies,
which may also be viewed as case studies. The first of these consisted of im-
plementing an application both with and without using the approaches under
investigation. The study is similar to an experiment in some ways, as the ap-
plication development is repeated while varying some parameter and the only
source of evidence is measurement of static and dynamic aspects of the devel-
oped applications. The study could have been turned into a formal experiment
by implementing a sufficiently high number of different real-time applica-
tions, which could then have been viewed as a sample of all possible applica-
tions within the domain. Since this would have required more effort than was
possible, a case study strategy was adopted by selecting an application be-

 1.4 Research Methods 9

lieved to be typical for the domain. Thus, the study provides a direct answer to
the research question for the particular application and, more importantly,
provides evidence to support a hypothesis for the application domain.

In the second study addressing this research question, four teams of students
were given the same development task. Two of the teams were instructed to
use the approach under investigation. Thus, this study is an example of a mul-
tiple-case study, which Yin argues is preferable to the classical single-case
study [18]. The reason that this study cannot be viewed as a formal experiment
is that the number of teams (two using the approach and two not using the ap-
proach) is too small to rule out that any observed differences between the
teams are caused by spurious effects, i.e. other factors than whether the ap-
proach is used or not. Thus, a more elaborate analysis of the teams’ perform-
ance rather than merely observation of dependent variables is employed to
investigate the causal relationships between the use of the approach and the
project outcomes. The sources of evidence were documentation (including re-
ported working hours), software artifacts, and observation of and communi-
cation with project members.

The phenomenon investigated in the studies described in the preceding two
paragraphs is the use of proxy-based software component services in embed-
ded real-time systems. The studies are viewed as case studies, although it may
be argued that neither of the two studies the phenomenon in its real-life con-
text. In both cases, software is developed by students (as part of a term project
and Master thesis project, respectively), which may be considered a form of
laboratory environment. Different strategies for varying parameters were used
in the studies. In the first study, the same group of students developed an ap-
plication both with and without using the approach while, in the second
study, half of the teams were instructed to use the approach and the other half
were not. In more realistic contexts, such as industrial projects, repeating the
development effort is usually prohibited for cost reasons. Thus, the studies
may also be viewed as hybrids between case studies and quasi-experiments,
i.e. a design similar to experiments where the researcher lacks the proper con-
trol over parameters [19].

Another commonality of the two studies addressing the last research question
is that they involved the use a prototype software tool that has been developed
in the course of the research described in this dissertation. The term construc-
tive research is sometimes used to describe research that involves building an
artifact to solve a domain problem [20]. While such an artifact is not a scientific

10 Chapter 1 Introduction

result in itself, knowledge obtained by using the artifact may be. In this work,
the constructive research strategy has been employed by first implementing
the prototype tool and then conducting two empirical studies where the tool is
used by students. The domain problem in this case is to make software com-
ponents an attractive alternative in the development of embedded real-time
systems.

1.5 Contributions and Organization of the Dissertation
The research described in this dissertation uses empirical methods to investi-
gate the use of a particular type of software component model in the devel-
opment of embedded real-time systems. Thus, its primary contribution is in-
creased knowledge of the advantages and liabilities of using this type of com-
ponent model in this application domain. Most other research on component-
based development for embedded real-time system focuses on rather different
component models, as described in the introduction. In addition, the collection
of empirical evidence on the effects of using component-based development is
a contribution in itself. While it is generally assumed that the component-
based paradigm leads to benefits related to both productivity and quality
there is a shortage of empirical evidence for this. In addition to these epistemic
contributions, there are more practical contributions, in the form of a proposed
approach to software component services for embedded real-time systems and
a prototype tool that demonstrates how automatic code generation can sup-
port such services.

The dissertation is a collection of published papers, with some additional in-
troductory and concluding chapters. Chapter 2 describes the state of the art
within component-based software engineering in addition to selected topics
within software architecture and embedded real-time systems. The treatment
of software architecture covers definitions of software architecture, architec-
tural design/styles, analysis/evaluation of software architectures, and archi-
tectural description/documentation. Within component-based software engi-
neering, definitions of software components, software component models/
technologies, component-based software engineering practices, and software
component services are described. The section on embedded real-time systems
covers definitions of embedded real-time systems, industrial control systems,
and software components in embedded real-time systems. The description of
industrial control systems provides useful background information for the
case study presented in Chapter 5 and the example applications used in Chap-

 1.5 Contributions and Organization of the Dissertation 11

ters 6–8, while the discussion of software components in embedded real-time
system is the dissertation’s main treatment of related work, along with the in-
cluded papers’ more specific discussions of related work.

Chapter 3, coauthored with Kung-Kiu Lau and Shui-Ming Ho, was originally
published in the book Building Reliable Component-Based Software Systems
(Artech House Books, 2000). The chapter discusses the state of the practice and
research of software component specification. Thus, it is an extension of the
dissertation’s coverage of the state of the art. In addition, it contains a contri-
bution in the form of UML metamodels of the concepts involved in software
component specification. The bulk of the paper is the description of three lev-
els of software component specification, which are denoted syntactic, semantic
and extra-functional specification. This includes a description of interface and
component specifications in COM, some knowledge of which is assumed in
subsequent chapters. Most of this work, including the UML metamodeling, is
my individual contribution. The co-authors contributed mainly to the intro-
duction and summary of the paper and to the description of realization speci-
fications at the end of Section 3.3. This version of the paper contains some cor-
rections to the original version, which are described in Section 3.6.

Chapter 4 was originally published in Proceedings of the 28th Annual NASA/
IEEE Software Engineering Workshop (IEEE Computer Society Press, 2004). The
paper presents a motivation for applying component-based software engineer-
ing to real-time systems and discusses the consequences of adopting a soft-
ware component model in the development of such systems. Specifically, the
consequences of adopting Microsoft’s COM, DCOM, and .NET models are
analyzed. The most important aspects of these models are discussed in an in-
cremental fashion. The analysis considers both real-time systems in general
and the industrial control system described in more detail in Chapter 5, where
some aspects the COM model have been adopted. The study concludes that
COM and DCOM are not inherently incompatible with real-time require-
ments, but suggests restrictions on the use of the models to improve predict-
ability. The paper is my individual contribution.

Chapter 5, coauthored with Ivica Crnkovic and Per Runeson, was originally
published in the book Component-Based Software Development for Embedded Sys-
tems: An Overview of Current Research Trends (Springer, 2005). It describes an
industrial case study demonstrating that a component-based software archi-
tecture can be beneficially used in the development of an embedded real-time
system. The investigated case is an example of an evolutionary compo-

12 Chapter 1 Introduction

nentization of an existing system. The description of the project, the system,
and its architectural changes is my contribution. The analysis of the experi-
ences was initiated by me and refined in collaboration with the coauthors, who
provided the desired outsider’s view.

Chapter 6, coauthored with Daniel Flemström, Anders Wall, and Ivica Crn-
kovic, was originally published in Proceedings of the 9th International Symposium
on Component-Based Software Engineering (Springer, 2006). The paper suggests a
proxy-based approach for software component services in embedded real-time
systems and describes a prototype tool for COM and Windows CE along with
an empirical evaluation of it by a control system example, implemented on the
Windows CE emulator. The empirical studies described in the following two
chapters build on this work. The underlying principle of proxy-based services
for embedded real-time systems was originally my idea and was refined
through discussions with Daniel Flemström. The prototype was initially de-
veloped by students under his and my supervision and subsequently ex-
tended by me. The other coauthors helped with critical reviews and contrib-
uted to the description of related work.

Chapter 7, coauthored with Shoaib Ahmad, Faisal Khizer, and Gurjodh Singh-
Dhillon, has been accepted for publication in Proceedings of the 40th Hawaii In-
ternational Conference on System Sciences (IEEE Computer Society Press, 2007).
The paper describes empirical evaluations of the run-time effects of using
COM and proxy-based software component services on Windows CE. This is
based on measurements using applications that have been developed using
these models as well as reference applications implementing the same func-
tionality without using the models. These measurements show that the over-
heads associated with both COM and proxy-based services are modest and
quite predictable. The conception, planning, and design of the study are my
individual contribution. The coauthors contributed by doing some of the soft-
ware implementation, performing the measurements, and documenting the
results. This was conducted as part of their Master thesis project, which I su-
pervised.

Chapter 8, coauthored with Ivica Crnkovic and Per Runeson, was published in
Proceedings of the 6th Conference on Software Engineering Research and Practice in
Sweden (Umeå University, 2006). The paper describes an empirical study of the
development-time effects of using proxy-based software component services.
This was achieved by giving four teams of students the same development
task and instructing two of the teams to use the prototype tool introduced in

 1.6 References 13

Chapter 6. While the study did not show any significant relationships between
the use of the tool and the performance of the teams, it was helpful in identify-
ing possible modifications to the tool that would have improved the quality of
the developed software. Several opportunities for further investigation were
also identified. This paper is mainly my individual contribution. The coau-
thors helped by taking part in discussions during the study and contributed to
the discussion of the research design and methodology in Section 8.3.

Chapter 9 concludes the dissertation by summarizing the results and conclu-
sions of the included papers. These are furthermore augmented by more re-
cent results, obtained through input from the company where the industrial
case study was conducted, additional analysis of data collected in the empiri-
cal studies with student participation, and some supplementary tests with the
prototype tool. Based on this information, answers to the research questions
are formulated and the validity of these answers discussed. Finally, different
opportunities for future work are discussed, with particular focus on further
empirical studies to test and possibly strengthen the conclusions of those al-
ready conducted or to address remaining questions. In addition, other re-
search challenges related to the use of software component models and ser-
vices are identified, including its possible impact on specification and compo-
sitional reasoning, and the possibilities of commercializing the research results
are briefly discussed.

1.6 References
[1] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd edi-

tion. Addison-Wesley, 2002.

[2] G. T. Heineman and W. T. Councill (editors), Component-Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

[3] R. Englander, Developing Java Beans. O'Reilly, 1997.

[4] D. Chappell, Understanding ActiveX and OLE. Microsoft Press, 1996.

[5] B. Burke and R. Monson-Haefel, Enterprise JavaBeans 3.0, 5th edition. O'Reilly,
2006.

[6] D. S. Platt, Understanding COM+. Microsoft Press, 1999.

14 Chapter 1 Introduction

[7] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[8] T. Genßler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R.
Wuyts, G. Arévalo, B. Schönhage, and P. Müller, “Components for Embedded
Software – The PECOS Approach.” In Proceedings of the 2002 International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, 2002.

[9] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren, “SaveCCM – A
Component Model for Safety-Critical Real-Time Systems.” In Proceedings of the
30th EROMICRO Conference, 2004.

[10] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau, “Enabling Predict-
able Assembly.” In Journal of Systems and Software, volume 65, issue 3, 2003.

[11] D. Box, Essential COM. Addison-Wesley, 1997.

[12] D. S. Platt, Introducing Microsoft .NET, 3rd edition. Microsoft Press, 2003.

[13] F. E. Redmond III, DCOM: Microsoft Distributed Component Object Model. Wiley,
1997.

[14] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous & Practical Ap-
proach, 2nd edition. PWS, 1997.

[15] P. Runeson, “Using Students as Experiment Subjects – An Analysis on Gradu-
ate and Freshmen Data.” In Proceedings of the 7th International Conference on Em-
pirical Assessment & Evaluation in Software Engineering, 2003.

[16] M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects – A Compara-
tive Study of Students and Professionals in Lead-Time Impact Assessment.” In
Empirical Software Engineering, volume 5, issue 3, 2000.

[17] C. Robson, Real World Research: A Resource for Social Scientists and Practitioner-
Researchers, 2nd edition. Blackwell, 2002.

[18] R. K. Yin, Case Study Research: Design and Methods, 3rd edition. Sage, 2002.

[19] C. Wohlin, P. Runeson, M Höst, M. C. Ohlsson, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering: An Introduction. Kluwer, 1999.

[20] K. Lukka, “The Constructive Research Approach.” In L. Ojala and O.-P. Hil-
mola (editors), Case Study Research in Logistics. Publications of the Turku School
of Economics and Business Administration, 2003.

15

Chapter 2

State of the Art and Related Work

2.1 Software Architecture
The structure and organization of software systems have been discussed, to a
certain degree, since the late 1960s. Well-known examples from the early lit-
erature on this topic include influential papers by Dijkstra [1] and Parnas [2].
The last decade, however, has seen an unprecedented interest in this area, both
within the research community and among software practitioners. In one of
the first papers in the recent wave of software architecture literature [3], Perry
and Wolf claim that software design, while receiving much attention in the
1970s, was largely overlooked during the 1980s. The authors use the term soft-
ware architecture instead of design to evoke notions of a professional discipline
and to make analogies with other fields, such as building and computer archi-
tecture.

2.1.1 Definitions of Software Architecture
The term software architecture denotes both a discipline – that of software ar-
chitects – and a type of artifact – the architecture of a software system. The re-
cent interest in the field has resulted in an abundance of definitions of soft-
ware architecture in the latter sense of the term. This section presents and dis-
cusses some of the most influential of these definitions.

The above-mentioned paper by Perry and Wolf presents the following model:

Software Architecture = {Elements, Form, Rationale}.

The elements of an architecture can be processing elements, data elements, or
connecting elements (which may themselves be processing elements or data

16 Chapter 2 State of the Art and Related Work

elements or both). The form specifies constraints on elements and their inter-
action with each other. The rationale provides motivations on the choice of
elements and the form. Although nobody seems to question the value of
documenting the rationale for a software architecture, more recent definitions
tend to view rationale as not being part of the architecture itself.

In the first book on the topic [4], Shaw and Garlan define the software architec-
ture of a system as:

a collection of computational components – or simply components – together
with a description of the interactions among these components – the connectors.

This definition is inspired by the way practitioners tend to represent software
architectures informally in the form of box and line diagrams. For such dia-
grams to be useful for others than their creators, it is important that the mean-
ings of both the boxes (components) and the lines (connectors) are described.

The terminology of Shaw and Garlan’s definition has become widely adopted
within the field. It has also been somewhat criticized, however, for instance in
a book by staff members from the Software Engineering Institute (SEI) [5]. The
authors argue that the term connector is unfortunate since it indicates a run-
time mechanism, while software architecture also covers structures that are
not observable at run-time. In the second edition of the book, the term compo-
nent is also avoided since it has become so closely associated with the topic of
component-based software engineering, where components are usually
viewed as run-time entities. The latest edition of the SEI book uses the fol-
lowing working definition:

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them.

This definition has some interesting aspects. The notion that a system may
have multiple structures is closely related to the concept of architectural views,
which is now widely accepted in the research community. Views are further
discussed in this chapter in connection with architecture description and
documentation. The definition furthermore states that an architecture includes
the externally visible properties of components, implying that other compo-
nent properties are not part of the architecture.

Finally, a recommended practice for architectural documentation from the In-
stitute of Electrical and Electronics Engineers (IEEE) [6] defines architecture as:

 2.1 Software Architecture 17

the fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its
design and evolution.

The main novelty of this definition is its mention of the system’s environment.
This is also an example of a process-oriented definition that includes design
and evolution principles. As is the case with rationale, the majority of the lit-
erature seems to consider such principles to be important but distinct from the
architecture itself.

2.1.2 Architectural Design
It was described earlier how Perry and Wolf selected to use the term software
architecture instead of the more traditional term software design. The question
still arises, however, as to the precise relationship between architecture and
design. A common view is expressed in [7]:

Architecture is design, but not all design is architecture.

In other words, a system’s software architecture comprises some, but not all,
the decisions made in the design of the system. The definitions presented in
the previous section do, to varying degrees, specify which types of design de-
cisions an architecture should include. It can generally be said that software
architecture is concerned with high-level design decisions that are made at an
early stage of the design process. The term architectural design is often used for
the design activities of this early stage. In this thesis, the term architectural deci-
sion will furthermore be used to denote design decisions made during this
stage, and a software architecture will at times be viewed as a set of architec-
tural decisions.

Shaw and Garlan characterize architectural design as being concerned with
structural issues, such as:

global control structures; the protocols for communication, synchronization,
and data access; the assignment of functionality to design elements; the compo-
sition of design elements; physical distribution; scaling and performance; di-
mensions of evolution; and selection among design alternatives.

The SEI book presents guidelines for making architectural decisions that help
to ensure a system’s quality properties. Decisions that target particular prop-
erties are called architectural tactics. For example, fault-tolerance is an avail-

18 Chapter 2 State of the Art and Related Work

ability tactic and information hiding is a modifiability tactic. A set of related
tactics is called an architectural strategy. Bosch [8] suggests a method of archi-
tectural design where an initial architecture is designed based on the system’s
functional requirements. The architecture is then evaluated against the extra-
functional requirements for the systems and transformed if necessary. This
process of evaluation and transformation is applied iteratively until the archi-
tecture is believed to meet all functional and extra-functional requirements.
Evaluation of software architectures is discussed later in this chapter. An ap-
proach developed by Siemens Corporate Research [9] focuses on identifying
factors that influence architectural issues, which are classified into technical,
organizational, and product factors. Based on analyses of these factors, strate-
gies are determined to resolve the issues. The early design of a system’s archi-
tecture is also a central concept in the Rational Unified Process (RUP) [10]. In
this influential process model, a stable architecture is the main milestone of the
elaboration phase, which precedes the labor-intensive construction phase.

In all engineering disciplines, successful solutions to past problems are often
used as models when new problems are to be solved. This is also true for
software architecture, where architects have primarily drawn on their own ex-
periences or that of their development organization. The research community
has realized the benefit of having a collection of well-documented prototype
solutions. The term architectural style was introduced in Perry and Wolf’s pa-
per to denote such a prototype solution.

This term is also used by Shaw and Garlan in their book. Drawing on their
definition of software architecture, they present the following definition:

An architectural style defines a vocabulary of component and connector types,
and a set of constraints on how they may be combined. There may also exist one
ore more semantic models that specifies how to determine a system’s overall
properties from the properties of its parts.

The use of the word vocabulary emphasizes that styles are intended for com-
municating software architecture solutions. The book also identifies a number
of commonly occurring styles. Some of these are briefly discussed below.

• Pipes and filters. The components in this style are called filters and each
have a set of inputs and a set of outputs. The outputs of a filter can be at-
tached to inputs of other filters via simple connectors called pipes. Typi-
cally, the filters transform streams of input data to streams of output
data in an incremental fashion. An important constraint is that filters

 2.1 Software Architecture 19

should be independent in the sense that they do not share state and each
filter is unaware of the identities of the other filters it is connected to.

• Object-oriented systems. In this style, the components are objects that en-
capsulate abstract data types and their associated operations. An object
can be “connected” to other objects by holding references to them and
invoke their operations. Typically, the sets of components and con-
nectors are dynamic, since objects can create and delete other objects
and object references can be passed as parameters to operations. Al-
though this style is sometimes considered relatively recent, it is rooted
in object-oriented programming, which was first developed by Dahl and
Nygaard in the 1960s [11].

• Event-based systems. The components in this style have interfaces that
provide both operations and events. A component’s operations may be
invoked directly by other components as in object-oriented systems. In
addition, a component may register an interest in an event that another
component provides by associating one of its own operations with it.
When the second component subsequently announces the event, the
registered operation is invoked, along with any operations that other
components have registered. Thus, there are two distinct types of con-
nectors in this style.

• Layered systems. The components in this style are called layers and are
commonly thought of as being stacked on top of each other. Each layer
provides services to the layer above it and is a client of the layer below
it. The connectors are defined by the protocols used between the layers.
A variation of the style is systems where a layer may use the services
provided by all lower layers.

• Repositories. In this style there are two distinct types of components: a
central data store that represents the state of the system and a set of in-
dependent components that operate on the data store. An interesting
sub-style is systems where computation is entirely controlled by the
state of the data store and the independent components react to changes
to this state in an opportunistic fashion.

A valuable property of these and other common styles is that the conse-
quences of using them as the basis for a system’s software architecture are
fairly well understood. The pipes and filters style, for instance, results in sys-

20 Chapter 2 State of the Art and Related Work

tems of highly independent components, where filters can suitably be devel-
oped and tested separately and possibly reused in different configurations. A
possible disadvantage is that all filters have to comply with the data format
required by the pipes, which may not be optimally suited for their computa-
tion and result in loss of performance and increased internal complexity. An
advantage of object-oriented systems is that algorithms and data representa-
tion are encapsulated and can be maintained locally. On the other hand, sys-
tem wide modifications, such as adding new objects, can be difficult since ob-
jects need to know the identity of other objects in order to invoke their opera-
tions. Event-based systems represent a possible solution to this problem, al-
though the components are not as independent as in the pipes and filters style.

A common occurrence in practice is systems that incorporate several archi-
tectural styles. For instance, a system may have components and connectors
that match the types defined by several styles. An example is a layered event-
based system where each layer provides both operations and events to the
layer(s) above it. Another way to combine styles is to mix different compo-
nents and connectors in the same system, which is sometimes called heteroge-
neous architectures. For instance, a part of a system could be organized as a
repository where one or more of the independent components exchange data
with another part of the system that consists of pipes and filters. Hierarchical
heterogeneity occurs when a component in a system of one style is internally
organized using another style. A typical example is a layer, internally struc-
tured using the object-oriented style, which may even be reflected in the
layer’s services.

An influential direction within the software engineering community in the last
decade is the widespread interest in object-oriented design patterns [12]. Since
architecture is commonly viewed as a special case of design, it is not surpris-
ing that the patterns paradigm has also been applied to architectural design.
The most comprehensive work in this area has been performed by staff at the
German company Siemens, who call their approach pattern-oriented software
architecture [13]. Like the original work on design patterns, this effort focuses
on cataloging known solutions to known problems in given contexts. This ap-
proach is similar to that of identifying and documenting architectural styles,
and there is now a widespread view that patterns and styles are synonymous.

 2.1 Software Architecture 21

2.1.3 Architectural Analysis and Evaluation
As previously noted, software architecture is concerned with early design de-
cisions. Clearly, it is important to be able to reason about the effects these deci-
sions will have on the properties of the finished system. The research commu-
nity has developed a number of architecture analysis and evaluation tech-
niques.

One of the most popular techniques is the architecture trade-off analysis method
(ATAM) [14] developed by the Software Engineering Institute. The aim of this
method is to balance the different quality goals of a system under develop-
ment, which is very often conflicting. For instance, an architectural decision
that results in a very maintainable system may result in sub-optimal perform-
ance. ATAM is typical in that it is based on the use of scenarios to analyze how
well candidate architectures meet a system’s quality goals. Depending on
what qualities are being analyzed, scenarios may be operational or related to
the system’s development or evolution, while the evaluation of their effect
may be based on quantitative or qualitative analysis.

ATAM provides a way of determining technical measures of a system’s qual-
ity goals resulting from a proposed architecture, and thus (viewing the archi-
tecture as a set of architectural decisions) from proposed architectural deci-
sions. Software development organizations, however, usually need to consider
the costs incurred with these decisions and to balance this with the benefits
gained. This need is addressed by an extension of ATAM called the cost benefit
analysis method (CBAM) [4]. The purpose of CBAM is to calculate the return on
investment (ROI) for each proposed architectural strategy. The inputs to this
calculation are estimated costs of architectural strategies and measures of the
corresponding benefits derived from the ATAM. For a specific architectural
strategy, the benefit Bi is defined as:

()∑ ×=
j jjii WbB ,

where bi,j is the benefit of strategy i in scenario j and Wj is a weight assigned to
scenario j, reflecting its relative importance. Each bi,j is the estimated effect of
strategy i on the quality goal analyzed in scenario j. If Uexpected is the measure
of the quality goal obtained from ATAM in scenario j when strategy i is in-
cluded in the architecture and Ucurrent is the measure when the strategy is ex-
cluded, then bi,j = Uexpected − Ucurrent. The measures of the quality goals are num-
bers between 0 and 100, corresponding to the worst-case and best-case situa-

22 Chapter 2 State of the Art and Related Work

tions respectively. For an architectural strategy with cost Ci and benefit Bi, the
ROI value is calculated as:

i

i
i C

BR =

Techniques for cost estimation have been widely studied and reported, for in-
stance by Boehm and others [15].

Another analysis method is the architecture-level modifiability analysis method
(ALMA) [16] by Bengtsson and others. As the name indicates, this method fo-
cuses particularly on analyzing the modifiability of a system based on a pro-
posed architecture for the system. Like ATAM, ALMA is scenario-based. The
only scenarios considered are change scenarios, and the output of running a
scenario consists of measures of the impact of the change on the system and
the effort required to implement the change. Depending on the purpose of the
analysis this can be described qualitatively or quantitatively. Yet another de-
velopment is reported by Svahnberg [17]. This work extends the state of the
art in architecture evaluation with a quantitative method for selecting between
candidate architectures. The first step of the method is to define a set of quality
goals as the base for the selection and assign numerical values to these goals
that determine their relative importance. The next step is to evaluate each of
the candidate architectures with respect to each quality goal, which results in a
matrix of numerical scores. These scores need not be meaningful absolute
measures of each architecture’s ability to meet the quality goals, as long as
they serve to relate the abilities of the architectures to each other. By weighing
the scores with the importance of each quality goals, the best architecture can
finally be determined.

Analysis of software architectures is not only useful for selecting between
candidate architectures. Land [18] presents various strategies for in-house in-
tegration of software systems – i.e. integration of two software systems owned
by the same organization. One of these strategies is to develop a new system
by merging the existing systems, which may be done rapidly or evolutionary.
A technique for analyzing the systems’ software architectures with respect to
their similarity is suggested as a primary tool for deciding whether merging is
a feasible strategy. The analysis is combined with business and other consid-
erations to determine if rapid or evolutionary merging is more suitable. Sev-
eral empirical studies are presented, demonstrating that failing to take this
analysis into account is likely to result in unsuccessful merging efforts.

 2.1 Software Architecture 23

2.1.4 Architectural Description and Documentation
In practice, software architectures are usually described using informal box
and line diagrams accompanied by descriptive prose. The research community
has pointed out that such descriptions are often ambiguous and there is exten-
sive work on architectural description and documentation in the literature.

One research direction is the development of architecture description languages
(ADLs). A bafflingly high number of such languages have been published, dif-
fering in such aspects as use of graphics or text, formality of semantics, em-
phasis on certain domains or styles, available analyses and tool support etc. In
[4], Shaw and Garlan discusses the requirements for ADLs and reviews three
early languages and their associated tools. A recent and extensive survey is
that of Medvidovic and Taylor [19]. Despite the great volume of work on
ADLs there are few testimonies of industrial adoption in the literature. The
use of the Koala language at Philips [20] is perhaps the only reported example.
This language is fairly implementation-oriented and can be seen as something
on the borderline between an ADL and a graphical programming language.
Koala is furthermore the name of a related software component model, which
is discussed in Section 2.2.2 of this dissertation.

A language that has been widely adopted is the Unified Modeling Language
(UML) [21]. Although UML has become the standard notation for document-
ing software design, its suitability for describing software architecture has
been questioned. The problem is that UML has its roots in object-oriented
methods and is mainly intended for modeling a system as a set of interrelated
classes, a concept usually considered to be at a lower level of granularity than
software architecture. Still, it has been demonstrated how the language can be
used for architectural documentation. One example is the aforementioned ap-
proach of Siemens Corporate Research [9]. Their architecture descriptions are
written using special architecture-level modeling elements, which have been
defined using UML’s extensibility mechanisms. Although it would be possible
for other organization to re-use these architecture-level modeling elements, it
is not likely to occur on a large scale until such elements are standardized and
supported by major tool vendors.

Fortunately, such standardization has now taken place in UML 2.0 [22]. This
new standard defines the following architectural concepts, which are also cen-
tral in most ADLs:

24 Chapter 2 State of the Art and Related Work

• Component. A component is a modular unit with well-defined interfaces
that is replaceable within its environment. The external view of a com-
ponent is a set of provided and required interfaces, which may be ex-
posed via ports (see below). A component may also have an internal
view in the form of a realization, which is a set of instances of classes or
smaller components that collaborate to implement the services exposed
by the component’s provided interfaces while relying on the services of
its required interfaces. The concept can be used to specify both logical
and physical components.

• Port. A port is a named and typed interaction point of a component. A
provided port is typed by a provided interface, a required port by a re-
quired interface, and a complex port by an arbitrary set of provided and
required interfaces. Complex ports enable the localization of complex in-
teraction patterns where calls may occur in both directions. Unlike inter-
faces, a port may be associated with a behavior, specifying the externally
observable behavior of the component when interacting through the
port. This allows the specification of semantic contracts, similar to those
described in Paper A. A component may have multiple ports typed by
the same interface, and is able to distinguish between calls received
through different ports.

• Connector. A connector is a link that may be of kind delegation or assem-
bly. A delegation connector either links a provided port of a component
to a part of the component’s realization, signifying that requests re-
ceived through the port is forwarded to the part, or it links a realization
part to a required port, signifying that request sent through the port
originates in the part. Several connections may exist between a single
port and different realization parts. An assembly connector links a re-
quired interface or port of a component to a matching provided inter-
face or port of another component.

Figure 2-1 is a UML 2.0 diagram that illustrates these modeling elements. The
diagram shows a component with one port, typed by one required and one
provided interface. The component also has a realization, consisting of two
component instances. Delegation connectors link the outer component’s port
to a provided port of one of these instances and a required port of the other
instance to the outer port. The two instances furthermore have ports linked by
an assembly connector. The diagram does not show port names.

 2.1 Software Architecture 25

Figure 2-1 Architectural modeling elements in UML 2.0

The production of professional software architecture documentation has been
studied at the Software Engineering Institute [7]. This work focuses more on
the organization of architecture documents than on particular notations. The
central organizing unit for such documents is that of a view, which is defined
as follows:

A view is a representation of a set of system elements and the relationships as-
sociated with them.

Thus, a view represents a subset of the information contained in an architec-
ture. The use of views is motivated by the fact that software architectures are
complex entities that cannot be adequately described in a simple one-dimen-
sional fashion.

Component1

: Component2

: Component3: Component3

Interface4

Interface1

Interface2

<<delegate>>

<<delegate>>

Interface3

Interface1

Interface2

26 Chapter 2 State of the Art and Related Work

One of the most influential publications on architectural views is Kruchten’s
paper on the 4+1 view model [23]. His approach, which has been adopted as a
central part of the Rational Unified Process, defines the following views:

• The logical view primarily supports behavioral requirements: the services
the system should provide to its end users.

• The process view addresses concurrency and distribution, system integ-
rity, and fault tolerance.

• The development view focuses on the organization of the software mod-
ules in the software development environment.

• The physical view maps the various elements identified in the logical,
process, and development views onto the processing nodes.

• The use case view contains a small subset of important use cases, in-
tended to show that the elements of the other four vies work together
seamlessly.

 The last view is called the +1 view since it is redundant with, and serves to
validate, the other views. Another model that has received considerable atten-
tion is sometimes called the Siemens 4 view architecture model and is a central
part of Siemens Corporate Research’s approach [9], mentioned above. It de-
fines the following views:

• The conceptual view describes the system in terms of its major design ele-
ments and the relationships among them.

• The module interconnection view describes functional decomposition and
layering.

• The execution view describes the dynamic structure of a system.

• The code view describes how the source code, binaries, and libraries are
organized in the development environment.

The conceptual view has no direct counterpart in the 4+1 view model, while
the module interconnection view corresponds roughly to the logical view, the
execution view to the process and physical views, and the code view to the
development view.

 2.1 Software Architecture 27

The IEEE’s recommended practice for architectural description of software-
intensive systems (IEEE Std. 1471-2000) [6] focuses on the contents and in-
tended use of architectural description documents. To this end, it defines a
conceptual framework, which is illustrated in the UML class diagram in Figure
2-2. Thus, according to the standard, a system has an architecture, which is
described by an architectural description. Furthermore, the system has a num-
ber of stakeholders, which each has a number of concerns, and the architec-
tural description shall explicitly identify these stakeholders and their concerns.
The architectural description must furthermore provide a rationale for the ar-
chitecture and shall be organized into views.

Figure 2-2 The IEEE Std. 1471-2000 conceptual framework for architectural descrip-
tion of software-intensive systems

Each view must conform to what is called a viewpoint. A viewpoint is a gen-
eral (i.e. system independent) template of a view, and is intended to address a

28 Chapter 2 State of the Art and Related Work

certain subset of stakeholders and concerns. A view is a system specific in-
stance of a viewpoint. The viewpoint specifies the format for describing the
view, including languages and notations used as well as any analysis tech-
nique that may be applied. The architectural description shall state which
viewpoints are used and present the specification of these or refer to other
documents where specifications may be found. The standard emphasizes the
potential for reuse of viewpoints, and therefore states that a viewpoint may be
a library viewpoint. The architectural description is required to include at least
one view and (a reference to) a corresponding viewpoint, but there are no pre-
defined compulsory views. Consequently, the standard does not prescribe the
use of any particular language or notation.

2.2 Component-Based Software Engineering
The field of component-based software engineering (CBSE) is concerned with the
development of software by assembling pre-existing smaller pieces, which are
termed software components. Within the field of software architecture there is a
widely accepted terminology where the constituent parts of a system’s archi-
tecture are also called components. This sometimes creates confusion since the
architecture and CBSE communities have adopted the term component inde-
pendently. A widespread view in CBSE is that a software component denotes
a physical part (product), while in architecture a component can be any struc-
tural entity (file/class, process/thread, module/layer, etc.) and even purely
conceptual (e.g. an abstraction invented by a designer). At the risk of adding to
the confusion, this dissertation uses the term component-based software architec-
ture, in particular in Chapter 5, to mean a software architecture designed to
support CBSE.

2.2.1 Definitions of Software Components
The key concept of CBSE is that of software components – e.g. those pieces of
software that may be assembled into larger components or final products.
Clearly, how the concept of software components is defined has ramifications
for the practices of CBSE. This section reviews and discusses some of the dif-
ferent definitions found in the literature.

One of the most influential definitions of software components is that of
Szypersky [24]:

 2.2 Component-Based Software Engineering 29

A software component is a unit of composition with contractually specified in-
terfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

The first part of the definition is technical, and states that software compo-
nents should be “black-boxes” to be composed without modification (obvi-
ously, the definition means that interfaces and context dependencies are the
only visible parts of a component). Szypersky asserts that source code modules
do not qualify as software components since they make it possible for the
composer to rely on implementation details, thus violating the principle of
black-box composition. The second part of the definition is more market-ori-
ented, effectively stating that it should be possible to market software compo-
nents as independent products and that buyers should be able to use them as
parts in their own products. Naturally, independent deployment also has
technical implications, namely that it must be possible to deploy (e.g. upgrade)
a single component without any modification, recompilation, or similar of the
rest of the systems of which the component is a part.

In what is sometimes called The CBSE Handbook [25] Heineman and Councill
present the following definition:

A software component is a software element that conforms to a component
model and can be independently deployed and composed without modification
according to a composition standard.

According to this definition, all components must conform to a component
model, which the authors define as specifying interaction and composition
standards. This requirement is quite reasonable, since it is hard to see how
CBSE could work without some standards for interaction and composition. It
is worth noting that the definition does not require that the component model
is defined by a standards body or platform supplier, or that a commercial plat-
form implementation is used. It is furthermore concluded that the two defini-
tions principally agree, since the requirement that components can be modi-
fied without modification can only be satisfied if interfaces and context de-
pendencies are well defined and that compliance with a standard naturally
supports composition by third parties.

A definition of software components that must be expected also to receive
widespread attention is that of UML 2.0, which has already been discussed in
connection with architectural description in this dissertation. From the discus-
sion of the previous section, the following definition can be extracted:

30 Chapter 2 State of the Art and Related Work

A component is a modular unit with well-defined required and provided inter-
faces that is replaceable within its environment. The concept can be used to
model both logical and physical components.

In the context of CBSE, a software component corresponds to what UML 2.0
calls physical components. Although some will object to the use of the word
physical to describe software components, this is the term used by the UML
2.0 specification to denote deliverables such as COM+, EJB, or CCM compo-
nents. The definition is somewhat broader than the previous two, as “replace-
able within its environment” is a weaker requirement than “subject to inde-
pendent deployment and composition by third parties”. The term physical
component is intended to cover such entities as executables and dynamic link
libraries, which do not comply with a component model. The definition is in-
teresting primarily as it helps to establish required and provided interfaces as
part of the standard terminology of software components.

This terminology is also used by Crnkovic and Larsson [26], who define a soft-
ware component as consisting of at least the following elements:

• A set of interfaces provided to, or required from the environment. These
interfaces are particularly for interaction with other components, rather
than with a component infrastructure or traditional software entities.

• An executable code, which can be coupled to the code of other components
via interfaces.

This definition emphasizes that a component’s interfaces are intended to sup-
port interaction with other components. Consequently, these components
must agree on some format for interfaces and patterns of interaction, which is
another way of saying that they must conform to a component model. The
definition explicitly states that a component contains executable code. This is
not an important difference with the other definitions, however, since these
also presume that components contain executable code and focus on proper-
ties distinguishing software components from other executable formats. Based
on the above definitions, which represent some of the most prominent literary
sources on CBSE, it is concluded that there is significant consensus that a soft-
ware component encapsulates executable code while complying with a com-
ponent model that supports composition and interoperation.

 2.2 Component-Based Software Engineering 31

2.2.2 Software Component Models and Technologies
As already mentioned, a software component model specifies standards for com-
position of and interaction between software components. Among the things
that such a standard may specify are data interchange formats, interaction pat-
terns, and run-time services. While incompatible data formats may be a barrier
for interoperation between independently developed pieces of software, a
more serious problem is that of incompatible assumptions about the overall
architecture of the system that these pieces will be parts of. This problem of
architectural mismatch was identified and characterized by Garlan and others
[27]. Software component models may be viewed as a way to avoid ar-
chitectural mismatch by standardizing certain architectural choices. To facili-
tate the use of software component models, dedicated software tools and in-
frastructures are often implemented. These may include run-time environ-
ments for component execution and interaction as well as tools for component
development, composition, and deployment. This dissertation uses the term
software component technology to denote a set of dedicated software products
supporting the use of a specific software component model. Heineman and
Councill use the term component model implementation to denote the run-time
parts of a software component technology.

One of the most widely used component models is Microsoft’s Component Ob-
ject Model (COM) [28]. Microsoft first used this model internally, in its Windows
operating systems [29] as well as in applications available on that platform,
before releasing the COM specification. Thus, in this case, a component tech-
nology already existed when the component model was published. Today,
there are numerous vendors of COM components and COM-based applica-
tions for the Windows platform. Technologies are also available on several
other platforms, but COM has never gained widespread popularity outside
the world of Windows. Although the model is primarily associated with desk-
top applications, COM implementations are also available for a few real-time
operating systems, such as Windows CE [30] and VxWorks [31].

On the Windows platform, a COM component is an executable or dynamic link
library (DLL) that implements a set of COM classes that each implements a set
of COM interfaces. Classes may also have optional or required outgoing inter-
faces, i.e. interfaces to be used by the classes and implemented by other com-
ponents. Both classes and interfaces are identified by globally unique identifiers
(GUIDs), which are 128-bit numbers that can be generated by an algorithm
that virtually ensures their uniqueness. The GUIDs of any classes imple-

32 Chapter 2 State of the Art and Related Work

mented by the components installed on a system are stored in the Windows
registry along with references to the implementing components. The COM li-
brary is a part of the Windows run-time system and provides an API that an
application or component, called a COM client, can use to create COM objects
by supplying the GUIDs of the desired class and interface. COM does not
specify how classes should be implemented. Instead, components are required
to provide a factory interface that the COM library uses to instruct components
to instantiate their own classes.

What COM does specify is the binary format of interfaces. A client interacts
with a COM object through a pointer to an interface node, which includes a
pointer to a table of function pointers. Since the interface standard is binary,
COM is oblivious to the programming languages use to implement compo-
nents and clients. Once the COM library has created an object, it returns a
pointer to one of the object’s interfaces to the client. The client can use an op-
eration of this interface to request pointers to any other interfaces the object
supports. This technique is called interface navigation. In addition, the COM
specification includes a set of predefined interfaces for such purposes as script-
ing, error handling, and connection-oriented composition. Distributed COM
(DCOM) [32] is an extension of COM that supports distributing applications
across physical machine boundaries. The basic interoperability mechanisms of
COM and DCOM are discussed more deeply in Chapter 4 of this dissertation.

A special type of COM components is ActiveX controls [33]. These components
implement and use predefined interfaces, which are designed to allow inter-
action with both (visual) composition tools and run-time environments, called
containers. A typical application is in graphical user interface (GUI) controls,
including controls automatically downloaded from web servers and executed
in a web browser. Typically, such controls make use of outgoing interfaces to
notify their containing application or web browser of events. A similar com-
ponent model is Sun’s JavaBeans [34]. These components are built from Java
classes that implement predefined interfaces and use special event objects for
notification. JavaBeans share many of the characteristics of ActiveX controls,
the main difference being that they must be written in the Java programming
language [35] and executed on a Java virtual machine (JVM) [36]. Many web
browsers include a JVM and, as with ActiveX controls, enhancement of web
pages is a common use of JavaBeans. Sun provides a solution that makes it
possible to use JavaBeans in ActiveX containers. Component technologies re-
lated to ActiveX controls and JavaBeans include tools for packaging and de-
ployment of components with associated resources and type information.

 2.2 Component-Based Software Engineering 33

COM+ [37] is an extension of COM incorporating support for services, such as
transactional processing, message queuing, and security management that are
commonly used in distributed information systems. These services are not in-
voked programmatically from inside the components. Instead, declarative at-
tributes can be associated with components and applications, specifying which
services can or must be provided and at which level. This information is stored
in a special-purpose repository called the COM+ catalog rather than in the
Windows registry. The COM+ run-time system uses this information to inter-
cept component interactions and insert system calls as required. This allows
existing COM components to be transparently augmented with, for instance,
transactional processing and used as part of COM+ applications.

More recent versions of Windows include Microsoft’s .NET technology [38],
which is perhaps best known as a platform for implementing web services [39]
but also defines a new software component model. In this model, components
are called assemblies (a potential source of confusion as this term is sometimes
used in CBSE literature to denote a collection of components). A .NET assem-
bly contains a manifest in addition to a collection of types, i.e. classes and inter-
faces, and/or resources. Strictly speaking, an assembly is only a software
component as defined in the previous section if it contains at least one class.
The manifest contains the assembly’s metadata, including its name, version,
contents, dependencies, and so on. Thus, information about classes is stored in
the component itself rather than in the Windows registry. Other differences
from COM are that a .NET assembly can be distributed across several files and
that a hierarchical naming scheme is used, where an assembly is associated
with a GUID and the names of its types need only be unique within the as-
sembly.

A more important difference between .NET and COM is that the former’s run-
time system, called the .NET Framework, offers much more functionality than
the COM library, relieving .NET components from much of the “housekeep-
ing” tasks of COM components while greatly enhancing the support for such
things as versioning, security, and memory management. (This housekeeping
is typically not a burden for developers of COM components, however, as it is
handled by code automatically generated by development tools.) Unlike in
COM, the classes of a .NET assembly are not implemented as native executa-
ble code, but as Microsoft Intermediate Language (MSIL) code to be executed by
the .NET Framework, usually via just-in-time (JIT) compilation. The introduc-
tion of .NET does not mean that COM has been removed, and Microsoft offers
a solution for interoperation between .NET and COM components. The ser-

34 Chapter 2 State of the Art and Related Work

vices of COM+ are also available in the .NET Framework, under the name of
Enterprise Services. The .NET Compact Framework [40] is a down-scalable version
of the framework for resource constrained embedded systems. This version is
not particularly suited for real-time applications, however, as it uses the same
automatic memory management (garbage collection) as the standard version,
resulting in a loss of predictable timing.

Another model providing services similar to those of COM+ is Sun’s Enterprise
JavaBeans (EJB) [41], which is based on Java but not on the aforementioned
JavaBeans model. The required service levels for a set of EJB components are
expressed declaratively in a file called a deployment descriptor. After deploy-
ment, each of the objects implemented by the components, generally called
beans, live inside an EJB container, which also contains objects generated from
the deployment descriptor. Clients invoke a bean’s operations via these gener-
ated objects, which ensure the correct service levels. Unlike JavaBeans, beans
in EJB do not communicate through events. There are two principal types of
beans. Entity beans are used to encapsulate access to database records. An en-
tity bean may implement its own persistence management or let the container
manage persistence as specified by the deployment descriptor. Session beans,
which may be stateful or stateless, represent interaction sessions with clients.
Message-driven beans can be seen as a special kind of stateless session beans
that represent asynchronous interaction session. A session bean may control
transactions or leave that to the container. EJB requires the Java 2 Enterprise
Edition (J2EE) platform [42].

A third model that is similar to COM+ and EJB is the CORBA Component Model
(CCM) [43]. CCM is standardized by the Object Management Group (OMG)
and require that clients and components communicate using an object request
broker (ORB) as defined by version 3.0 of the OMG’s Common ORB Architecture
(CORBA) [44]. A CCM component is a package, which contains an XML de-
scription and possibly binaries for multiple platforms. A CCM application is
an assembly of CCM and possibly EJB components, whose configuration is
described in an XML document. A CCM component belongs to one of four
possible categories. Service components correspond to stateless session beans in
EJB, and maintain no state. Session components correspond to stateful beans and
maintain state for the duration of a transaction. Entity components, as entity
beans, encapsulate database access. Process components maintain persistent
state throughout the lifetime of a process. Similarly to in EJB, the instances of a
CCM component resides within a CCM container, and transaction control as
well as persistence may be container managed or self managed. Clients inter-

 2.2 Component-Based Software Engineering 35

act with CCM components through attributes and ports. A port is a facet, a re-
ceptacle, an event sources, or an event sink. Facets and receptacles are provided
and required interfaces, respectively. Event sources and sinks are connected
via event channels. CCM also specify two predefined interfaces that are clearly
inspired by COM. All component instances provide the equivalence interface for
interface navigation and all components implement the home interface for in-
stance creation.

Figure 2-3 A Koala configuration

The Koala component model [20] is specifically intended for embedded soft-
ware in consumer products. In particular, it is being used by Philips in prod-
ucts such as televisions and VCRs. A Koala component has a set of provided
and required interfaces, and interacts with its environment through these in-
terfaces only. A Koala configuration specifies a collection of component in-
stances, the parts list, and a set of connections between these instances, the net
list. In the simplest case, a connection links a required interface of one compo-
nent instance to a matching provided interface of another component instance.
Glue code may be associated with connections to provide more complex inter-
actions. Configurations may themselves be used as components in a hierarchi-
cal fashion. Koala provides notations for specifying interfaces and components
and a graphical language for defining configurations. Figure 2-3 shows such a
configuration defining a component consisting of three sub-components. Basic
Koala components, i.e. those that are not configurations, are sets of C source
code files. As such they do not satisfy the definitions of software components
discussed above. However, the motivation for using source code is efficiency,

C4

C2

C1

C3

s

36 Chapter 2 State of the Art and Related Work

not exposition of implementation details, and the Koala configuration lan-
guage encourages black-box composition. The Koala compiler optimizes con-
figurations by inserting into the code of the components static references to
connected components wherever possible. Still, puritans may prefer to view
Koala as a technology for modular, graphical programming rather than a
component model. For instance, it does not support independent component
deployment as discussed in the previous.

The component models discussed above are all based on a notion of software
components that encapsulate executable code and expose services through in-
terfaces. Thus, they are compatible with the definitions of the previous section.
With the exception of Koala, however, they all allow components to interact
with their environment without explicitly declaring required interfaces. For
instance, COM components can use the services of the Win32 API and Java-
Beans those of the standard Java class libraries. Similarly, in all models except
Koala, the services exposed through a component’s interfaces can be accessed
by components that do not declare required interfaces and even by software
that are not components. Regarding the standardization of architectural
choices, all the models stipulate an object-oriented style. Other architectural
aspects are address to a varying degree. All models specify a standard for allo-
cating and releasing the resources used by components: in COM and Koala,
this is the responsibility of the components themselves while, in the other
models, it is handled more automatically. Koala furthermore defines a stan-
dard for concurrent execution, while the other models leave it to the compo-
nents to use the mechanisms of the underlying platforms for this purpose.
Models like COM+ and EJB define standard solutions for such things as trans-
action handling and persistent data management, which can be viewed as ar-
chitectural decisions, but give component developers the choice to implement
their own solutions instead.

All the models described above are supported by component technologies,
including run-time infrastructures providing varying degrees of functionality.
One of the smaller and simpler run-time infrastructures is that of COM. As
discusses above, one consequence of this is that COM components are re-
quired to perform more “housekeeping” than when a richer run-time system
is provided, as for .NET components. Developers of COM component are typi-
cally not required to write more housekeeping code, however, as this is most
often provided by development environments in automatically generated
code. This illustrates how one part of a component technology – development
tools – can serve as a substitute for another – run-time infrastructure. The ex-

 2.2 Component-Based Software Engineering 37

ample of development tools to support COM components is interesting for
another reason. While the run-time parts of a component technology can be
viewed as the most central parts in some senses, e.g. they are typically the only
part explicitly required by the component model specification, other parts are
often essential as well. The widespread use of COM would be very unlikely
without the comprehensive support for the model provided by tools like Mi-
crosoft Visual Studio [45]. Other development-time technologies include graphi-
cal GUI builders for ActiveX and JavaBeans, highly automated development
environments for EJB, and the graphical Koala editor. Examples of deploy-
ment-time component technologies include those that support downloading
and installing ActiveX controls and JavaBeans used on web pages.

As noted by e.g. Wallnau and others [46], software component models are
closely related to the concept of architectural styles. Thus, as discussed in the
previous section, one may expect the choice of a component model to affect a
system’s properties in a predictable way. The component models discussed
above each defines one or more types of components as well as different ways
in which such components may be connected. Not surprisingly, the object-ori-
ented systems style is evident in all these models. This style corresponds di-
rectly to the way that EJB systems and most COM-based systems are organ-
ized. ActiveX, JavaBeans, and CCM correspond to an object-oriented, event-
based systems style, which may also be used with COM/COM+. Recall that
the primary assumed benefit of the object-oriented systems style is encapsula-
tion of implementation details, while the event-based systems style is assumed
to result in increased extensibility. Koala differs from the other discussed
models in that components are explicitly disallowed to contain references to
other components. In a way, this resembles the pipe and filters style, and
might be expected to promote reusability.

The definition of architectural style presented in the previous section states
that a style might include one or more semantic models that allow a system’s
properties to be inferred from the properties of its parts. No such models are
included in any of the component models discussed above, however, and this
seems also to be the case for other models. This is being addressed by the
Software Engineering Institute’s work on prediction enabled component technol-
ogy (PECT) [47]. A PECT is defined as consisting of a constructive model, which,
like the component models discussed so far, supports the implementation of
systems as assemblies of components, and a set of analytical models, which de-
fine techniques for predicting different properties of assemblies from the
properties of their constituent components.

38 Chapter 2 State of the Art and Related Work

2.2.3 Software Component Services
Software component services are a way to provide functionality in compo-
nent-based applications without components having to implement this func-
tionality or invoke operations that provide it. As described briefly in the pre-
vious section, component models like COM+, EJB, and CCM specify various
such services of general use for distributed information systems. Software
component services are a special case of what may be termed software ser-
vices. This dissertation deals in particular with services that are provided by a
run-time system on the basis of declarative attributes as described below.

The basic principle of software services and declarative attributes can be illus-
trated by the simple example of a console application on the Microsoft Win-
dows operating system. (This example was used by Don Box in a talk on
COM+ at the 2000 Microsoft Tech-Ed Conference.) A console application is a
program with character-based input and output. When such a program is exe-
cuted in any other way than entering its name on a command line – e.g. by
double-clicking the program file in the Windows Explorer – a new console
window is first created, and the program then executes while performing its
input and output through that window. To create a new console window in
Windows, a function of the Win32 API called AllocConsole is used [48]. How-
ever, when writing a console application, e.g. using Visual Studio, the pro-
grammer is not required to include a call to this function. Furthermore, the
development environment does not automatically provide any code that calls
AllocConsole and inspecting the executable file after building will reveal that
the program does not call this function at all. Instead, the executable is marked
with a flag (i.e. a declarative attribute) that informs the run-time system that it
is a console application, and the system uses this information to create a new
console window when needed.

The console application example illustrates how declarative attributes can be
used to augment software with functionality not implemented or invoked by
the software itself. Naturally, this relies on a run-time infrastructure to inter-
pret the attributes and provide the requested services. This need may be filled
by the operating systems, as in the example, or by some other software run-
ning on top of the operating system, e.g. middleware. An example of middle-
ware intended for embedded real-time systems is MEAD [49], which provides
services for fault-tolerant real-time systems, such as application replication.
Services are provided transparently by interception of messages between appli-
cations and the run-time system. This is achieved by dynamically linking ap-

 2.2 Component-Based Software Engineering 39

plications with an interceptor providing the same interface as the run-time
system. Thus, applications can invoke operations without even being aware of
the interceptor. The interceptor forwards invocations to the run-time system
and performs any additional processing required to provide the desired ser-
vices. MEAD has been implemented on top of a CORBA implementation for
real-time systems.

In the case of software component services, the services in question are pro-
vided by a component model implementation and augment the functionality
delivered by software components. Weinreich and Sametinger [50] define a
component model implementation as providing a run-time environment and
services. They furthermore distinguish between general services, which are in-
dependent of application domain, horizontal services, which targets multiple
but not all domains, and vertical services, which are specialized for a particular
domain. Typically, the vertical services are implemented on top of the hori-
zontal, which are in turn implemented on top of the general. Among the ex-
amples of general services that the authors mention are instantiation in object-
based models, location transparency in distributed models, and transaction
handling in models for information systems. Thus, all the services mentioned
in the previous discussion of component models are general. As examples of
horizontal and vertical services, Weinreich and Sametinger mention com-
pound documents and the more specialized of the CORBA specification’s
CORBAfacilities, respectively.

A concrete example of software component services that rely on declarative
attributes is COM+ services. As already noted, COM+ extends COM and
DCOM with services of general use for distributed information systems, and
these services are now also available for use with .NET components. Löwy [51]
describes the services defined by version 1.0 of COM+. More services have
been added in newer versions, but the simpler original version works well as
an illustrative example. Unlike EJB and CMM, COM+ does not include any
service for data persistence. Instead, COM-based applications can use ActiveX
Data Objects (ADO) [52] and .NET applications the ADO .NET library [53] for
accessing data bases. The list below summarizes Löwy’s description of the
COM+ services.

• Administration. Tools and services for configuring components and ap-
plications, such as the COM+ catalog.

40 Chapter 2 State of the Art and Related Work

• Just-in-time activation (JITA). Services for creating and discarding object
instances. These play an essential role in supporting run-time services
by interception, as described below.

• Object pooling. Services that support sharing instances of frequently used
and expensive resources between clients. This may often be used to im-
prove performance.

• Transactions. Services for treating sequences of operations by distributed
components as single atomic operations. This is a common requirement
in commercial systems.

• Synchronization. Services for controlling concurrent activities.

• Security. Services that perform authentication and access control.

• Queued components. Services for asynchronous and disconnected com-
munication between components.

• Events. Services that provide publish-subscribe event notification.

The administration services are mainly concerned with configuration of ser-
vices as declarative attributes, which may be specified on the application,
component, interface, or operation level. The other services are run-time ser-
vices, which are mainly provided by interception of operation invocations.
This is achieved by the use of proxy objects placed between components and
clients. These are created along with other object instances by the JITA ser-
vices, which inspect the configurations in the COM+ catalog. COM+ uses the
term lightweight proxies for the objects that implement services and the proc-
essing involved in providing a service is called performing a service switch.
This terminology is probably intended to create an analogy with the proxy ob-
jects used in COM/DCOM to support invocation across process and machine
boundaries, which involve performing context switches. COM+ proxies are
lightweight in the sense that the overheads associated with service switches
are only a fraction of those resulting from context switches. Another difference
between COM+ and COM/DCOM proxies is that the former is generated at
run-time. In the case where multiple services are required, e.g. both synchro-
nization and security, Löwy indicates that multiple proxies are created:

The exact way the lightweight proxies mechanism is implemented is not docu-
mented or widely known. However, in this case, COM+ probably does not gen-

 2.2 Component-Based Software Engineering 41

erate just one lightweight proxy to do multiple service switches, but rather puts
in place as many lightweight proxies as needed, one for every service switch.

Figure 2-4 illustrates the use of two proxies to provide synchronization and
security for an object’s operations. In this situation, an object C1 provides op-
erations to clients through an interface IC1. Due to the configuration in the
COM+ catalog, the JITA services have created the two proxies and placed
them between the object and its clients, as shown in the figure. Clients invoke
the operations of the IC1 interface on the first proxy, which performs synchro-
nization between concurrent invocations and forwards invocations to the
other proxy. This proxy, in turn, forwards invocations to the C1 object, while
ensuring that security policies are met, e.g. by authenticating the identity of
the calling clients and only forwarding invocations from authorized clients.

Figure 2-4 Lightweight proxies to provide services in COM+

The use of proxies created at the time of object instantiation is a practical way
of implementing interception. Since the operations of COM objects are in-
voked via interface pointers, which are based on simple function pointers,
there is no straightforward way for the run-time system to intercept invoca-
tions made directly to a COM object. A proxy always implements the same set
of interfaces as the object it encapsulates, thus preserving interface navigation.
The fact that proxies are generated by the JITA services at run-time means that
instantiation must take some additional time in COM+. An alternative ap-
proach that might result in less additional time would be to generate and store
proxy object implementations at configuration time.

42 Chapter 2 State of the Art and Related Work

2.2.4 Component-Based Software Engineering Practices
As already mentioned, CBSE denotes the practice of assembling software from
existing components. Thus, in comparison to traditional software engineering,
the activity of assembling replaces that of programming. In practice, however,
some programming is usually needed to make a set of independently devel-
oped component work together. Furthermore, traditional development mod-
els, where design and implementation follows strictly from a preceding stage
of requirements identification, is less suited for CBSE, where it is usually nec-
essary also to adjust requirements to match what available components can
offer. For reference, Figure 2-5 is a simple UML activity diagram illustrating
the traditional waterfall model of software development [54]. In more modern
models, such as the Rational Unified Process [10], these activities are repeated
iteratively.

Requirements
identification Design Implementation Verification

& Validation

Figure 2-5 Waterfall model of software development

Among the first to address the particular practices required for component-
based software in a systematic fashion were Brown and Wallnau [55], who de-
fine a reference model for such systems. As illustrated in Figure 2-6, the model
focuses on the system as a set of components that progress through various
states during development and evolution. Off-the-shelf components are pre-
existing components that may have been acquired externally or reused from
previous projects within the development organization. They are character-
ized by having hidden interfaces, where interface is interpreted to include not
only a functional description but also all other information that is needed to
use a component. Qualification is the process of discovering the hidden parts
of the interfaces. The qualified components are subsequently adapted to re-
move architectural mismatch – i.e. mismatched assumptions about the sys-
tem’s architecture [26]. Adaptation is usually accomplished by writing wrap-
pers. The adapted components are composed according to a selected architec-
tural style. As discussed in the previous section, selecting a component model
in part determines this architectural style. Composition may include writing
some additional code, which is often call glue code. The system finally enters a
stage of evolution where component may be updated.

 2.2 Component-Based Software Engineering 43

off-the-shelf
components

qualified
components

adapted
components

assembled
components

updated
components

qualification to
discover interface

adaptation to
remove architec-
tural mismatch

composition into
selected architec-
tural style

evolution to
update
components

Figure 2-6 Reference model for composition of software components

A central aspect of this model is the assumption that components initially have
hidden interfaces, which is particularly important when using commercial
components. This work has been extended by Wallnau and others [56], with
an even more pronounced focus on commercial components. A central con-
cept of the work is that of an assembly – a set of interoperating components that
may form part of a system. It is for instance argued that assemblies are more
useful as units of evaluation and selection than individual components.

In other component-based systems, as in that of the industrial case study pre-
sented in this dissertation, components are implemented to comply with pre-
specified interfaces. In these cases, the activities of requirements identification
and design will be less different from traditional software engineering, since
there is no evaluation, selection, qualification, or adaptation of existing com-
ponents. However, an essential goal of the design activity is to identify the
components to be developed and allocate functionality to them. This can be
seen as input for identifying requirements for each component, which can
subsequently be independently developed and tested. This leads to a form of
nested development process where similar activities are performed on both
system and component levels. Based on the waterfall model in Figure 2-5, this
can be depicted as in Figure 2-7.

44 Chapter 2 State of the Art and Related Work

Figure 2-7 Waterfall model adopted for component-based software development

In addition to the practices of developing component-based system, the lit-
erature also discusses non-technical aspects of CBSE. For instance, Szyperski
[24] points out that a component market of critical size is needed for the de-
velopment of commercial components to represent a viable business op-
portunity. Another example is Heineman and Councill’s book [25], which cov-
ers regulatory and legal issues, such as the applicability of commercial law to
software components.

2.3 Embedded Real-Time Systems
Embedded real-time computing systems occur as part of many different prod-
ucts and systems, including cell phones, refrigerators, cars, airplanes, and in-
dustrial plants. A persistent trend in the development of such systems is the
increasing amount of functionality implemented in software. For instance, as
noted by Atkinson and others their book [57], the amount of software in cars
has grown from about 100 kilobytes 15 years ago to a projected 1 gigabyte in
the latest high-end models. In the foreword to the book, Gemund notes that
the development of such software tend to be costly and cites estimated costs of
US $15-30 per line of code in consumer products, $100 in defense applications,
and $1000 in highly critical systems like space shuttles. Thus, a primary chal-
lenge related to embedded real-time systems is improved methods for cost ef-
ficient development of software for such systems.

Requirements
identification

Design Implementation
(assembly)

Verification &
Validation

Requirements
identification #1 Design #1 Implementation #1 Verification &

Validation #1

Requirements
identification #n Design #n Implementation #n Verification &

Validation #n

…

(decompositon)

 2.3 Embedded Real-Time Systems 45

2.3.1 Definitions of Embedded Real-Time Systems
There are many definitions of real-time systems in the literature, most of
which states that the correctness of such system depends not only on com-
puted outputs, but also on the times at which these outputs are delivered. It
has been argued that the term “depending on time” is quite vague and may be
used to argue that any computer system is a real-time system – e.g. any useful
system must produce output in finite time. In one of the more influential
books on real-time systems [58], Laplante attempts to formulate a more precise
definition of real-time software systems by first defining the concept of re-
sponse time:

The time between the presentation of a set of inputs to a software system and
the appearance of all the associated outputs is called response time of the soft-
ware systems.

Based on this, the following definition is given:

A real-time system is a system that must satisfy explicit (bounded) response-time
constraints or risk severe consequences, including failure.

This is furthermore augmented with a definition of what it means for a system
to fail:

A failed system is a system that cannot satisfy one or more of the requirements
stipulated in the formal systems specification.

Thus, in order to avoid failure, the design of a real-time software system must
ensure that the system can meet its response time requirements. A conse-
quence is that the software may only be run on top of a platform that allows
such assertions to be made. Today, this is most often achieved by using a real-
time operating system (RTOS) based on pre-emptive priority-based scheduling [59].

Laplante furthermore notes that systems that must meet explicit response time
constraints to avoid failure (as in his definition) are sometimes called hard real-
time systems. Conversely, systems where failing to meet response time con-
straint results in degraded performance, but not outright failure, are called soft
real-time systems. Again, it can be argued that this is the case for all computer
systems, as some bound on response times must be set for acceptable per-
formance. The term firm real-time systems is sometimes used to distinguish
those systems with absolute response time constraints where some low prob-
ability of failing to meet constraints is acceptable.

46 Chapter 2 State of the Art and Related Work

The IEEE’s glossary of software engineering terminology (IEEE Std 610.12-
1990) [60] defines the term real-time as follows:

Pertaining a system or mode of operation in which computation is performed
during the actual time that an external process occurs, in order that the compu-
tation results can be used to control, monitor or respond in a timely manner to
the external process.

An interesting aspect of this definition is that it focuses on a system’s purpose
of controlling or monitoring an external process. Thus, the meaning of the
term “timely manner” depends on the external process and the system’s pur-
pose and need not be generally defined more precisely. A reasonable assump-
tion is that the term “external process” is not used with a human user (inter-
acting with the system through a keyboard, mouse, and monitor) in mind, but
rather some equipment whose timing is determined by the laws of physics.

This glossary also provides a definition of an embedded computer system:

A computer system that is part of a larger system and performs some of the re-
quirements of that system; for example, a computer system used in an aircraft
or rapid transit system.

Thus, this definition states that an embedded system is part of a larger system
and, apart from that, relies on a couple of examples to convey the meaning of
the term. Li and Yao [61] note that no single comprehensive definition of the
term exists, but still manage the following, which is somewhat more informa-
tive than that of the glossary:

Embedded systems are computing systems with tightly coupled hardware and
software integration, that are designed to perform a dedicated function. The
word embedded reflects the fact that these systems are usually an integral part
of a larger system, known as the embedding system.

This definition includes the additional information that software is tightly
coupled with hardware and that both are designed to perform a dedicated
function. Laplante has a similar view of an embedded software system as be-
ing completely encapsulated by the hardware it controls. This is contrasted
with an organic system, not highly dependant on the hardware on which it
runs. A semi-detached system is a software system that displays characteristics
of both embedded and organic systems. Since an embedded system is de-
signed to perform a dedicated function, an RTOS intended for such systems
should support tailoring to different hardware configurations [62].

 2.3 Embedded Real-Time Systems 47

2.3.2 Industrial Control Systems

Client/server
Network

Control Network

Fieldbus

Intranet

Controllers

Servers

Workplaces
(Rich clients) Router

Workplaces
(Thin or rich
clients)

Field devices

Firewall

Internet
Workplaces
(Thin clients)

Server

Figure 2-8 Typical configuration of industrial information and control systems

A specific application domain within the broader domain of embedded real-
time systems is industrial control systems, which are computer systems that con-
trol physical processes and equipment. More specifically, they are used in the
control of industrial plants. In practically all cases, these are distributed sys-
tems in which control functions are performed by several nodes that commu-
nicate via different types of networks. Typically, these nodes also communi-
cate with other computer systems, such as different types of servers and work-
stations. The controllers and field devices are furthermore connected to physi-

48 Chapter 2 State of the Art and Related Work

cal processes and equipment to be controlled. Figure 2-8 illustrates a typical
configuration of interconnected information processing and control nodes in
an industrial system. Industrial control systems is given particular attention in
this dissertation, as the development of such a system is the topic of the indus-
trial cases study and the example systems used in the other empirical studies
are also taken from this domain.

This system comprises different types of computers and other devices that
communicate over different networks. The client/server network is used for
communication between servers and between servers and workplaces. In
some cases, a computer may be used as both a server and a workplace. The
network may be connected to a corporate intranet via a router and further to
the Internet via a firewall. The control network connects servers and control-
lers. In small systems, the control and client/server networks may be com-
bined in one physical network. Different types of fieldbuses are used to inter-
connect field devices and to connect them to the rest of the system, either via
controllers as the figure shows or directly to servers. In some cased, fieldbuses
and the control network may share the same physical medium.

It is customary to divide the functionality of this kind of systems into different
levels, where the functions of each level depend on those of the lower levels.

• The workplace level comprises different types of user interaction. A typi-
cal example is the software used by operators in control rooms to view
and possibly alter the state of the controlled processes. This level also
includes applications for such task as analysis of process data and con-
figuration of process equipment. Applications usually run on PCs or
other types of workstations, which may be attached to the client/server
network, an intranet, or the Internet.

• A central function of the server level is to collect and store process data,
which is used by different types of applications. These are typically cli-
ent-server applications where data presentation is implemented on the
workplace level and the majority of computation and storage on the
server level. In addition, data and commands, possibly originating in
the Workplace level, may be sent to process equipment. The server level
may also include functions, such as optimization, that determine long-
term control strategies. Servers that provide this functionality are con-
nected to the client/server network and possibly the control network.

 2.3 Embedded Real-Time Systems 49

• The main function of the control level is the execution of control software
by dedicated controllers. Typically, these repeatedly read values from
sensors and computes values to be written to actuators, thus implement-
ing sampled control loops, as discussed further at the end of this section.
Control applications may be much more complex, however, for instance
including sophisticated communication with other devices. Controllers
are attached to the control network and possibly to fieldbuses.

• The field level comprises functions performed by different types of field
devices. The simplest of these are I/O modules, which perform transla-
tions between physical signals and controller data. There may also be
more advanced devices, such as smart sensors and actuators, which may
be connected to a controller or directly to a server. Field devices often
communicate over fieldbuses.

These levels are defined from the premise that the functions within each may
require the presence of functions at lower levels but should be able to operate
independently of higher-level functions. In addition, the functions within each
level share characteristics that affect (among other things) the design of the
software that implements them. One example is the different real-time and
performance requirements. The control and field levels are dominated by hard
and soft real-time deadlines, which often mandate the use of real-time operat-
ing systems. Often, the nodes on these levels are based on standards for pro-
grammable controllers, such as IEC 61131 [63], instead of relying on applica-
tions built directly on top of the operating system. To ensure availability, re-
dundant hardware architectures may be used, in which the actual control of
the process is performed by a primary processor, with additional processors
working in stand-by mode and able to take over in case the primary processor
fails.

Although the functions in the server layer may also be subject to response-
time requirements, they tend to be dominated by a desire to maximize average
throughput. Thus, they are usually implemented on top of general-purpose
operating systems, such as Windows or Unix, and other platform products,
such as database management systems. This furthermore makes the use of
component technologies, such as COM+ and EJB, a realistic possibility. Re-
dundancy may also be employed at this level, typically in the form of server
groups. Unlike in the redundant architectures used at the lower levels, the
servers in a group usually perform load balancing. Thus, if one server fails, the
system will continue to operate with reduced performance. The user interface

50 Chapter 2 State of the Art and Related Work

functions of the workplace level are usually not subject to real-time require-
ments. They are often implemented using graphical design tools and possibly
such technologies as ActiveX controls and JavaBeans.

Another characterizing feature of the levels is the difference in product life cy-
cles. As a general rule, hardware and software components at lower levels are
updated less often than at higher levels. According to experiences from ABB,
applications have a life span of 3–5 years at the workplace level, 5–8 years at
the server level, 8–15 years at the controller level, and 10–20 years at the field
level. One result of this is that applications at one level are often required to
work with legacy applications at lower levels, but less often at higher levels.
For instance, new releases of client applications at the workplace level typi-
cally need to work with existing server software, while it is more common for
new releases of server software also to require updated client applications. On
the other hand, new server releases are usually required to support legacy
hardware and software at the control and field levels. This difference in life
cycles is in part motivated by the unidirectional dependence between the lev-
els, which means that updates at one level is likely to disturb functions at all
higher levels. Thus, in general, upgrades at lower levels entail more wide-
spread disturbances and associated costs. Another factor that tends to make
product updates more costly at, in particular, the control and field levels, is the
possible need of disrupting the controlled process.

As already mentioned, applications at the workplace and server levels are of-
ten organized as client-server applications, where the server level is responsi-
ble for any communication with controllers and field devices. To simplify the
implementation of client applications that can work with equipment from dif-
ferent vendors, a COM-based standard called OLE for Process Control (OPC)
[64] has been created. OPC defines a set of COM interfaces for supporting ba-
sic data access as well as such functionality as alarm and event handling, his-
toric data access, batch processing, etc. Many vendors of process equipment
now provide OPC servers that implement (a subset of) these interfaces, which
client applications can access using DCOM. The OPC standard is managed by
an industry association called the OPC Foundation, which has over 400 mem-
ber organizations and lists more than 140 manufacturers of OPC-compliant
products. A standard that can be used for communication between servers
and controllers is the Manufacturing Message Specification (MMS) [65], which
specifies services suitable for such applications as data exchange and
download of control software. There are also standards for communication
between controllers, such as IEC 61131-5 [66]. As for the field level, a number

 2.3 Embedded Real-Time Systems 51

of fieldbuses have been standardized [67], some of which are particularly
popular within certain industry sectors or geographical areas. A strong current
trend is the increased popularity of fieldbuses based on standard network
technologies, such as TCP/IP and Ethernet.

A very common function in industrial control systems, especially in the con-
trol level, is sampled control loops [68], which are also found in many other
control systems, e.g. in vehicles, household appliances, and medical equip-
ment. Control applications can be categorized into continuous, discrete, and hy-
brid control. In the first category, a controller samples continuous signals at
regular intervals and computes streams of data to produce approximations of
continuous output signals. An example application is the control of a valve to
keep the flow of a fluid constant in the presence of varying supply pressure. In
the second category, the controller reacts to discrete events and affects discrete
actions. For instance, a controller could detect the level of fluid in a tank reach-
ing minimum or maximum levels, and turn the supply on or off accordingly.
Hybrid control applications combine both the other two types of control.

Continuous control applications can further be divided into closed-loop control
and open-loop control. In the case where a single output of a physical process is
being controlled using closed-loop control, the controller measures this out-
put, called the controlled variable, and compares it with the desired value, the
reference. Based on the difference, an input signal to the process, called the ma-
nipulated variable, is produced to drive the output in the desired direction. In
this way, the controller can make the process output track a variable reference,
or keep it constant in the presence of external disturbances. Figure 2-9 illus-
trates the principle, which is also known as feedback control. For simplicity, sen-
sors and actuators are not shown, but taken to be part of the controller.

Controller Process
Reference

Controlled
variable

Manipulated
variable

Disturbance

Figure 2-9 Closed-loop control system

52 Chapter 2 State of the Art and Related Work

In some cases, it may be advantageous to use the principle of open-loop con-
trol, also called feed-forward control. As illustrated in Figure 2-10, the controller
measures the disturbance and sets the manipulated variable so as to keep the
process output equal to the reference. This requires that the process is well
understood so that the combined effect of the measured disturbance and the
computed input can be accurately predicted. In addition to pure closed-loop
and open-loop applications, there are applications where both the disturbance
and the process output are measured. Also, there are multi-variable control ap-
plications in which multiple process variables are measured and controlled.

Controller Process
Reference

Controlled
variable

Manipulated
variable

Disturbance

Figure 2-10 Open-loop control system

In the purest form of discrete control, the controller is only equipped with
digital (i.e. binary) inputs and outputs, and the control software can be viewed
as emulating digital electronic circuits. This has been utilized in graphical pro-
gramming tools. Figure 2-11 shows a simple example of such a program in
which the output “Run” becomes true when the input “Start” becomes true,
and then stays true until the input “Stop” becomes true. The block marked
“≥1” is a logical or-gate and the block marked “&” is a logical and-gate with its
lower input inverted.

&Start

Stop

Run
≥1

Figure 2-11 Example logic for discrete control system

In continuous control loops, the process is usually modeled as a system of dif-
ferential equations, with the inputs and outputs being functions of time. Often,

 2.3 Embedded Real-Time Systems 53

the controls software is also implemented so as to approximate a system of
differential equations. In such systems it is essential that the frequency with
which the controller reads input signals and updates output signals, the sam-
pling frequency, is sufficiently high to ensure faithful approximation of the con-
trol equations. This translates into a response time constraint on the computa-
tions the controller performs at each sample. In a programmable controller, the
programmer should be able to set the sampling frequency, and this frequency
should be guarantied with some accuracy. This leads to hard real-time re-
quirements for the controller product. In discrete and hybrid control, real-time
requirements also occur to ensure the timing of actions in relation to events.

A particularly common type of closed-loop control is called proportional-
integral-differential (PID) control. In this simple type of control, the manipu-
lated variable m is computed from the error variable e – i.e. the difference be-
tween the current and desired value – as in the formula below.

dt
tdeKdeKteKtm D

t

IP
)()()()(

0

++= ∫ ττ

The code below shows how this can be approximated in software. The code is
written in the Structured Text language, which is one of the programming lan-
guages defined in the IEC 61131-3 standard [69].

Error := Reference – Input;
Sum := Sum + Error;
Output = Kp*Error + Ki*Sum*T + Kd*(Error – Err_old)/T;
Err_old := Error;

Traditionally, controller products have been designed for either continuous or
discrete control. Two important categories of programmable controller prod-
ucts have been distributed control systems (DCSs) for continuous control and
programmable logic controllers (PLCs) for discrete control. In the past, PLCs usu-
ally only supported simple computations on digital data, and the costs for
these were considerably lower than for DCSs, which were required to perform
at least numerical computations. However, the dramatic reduction in the price
of computing hardware has resulted in both more sophisticated PLCs and less
expensive DCSs, trends that have lead to a convergence of these product cate-
gories into a single category of products often called programmable controllers.
Such products still vary considerably in e.g. price and functionality, though.

54 Chapter 2 State of the Art and Related Work

2.3.3 Software Components in Embedded Real-Time Systems
As already noted, software components and component models are not widely
used in embedded real-time systems and the dominant research direction is
the definition of new component models for this domain. Typical characteris-
tics of such models include source code components, static system configura-
tion, and relatively narrow application domains. An example is the Koala
component model for consumer electronics software, which was briefly de-
scribed above. Other examples of such component models include PECOS [70]
for field devices and SaveCCM [71] for vehicle control systems. Presumably,
models are designed to exhibit such characteristics in order to ensure that sys-
tems can meet their requirements with respect to timing predictability, re-
source usage, and other important quality attributes in the domains targeted
by the specific component models.

Möller and others have attempted to capture the requirements for component
models to be used for embedded real-time systems [72]. They base their work
primarily on interviews with senior technical staff from different companies.
The work is slanted towards safety-critical software for heavy vehicles. Based
on the interviews, the authors formulate technical requirements and develop-
ment requirements. In addition, they present derived requirements, based on
perceived implicit information from the interviews. The technical require-
ments are summarized in the list below.

• Analyzable. As the participating companies strive for better analysis of
system behaviors, it is desirable for a component model to support such
analysis. Provided that each component is tested and deemed function-
ally correct, the main analysis issues are related to composition and ex-
tra-functional properties, including timing.

• Testable and debuggable. Testing and debugging must be possible and
supported by tools. It is desirable that components are tested in isolation
before being integrated in the system.

• Portable. Components and supporting infrastructure should be as plat-
form independent as possible, such that they can be ported to different
operating systems and hardware with minimal effort. Ideally, compo-
nents should even be as independent as possible from the infrastructure.

• Resource constrained. As the affected products are sensitive to computing
hardware costs, the resource usage of components and infrastructure

 2.3 Embedded Real-Time Systems 55

should be minimized. Ideally, the use of components should not result
in any run-time overhead.

• Component modeling. The component model should be based on a stan-
dard modeling language, such as UML. Developing new modeling
techniques is not considered economically feasible.

• Computational model. Components should be passive, i.e. not contain
their own threads of execution. A computational model where compo-
nents are allocated to threads during composition is desirable.

Next, the authors present a set of requirements related to the development
process, which are briefly described in the list below.

• Introducible. To manage costs and risks, it should be possible to adopt
the component model gradually

• Reusable. It must be possible to reuse components in other systems than
that for which they were originally developed. Ideally, it should even be
possible to reuse components in systems based on different platforms.

• Maintainable. Components should be easy to change and maintain with-
out breaking existing systems. Tool support is desirable, e.g. to support
versioning.

• Understandable. To minimize effort and increase quality, the component
model and systems based on it should be easy to understand. The im-
plementation of error prone functions should desirably be supported by
tools, e.g. utilizing automatic code generation.

Based on the above requirements, which were explicitly expressed in the in-
terviews, the authors have synthesized two derived requirements, which are
summarized below.

• Source code components. To allow white-box testing, source code compo-
nents are preferable to binaries. The aim is not to modify components,
so a glass-box approach may be sufficient, although it may desirable to
perform compile-time optimization to reduce resource usage.

• Static configuration. In the interest of analyzability, testability, limited re-
source usage, and understandability, compile-time configuration of sys-
tems is preferable to run-time configuration.

56 Chapter 2 State of the Art and Related Work

The derived requirements, along with the focus on the relatively narrow ap-
plication domain of safety-critical software for heavy vehicles, place this work
within the main research direction identified above. As already noted, this dis-
sertation explores an alternative to this direction, by investigating the possi-
bilities of using a model based on binary components and using COM as the
starting point. In the following, the technical and development requirements
listed above are compared to the characteristics of binary components and
COM.

Analyzability is not a characteristic of COM components or binary executable
software in general. To be able to analyze the behavior of systems built from
COM components, suitable models describing the behavior of each component
is required in addition to the components themselves. A component supplier
might be responsible for providing such models and guaranteeing that the ex-
ecutable component complies with the models. Testing and debugging of
COM components and component-based systems has strong tool support,
most notably in Visual Studio. If component source code is available, debug-
ging of systems can be performed in a white box fashion. COM does not pre-
scribe a programming language for implementing components, and the port-
ability of components is largely dependent on how they are programmed. The
COM run-time system is probably fairly simple to port to different platforms,
due to its relative simplicity. As demonstrated in later chapters of this disserta-
tion, the use of COM results in some time and memory overheads but these
are very modest, as is the size of the COM run-time system. COM defines its
own language for defining interfaces, and translation between this language
and UML is straightforward. UML is also suitable for specifying systems
based on COM components. In fact, parts of UML are based on notations first
used in connection with COM. A COM component is basically passive, as its
methods must be invoked by a client for any code in the component to be exe-
cuted. There is, however, no rule that prevents a component’s methods from
creating new threads, thereby making the component active.

As demonstrated in the industrial case study in Chapter 5, COM is well suited
for gradual adoption. This is, in fact, a major reason that the model is adopted
as part of the evolutionary approach of this dissertation. COM supports reus-
ability through the separation of interfaces and implementation. There are no
advanced facilities, such as parameterization, to enhance reusability further,
however. But as COM gives component developers a high degree of freedom
with respect to how components are implemented, it is quite possible to
achieve increased reusability through recompilations, possibly using pro-

 2.3 Embedded Real-Time Systems 57

gramming language mechanisms for e.g. parameterization. The maintainabil-
ity of a COM component depends largely on how it is programmed. COM de-
fines a standard policy of versioning, and observing this policy reduces the
risk that a component change breaks existing systems. COM is sometimes con-
ceived as complicated by developers not familiar with the model. Its wide-
spread use in the desktop and information system domains, however, means
that there are a high number of developers who understand the model well.
COM has support for automatic handling of synchronization through apart-
ments and communication through DCOM. The approach proposed in this
dissertation introduces more flexible support for synchronization as well as
services to support other functions, such as timing and execution control.

As the above discussion shows, the use of binary software components for
embedded real-time systems is not seriously at odds with the requirements
expressed by industrial participants in an interview study. Although the main
research direction is still source code components and static configuration,
some approaches based on binary components have recently been proposed.
One of these is the Robocop component model [73], which is based on Koala
and also targets the consumer electronics domain. The primary goal of this
model is to combine the robustness and reliability of models like Koala with
the flexibility of models like COM, especially with respect to run-time up-
grades. A Robocop component, which is also called a component package, con-
sists of a number of optional models, each of which may be human-oriented or
machine-oriented. An example of a human-oriented model is documentation
and examples of machine-oriented models include simulation models, inter-
face models, and executable models. A component’s executable model is also
called an executable component and corresponds to a software component as
defined in Section 2.2.1. In this way, Robocop distinguishes the units of trad-
ing – component packages – from the units of deployment – executable com-
ponents. Since this dissertation is concerned with software components in the
latter sense, the following discusses Robocop executable components in some
more detail.

A Robocop executable component is similar to a COM component in many
ways. It provides a set of services, each providing and possibly requiring a set
of named interfaces. Such a service plays the same role as an object in COM and
are subject to instantiation, while interfaces are identical to those of COM. Dif-
ferences are that the interfaces of a service are named – allowing one service to
provide and require multiple copies of interfaces of the same type – and that a
service can only invoke the services of other components and the run-time sys-

58 Chapter 2 State of the Art and Related Work

tem through explicitly required interfaces. The named interfaces are similar to
ports in UML 2.0 and the terms interface and port are used as synonyms in Ro-
bocop. Executable components can be specified in the Robocop Interface Defini-
tion Language (RIDL). Below is an example RIDL specification of a component
similar to the COM component used in the example application in Chapters 6
and 7. For brevity, the definition of the interfaces IActuator and ISensor are left
out as well as most of the definition of IController. These interfaces should
contain essentially the same operations as in those chapters. The ellipses
within brackets are placeholders for the specification of GUIDs.

interface IController {…} {
 void set_DesiredValue(in double value);
 void Start();
 …
};

service SController {…} {
 provides {
 IController controller;
 };
 requires {
 IActuator actuator;
 ISensor sensor;
 };
};

service SPIDController {…} {
 complies SController;
 …
};

component CPIDController {…} {
 provides SPIDController
};

The example illustrates how components are specified by referring to the ser-
vices they provide, which are in turn specified by referring to the interfaces
they provide and require and assigning names to these. Unlike in COM, ser-
vices are not specified inside component specifications, and a service can be
provided by several different components. In addition to the explicitly speci-
fied services, all components implement a special service termed the service

 2.3 Embedded Real-Time Systems 59

manager, and all service provide an interface derived from rcIService that can
be used to retrieve pointers to a service’s provided interfaces and supply a ser-
vice with pointers for its required interfaces, called binding.

The example also illustrates the use of a “complies-with” relationship in the
specification of the service called SPIDController. The meaning of the rela-
tionship is that SPIDController provides at least the same interfaces as
SController and requires the same interfaces as SController. Thus, any
code written to work with SController will also work with SPIDControl-
ler. This is an example of syntactic substitutability as described in Chapter 3.
The ellipsis in the SPIDController specification is a placeholder for the re-
maining parts of the service specification. It should include the same provided
and required interface as for SController and may include additional pro-
vided interfaces. It may not include any required interfaces that are not also
required by SController. In general, an entity can be substituted for another
also if it requires fewer interfaces. In Robocop, however, the complies-with
relation requires the sets of required interfaces to be identical, since a service’s
scIService interface contains one binding operation for each required interface.
Thus, if a service required fewer interfaces than another service, the scIService
interface of the former would provide fewer operations than that of the latter
and substitution would not be possible. As the complies-with relation is ex-
plicitly specified, however, it would probably be quite easy to allow the com-
pliant service to have fewer required interfaces and provide an scIService in-
terface with null-operations for binding of the “lacking” interfaces.

Robocop also specifies a component model implementation called the Robocop
Runtime Environment (RRE), which is similar to the COM library in some ways.
For example, a primary function of the RRE is to support instantiation of ser-
vices, through a mechanism similar to that of COM. Upon request of a service
instance, the RRE looks up the component providing the service and its physi-
cal location in the RRE Registry. It then loads the component if necessary and
retrieves its service manager, which creates the requested service instance. If
the service is provided by multiple components, the RRE is free to choose
which component to use for instantiation. If a registered service complies with
the requested service, the RRE can instead provide an instance of the former.
A primary goal of Robocop is to provide the possibilities for run-time compo-
nent upgrades lacking in Koala. This is achieved by the Robocop Download
Framework. This framework consists of five roles, which may run on the target
device or other nodes. The initiator role initiates and coordinates the download
process in response to an external event. To verify the presence of all entities

60 Chapter 2 State of the Art and Related Work

involved in the process, it communicates with a locator. The locator locates a
repository containing the component to be downloaded, the target of the
download, and a decider. The role of the decider is to determine whether it is
possible to download the component to the target, which is done by matching
profiles obtained from the repository and the target. If the decider confirms
that the download can be performed, the initiator either informs the reposi-
tory, which pushes the component to the target, or the target, which pulls the
component from the repository. In either case, the target completes the process
by registering the component.

Since its initial development, the Robocop model has been extended by the
projects Space4U [74] and Trust4All [75]. While the former focuses on off-line
prediction of run-time properties of Robocop system, based on scenarios and
simulations, the latter introduces run-time mechanisms resembling the ap-
proach to software components services presented in this dissertation. The
topic of the Trust4All project is fault management, which is achieved by inter-
ception of invocations of operations on Robocop interfaces, which also in-
cludes invocations of system operations by components. The interception is
performed by software entities called middlemen, which are inserted when
components are bound to each other or to the run-time systems. These mid-
dlemen, which correspond to proxy-objects in COM+ and the approach pre-
sented later in this thesis, are generated at bind-time (i.e. at run-time) by an
extension of the RRE called the Middleman Generator (MG). The function of a
Trust4All middleman is to first detect failures by comparing the invocations it
intercepts with a behavior model for the component in question. If an invoca-
tion is not considered a failure, it is forwarded to the proper receiver. When a
failure is detected, the middleman tries to diagnose the failure, i.e. determine
the fault that caused it, by the application of symptom rules. Next, it attempts to
identify the best action to repair the fault by applying a set of repair rules.
When the best action has been found it is taken, which can be done in several
different ways. For instance, the component can be informed about the sus-
pected fault and try to repair it itself. Alternatively, the middleman may retry
failed invocations or restart the component in question. A key concept of
Trust4All is that pre-specified symptom and repair rules cannot be expected to
be optimal. Therefore, the run-time system monitors the success rates of diag-
nostics and repair actions, as well as measured costs of repair actions. The
rules are then updated to maximize the expected success rate and minimize
the expected costs for future diagnostics and repair actions.

 2.4 References 61

The Robocop component model is similar to the approach proposed in this
dissertation, since it uses binary components and is inspired by COM. Its con-
cept of services, however, should not be confused with the concept of software
component services described in Chapter 6 of this dissertation. On the other
hand, the extensions provided by the Trust4All project are similar to the latter
concept, since they use interception of operation invocations to augment the
functionality of software components. The main difference between Trust4All
middlemen and the proxies of the approach proposed in this dissertation is
that middlemen are generated at run-time while the proxies are generated and
compiled off-line. Still, the fault management concept of Trust4All could very
well have been implemented as a software component service in the latter ap-
proach. The fact that proxies are generated off-line would not prevent them
from using a set of symptom and repair rules that could be dynamically up-
dated.

2.4 References
[1] E. W. Dijkstra, “The Structure of the ‘THE’-Multiprogramming System.” In

Communications of the ACM, volume 11, issue 5, 1968.

[2] D. L. Parnas, “On the Criteria to Be Used in Decomposing Systems into Mod-
ules.” In Communications of the ACM, volume 15, issue 12, 1972.

[3] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software Architec-
ture.” In ACM SIGSOFT Software Engineering Notes, volume 17, issue 4, 1992.

[4] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd edi-
tion. Addison-Wesley, 2003.

[6] Institute of Electrical and Electronics Engineers, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems. IEEE Std. 1471-2000, 2000.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R Nord, and J.
Stafford, Documenting Software Architectures: Views and Beyond. Addison-
Wesley, 2002.

[8] J. Bosch, Design & Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison-Wesley, 2000.

62 Chapter 2 State of the Art and Related Work

[9] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture. Addison-
Wesley, 1999.

[10] P. Kruchten, The Rational Unified Process: An Introduction, 3rd edition. Addison-
Wesley, 2003.

[11] O.-J. Dahl and K. Nygaard, “SIMULA – An ALGOL-Based Simulation Lan-
guage.” In Communications of the ACM, volume 9, issue 9, 1966.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissidies, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[13] F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Ori-
ented Software Architecture: A System of Patterns. Wiley, 1996.

[14] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Meth-
ods and Case Studies. Addison-Wesley, 2002.

[15] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W.
Brown, S. Chulani, and C. Abts, Software Cost Estimation with COCOMO II.
Prentice-Hall, 2000.

[16] PO. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-Level
Modifiability Analysis (ALMA).” In Journal of Systems and Software, volume 69,
issues 1–2, 2002.

[17] M. Svahnberg, Supporting Software Architecture Evolution. PhD Thesis, Blekinge
Institute of Technology, 2003.

[18] R. Land, Software System In-House Integration. PhD Thesis, Mälardalen Univer-
sity, 2006.

[19] N. Medvidovic and R. N. Taylor, “A Classification and Comparison Frame-
work for Software Architecture Description Languages.” In IEEE Transactions
on Software Engineering, volume 26, issue 1, 2000.

[20] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[21] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, 2nd edition. Addison-Wesley, 2005.

[22] H.-E. Eriksson, M. Penker, B. Lyons, and D. Fado, UML 2 Toolkit. Wiley, 2003.

 2.4 References 63

[23] P. Kruchten, “The 4+1 View Model of Architecture.” In IEEE Software, volume
12, issue 6, 1995.

[24] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion. Addison-Wesley, 2002.

[25] G. T. Heineman and W. T. Councill (editors), Component-based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

[26] I. Crnkovic and M. Larson (editors), Building Reliable Component-Based Software
Systems. Artech House Books, 2001.

[27] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch: Why Reuse
is so Hard.” In IEEE Software, volume 12, issue 6, 1995.

[28] D. Box, Essential COM. Addison-Wesley, 1997.

[29] M. E. Russinovich and D. A. Solomon, Microsoft Windows Internals, 4th edition.
Microsoft Press, 2004.

[30] J. Murray, Inside Microsoft Windows CE, Microsoft Press, 1998.

[31] C. Wehner, Tornado and VxWorks. Books on Demand, 2006.

[32] F. E. Redmond III, DCOM: Microsoft Distributed Component Object Model. Wiley,
1997.

[33] D. Chappell, Understanding ActiveX and OLE. Microsoft Press, 1996.

[34] R. Englander, Developing Java Beans. O’Reilly, 1997.

[35] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java™ Language Specification, 3rd
edition. Addison-Wesley, 2005.

[36] T. Lindholm and F. Yelling, The Java™ Virtual Machine Specification, 2nd edition.
Addison-Wesley, 1999.

[37] D. S. Platt, Understanding COM+. Microsoft Press, 1999.

[38] D. S. Platt, Introducing Microsoft .NET, 3rd edition. Microsoft Press, 2003.

[39] E. Cerami, Web Services Essentials. O’Reilly, 2002.

[40] A. Wigley, S. Wheelwright, R. Burbidge, R. MacLoed, and M. Sutton, Microsoft
.NET Compact Framework. Microsoft Press, 2003.

64 Chapter 2 State of the Art and Related Work

[41] B. Burke and R. Monson-Haefel, Enterprise JavaBeans 3.0, 5th edition. O’Reilly,
2006.

[42] I. Singh, B. Stearns, and M. Johnson, Designing Enterprise Applications with the
J2EE™ Platform, 2nd edition. Addison-Wesley, 2002.

[43] Object Management Group, CORBA Component Model, V4.0. OMG for-
mal/2006-04-01, 2006.

[44] J. Siegel, CORBA 3 Fundamentals and Programming, 2nd edition. Wiley, 2002.

[45] A. Parsons and N. Randolph, Professional Visual Studio 2005. Wrox, 2006.

[46] K. C. Wallnau, J. Stafford, S. A. Hissam, and M. Klein, “On the Relationship of
Software Architecture to Software Component Technology.” In Proceedings of
the 6th International Workshop on Component-Oriented Programming, 2001.

[47] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau, “Enabling Predict-
able Assembly.” In Journal of Systems and Software, volume 65, issue 3, 2003.

[48] B. E. Rector and J. M. Newcomer, Win32 Programming. Addison-Wesley, 1997.

[49] P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte, J. G.
Slember, and D. Srivastava, “MEAD: Support for Real-Time Fault-Tolerant
CORBA.” In Concurrency and Computation: Practice and Experience, volume 17,
issue 12, 2005.

[50] R. Weinreich and J. Sametinger, “Component Models and Component Ser-
vices: Concepts and Principles.” In G. T. Heineman and W. T. Councill (edi-
tors), Component-based Software Engineering: Putting the Pieces Together. Addi-
son-Wesley, 2001.

[51] J. Löwy, COM and .NET Component Services. O’Reilly, 2001.

[52] D. Sceppa, Programming ADO. Microsoft Press, 2000.

[53] D. Sceppa, Programming Microsoft ADO .NET 2.0 Core Reference, 2005 edition.
Microsoft Press, 2006.

[54] W. W. Royce, “Managing the Development of Large Software Systems: Con-
cepts and Techniques.” In Proceedings of the Western Electronic Show and Conven-
tion, 1970.

 2.4 References 65

[55] A. W. Brown and K. C. Wallnau, “Engineering of Component-Based Systems.”
In Proceedings of the 2nd International Conference on Engineering of Complex Com-
puter Systems, 1996.

[56] K. C. Wallnau, S. A. Hissam, and R. C. Seacord, Building Systems from Commer-
cial Components. Addison-Wesley, 2001.

[57] C. Atkinson, C. Bunse, H.-G. Gross, and C. Peper (editors), Component-Based
Software Development for Embedded Systems: An Overview of Current Research
Trends. Springer, 2005.

[58] P. A. Laplante, Real-Time Systems Design and Analysis: An Engineer’s Handbook,
2nd edition. IEEE Press, 1997.

[59] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multi-programming
in a Hard Real-Time Environment.” In Journal of the ACM, volume 20, issue 1,
1973.

[60] Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Soft-
ware Engineering Terminology. IEEE Std. 610.12-1990, 1990.

[61] Q. Li and C. Yao, Real-Time Concepts for Embedded Systems. CMP Books, 2003.

[62] J. A. Stankovic and K. Ramamritham, “The Spring Kernel: A New Paradigm
for Real-Time Systems.” In IEEE Software, volume 8, issue 3, 1991.

[63] International Electrotechnical Commission, Programmable Controllers – Part 1:
General Information, 2nd edition. International Standard IEC 61131-1, 2003.

[64] F. Iwanitz and J. Lange, OPC: Fundamentals, Implementation and Application, 3rd
edition. Hüthig Fachverlag, 2006.

[65] ESPRIT Consortium CCE-CNMA (editors), MMS: A Communication Language
for Manufacturing. Springer, 1995.

[66] International Electrotechnical Commission, Programmable Controllers – Part 5:
Communications. International Standard IEC 61131-5, 2000.

[67] N. P. Mahalik (editor), Fieldbus Technology: Industrial Network Standards for Real-
Time Distributed Control. Springer, 2003.

[68] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory and De-
sign, 3rd edition. Prentice-Hall, 1996.

66 Chapter 2 State of the Art and Related Work

[69] International Electrotechnical Commission, Programmable Controllers – Part 3:
Programming Languages, 2nd edition. International Standard IEC 61131-3, 2003.

[70] T. Genßler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R.
Wuyts, G. Arévalo, B. Schönhage, and P. Müller, “Components for Embedded
Software – The PECOS Approach.” In Proceedings of the 2002 International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, 2002.

[71] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren, “SaveCCM – A
Component Model for Safety-Critical Real-Time Systems.” In Proceedings of the
30th EROMICRO Conference, 2004.

[72] A. Möller, J. Fröberg, and M. Nolin, “Industrial Requirements on Component
Technologies for Embedded Systems.” In Proceedings of the 7th International
Symposium on Component-Based Software Engineering, 2004.

[73] J. Muskens, M. R. V. Chaudron, and J. J. Lukkien, “A Component Framework
for Consumer Electronics Middleware.” In C. Atkinson, C. Bunse, H.-G. Gross,
and C. Peper (editors), Component-Based Software Development for Embedded Sys-
tems: An Overview of Current Research Trends. Springer, 2005.

[74] E. Bondarev, J. Muskens, P. de With, M. Chaudron, and J. Lukkien, “Predicting
Real-Time Properties of Component Assemblies: A Scenario-Simulation Ap-
proach.” In Proceedings of the 30th EUROMICRO Conference, 2004

[75] R. Su and M. R. V. Chaudron, “Self-adjusting Component-Based Fault Man-
agement.” In Proceedings of the 32nd EUROMICRO Conference on Software Engi-
neering and Advanced Applications, 2006.

67

Chapter 3

Specification of Software Components
with Kung-Kiu Lau and Shui-Ming Ho

3.1 Introduction
In its simplest form a software component contains some code (that can be exe-
cuted on certain platforms) and an interface that provides (the only) access to
the component. The code represents the operations that the component will
perform when invoked. The interface tells the component-user everything he
needs to know in order to deploy the component. Components can of course
be deployed in many different contexts.

Ideally, components should be black boxes, to enable users to (re)use them
without needing to know the details of their inner structure. In other words,
the interface of a component should provide all the information needed by its
users. Moreover, this information should be the only information they need.
Consequently, the interface of a component should be the only point of access
to the component. It should therefore contain all the information that users
need to know about the component's operations (that is, what its code enables it
to do) and its context dependencies (that is, how and where the component can
be deployed). The code, on the other hand, should be completely inaccessible
(and invisible), if a component is to be used as a black box.

The specification of a component is therefore the specification of its interface.
This must consist of a precise definition of the component's operations and
context dependencies and nothing else. Typically, the operations and context
dependencies will contain the parameters of the component.

68 Chapter 3 Specification of Software Components

The specification of a component is useful to both component users and com-
ponent developers. For users, the specification provides a definition of its inter-
face, viz. its operations and context dependencies. Since it is only the interface
that is visible to users, its specification must be precise and complete. For de-
velopers, the specification of a component also provides an abstract definition
of its internal structure. Whilst this should be invisible to users, it is useful to
developers (and maintainers), not least as documentation of the component.

In this chapter, we discuss the specification of software components. We will
identify all the features that should be present in an idealized component, in-
dicate how they should be specified, and show how they are specified using
current component specification techniques.

3.2 Current Component Specification Techniques
The specifications of components used in practical software development to-
day are mostly limited to what we will call syntactic specifications. This form
of specification includes the specifications used with technologies such as Mi-
crosoft’s Component Object Model (COM) [1], the Object Management
Group’s Common Object Request Broker Architecture (CORBA) [2], and Sun’s
JavaBeans [3]. The first two of these use different dialects of the Interface Defi-
nition Language (IDL) while the third uses the Java programming language to
specify component interfaces. In this section, COM is mainly used to illustrate
the concepts of syntactic specification of software components.

First, we take a closer look at the relationships between components and inter-
faces. A component provides the implementation of a set of named interfaces,
or types, each interface being a set of named operations. Each operation has
zero or more input and output parameters and a syntactic specification associ-
ates a type with each of these. Many notations also permit a return value to be
associated with each operation, but for simplicity we do not distinguish be-
tween return values and output parameters. In some specification techniques
it is also possible to specify that a component requires some interfaces, which
must be implemented by other components. The interfaces provided and re-
quired by a component are often called the incoming and outgoing interfaces
of the component, respectively.

Figure 3-1 is a UML class diagram [4] showing the concepts discussed above
and the relationships between them. Note that instances of the classes shown

 3.2 Current Component Specification Techniques 69

on the diagram will be entities such as components and interfaces, which can
themselves be instantiated. The model is therefore a UML metamodel, which
can be instantiated to produce other models. It is worth noting that this model
allows an interface to be implemented by several different components, and an
operation to be part of several different interfaces. This independence between
interfaces and the components that implement them is an essential feature of
most component specification techniques. The possibility of an operation be-
ing part of several interfaces is necessary to allow inheritance, or subtyping,
between interfaces. The model also allows parameters to be simultaneously
input and output parameters.

Component

Interface

Operation

*

in-interfaces*

*

*

Name

1

0..1

1 0..1
1

*

Parameter

1

*

Type

1 *

OutParameterInParameter

InOutParameter

*

out-interfaces

*

Figure 3-1 UML metamodel of the concepts used in syntactic specification of software
components

70 Chapter 3 Specification of Software Components

The model presented above is intended to be a generic representation of the
relationships between components, interfaces, and operations. In practice,
these relationships vary between specification techniques. For example, one
can distinguish between object-oriented specifications and what might be
called procedural specifications. In this chapter we will only consider object-
oriented specifications that are used by current technologies. This leads to no
loss of generality, as procedural specification can be seen as a special case of
object-oriented specification. There are subtle differences in the precise nature
of the relationship between a component and its interfaces in different object-
oriented specification techniques. In COM, for example, a component imple-
ments a set of classes, each of which implements a set of interfaces. The state-
ment that a component implements a set of interfaces thus holds by associa-
tion. In more traditional object-oriented specification techniques, a component
is itself a class that has exactly one interface. The statement that a component
implements a set of interfaces still holds, because this interface can include, or
be a subtype of, several other interfaces.

 As an example of a syntactic specification, we now consider the specification
of a COM component. Below is a slight simplification of what might be the
contents of an IDL file. First, two interfaces are specified, including a total of
three operations which provide the functionality of a simple spell checker.
Both interfaces inherit from the standard COM interface IUnknown. (All COM
interfaces except IUnknown must inherit directly or indirectly from IUnknown.
See [1] for more information about the particulars of COM.) All operations re-
turn a value of type HRESULT, which is commonly used in COM to indicate
success or failure. A component is then specified (called a library in COM
specifications), this implementing one COM class, which in turn implements
the two interfaces previously specified. This component has no outgoing inter-
faces.

interface ISpellCheck : IUnknown
{
 HRESULT check(
 [in] BSTR *word, [out] boolean *correct);
};

interface ICustomSpellCheck : IUnknown
{
 HRESULT add([in] BSTR *word);
 HRESULT remove([in] BSTR *word);
};

 3.2 Current Component Specification Techniques 71

library SpellCheckerLib
{
 coclass SpellChecker
 {
 [default] interface ISpellCheck;
 interface ICustomSpellCheck;
 };
};

Relating this specification to the model above, there is one instance of
Component, which is associated with two instances of Interface. Taking a
closer look at the first interface, it is associated with a single instance of
Operation, which is itself associated with one instance of InParameter and
two instances of OutParameter, representing the two named parameters and
the return value.

The information that can be obtained from a component specification such as
the above is limited to what operations the component provides, and the
number and types of their parameters. In particular, there is no information
about the effect of invoking the operations, except for what might be guessed
from names of operations and parameters. Thus, the primary uses of such
specifications are type checking of client code and as a base for interoperability
between independently developed components and applications. Different
component technologies have different ways of ensuring such interoperability.
For example, COM specifies the binary format of interfaces while CORBA de-
fines a mapping from IDL to a number of programming languages.

An important aspect of interface specifications is how they relate to substitu-
tion and evolution of components. Evolution can be seen as a special case of
substitution where a newer version of a component is substituted for an older
version. Substituting a component Y for a component X is said to be safe if all
systems that work with X will also work with Y. From a syntactic viewpoint, a
component can safely be replaced if the new component implements at least
the same interfaces as the older components, or, in traditional object-oriented
terminology, if the interface of the new component is a subtype of the interface
of the old component. For substitution to be safe however, there are also con-
straints on the way that the semantics of operations can be changed, as we
shall see in the next section.

72 Chapter 3 Specification of Software Components

3.3 Specifying the Semantics of Components
While syntactic specifications of components are the only form of specifica-
tions in widespread use, it is widely acknowledged that semantic information
about a component’s operations is necessary to use the component effectively.
Examples of such information are the combinations of parameter values an
operation accepts, an operation’s possible error codes, and constraints on the
order in which operations are invoked. In fact, current component technolo-
gies assume that the user of a component is able to make use of such semantic
information. For instance, COM dictates that the error codes produced by an
operation are immutable, i.e. changing these is equivalent to changing the in-
terface. These technologies do not, however, support the specification of such
information. In the example with COM, there is no way to include information
about an operation’s possible error codes in the specification.

Several techniques for designing component-based systems that include se-
mantic specifications are provided in the literature. In this section, we shall
examine the specification technique presented in [53], which uses UML and
the Object Constraint Language (OCL) [54] to write component specifications.
OCL is included in the UML specification. Another well-known method that
uses the same notations is Catalysis [55]. The concepts used for specification of
components in these techniques can be seen as an extension of the generic
model of syntactic specification presented in the previous section. Thus, a
component implements a set of interfaces that each consists of a set of opera-
tions. In addition, a set of pre-conditions and post-conditions is associated
with each operation. Pre-conditions are assertion that the component assumes
to be fulfilled before an operation is invoked. Post-conditions are assertions
that the component guarantees will hold just after an operation has been in-
voked, provided the operation’s pre-conditions were true when it was in-
voked. In this form of specification, nothing is said about what happens if an
operation is invoked while any of its pre-conditions are not fulfilled. Note that
pre- and post-conditions is not a novel feature of component-based software
development, and is used in a variety of software development techniques,
such as the Vienna Development Method [56] and Design by Contract [57].

Naturally, an operation’s pre- and post-conditions will often depend on state
maintained by the component. Therefore, the notion of an interface is ex-
tended to include a model of that part of a component’s state that may affect
or be affected by the operations in the interface. Now, a pre-condition will in

 3.3 Specifying the Semantics of Components 73

general be a predicate over the operation’s input parameters and this state,
while a post-condition is a predicate over both input and output parameters as
well as the state just before the invocation and just after. Furthermore, a set of
invariants may be associated with an interface. An invariant is a predicate over
the interface’s state model that will always hold. Finally, the component speci-
fication may include a set of inter-interface conditions, which are predicates
over the state models of all the component’s interfaces.

Interface

Component

*

in-interfaces*

*

out-interfaces

*

State

1 *

Constraint

*

*

* 1

Invariant

1

*

1

*

Operation

*

*

Parameter

1

*

PreCondition

* 1

PostCondition

1 *

1

*

InParameter OutParameter

*

*

*

*

*

*

*

1

Figure 3-2 UML metamodel of the concepts used in semantic specification of software
components

The concepts introduced here and the relationships among them are shown on
the UML class diagram in Figure 3-2. For the sake of readability, the classes
Name, Type, and InOutParameter are not shown, since they have no direct

74 Chapter 3 Specification of Software Components

relationships with the newly introduced classes. Note that this model allows
the same state to be associated with several interfaces. Often, the state models
of different interfaces of a component will overlap rather than be exactly the
same. This relationship cannot be expressed in the model since we cannot
make any assumptions about the structure of state models. Note also how
each post-condition is associated with both input and output parameters and
only one instance of State. The states before and after an invocation are rep-
resented by two separate instances of this single instance of (the metaclass)
State.

In the model presented above, a partial model of the state of a component is
associated with each interface, to allow the semantics of an interface’s opera-
tions to be specified. It is important to note that this is not intended to specify
how state should be represented within the component. While state models in
component specifications should above all be kept simple, the actual repre-
sentation used in the component’s implementation will usually be subject to
efficiency considerations, depend on the programming language, and so on. It
is also worth mentioning that the above model is valid for procedural as well
as object-oriented specification techniques.

check(in word : String, out correct : Boolean) : HRESULT

«interface type»
ISpellCheck String

1

words

*

add(in word : String) : HRESULT
remove(in word : String) : HRESULT

«interface type»
ICustomSpellCheck

1

words

*

String

Figure 3-3 Example interface specification diagram

Before discussing the ramifications of this model any further, we now look at
an example specification using the technique of [53]. Figure 3-3 is an example
of an interface specification diagram. It shows the two interfaces introduced in
the previous section as classes with the <<interface type>> stereotype.
Thus, all the information in the syntactic interface specifications is included
here. The state models of the interfaces are also shown. A state model gener-
ally takes the form of one or more classes having at least one composition re-

 3.3 Specifying the Semantics of Components 75

lationship with the interface the state belongs to. The special stereotype <<in-
terface type>> is used instead of the standard <<interface>> since this
would not allow the state models to be associated with the interfaces in this
way.

The interface specification diagram is only a part of the complete interface
specifications. The pre- and post-conditions that specify the semantics of the
operations as well as any invariants on the state model is specified separately
in OCL. Below is a specification of the three operations of the two interfaces
above. There are no invariants on the state models in this example.

context ISpellCheck::check(
 in word : String, out correct : Boolean) : HRESULT
pre:
 word <> ""
post:
 SUCCEEDED(result) implies
 correct = words->includes(word)

context ICustomSpellCheck::add(
 in word : String) : HRESULT
pre:
 word <> ""
post:
 SUCCEEDED(result) implies
 words = words@pre->including(word)

context ICustomSpellCheck::remove(
 in word : String) : HRESULT
pre:
 word <> ""
post:
 SUCCEEDED(result) implies
 words = words@pre->exluding(word)

The pre-condition of the first operation states that if it is invoked with an input
parameter that is not the empty string, the post-condition will hold when the
operation returns. The post-condition states that if the return value indicates
that the invocation was successful then the value of the output parameter is
true if word was a member of the set of words and false otherwise. The speci-
fications of the two last operations illustrate how post-conditions can refer to

76 Chapter 3 Specification of Software Components

the state before the invocation using the @pre suffix. This specification tech-
nique uses the convention that if a part of an interface’s state is not mentioned
in a post-condition, then that part of the state is unchanged by the operation.
Thus, words = words@pre is an implicit post-condition of the first opera-
tion. All the specifications refer to an output parameter called result, which
represents the return value of the operations. The function SUCCEEDED is used
in COM to check whether a return value of type HRESULT indicates success or
failure.

Similarly to interface specification diagrams, component specification dia-
grams are used to specify which interfaces components provide and require.
Figure 3-4 is an example of such a diagram, specifying a component that pro-
vides the two interfaces specified above. The component is represented by a
class with stereotype <<comp spec>> to emphasize that it represents a com-
ponent specification. UML also has a standard component concept, which is
commonly used to represent a file that contains the implementation of a set of
concrete classes.

«comp spec»
SpellChecker

ISpellCheck
ICustomSpellCheck

Figure 3-4 Example component specification diagram

The component specification is completed by the specification of its inter-inter-
face constraints. The component in this example has one such constraint,
specifying that the sets of words in the state models of the two interfaces must
be the same. This constraint relates the operations of the separate interfaces to
each other, such that invocations of add or remove affect subsequent invoca-
tions of check. The constraint is formulated in OCL below.

context SpellChecker
ISpellCheck::words = ICustomSpellCheck::words

An important property of the model presented above is that state models and
operation semantics are associated with interfaces rather than with a compo-
nent. This means that the semantics is part of the interface specification. Con-
sequently, a component cannot be said to implement an interface if it imple-
ments operations with the same signatures as the interface’s operations but
with different semantics. It should be noted that the terminology varies in the

 3.3 Specifying the Semantics of Components 77

literature on this point, as interfaces are sometimes seen as purely syntactic
entities. In such cases, specifications that also include semantics are often
called contracts. UML, for instance, defines an interface to be a class with only
abstract operations, which can have no state associated with it.

While the main uses of syntactic specifications are type checking and ensuring
interoperability, the utility of semantic specifications is potentially much lar-
ger. The most obvious use is perhaps tool support for component developers
as well as developers of component-based application. For the benefit of com-
ponent developers, one can imagine an automatic testing tool that verifies that
all operations produce the correct post-conditions when their pre-conditions
are satisfied. For this to work, the tool must be able to obtain information
about a component’s current state. A component could easily be equipped
with special operations for this purpose, which would not need to be included
in the final release. Similarly, for application developers, one can imagine a
tool that generates assertions for checking that an operation’s pre-conditions
are satisfied before the operation is invoked. These assertions could either
query a component about its current state, if this is possible, or maintain a
state model of their own. The last technique requires that other clients do not
affect the state maintained by a component, however, since the state model
must be kept synchronized with the actual state. Such assertions would typi-
cally not be included in a final release, either.

With a notion of interface specification that includes semantics, the concept of
substitution introduced in the previous section can now be extended to cover
semantics. Clearly, if a component Y implements all the (semantically speci-
fied) interfaces implemented by another component X, then Y can be safely
substituted for X. This condition is not necessary, however, for substitution to
be safe. What is necessary is that a client that satisfies the pre-conditions speci-
fied for X will always satisfy the pre-conditions specified for Y, and that the
client can rely on the post-conditions ensured by X also to be ensured by Y.
This means that Y must implement operations with the same signatures as the
operations of X, and with pre- and post-conditions that ensures the condition
above. More specifically, if X implements an operation O, where pre(O) is the
conjunction of its pre-conditions and post(O) the conjunction of its post-con-
ditions, Y must implement an operation O’ with the same signature such that
pre(O’) implies pre(O) and post(O) implies post(O’). In other words, the inter-
faces implemented by Y can have weaker pre-conditions and stronger post-
conditions than the interfaces implemented by X. It follows from this that the
state models used for specifying the interfaces of X and Y need not be identi-

78 Chapter 3 Specification of Software Components

cal. This condition for semantically safe substitution of components is an ap-
plication of Liskov’s principle of substitution [58].

Note that the above discussion is only valid for sequential systems. For multi-
threaded components or components that are invoked by concurrently active
clients, the concept of safe substitution must be extended as discussed in [59].
Finally, it must be noted that a client may still malfunction after a component
substitution, even if the components fulfill semantic specifications that satisfy
the above condition. This can happen, for instance, if the designers of the client
and the new component have made conflicting assumptions about the overall
architecture of the system. The term “architectural mismatch” has been coined
to describe such situations [44].

The component specification diagram in Figure 3-4 shows how we can indi-
cate which interfaces are offered by a component. In this example, we indi-
cated that the spell checker offered the interfaces ISpellCheck and
ICustomSpellCheck and used the constraint

ISpellCheck::words = ICustomSpellCheck::words

to specify that the interfaces act upon the same information model. We could,
however, extend such diagrams to indicate the interfaces on which a compo-
nent depends. This is illustrated in Figure 3-5.

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

Figure 3-5 Component specification showing an interface dependency

We can also specify realization contracts using collaboration interaction dia-
grams. For example, in Figure 3-6 we state that whenever the operation op1 is
called, a component supporting this operation must in invoke the operation
op2 in some other component. Component specification diagrams and collabo-
ration interaction diagrams may therefore be used to define behavioral de-
pendencies.

 3.4 Specifying Extra-Functional Properties of Components 79

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

Figure 3-6 Collaboration interaction diagram

3.4 Specifying Extra-Functional Properties of Components
The specification of extra-functional properties of software components has
recently become a subject of interest, mainly within the software architecture
community. In [60], it is argued that the specification of architectural compo-
nents is not properly addressed by conventional software doctrine. Architec-
tural components are components of greater complexity than algorithms and
data structures. Software components, as defined above, generally belong to
this class. Conventional software doctrine is the view that software specifica-
tions must be sufficient and complete (say everything a user needs to know and
is permitted to rely on about how to use the software), static (written once and
frozen), and homogeneous (written in a single notation).

To use an architectural component successfully, information about more
things than its functionality is required. This includes structural properties,
governing how a component can be composed with other components; extra-
functional properties, such as performance, capacity, and environmental as-
sumptions; and family properties, specifying relations among similar or related
components. It is not realistic to expect specifications to be complete with re-
spect to all such properties, due to the great effort that would require, even if
the developer of a component were able to anticipate all aspects of the compo-
nent its users might care about. Often, this is even unrealistic in itself. Since we
cannot expect software components to be delivered with specifications that are
sufficient and complete, and since developers are likely to discover new kinds
of dependencies as they attempt to use independently developed components
together, specifications should be extensible. Specifications should also be het-
erogeneous, since the diversity of properties that might be of interest is unlikely
to be suitably captured by a single notation.

80 Chapter 3 Specification of Software Components

The concept of credentials is proposed in [60] as a basis for specifications that
satisfy the requirements outlined above. A credential is a triple <Attribute,
Value, Credibility>, where Attribute is a description of a property of a compo-
nent, Value a measure of that property, and Credibility a description of how
the measure has been obtained. A specification technique based on credentials
must include a set of registered attributes, along with notations for specifying
their value and credibility, and provisions for adding new attributes. A tech-
nique could specify some attributes as required and others as optional. The
concept has been partially implemented in the architecture description lan-
guage UniCon [61], which allows an extendable list of <Attribute, Value>
pairs to be associated with a component. The self-describing components of
Microsoft’s new .NET platform [62] includes a concept of attributes in which a
component developer can associate attribute values with a component and
define new attributes by sub-classing an existing attribute class. Attributes are
part of a component’s metadata, which can be programmatically inspected,
and is therefore suitable for use with automated development tools.

The concept of credentials has been incorporated in an approach to building
systems from pre-existing components called Ensemble [63]. This approach
focuses on the decisions that designers have to make, in particular when faced
with a choice between competing technologies, competing products within a
technology, or competing components within a product. In Ensemble, a set of
credentials may be associated with a single technology, product, or compo-
nent, or with a group of such elements. In addition, a variation of credentials is
introduced to handle measures of properties that are needed but have not yet
been obtained. These are called postulates and can be describes as credentials
where the credibility is replaced by a plan for obtaining the measure. The cre-
dential triple is thus extended with a flag isPostulate.

Returning our focus to the specification of single components, we now extend
the ideas of Ensemble to allow a set of credentials to be associated with a com-
ponent, an interface, or an operation. A UML metamodel with the concepts of
syntactic specification augmented with credentials is shown in Figure 3-7. The
class Name and the subclasses of Parameter have been omitted for brevity.
Note that the concept of credentials is complementary to the specification of a
component’s functionality and completely orthogonal to the concepts intro-
duced for semantic specifications. Since the specification of extra-functional
properties of software components is still an open area of research, it would
probably be premature to proclaim this as a generic model.

 3.5 Summary 81

Component

Interface

Operation

*

in-interfaces*

*

*

Attribute
Value
Credibility
IsPostulate : Boolean

Credential

*
0..1

* 0..1

*

0..1

Parameter

1

*

Type

1 *

*

out-interfaces

*

Figure 3-7 UML metamodel of concepts used to specify extra-functional properties of
software components

Since the extra-functional properties that may be included in a component
specification can be of very different natures, it is not possible to formulate a
general concept of safe substitution for components that includes changes of
such properties. A set of extra-functional properties, which can all be ex-
pressed as cost specifications, is studied in [64] were it is shown that, depend-
ing on the chosen property, weakening, strengthening, or equivalence is re-
quired for substitution to be safe.

3.5 Summary
A component has two parts: an interface and some code. The interface is the
only point of access to the component, and should ideally contain all the in-
formation that users need to know about the component's operations, i.e. what
it does, and how and where the component can be deployed, i.e. its context
dependencies. The code, on the other hand, should be completely inaccessible

82 Chapter 3 Specification of Software Components

(and invisible). The specification of a component therefore must consist of a
precise definition of the component's operations and context dependencies. In
current practice, component specification techniques specify components only
syntactically. The use of UML and OCL to specify components represents a
step towards semantic specifications. Specification of extra-functional proper-
ties of components is still an open area of research, and it is uncertain what
impact it will have on the future of software component specification.

3.6 Corrections to the Original Version
This chapter contains some corrections to the originally published version of
the paper. These are all related to the UML metamodels of component specifi-
cations. In Figure 3-1, the multiplicities of Component and Interface in
their association with Name have been changed from “1” to “0..1”. In Figure 3-
2, the multiplicity of State in its association with OutParameter has been
changed from “2” to “1” and the description of the figure in the text has been
updated accordingly. Specifically, the text

Note also how each post-condition is associated with both input and output pa-
rameters and only one instance of State. The states before and after an invoca-
tion are represented by two separate instances of this single instance of (the
metaclass) State.

on page 74 in this thesis replaces

Note also how each post-condition is associated with both input and output pa-
rameters and two instances of the state model, representing the state before and
after an invocation.

of the original version. Finally, in Figure 3-7, the multiplicity of the three
classes associated with Credential have been changed from “1” to “0..1”.

3.7 References
[1] Microsoft Corporation, The Component Object Model Specification, v0.99, 1996.

[2] Object Management Group, The Common Object Request Broker: Architecture and
Specification, OMG formal/00-10-01, 2000.

[3] Sun Microsystems, JavaBeans Specification, Version 1.01, 1997.

 3.7 References 83

[4] Object Management Group, Unified Modeling Language 1.3 Specification. OMG
formal/00-03-01, 2000.

[5] J. Cheesman and J. Daniels, UML Components: A Simple Process for Specifying
Component-Based Software. Addison-Wesley, 2000.

[6] J. Warmer and A. Kleppe, The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1999.

[7] D. D'Souza and A. C. Wills, Objects, Components and Frameworks: The Catalysis
Approach. Addison-Wesley, 1998.

[8] C. B. Jones, Systematic Software Development using VDM. Prentice-Hall, 1986.

[9] B. Meyer, Object-Oriented Software Construction, 2nd edition. Prentice-Hall, 2000.

[10] B. Liskov, “Data Abstraction and Hierarchy.” In Addendum to the Proceedings of
OOPSLA '87, 1987.

[11] H. Schmidt and J. Chen, “Reasoning About Concurrent Objects.” In Proceedings
of the 1995 Asia-Pacific Software Engineering Conference, 1995.

[12] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch: Why Reuse
is so Hard.” In IEEE Software, volume 12, issue 6, 1995.

[13] M. Shaw, “Truth vs Knowledge: The Difference Between What a Component
Does and What We Know It Does.” In Proceedings of the 8th International Work-
shop on Software Specification and Design, 1996.

[14] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young and G. Zelesnik, “Abstrac-
tions for Software Architecture and Tools to Support Them.” In IEEE Transac-
tions on Software Engineering, volume 21, issue 4, 1995.

[15] J. Conrad, P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Holllis, R.
Ramachandran, J. Schenken, S. Short, and C. Ullman, Introducing .NET. Wrox
Press, 2000.

[16] K. C. Wallnau and J. Stafford, “Ensembles: Abstractions for a New Class of
Design Problem.” In Proceedings of the 27th Euromicro Conference, 2001.

[17] H. Schmidt and W. Zimmerman, “A Complexity Calculus for Object-Oriented
Programs.” In Object-Oriented Systems, volume 1, issue 2, 1994.

85

Chapter 4

Adopting a Software Component Model
in Real-Time Systems Development

Abstract
Component-based software engineering (CBSE) and the use of (de-facto) standard
component models have gained popularity in recent years, particularly in the de-
velopment of desktop and server-side software. This paper presents a motivation
for applying CBSE to real-time systems and discusses the consequences of adopt-
ing a software component model in the development of such systems. Specifically,
the consequences of adopting Microsoft’s COM, DCOM, and .NET models are
analyzed. The most important aspects of these models are discussed in an incre-
mental fashion. The analysis considers both real-time systems in general, and a
real-life industrial control system where some aspects the COM model have been
adopted. It is concluded that adopting these models makes it possible to meet real-
time requirements, but that some overhead must be expected and that special pre-
cautions may have to be taken to prevent loss of real-time predictability.

4.1 Introduction
Component-based software engineering (CBSE) denotes the assembling of
software products from pre-existing smaller products, generally called com-
ponents. In particular when this is done using standard or de-facto standard
component models and supporting technologies [1]. A component model gen-
erally defines a concept of components and rules for their design-time compo-
sition and/or run-time interaction, and is usually accompanied by one or more
component technologies, implementing support for composition and/or inter-
operation.

86 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development

In recent years, the use of component models has gained popularity in the de-
velopment of desktop and server-side software. Two popular models in desk-
top applications are Sun’s JavaBeans [2] and Microsoft’s ActiveX controls [3],
where the latter is built on top of the more basic Component Object Model
(COM) [4]. Both of these are particularly suited for components to be used
with visual composition tools. The best-known models in the server domain
are Sun’s Enterprise JavaBeans (EJB) [5], Microsoft’s COM extension COM+ [6],
and the Object Managements Group’s new CORBA Component Model (CCM)
[6]. These models offer similar support for transactional processing and persis-
tent data management.

This paper discusses the possibilities of using such component models in real-
time systems. In particular, the feasibility of using COM, the most basic of
these models, and its distributed extension is analyzed and illustrated through
a case study. Microsoft’s latest model .NET [8] is also briefly discussed. Section
4.2 presents motivations for adopting a component model, both in real-time
systems generally and in a real-world industrial control system. Section 4.3
discusses the implications of adopting different aspects of a particular compo-
nent model. An overview of related work is given in Section 4.4. Finally, Sec-
tion 4.5 concludes the paper and outlines future work.

4.2 Motivation
The general motivation for component-based software engineering is the
prospect of increased productivity and timeliness of software development
projects. Indeed, this is as desirable for real-time and embedded software as
for any other application. It could also be argued that some characteristics of
CBSE make it particularly attractive for real-time systems. For instance, real-
time software often requires more extensive testing, so the use of pre-tested
components may be particularly time saving in the development of such sys-
tem. Another example is that many embedded systems, such as mobile tele-
phones, could benefit from reuse of components across products and models.
Conversely, there are also barriers to CBSE particular to real-time and embed-
ded systems. Most obviously, there may be a risk that component models and
technologies may introduce unacceptable overhead or loss of predictability.

An example of a real-time system where the use of a component model has
been useful is the industrial control system by ABB called ControlIT
(http://www.abb.com). This product is a modular controller consisting of a

 4-3 Adopting Microsoft Models 87

central processing unit with two expansion buses. One bus is for I/O modules
of different types and is used to connect the controller to physical signals. The
other bus is for communication interfaces and allows the controller to com-
municate with other devices using different media and protocols. The control-
ler also has two built-in serial ports and redundant Ethernet ports.

ABB’s development organization is globally distributed, and the interest in
component models first arose from a wish to make it easier for different de-
velopment centers to add I/O and communication support to the system. It
was decided to redesign the system’s architecture so that all code particular to
a certain I/O module, communication interface, or protocol resides in a sepa-
rate component called a protocol handler. To achieve this, rules and formats
for interaction between these protocol handlers and the rest of the system had
to be decided on. In other words, a component model was needed. In the fol-
lowing analysis of adopting different aspects of a component model, the use-
fulness and liabilities of each particular aspect in connection with protocol
handlers will be discussed. The use of a component model to support integra-
tion of protocol handlers in ABB’s control system is further described in [9],
where it is demonstrated that the new architecture supports distributed devel-
opment and reduces the time required to implement I/O and communication
support.

4.3 Adopting Microsoft Models
Among the most commonly used component models for desktop and server
applications are Microsoft’s Component Object Model (COM) and its exten-
sion Distributed COM (DCOM) [10]. There is also great interest in the com-
pany’s new generation of technologies, commonly denoted .NET, which also
defines a component model [8]. This section explores the possibilities of using
these models in real-time systems. The most important aspects of these models
will be discussed in an incremental fashion, assuming that it may be desirable
in some situations also to adopt the models in such a fashion.

4.3.1 COM Interfaces
A key principle of COM and other component models is that interfaces are
specified separately from both the components that implement them and those
that use them. COM defines a dialect of the Interface Definition Language (IDL)

88 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development

that is used to specify object-oriented interfaces. Interfaces are object-oriented
in the sense that their operations are to be implemented by a class and passed
a reference to a particular instance of that class when invoked. The code that
uses a component does not refer directly to any objects, however. Instead, the
operations of an interface supported by an object are invoked via what is
known as an interface pointer. A concept known as interface navigation makes
it possible for the user to obtain a pointer to every interface supported by the
object. For a further description of this topic, see e.g. [10].

COM also defines a run-time format for interface pointers. What an interface
pointer really references is an interface node, which in turn, contains a pointer
to a table of function pointers, called a VTABLE. Typically, the node also con-
tains a pointer to an object’s instance data, although this is up to the imple-
mentation (of the supporting component technology). This use of VTABLEs is
identical to the way that many C++ compilers implement virtual functions.
Thus, the time and space overhead associated with accessing an object through
an interface pointer is the same as that incurred with virtual C++ functions.
This time overhead is very modest. The memory overhead should also be ac-
ceptable, perhaps except for the most resource constrained embedded systems.
Figure 4-1 illustrates the typical format of interface nodes.

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

Figure 4-1 Typical format of COM interface nodes

For most real-time systems, a more serious concern than these modest over-
heads is that interface navigation introduces a possible source of run-time er-
rors. If the user of a component asks an object for a pointer to an interface that
the object does not support, this will not be detected during compilation. It
may be argued, in fact, that this is the principal difference between interface

 4.3 Adopting Microsoft Models 89

navigation and interface inheritance in traditional object-oriented program-
ming. This can be seen as a necessary price to pay for the otherwise desirable
reduced compile-time dependence between components.

Most real-time systems are based on multi-tasking and are often built on top
of a real-time operating system (RTOS) using some kind of priority-based
scheduling. Developers of components for real-time systems will generally
need to make assumptions about how their components will be used in a
multi-tasking environment. The safest option will be always to assume that an
object can be concurrently used by several tasks, and guard all methods with
the necessary synchronization. For reasons of efficiency, however, it may be
more desirable to require the code that uses the component to provide any
necessary synchronization. The exact circumstances under which such protec-
tion is necessary are thus an important part of the component’s documenta-
tion.

The use of COM IDL to specify interfaces and VTABLEs to implement inter-
face pointers work well for protocol handlers. The concept of multiple inter-
faces per object with interface navigation is useful since different protocol
handlers must provide different functionality. The object-oriented nature of
COM interfaces where each interface pointer refers to a particular instance of a
class also matches the needs of the ABB control system. Multiple instances of
the same protocol handler are useful, e.g. when a controller is equipped with
two identical communication interfaces, linking it to two separate networks of
the same type. The latest version of the control system uses COM interfaces,
but not the other parts of COM discussed below.

4.3.2 Instantiation and Dynamic Linking
The previous section stated that the code of a COM component is imple-
mented in classes, without discussing how instances are created. Also, nothing
was said about how and when the code in different components is linked to-
gether. COM defines a policy for instantiation, which is intended to ensure
that different components can be installed in a system at different times. When
a component is installed, information about it must be registered somewhere
in the system, linking the identity of its classes to the code that implement
these. COM also requires a run-time library, called the COM library, to be in-
stalled on the system. When some code wants to use a component, it uses an
operation provided by the COM library to ask for an instance of a class and an

90 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development

initial interface pointer to it. If the code of the component is not already loaded
into memory, the COM library uses the registered information to locate the
code and load it before an instance is created. This process is illustrated in Fig-
ure 2.

Client Component

COM Library Registry

1) Request object by
class and interface

2) Look up component

3) Load component if necessary
and request object

4) Return interface
pointer

5) Invoke
operations

Figure 4-2 Instance creation and dynamic loading of code in COM

Thus, creation of an instance involves searching the information about regis-
tered classes and possibly loading of code. This leads to a noticeable overhead
when compared to instantiation in for instance C++. Furthermore, this over-
head will vary, depending on whether the code implementing a class has al-
ready been loaded or not. This variability can be eliminated, however, by de-
signing the software such that all components that may be used will be loaded
at start-up. Note that removal of instances is subject to the same variability,
since the COM standard states that code can be unloaded when the last in-
stance that rely on it is removed.

A benefit that follows from COM’s way of creating instances is that the code
that implements a component can be built independently of any code that uses
the component. Since instantiation involves passing the identity of the desired
class as a parameter to a system operation, it is a possible source of run-time
errors, which is not present during instantiation in traditional object-oriented
programming, since attempting to instantiate a class that does not exist will

 4.3 Adopting Microsoft Models 91

result in a compilation error in this case. Again, this is a necessary price to be
paid for decreased coupling.

COM’s principle of instantiation is well suited for creating instances of proto-
col handlers, since no knowledge of the set of available protocol handlers
should be built into the system. The overhead associated with looking up
classes and dynamic loading of code is expected to be tolerable, especially
since the software is designed such that protocol handlers need only be instan-
tiated and deleted during program download. Thus, the extra time taken by
this way of instantiation will not interfere with the continuous operation of the
system. An additional benefit of using this technique for instantiation is that
protocol handlers can be deployed (and updated) independently of the rest of
the system. Future versions of the control system may include a COM library
and employ dynamic linking of components. It is possible that a commercial
component technology, such as WindRiver’s implementation of COM for the
VxWorks RTOS (http://www.windriver.com) will be used.

4.3.3 Location Transparency with DCOM
DCOM is an extension of COM, which allows component-based applications
to be distributed across memory spaces or physical machines. This is realized
using auxiliary objects known as proxies and stubs. When some code asks the
COM library to create an instance of a class that is implemented in a compo-
nent in a different location, the instance is created in the remote location along
with a stub. The code that asked for the instance is passed an interface pointer
to a proxy object, created on its side. When an operation is invoked via this
interface pointer, the proxy translates this to a remote procedure call (RPC) to
the remote stub, which in turn invokes the corresponding operation on the
real object. It may also be necessary to create a proxy-stub pair at other times
than object instantiation. This happens when an interface pointer is passed as a
parameter to an operation of an object in a remote location. This process is
known as marshalling. Proxy and stub code is usually generated automatically
from IDL specifications. Figure 3 illustrates the use of proxy and stub objects

The ability to deal with memory spaces may not be of great consequence to
real-time systems, since real-time operating systems do not traditionally use
memory spaces. The ability to deal with such may, however, be useful in par-
allel processor architectures. DCOM may be useful in simplifying the imple-
mentation of distributed real-time systems. The transparency to the program-

92 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development

mer of accessing remote objects is not completely valid for real-time systems,
however. Since the timing of object operations will differ between local and
remote invocations, real-time software developers will still need to consider
whether their code uses components in another location or not. It is also useful
for developers of components to be aware of whether their components will be
remotely accessed. For instance, one may consider exploiting the ability to de-
fine asynchronous interfaces for such components. An additional benefit of
using DCOM in real-time systems is that it may simplify the implementation
of communication between these systems and COM-based desktop applica-
tions, such as operator stations.

Client

Component

Proxy

Stub

Operation invocation

Operation invocation

Remote procedure call

Machine border

Figure 4-3 Use of proxy and stub objects in DCOM

In addition to the extra time overhead associated with remote invocation and
marshalling, DCOM also requires more space than COM, to store the proxy
and stub code as well as the RPC mechanism. The proxy and stub are gener-
ally quite small and executes relatively quickly, however, so the time and
space overhead is mostly due to the RPC mechanism and underlying protocol
stack. Therefore, using DCOM does not result in much of an overhead for dis-
tributed real-time systems, where RPC or some other communication mecha-
nism would be needed anyway.

 4.3 Adopting Microsoft Models 93

A possible reason for using DCOM in ABB’s control system, is that protocol
handlers could be located in the communication interfaces or I/O modules
they support, rather than in the central processing unit. The usefulness of this
is not obvious, however, especially when considering the required additional
overhead. Thus, there are no current plans to adopt DCOM in the system.

4.3.4 The Next Generation: .NET
The name .NET is used by Microsoft to denote a comprehensive set of new
technologies. This includes a new component model, intended to replace
COM/DCOM. A notable development is that .NET moves the responsibility of
providing certain functionality from the components to a more sophisticated
run-time system. In particular, COM/DCOM requires components to provide
a considerable amount of “house-keeping” functionality that is taken care of
by the .NET run-time. Much of the flexibility that follows from having such
implementations in each component is maintained under .NET, where the op-
eration of the run-time system with respect to individual components can be
affected by setting declarative attributes.

A potential advantage of this development is increased reliability, since it may
be assumed that more effort may be invested in ensuring the quality of a run-
time system to be re-used in a large number of systems. Another attractive
consequence of having more code in a common run-time is that the total size
of the software may decrease. Obviously, this advantage grows with the num-
ber of components in the system. On the other hand, using a sophisticated
run-time system, possibly without using much of its functionality, may lead to
unnecessarily large software. This is a particular problem for resource con-
strained embedded systems. Fortunately, Microsoft has defined a special com-
pact version of .NET that limits this problem somewhat. What is assumed to
be the greatest strength of .NET is the potential for increased development
productivity. This relies both on the aforementioned run-time system with its
associated libraries, and on advanced development tools. As usual, this gain is
achieved at the expense of some run-time overhead. While it seams clear that
this cost is acceptable for desktop software, the corresponding question for
real-time systems is more open.

94 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development

4.4 Related Work
There are some work on software component models and real-time or embed-
ded systems in recent literature. This work is dominated by efforts to define
component models particularly targeted at real-time embedded systems or
even narrower application domains. Examples include Philip’s Koala compo-
nent model for consumer electronics [11], the component model for industrial
field devices developed in the PECOS project [12], the commercial product
ControllShell [13], which is based on visual composition and automatic code
generation, and the more academic ACCORD approach [14] of aspect-oriented
component-based development of real-time systems. Work on using “main-
stream” component models in real-time systems is less common. One example
is [15], which also discusses COM. This work, however, focuses on extensions
to COM rather than the consequences of using the existing model in real-time
systems.

4.5 Conclusion and Future Work
This paper has discussed the idea of using a software component model in
real-time systems. In particular, using Microsoft models, both from the per-
spective of real-time systems in general and from that of ABB’s control system.
In general, it has been seen that each of the levels of adopting the models that
have been discussed, introduces some degree of time and space overhead. In
addition, new potential sources of run-time errors are introduced, correspond-
ing to compilation errors in traditional object-oriented programming. It is con-
cluded that COM/DCOM may be used for real-time systems, provided that
any overhead is acceptable or can be compensated by hardware, and that the
software designer takes care that the potential run-time errors are not allowed
to materialize and result in a loss of predictability.

The major conclusions to be drawn from the discussions in this paper are as
follows. COM interfaces, which provide a way to separate the specification of
interfaces from component implementation, carry with them a very modest
time and memory overhead. Compared to interface inheritance in object-
oriented programming, COM interfaces introduce a potential source of run-
time errors. COM’s mechanism for instantiating objects and loading code at
run-time has a considerable overhead when compared to instantiation in for
example C++. This overhead is subject to a certain variability, which may be

 4.6 References 95

avoided by careful application design. DCOM is an extension of COM that al-
lows applications to access COM objects across memory spaces and physical
machine boundaries. The time and space overhead associated with this is
dominated by the underlying communication mechanisms. The new .NET
platform promises increased development productivity, but it remains to be
seen to what extent it is suitable for real-time systems.

The immediate future work planned as a continuation of this paper is to
strengthen the analyses with empirical evidence by conducting experiments
and collecting measurements. Preferably, this should be done on a real-time
platform using a commercial or self-made COM implementation. In the longer
perspective, an intriguing idea is to develop a COM-based component model
particularly intended for real-time software. This idea is primarily inspired by
how COM+ supports the implementation of functionality such as transactional
processing, which is considered a major challenge in distributed information
systems. Corresponding challenges for real-time systems include issues such
as concurrency, synchronization, and timing. In addition to easing the imple-
mentation it would be desirable for such a model to support compositional
reasoning, i.e. the deduction of a system’s properties from the known proper-
ties of its parts. A natural starting point for achieving this is the existing work
on prediction enabled component technologies (PECT).

4.6 References
[1] C. Szyperski, Component Software: Beyond Object-Oriented Programming. Addi-

son-Wesley, 1997.

[2] Sun Microsystems, JavaBeans Specification, Version 1.01, 1997.

[3] D. Chappell, Understanding ActiveX and OLE. Microsoft Press, 1996.

[4] Microsoft Corporation, The Component Object Model Specification, v0.99, 1996.

[5] Sun Microsystems, Enterprise JavaBeans Specification, Version 2.0, 2001.

[6] D. S. Platt, Understanding COM+. Microsoft Press, 1999.

[7] Object Management Group, CORBA Components, Version 3.0, formal/02-06-65,
2002.

[8] J. Lowy, Programming .NET Components. O’Reilly, 2003.

96 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development

[9] F. Lüders, Use of Component-Based Software Architectures in Industrial Control
Systems. Techn. Lic. thesis, Mälardalen University, 2003.

[10] F. E. Redmond III, DCOM: Microsoft Distributed Component Object Model. Wiley,
1997.

[11] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[12] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller, C. Zeidler,
T. Genssler, and R. van den Born, “A Component Model for Field Devices.” In
Proceedings of the First International IFIP/ACM Working Conference on Component
Deployment, 2002.

[13] S. A. Schneider, V. W. Chen, and G. Pardo-Castellote, “ControlShell: Compo-
nent-Based Real-Time Programming.” In Proceedings of the IEEE Real-Time Tech-
nology and Applications Symposium, 1995.

[14] A. Tešanović, D. Nyström, J. Hansson, and C. Norström, “Towards Aspectual
Component-Based Development of Real-Time Systems.” In Proceedings of the
9th International Conference on Real-Time and Embedded Computing Systems and
Applications, 2003.

[15] D. Chen, A. Mok, and M. Nixon, “Real-Time Support in COM.” In Proceedings
of the 32nd Hawaii International Conference on System Sciences, 1999.

[16] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau, “Enabling Predict-
able Assembly.” In Journal of Systems and Software, volume 65, issue 3, 2003.

97

Chapter 5

Adopting a Component-Based Software
Architecture for an Industrial Control
Systems – A Case Study
with Ivica Crnkovic and Per Runeson

Abstract
This chapter presents a case study from a global company developing a new gen-
eration of programmable controllers to replace several existing products. The sys-
tem needs to incorporate support for a large number of I/O systems, network
types, and communication protocols. To leverage its global development resources
and the competency of different development centers, the company decided to
adopt a component-based software architecture that allows I/O and communica-
tion functions to be realized by independently developed components. The archi-
tecture incorporates a subset of a standard component model. The process of re-
designing the software architecture is presented, along with the experiences made
during and after the project. An analysis of these experiences shows that the com-
ponent-based architecture effectively supports distributed development and that
the effort required for implementing certain functionality has been substantially
reduced while, at the same time, the system’s performance and other run-time
quality attributes have been kept on a satisfactory level.

5.1 Introduction
Component-based software engineering (CBSE) denotes the disciplined prac-
tice of building software from pre-existing smaller products, generally called
software components, in particular when this is done using standard or de-
facto standard component models [7, 16]. The popularity of such models has
increased greatly in the last decade, particularly in the development of desk-

98 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

top and server-side software, where the main expected benefits of CBSE are
increased productivity and timeliness of software development projects.

The last decade has also seen an unprecedented interest in the topic of soft-
ware architecture [2, 15] in the research community as well as among software
practitioners. CBSE has notable implications on a system’s software architec-
ture, and an architecture that supports CBSE, e.g. by mandating the use of a
component model, is often called a component-based software architecture.

This chapter presents an industrial case study from the global company ABB,
which is a major supplier of industrial automation systems, including pro-
grammable controllers. The company’s new family of controllers is intended
to replace several existing products originally developed by different organ-
izational units around the world, many of which were previously separate
companies, targeting different, though partly overlapping, markets and in-
dustries. As a consequence, the new controller products must incorporate
support for a large number of I/O systems, network types, and communica-
tion protocols. To leverage its global development resources and the compe-
tency of different development centers, ABB decided to adopt a component-
based software architecture that allows I/O and communication functions to
be realized by independently developed components.

This chapter is organized as follows. The remainder of this section describes
the questions addressed by the case study and motivates the choice of method.
Section 5.2 presents the context of the case study, including a description of
the programmable controller and its I/O and communication functions as well
as the organizational and business context. The process of componentizing the
system’s software architecture is presented in Section 5.3. Section 5.4 analyzes
the results of the project and identifies some experiences of general interest. A
brief overview of related work is provided in Section 5.5. Section 5.6 presents
conclusions and some ideas for further work.

5.1.1 Questions Addressed by the Case Study
The general question addressed by the case study is what advantages and li-
abilities the use of a component-based software architecture entails for the de-
velopment of an industrial control system. Due to the challenges of the indus-
trial project studied, the potential benefit that a component-based architecture
makes it easier to extend the functionality of the software has been singled out
for investigation.

 5.1 Introduction 99

More specifically, the project allows the two following situations to be com-
pared:

• The system has a monolithic software architecture and all functionality
is implemented at a single development center.

• The system has a component-based software architecture and pre-speci-
fied functional extensions can be made by different development cen-
ters.

By pre-specified functional extensions we mean extensions in the form of
components adhering to interfaces already specified as part of the architecture.
This fact is presumed to be significant, while the fact that the functionality in
question happens to be related to I/O and communication is not.

In addition to the question of whether the component-based architecture re-
duces the effort required to make such functional extension, the study also ad-
dresses the questions of whether any such reduction is sufficient to justify the
effort invested in redesigning the architecture and after how many extensions
the saved effort surpasses the invested effort. Since the system in question is
subject to hard real-time require¬ments, the potential effect of the architecture
on the possibility of satisfying such requirements is also studied. Finally, the
architecture’s possible effect on performance is analyzed.

5.1.2 Case Study Method
The research methodology used is a flexible design study, conducted as a par-
ticipant observation case study [14]. The overall goal of the study is to observe
the process of componentization, and evaluate the gains of a component-based
architecture. It is not possible to demarcate such a complex study object in a
fixed design study. Neither is there an option to isolate and thereby study al-
ternative options. Instead we address the problem using a case study ap-
proach, where one study object is observed in detail and conclusions are
drawn from this case.

In order to enable best possible access to the information on the events in the
case, the observations are performed by an active participant. The main re-
searcher is also an active practitioner during the study. As a complement, in-
terviews are conducted after the case study to collect data on costs and gains
of the component approach, thus conducting data triangulation.

100 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

Participatory research always includes a threat with respect to researcher bias.
In order to increase the validity of the observations, a researcher was intro-
duced late in the research process as a “critical friend”. The long researcher
involvement in this case study reduces on the other hand the threat with re-
spect to respondent bias.

Case studies are by definition weak with respect to generalization, in particu-
lar when only a single case is observed. However, to enable learning across
organizational contexts, we present the context of the case study in some de-
tail. Hence, the reader may find similarities and differences compared to their
environment, and thus judge the transferability of the research.

5.2 Context of the Case Study
Following a series of mergers and acquisitions, ABB became the supplier of
several independently developed programmable controllers for the process
and manufacturing industries. The company subsequently decided to continue
development of only a single family of controllers for these and related indus-
tries, and to base all individual controller products on a common software
platform.

To be able to replace all the different existing products used in different re-
gional areas and industry sectors, these controllers needed to incorporate sup-
port for a high number of communication protocols, network types, and I/O
systems, including legacy systems from each of the previously existing con-
trollers as well as current and emerging industry standards.

A major challenge in the development of the new controller platform was to
leverage the software development resources at different development centers
around the world and their expertise in different areas. In particular, it was
desirable to enable different development centers to implement different types
of I/O and communication support. Additional challenges were to make the
new platform sufficiently general, flexible, and extendable to replace existing
controllers, as well as to capture new markets.

The solution chosen to meet these challenges was to base the new platform on
one of the existing systems while adopting a component-based software ar-
chitecture with well-defined interfaces for interaction between the main part of

 5.2 Context of the Case Study 101

the software and I/O and communication components developed throughout
the distributed organization.

As the starting point of the common controller software platform, one of the
existing product lines was selected. This system is based on the IEC 61131-3
industry standard for programmable controllers [8]. The software has two
main parts 1) the ABB Control Builder, which is a Windows application run-
ning on a standard PC, and 2) the system software of the ABB controller fam-
ily, running on top of a real-time operating system (RTOS) on special-purpose
hardware. The latter is also available as a Windows application, and is then
called the ABB Soft Controller.

A representative member of the ABB controller family is the AC 800M modu-
lar controller. This controller has two built-in serial communication ports as
well as redundant Ethernet ports. In addition, the controller has two expan-
sion busses. One of these is used to connect different types of input and output
modules through which the controller can be attached to sensors and actua-
tors. The other expansion bus is used to connect communication interfaces for
different types of networks and protocols. The picture in Figure 5-1 shows an
AC 800M controller equipped with two communication interfaces (on the left)
and one I/O module (on the right).

Figure 5-1 An AC 800M programmable controller

102 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

The Control Builder is used to specify the hardware configuration of a control
system, comprising one or more controllers, and to write the programs that
will execute on the controllers. The configuration and the control programs
together constitute a control project. When a control project is downloaded to
the control system the system software of the controllers is responsible for in-
terpreting the configuration information and for scheduling and executing the
control programs.

Figure 5-2 shows the Control Builder with a control project opened. The pro-
ject consists of three structures, showing the libraries used by the control pro-
grams, the control programs themselves, and the hardware configuration, re-
spectively. The latter structure is expanded to show a configuration of a single
AC 800M controller, equipped with an analogue input module (AI810), a digi-
tal output module (DO810), and a communication interface (CI851) for the
PROFIBUS-DP protocol [10].

Figure 5-2 The ABB Control Builder

 5.2 Context of the Case Study 103

To be attractive in all parts of the world and a wide range of industry sectors,
the common controller must incorporate support for a large number of I/O
systems, communication interfaces, and communication protocols. During the
normal operation of a controller, i.e. while the control programs are not being
updated, there are two principal ways for it to communicate with its environ-
ment, denoted I/O (Input/Output) and variable communication, respectively.

To use I/O, variables of the control programs are connected to channels of in-
put and output modules using the program editor of the Control Builder. For
instance, a Boolean variable may be connected to a channel on a digital output
module. When the program executes, the value of the variable is transferred to
the output channel at the end of every execution cycle. Variables connected to
input channels are set at the beginning of every execution cycle. Real-valued
variables may be attached to analogue I/O modules. Figure 5-3 shows the
program editor with a small program, declaring one input variable and one
output variable. Notice that the I/O addresses specified for the two variables
correspond to the position of the two I/O modules (AI810 and DO810, respec-
tively) in Figure 5-2.

Figure 5-3 The program editor of the ABB Control Builder

Variable communication is a form of client/server communication and is not
synchronized with the cyclic program execution in the way that I/O is. A
server supports one of several possible protocols and has a set of named vari-

104 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

ables that may be read or written by clients that implement the same protocol.
An ABB Controller can be made a server by connecting program variables to
so-called access variables in a special section of the Control Builder (see Figure
5-2). Servers may also be other devices, such as field-bus devices [10].

A controller can act as a variable communication client by using special rou-
tines for connecting to a server and reading and writing variables via the con-
nection. Such routines for a collection of protocols are available in the Com-
munication Library, which is delivered with the Control Builder. The commu-
nication between a client and a server can take place over different physical
media, which, in the case of the AC 800M, are accessed either via external
communication interfaces or the built-in Ethernet or serial ports.

Control projects are usually downloaded to the controllers via a
TCP/IP/Ethernet-based control network, which may optionally be redundant.
A control project may also be downloaded to a single controller via a serial
link. In both cases, downloading is based on the Manufacturing Message
Specification (MMS) protocol [5], which also supports run time monitoring of
hardware status and program execution. The system software of a controller,
including the RTOS, can be updated from a PC via a serial link. Figure 5-4
shows an example of a control system configuration.

Figure 5-4 Example control system configuration

 5.3 Componentization 105

5.3 Componentization

5.3.1 Reverse Engineering of the Existing Software Architecture
The first step in the componentization of the architecture of the Control
Builder and the controller system software was to get an overview of the ex-
isting architecture of the software, which was not explicitly described in any
document. The software consists of a large number of source code modules,
each of which is used to build the Control Builder or the controller system
software or both, with an even larger number of interdependencies. An analy-
sis of the software modules with particular focus on I/O and communication
functions yielded the course-grained architecture depicted in Figure 5-5.

Figure 5-5 The original software architecture

The boxes in the figure represent logical components of related functionality.
Each box is implemented by a number of modules, and is not readily visible in
the source code. Many modules are also used as part of other products, which
are not discussed further here. This architecture is thus a product-line archi-
tecture [3], although the company has not yet adopted a systematic product
line approach. On the controller side, which is the focus of this chapter, the
architecture has two distinct layers [15]. The lower layer (the box at the bottom
of the figure) provides an interface to the upper layer (the rest of the boxes),
which allows the source code of the upper layer to be used on different hard-
ware platforms and operating systems. The complete set of interdependencies
between modules within each layer was not captured by the analysis.

106 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

To illustrate how some modules are used to build both the Control Builder
and the controller system software, we consider the handling of hardware con-
figurations. The hardware configuration is specified in the Controllers struc-
ture of the Control Builder. For each controller in the system, it is specified
what additional hardware, such as I/O modules and communication inter-
faces, it is equipped with. Further configuration information can be supplied
for each piece of hardware, leading to a hierarchic organization of information,
called the hardware configuration tree. The code that builds this tree in the
Control Builder is also used in the controller system software to build the
same tree there when the project is downloaded. If the configuration is modi-
fied in the Control Builder and downloaded again, only a description of what
has changed in the tree is sent to the controller.

The main problem with this software architecture is related to the work re-
quired to add support for new I/O modules, communication interfaces, and
protocols. For instance, adding support for a new I/O system possibly re-
quired source code updates in all the components except the User Interface
and the Communication Server, while a new communication interface and
protocol could require all components except I/O Access to be updated.

As an example of what type of modifications may have been needed to the
software, we consider the incorporation of a new type of I/O module. To be
able to include a device (I/O module or communication device) in a configu-
ration, a hardware definition file for that type of device must be present on the
computer running the Control Builder. For an I/O module, this file defines the
number and types of input and output channels. The Control Builder uses this
information to allow the module and its channels to be configured using a ge-
neric configuration editor. This explains why the user interface did not need to
be updated to support a new I/O module. The hardware definition file also
defines the memory layout of the module, so that the transmission of data be-
tween program variables and I/O channels can be implemented in a generic
way.

For most I/O modules, however, the system is required to perform certain
tasks, for instance when the configuration is compiled in the Control Builder
or during start-up and shutdown in the controller. In the architecture de-
scribed above, routines to handle such tasks had to be hard-coded for every
type of I/O module supported. This required software developers with a
thorough knowledge of the source code. The situation was similar when add-
ing support for communication interfaces and protocols. The limited number

 5.3 Componentization 107

of such developers therefore constituted a bottleneck in the effort to keep the
system open to the many I/O and communication systems found in industry.

5.3.2 Component-Based Software Architecture
To make it much easier to add support for new types of I/O and communica-
tion, it was decided to split the logical components mentioned above into their
generic and specific parts. The generic parts, commonly called the generic I/O
and communication framework, contains code that is shared by all hardware
and protocols implementing certain functionality. Routines that are specific to
a particular type of hardware or protocol are implemented in separate compo-
nents, called protocol handlers, installed on the PC running the Control
Builder and on the controllers. This component-based architecture is illus-
trated in Figure 5-6.

Figure 5-5 Component-based software architecture

Focusing again on the controller side, and comparing this architecture with the
previous one, the protocol handlers can be seen as an additional half-layer be-
tween the framework and the bottom layer. To add support for a new I/O
module, communication interface, or protocol in this architecture, it is only

108 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

necessary to add protocol handlers for the PC and the controller along with a
hardware definition file and possibly a device driver. The format of hardware
definition files is extended to include the identities of the protocol handlers as
described below.

Essential to the success of the approach, is that the dependencies between the
framework and the protocol handlers are fairly limited and, even more im-
portantly, well specified. One common way of dealing with such dependen-
cies is to specify the interfaces provided and required by each component [9].
The new control system uses the Component Object Model (COM) [4] to spec-
ify these interfaces, since COM provides suitable formats both for writing in-
terface specification, using the COM Interface Description Language (IDL),
and for run-time interoperability between components.

For each of the generic components, two interfaces are specified: one that is
provided by the framework and one that may be provided by protocol han-
dlers. In addition, interfaces are defined to give protocol handlers access to
device drivers and system functions. The identities of protocol handlers are
provided in the hardware definition files as the Globally Unique Identifiers
(GUIDs) of the COM classes that implement them.

COM allows several instances of the same protocol handler to be created. This
is useful, for instance, when a controller is connected to two separate networks
of the same type. Also, it is useful to have one object, implementing an inter-
face provided by the framework, for each protocol handler that requires the
interface.

An additional reason that COM has been chosen is that commercial COM im-
plementations are expected to be available on all operating systems that the
software will be released on in the future. The Control Builder is only released
on Windows, and it is expected that most future control products will be
based on VxWorks, although some products are based on pSOS, for which a
commercial COM implementation does not exist. In the first release of the
component-based system the protocol handlers were implemented as C++
classes, which are linked statically with the framework. This works well be-
cause of the close correspondence between COM and C++, where every COM
interface has an equivalent abstract C++ class.

An important constraint on the design of the architecture is that hard real-time
requirements, related to scheduling and execution of control programs, must
not be affected by interaction with protocol handlers. Thus, all code in the

 5.3 Componentization 109

framework responsible for instantiation and execution of protocol handlers,
always executes at a lower priority than code with hard deadlines.

5.3.3 Interaction between Components
When a control system is configured to use a particular device or protocol, the
Control Builder uses the information in the hardware definition file to load the
protocol handler on the PC and execute the protocol specific routines it im-
plements. During download, the identity of the protocol handler on the con-
troller is sent along with the other configuration information. The controller
system software then tries to load this protocol handler. If this fails, the
download is aborted and an error message is displayed by the Control Builder.
This is very similar to what happens if one tries to download a configuration,
which includes a device that is not physically present. If the protocol handler
is available, an object is created and the required interface pointers obtained.
Objects are then created in the framework and interface pointers to these
passed to the protocol handler.

After the connections between the framework and the protocol handler has
been set up through the exchange of interface pointers, a method will usually
be called on the protocol handler object that causes it to continue executing in
a thread of its own. Since the interface pointers held by the protocol handler
reference objects in the framework, which are not used by anyone else, all syn-
chronization between concurrently active protocol handlers can be done inside
the framework.

To make this more concrete, we now present a simplified description of the
interaction between the framework and a protocol handler implementing the
server side of a communication protocol on the controller. This relies manly on
the two interfaces IGenServer and IPhServer. The former is provided by
the framework and the latter by protocol handlers implementing server side
functionality. Figure 5-7 is a UML structure diagram showing the relationships
between interfaces and classes involved in the interaction between the frame-
work and such a protocol handler. The class CMyProtocol represents the
protocol handler. The interface IGenDriver gives the protocol handler access
to the device driver for a communication interface.

110 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

Figure 5-7 Interfaces for communication servers

A simplified definition of the IPhServer interface is shown below. The first
two operations are used to pass interface pointers to objects implemented by
the framework to the protocol handler. The other two operations are used to
start and stop the execution of the protocol handler in a separate thread.

interface IPhServer : IUnknown
{
 HRESULT SetServerCallback(
 [in] IGenServer *pGenServer);
 HRESULT SetServerDriver(
 [in] IGenDriver *pGenDriver);
 HRESULT ExecuteServer();
 HRESULT StopServer();
};

The UML sequence diagram in Figure 5-8 shows an example of what might
happen when a configuration is downloaded to a controller, specifying that
the controller should provide server-side functionality. The system software
first invokes the COM operation CoCreateInstance to create a protocol
handler object and obtain an IPhServer interface pointer. Next, an instance
of CGenServer is created and a pointer to it passed to the protocol handler
using SetServerCallback. Similarly, a pointer to a CGenDriver object is
passed using SetDriverCallback. Finally, ExecuteServer is invoked,
causing the protocol handler to start running in a new thread.

 5.3 Componentization 111

Figure 5-8 Call sequence to set up connections

To see how the execution of the protocol handler proceeds, we first look at a
simplified definition of IGenServer. The first two operations are used to in-
form the framework about incoming requests from clients to establish a con-
nection and to take down an existing connection. The last two operations are
used to handle requests to read and write named variables, respectively. The
index parameter is used with variables that hold structured data, such as re-
cords or arrays. All the methods have an output parameter that is used to re-
turn a status word.

interface IGenServer : IUnknown
{
 HRESULT Connect([out] short *stat);
 HRESULT Disconnect([out] short *stat);
 HRESULT ReadVariable(
 [in] BSTR *name, [in] short index,

112 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

 [out] tVal *pVal, [out] short *status);
 HRESULT WriteVariable(
 [in] BSTR *name, [in] short index,
 [in] tVal *pVal, [out] short *status);
};

Running in a thread of its own, the protocol handler uses the IGenDriver
interface pointer to poll the driver for incoming requests from clients. When a
request is encountered the appropriate operation is invoked via the IGen-
Server interface pointer, and the result of the operation, specified by the
status parameter, reported back to the driver and ultimately to the communi-
cation client via the network. As an example, Figure 5-9 shows how a read re-
quest is handled by calling ReadVariable. The definition of the IGen-
Driver interface is not included in this discussion for simplicity, so the names
of the methods invoked on this interface are left unspecified in the diagram.
Write and connection oriented requests are handled in a very similar manner
to read requests.

Figure 5-9 Call sequence to handle variable read

The last scenario to be considered here, is the one where configuration infor-
mation is downloaded, specifying that a protocol handler that was used in the
previous configuration should no longer be used. In this case, the connections
between the objects in framework and the protocol handler must be taken
down and the resources allocated to them released. Figure 5-10 shows how

 5.4 Experiences 113

this is accomplished by the framework first invoking StopServer and then
Release on the IPhServer interface pointer. This causes the protocol handler
to decrement its reference count, and to invoke Release on the interface
pointers that have previously been passed to it. This in turn, causes the objects
behind these interface pointers in the framework to release themselves, since
their reference count reaches zero. Assuming that its reference count is also
zero, the protocol handler object also releases itself. If the same communica-
tion interface, and thus the protocol handler object, had also been used for dif-
ferent purposes, the reference count would have remained greater than zero
and the object not released.

Figure 5-10 Call sequence to take down connections

5.4 Experiences
The definitive measure of the success of the project described in this chapter is
how large the effort required to redesign the software architecture has been
compared to the effort saved by the new way of adding I/O and communica-

114 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

tion support. It is important to remember, however, that in addition to this
cost balance, the business benefits gained by shortening the time to market
must be taken into account. Also important, although harder to assess, are the
long time advantages of the increased flexibility that the component-based
software architecture is hoped to provide.

At the time of writing, the parts of the generic I/O and communication
framework needed to support communication protocols have been completed,
requiring an estimated effort of 15–20 person-years. A number of protocols
have been implemented using the new architecture. The total effort required to
implement a protocol (including the protocol handler, a device driver, firm-
ware for the communication interface, and possibly IEC 61131-3 function
blocks) is estimated to be 3–6 person-years. The reduction in effort compared
to that required with the previous architecture is estimated to vary from one
third to one half, i.e. 1–3 person-years per protocol. Assuming an average sav-
ing of 2 person-years per protocol handler, the savings surpass the investment
after the implementation of 8–10 protocols. Table 5-1 summarizes these effort
estimations, which were made by technical management at ABB and are pri-
marily based on reported working hours.

System tests have shown that the adoption of the chosen subset of COM has
resulted in acceptable system performance. The ability to meet hard real-time
requirements has not been affected by the component-based architecture, since
all such requirements are handled by threads that cannot be interrupted by the
protocol handlers.

Table 5-1 Summary of effort estimation for the two software architectures

Software architecture: Original Component-based

Investment in framework: 0 12-15 person years

Cost per protocol: 4-9 person years 3-6 person years

Saving per protocol: 0 1-3 person years

Return on investment: - 8-10 protocols

An interesting experience from the project is that the componentization is be-
lieved to have resulted in a more modularized and better documented system.

 5.4 Experiences 115

Two characteristics generally believed to enhance quality. This experience
concurs with the view of Szyperski [16] that adopting a component-based ap-
proach may be used to achieve modularization, and may therefore be effective
even in the absence of externally developed components. The reduction in the
effort required to implement communication protocols is partly due to the fact
that the framework now provides some functionality that was previously pro-
vided by individual protocol implementations. This is also believed to have
increased quality, since the risk of each protocol implementation introducing
new errors in this functionality has been removed.

Another interesting experience is that techniques that were originally devel-
oped to deal with dynamic hardware configurations have been successfully
extended to cover dynamic configuration of software components. In the ABB
control system, hardware definition files are used to specify what hardware
components a controller may be equipped with and how the system software
should interact with different types of components. In the redesigned system,
the format of these files has been extended to specify which software compo-
nents may be used in the system. The true power of this commonality is that
existing mechanisms for handling hardware configurations, such as manipu-
lating configuration trees in the Control Builder, downloading configuration
information to a control system, and dealing with invalid configurations, can
be reused largely as is. The idea that component-based software systems can
benefit by learning from hardware design is also aired in [16].

Another lesson of general value is that it seems that a component technology,
such as COM, can very well be used on embedded platforms and even plat-
forms where run-time support for the technology is not available. Firstly, we
have seen that the space and computation overhead that follows from using
COM is not larger than what can be afforded in many embedded systems. In
fact, used with some care, COM does not introduce much more overhead than
do virtual methods in C++. Secondly, in systems where no such overhead can
be allowed, or systems that run on platforms without support for COM, IDL
can still be used to define interfaces between components, thus making a fu-
ture transition to COM straightforward. This takes advantage of the fact that
the Microsoft IDL compiler generates C and C++ code corresponding to the
interfaces defined in an IDL file as well as COM type libraries. Thus, the same
interface definitions can be used with systems of separately linked COM com-
ponents and statically linked systems where each component is realized as a
C++ class or C module.

116 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

Among the problems encountered with the componentization, the most no-
ticeable was the difficulty of splitting functionality between independent
components, i.e. between the framework and the protocol handlers, and thus
determining the interfaces between these components. In all probability, this
was in large parts due to the lack of any prior experiences with similar efforts
within the development organization. Initially, the task of specifying interfaces
was given to the development center responsible for developing the frame-
work. This changed during the course of the project, however, and the inter-
faces ultimately used were in reality defined in an iterative way in cooperation
between the organizational unit developing the framework and those devel-
oping protocol handlers. Other problems are of a non-technical nature. An ex-
ample is the potential problem of what business processes to use if protocol
handlers are to be deployed as stand-alone products. So far, protocol handlers
have only been deployed as parts of complete controller products, comprising
both hardware and software.

5.5 Related Work
A well-published case study with focus on software architecture is that of the
US Navy’s A-7E avionics system [13]. Among other things, this study demon-
strated the use of information hiding to enhance modifiability while preserv-
ing real-time performance. Although the architecture of the A-7E system is not
component-based in the modern sense, an important step was taken in this
direction by decomposing the software into loosely coupled modules with
well-defined interfaces.

A more recent study, describing the componentization of a system with the
aim to make it easier to add new functionality, has been conducted in the tele-
communications domain [1]. In this case study, the monolithic architecture of
Ericsson’s Billing Gateway Systems is redesigned into one based on distrib-
uted components, and a component-based prototype system implemented. In
contrast to our case, the system does not have hard real-time requirements,
although performance is a major concern. The study shows that componenti-
zation of the architecture can improve the maintainability of the system while
still satisfying the performance requirements.

There is a substantial body of work on component-based software for control
systems and other embedded real-time systems, which, unlike this chapter,
focuses on the development of new component models to address the specific

 5.6 Conclusions and Future Work 117

requirements that a system or application domain has with respect to per-
formance, resource utilization, reliability, etc. One of the best known examples
is the Koala component model [12] for consumer electronics, which is inter-
nally developed and used by Philips. Two other examples with particular re-
lation to the work presented in this chapter are the PECOS component model
[6], which was developed with the participation of ABB for use in industrial
field-devices, and the DiPS+ component framework [11], which targets the de-
velopment of flexible protocol stacks in embedded devices.

The primary advantage of such models over more general-purpose models is
their effective support for optimization with respect to the most important as-
pects for the particular application domain. A typical disadvantage is the lack
of efficient and inexpensive tools on the market. For instance, building pro-
prietary development tools in parallel with the actual product development
may incur significant additional costs.

5.6 Conclusions and Future Work
The experiences described above show that the effort required to add support
for communication protocols in the controller product has been considerably
reduced since the adoption of the new architecture. Comparing the invested
effort of 15–20 person-years with the saving of 1–3 person-years per protocol
handler it is concluded that the effort required to design the component-based
software architecture is justified by the reduction in the effort required to
make pre-specified functional extensions to the software and that the savings
surpass the investment after 8–10 such extensions. Based on current plans for
protocol handlers to be implemented, it is expected that the savings exceed the
investment within 3 years from the start of the project.

In addition to these effort savings and the perceived quality improvements,
the component-based architecture has resulted in the removal of the bottle-
neck at the single development centre and the possibility of developing the
framework and several protocol handlers concurrently. This could potentially
lead to business benefits such as reduced time to market. Concerning the
overhead introduced by the component model, which is small in the current
system but may be larger if and when more COM support is incorporated, we
believe that the business climate in which industrial control systems are de-
veloped justifies a modest increase in hardware resource requirements in ex-
change for a noticeable reduction in development time.

118 Chapter 5 Adopting a Component-Based Software Architecture for an Industrial
Control System – A Case Study

The experiences with the use of a component-based software architecture in
ABB’s control system could be further evaluated. For instance, as more proto-
col handlers are completed, the confidence in the estimated reduction of effort
can be increased. Another opportunity is to study the effect on other system
properties, such as performance or reliability. A challenge is that this would
require that meaningful measures of such properties could be defined and that
measures could be obtained from one or more versions of the system before
the componentization.

Since a number of protocol handlers have been implemented and even more
are planned, there is probably a good opportunity to study the experiences of
protocol implementers, which may shed additional light on the qualities of the
adopted architecture and component model. One possibility would be to con-
duct a survey, which might include several development centers. Further op-
portunities to study the use of a software component model in a real-time sys-
tem might be offered by a future version of the controller that adopts more of
COM and possibly uses a commercial COM implementation.

An issue that may be addressed in the future development at ABB is inclusion
of a COM-runtime system with support for dynamic linking between compo-
nents. Commercially available COM implementations will probably be used
for systems based on Windows and VxWorks. Dynamic linking will simplify
the process of developing and testing protocol handlers. A potentially sub-
stantial effect of dynamic linking is the possibility of adding and upgrading
protocol handlers at runtime. This might allow costly production stops to be
avoided while, for instance, a controller is updated with a new communication
protocol. Another possible continuation of the work presented here, would be
to extend the component approach beyond I/O and communication. An ar-
chitecture were general functionality can be easily integrated by adding inde-
pendently developed components, would be a great benefit to this type of sys-
tem, which is intended for a large range of control applications.

5.7 References
[1] H. Algestam, M. Offesson, and L. Lundberg, “Using Components to Increase

Maintainability in a Large Telecommunication System.” In Proceedings of the 9th
Asia-Pacific Software Engineering Conference, 2002.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd edi-
tion. Addison-Wesley, 2003.

 5.7 References 119

[3] J. Bosch, Design & Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison-Wesley, 2000.

[4] D. Box, Essential COM. Addison-Wesley, 1997.

[5] ESPRIT Consortium CCE-CNMA (eds.), MMS: A Communication Language for
Manufacturing. Springer-Verlag, 1995.

[6] T. Genßler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R.
Wuyts, G. Arévalo, B. Schönhage, and P. Müller, “Components for Embedded
Software – The PECOS Approach.” In Proceedings of the 2002 International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, 2002.

[7] G. T. Heineman and W. T. Councill (editors), Component-Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

[8] International Electrotechnical Commission, Programmable Controllers – Part 3:
Programming Languages, 2nd edition. IEC Std. 61131-3, 2003.

[9] F. Lüders, K.-K. Lau, and S.-M. Ho, “Specification of Software Components.”
In I. Crnkovic and M. Larsson (editors), Building Reliable Component-Based Soft-
ware Systems. Artech House Books, 2000.

[10] N. Mahalik (editor), Fieldbus Technology: Industrial Network Standards for Real-
Time Distributed Control. Springer, 2003.

[11] S. Michiels, Component Framework Technology for Adaptable and Manageable Proto-
col Stacks. PhD thesis, K. U. Leuven, 2004.

[12] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[13] D. Parnas, P. Clements, and D. Weiss, “The Modular Structure of Complex
Systems.” In IEEE Transactions on Software Engineering, volume 11, issue 3,
1985.

[14] C. Robson, Real World Research: A Resource for Social Scientists and Practitioner-
researchers, 2nd edition. Blackwell, 2002.

[15] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

[16] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion. Addison-Wesley, 2002.

121

Chapter 6

A Prototype Tool for Software
Component Services in Embedded
Real-Time Systems
with Daniel Flemström, Anders Wall, and Ivica Crnkovic

Abstract
The use of software component models has become popular during the last decade,
in particular in the development of software for desktop applications and distrib-
uted information systems. However, such models have not been widely used in the
domain of embedded real-time systems. There is a considerable amount of research
on component models for embedded real-time systems, or even narrower applica-
tion domains, which focuses on source code components and statically configured
systems. This paper explores an alternative approach by laying the groundwork
for a component model based on binary components and targeting the broader
domain of embedded real-time systems. The work is inspired by component mod-
els for the desktop and information systems domains in the sense that a basic
component model is extended with a set of services for the targeted application
domain. A prototype tool for supporting these services is presented and its use il-
lustrated by a control application.

6.1 Introduction
The use of software component models has become increasingly popular dur-
ing the last decade, especially in the development of software for desktop ap-
plications and distributed information systems. Popular component models
include JavaBeans [5] and ActiveX [4] for desktop applications and Enterprise
JavaBeans (EJB) [11] and COM+ [15] for distributed information systems. In
addition to basic standards for naming, interfacing, binding, etc., these models

122 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

also define standardized sets of run-time services oriented towards the appli-
cation domains they target. Unlike for these domains, there has been no wide-
spread use of software component models in the domain of real-time and em-
bedded systems, presumably due to the special requirements such systems
have to meet with respect to timing predictability and limited use of resources.
Much research has therefore been directed towards defining new component
models for real-time and embedded systems. Typically, such models are based
on static configurations of source code components and target relatively nar-
row application domains. Examples include the Koala component model for
consumer electronics [22], PECOS for industrial field devices [6], and SaveCCM
for vehicle control systems [7].

An alternative approach is to strive for a component model based on binary
components and targeting a broader domain of applications, similar to the
domain targeted by a typical real-time operating system. The approach pur-
sued in this paper is to provide a combination of restrictions and extensions of
an existing component model to adapt it to our target domain. Adapting an
existing component model has several advantages: It may be possible to use
existing (integrated) development environments; existing components can be
re-used or adapted for the real-time domain; integration with application from
other domains becomes significantly simpler, and so on.

Our previous work has demonstrated that the key concepts of the Component
Object Model (COM) [3] can be beneficially used in the development of an em-
bedded real-time system [10]. A study of COM and its extension Distributed
COM (DCOM) [17] shows that these models are not inherently incompatible
with real-time requirements, although some restrictions on how the models
are used may be necessary to ensure predictability [9]. Some reasons that
COM is an attractive starting point are that the model is relatively simple,
commercial COM implementations are already available for a few real-time
operating systems, and COM is already well-known and accepted in industry.
The goal of this paper is to lay the groundwork for a software component
model for embedded real-time systems by using the basic concepts of COM as
the starting point and extending the basic model with standardized services of
general use for this application domain, much like COM+ extends COM with
services for distributed information systems.

The remainder of the paper is organized as follows. In Section 6.2 we clarify
what we mean by software component services and identify some useful ser-
vices for embedded real-time systems. Section 6.3 is an overview of a proto-

 6.2 Component Services 123

type tool we are developing to support such services, including an example
control application to demonstrate the use of the tool. Related work is re-
viewed in Section 6.4 and conclusions and some ideas for further work are
presented in Section 6.5.

6.2 Component Services
In this paper we define component services as solutions to common problems
that can be added to components without modifying them and with little or no
adaptation of application code. This is similar to the concept of component
services in EJB and COM+, where examples of services include transaction
control, data persistence, and security. Our focus is on services that address
common challenges in embedded real-time systems, including logging, syn-
chronization, and timing control. Traditionally, such functions have to be hand
coded and off line deduced using complex theories, which can be very time
consuming and sometimes impossible in complex industrial systems. If third
party components are used, it may also be impossible to implement functions
by modifying the components. In the following subsections we describe some
of the services we have identified in more depth and outline how they may be
implemented. In general, we propose that services are implemented through
the use of proxy objects, which are automatically generated from configuration
files written in an XML based format.

6.2.1 Logging
A logging service allows the sequence of interactions between components to
be traced. Our suggested solution for achieving this is to use a proxy object as
illustrated in the UML class diagram in Figure 2-1. In the diagram, the object
C2 implements an interface IC2 for which we wish to apply a logging service.
A proxy object that also implements IC2 is placed between C2 and a client that
uses the operations exposed through IC2. The operations implemented by the
proxy forward all invocations to the corresponding operations in C2 in addi-
tion to writing information about parameter values, return codes, and invoca-
tion and return times to some logging medium. To add logging of all opera-
tion invocations through an interface, we simply add an entry in the configu-
ration file:

124 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

<application>
 ...
<component name="myProject.C2">
 <interface name="IC2">
 <service type ="Logging"/>
 </interface>
</component>
 ...
</application>

No programming is required in the client C1 or the component C2. To add
logging only for a particular operation, the entry is modified as follows:

<interface name="IC2">
 <operation name="DoSomething">
 <service type ="Logging"/>
 </operation>
</interface>

Figure 6-1 Implementing a logging service through a proxy object

6.2.2 Execution Time Measurement
This service allows operation invocations to be monitored and information
about execution times accumulated. Different measurements, such as worst-
case, best-case, and average execution time may be collected. A possible use of
the information is to dynamically adapt an on-line scheduling strategy. The
suggested solution is to use a forwarding proxy that measures the time
elapsed from each operation call till it returns and collects the desired timing
information. As with the logging service, the time measurement service is
specified in the configuration file:

 6.2 Component Services 125

<interface name="IC2">
 <service type="Timing">
 <measurement type="Mean" />
 <measurement type="Worst"/>
 </service>
</interface>

Again, no programming is required.

6.2.3 Synchronization
A synchronization service allows components that are not inherently thread-
safe to be used in multi-threaded applications. The suggested solution is to use
forwarding proxies that use the basic mechanisms of the underlying operating
system to implement the desired synchronization policies. A synchronization
policy may be applied to a single operation or to a group of operations, e.g. all
operations of an interface or a component. Several different policies may be
useful and will be described further in this section. Most synchronization poli-
cies rely on blocking and it may be useful to combine such policies with time-
outs to limit blocking time. If the blocking time for an operation call reaches
the timeout limit, the proxy return an error without forwarding the call. A
more advanced timeout policy is one where the proxy tries to determine if a
call can be satisfied without violating the timeout limit a priori and, if not, re-
turns an error immediately.

The simplest synchronization policy is mutual exclusion, which blocks all op-
eration calls except one. After the non-blocked call completes, the waiting calls
are dispatched one by one according to the priority policy. This policy may be
applied merely by adding an entry in the configuration file but, if timeouts are
used, the client should be able to handle the additional error codes that may
arise. Another class of synchronization policies is different reader/writer poli-
cies. These differs from the previously described policy in that any number of
calls to read operations may execute concurrently, while each call to write op-
erations has exclusive execution. Thus, the operations subjected to a
reader/writer policy must be classified as either writer or reader operations,
depending on whether they may modify state or not. Concurrent read calls are
scheduled according to their priorities.

Using this policy requires that it be specified for each operation whether it is a
read or write type of operation. This can be done in the component specifica-

126 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

tion (e.g. a COM IDL file) or in the configuration file. If this is left unspecified
for an operation, the proxy must assume it may write data. No programming
is required, except possibly to handle error codes resulting from timeouts. For
all synchronization policies, we may select if the priority of the dispatching
thread should be the same as the calling thread, or explicitly specified in the
configuration file. A specification of a reader/writer policy may look as fol-
lows:

<interface name="IC2">
 <service type="Synchronization" policy="RWPolicy"/>
 <operation name="DoSomething" type="Write"/>
 <operation name="WriteData" type="Write"/>
 <operation name="ReadData" type="Read" />
</interface>

6.2.4 Execution Timeout
This service can be used to ensure that a call to a component’s operation al-
ways terminate within a specified deadline, possibly signaling a failure if the
operation could not be completed within that time. The solution is to use a
proxy that uses a separate thread to forward each operation call and then wait
until either that thread terminates or the deadline expires. In the latter case the
proxy signals the failure by returns an error code. Also, it is possible to specify
different options for what should be done with the thread of the forwarded
call if the deadline expires. The simplest option is to forcefully terminate the
thread, but this may not always be safe since it may leave the component in an
undefined and possibly inconsistent state. Another option is to let the opera-
tion call run to completion and disregard its output. Obviously, using this ser-
vice requires that the client is able to handle timeouts. Again, the service is
specified in the configuration file:

<interface name="IC2">
 <service type="Timeout" deadline="10ms"
 fail="Terminate"/>
</interface>

 6.3 Prototype Tool 127

6.2.5 Vertical Services
In addition to the type of services discussed above, which we believe are gen-
erally useful for embedded real-time systems, one can imagine many services
aimed at more specific application domains, often called vertical services [8].
Among the services we have considered are cyclic execution, which are much
used in process control loops [1], and support for redundancy mechanisms
such as N-version components, which are useful in fault-tolerant systems [2].
The prototype tool presented in the next section includes an implementation of
a cyclic execution service.

6.3 Prototype Tool

Figure 6-2 Generating a proxy object for a component service

This section outlines a prototype tool we are developing that adds services to
COM components on Microsoft Windows CE. The tool generates source code for
proxy objects implementing services by intercepting method calls to the COM
objects. The tool takes as inputs component specifications along with a specifi-

128 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

cation of the desired services for each component. Component specifications
may be in the form of Interface Definition Language (IDL) files or their binary
equivalent Type Library (TLB) files. Desired services are either specified in a
separate file using an XML-based format or in the tool´s graphical user inter-
face, described further below. Note that access to component source code is
not required. Based on these inputs, the tool generates a complete set of files
that can be used with Microsoft eMbedded Visual C++ (sic) to build a COM
component implementing the proxy objects (i.e., the proxies are themselves
COM objects). This process is depicted in Figure 6-2.

6.3.1 Design Consideration
The use of proxy objects for interception is heavily inspired by COM+. How-
ever, rather than to generate proxies at run-time, we suggest that these are
generated and compiled on a host computer (typically a PC) and downloaded
to the embedded system along with the application components. There, the
proxy COM classes must be registered in the COM registry in such a way that
proxy objects are placed between interacting application components. This
process may occur when the software is initially downloaded to the system or
as part of dynamic reconfiguration of a system that supports this. In the latter
case, one can imagine updating or adding proxies without updating or adding
any application components. The current version of the tool only generates
proxy code and does not address the registration and run-time instantiation of
components. This means that the client code must instantiate each proxy along
with the affected COM object and set up the necessary connection between
them. A desirable improvement would be to automate this task, either by gen-
erating code that performs setup for each proxy object or by extending the
COM run-time environment with a general solution.

We consider staying as close as possible to the original COM and COM+ con-
cepts an important design goal for the tool. Another goal is that the program-
mer or integrator should be able to choose desired services for each compo-
nent without having to change the implementation or doing any program-
ming. There are however cases, e.g. when adding invocation timeouts, where
there is a need for adapting the code of the client component to fully benefit
from the service. Specific to COM is that a component is realized by a set of
COM classes that, in turn, each implements a number of interfaces. All inter-
faces have a method called QueryInterface that allows changing from one inter-
face to another on the same COM class. Since each proxy is implemented by a

 6.3 Prototype Tool 129

COM class, which must satisfy the definition of QueryInterface, we must gen-
erate one proxy for each COM class to which we wish to add any services.

6.3.2 Supported Services

Figure 6-3 The graphical user interface of the prototype tool

Figure 6-3 shows the graphical user interface of the tool. After a TLB or IDL
file has been loaded all COM classes defined in the file are listed. Checking the

130 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

box to the left of a COM class causes a proxy for that class to be generated
when the button at the bottom of the tool is pressed. Under each COM class,
the interfaces implemented by the class is listed and, under each interface, the
operations implemented by the interface. In addition, the available services are
listed with their names set in brackets. Checking the box to the left of a service
causes code to be generated that provides the service for the element under
which the service is listed. In the current version of the tool, a service for cyclic
execution may only be specified for the IPassiveController interface (see
example below), while all other services may only be specified for individual
operations. Checking the box to the left of an interface or operation is simply a
quick way of checking all boxes further down in the hierarchy.

If the cyclic execution service is checked, the proxy will implement an interface
called IActiveController instead of IPassiveController (see example
below). Checking the logging service results in a proxy that logs each invoca-
tion of the affected operation. The timing service causes the proxy to measure
the execution time of the process and write it to the log at each invocation (if
timing is checked but not logging, execution times will be measured but not
saved). The synchronization service means that each invocation of the opera-
tion will be synchronized with all other invocations of all other operations on
the proxy object for which the synchronization service is checked. The only
synchronization policy currently supported is mutual exclusion. The timeout
service has a numeric parameter. When this service is selected (by clicking the
name rather than the box) as in Figure 6-3, an input field marked Milliseconds
is visible near the bottom of the tool. Checking the service results in a proxy
where invocations of the operation always terminate within the specified
number of milliseconds. In the case that the object behind the proxy does not
complete the execution of the operation within this time, the proxy forcefully
terminates the execution and returns en error code.

6.3.3 Example Application
To illustrate the use of the tool we have implemented a component that encap-
sulates a digital Proportional-Integral-Differential (PID) controller []. For the
purpose of comparison, we first implemented a component that does not rely
on any services provided by the tool. Figure 6-4 shows the configuration of an
application that uses this component. PIDController is a COM class that
implements an interface IActiveController and relies on the two inter-
faces ISensor and IActuator to read and write data from/to the controlled

 6.3 Prototype Tool 131

process. For the purpose of this example, these interfaces are implemented by
the simple COM class DummyProcess that does nothing except returning a
constant value to the controller. The interfaces are defined as follows:

interface ISensor : IUnknown {
 [propget] HRESULT ActualValue(
 [out, retval] double *pVal);
};

interface IActuator : IUnknown {
 [propget] HRESULT DesiredValue(
 [out, retval] double *pVal);
 [propput] HRESULT DesiredValue(
 [in] double newVal);
};

interface IController : IActuator {
 [propget] HRESULT SensorInterface(
 [out, retval] ISensor **pVal);
 [propput] HRESULT SensorInterface(
 [in] ISensor *newVal);
 [propget] HRESULT ActuatorInterface(
 [out, retval] IActuator **pVal);
 [propput] HRESULT ActuatorInterface(
 [in] IActuator *newVal);
 [propget] HRESULT CycleTime(
 [out, retval] double *pVal);
 [propput] HRESULT CycleTime(
 [in] double newVal);
 [propget] HRESULT Parameter(
 short Index, [out, retval] double *pVal);
 [propput] HRESULT Parameter(
 short Index, [in] double newVal);
};

interface IActiveController : IController {
 [propget] HRESULT Priority(
 [out, retval] short *pVal);
 [propput] HRESULT Priority(
 [in] short newVal);
 HRESULT Start();
 HRESULT Stop();
};

132 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

Figure 6-4 An application using a controller component without services

IController is a generic interface for a single-variable controller with con-
figurable cycle time and an arbitrary number of control parameters. PIDCon-
troller uses three parameters for the proportional, integral, and differential
gain. IActiveController extends this interface to allow control of the con-
troller’s execution in a separate thread. The reason for splitting the interface
definitions like this is that we wish to reuse IController for a controller that
uses our cyclic execution service rather than maintaining its own thread. Note
that IController inherits the DesiredValue property from IActuator.
This definition is chosen to allow the interface to be used for cascaded control
loops where the output of one controller forms the input to another.

The test application TestControl1.exe creates one instance of PIDController
and one instance of DummyController. It then connects the two objects by
setting the SensorInterface and ActuatorInterface properties of the
PIDController object. After this it sets the cycle time and the control pa-
rameters before invoking the Start operation. This causes the PIDController
object to create a new thread that executes a control loop. A simple timing
mechanism is used to control the execution of the loop in accordance with the
cycle time property. At each iteration the loop reads a value from the sensor
interface, which it uses in conjunction with the desired value, the control pa-
rameters, and an internal state based on previous inputs to compute and write
a new value to the actuator interface. To minimize jitter (input-output delay as
well as sampling variability), this part of the loop uses internal copies of all
variables, eliminating the need for any synchronization.

 6.3 Prototype Tool 133

Next, the control loop updates its internal variables for subsequent iterations.
Since the desired value and the control parameters may be changed by the ap-
plication while the controller is running, this part of the loop uses a mutual
exclusion mechanism for synchronization. In addition to performing its con-
trol task the loop timestamps and writes the sensor and actuator data to a log.
The control loop is illustrated by the following pseudo code:

while (Run) {
 WaitForTimer();
 ReadSensorInput();
 ComputeAndWriteActuatorOutput();
 WriteDataToLog();
 WaitForMutex();
 UpdateInternalState();
 ReleaseMutex();
}

Note that, due to the simple timing mechanism, the control loop will halt
unless all iterations complete within the cycle time.

Next, we implemented a component intended to perform the same function,
but relying on services provided by generated proxies. A test application us-
ing this component and generated proxies is shown if Figure 6-5. In this appli-
cation, PIDController is a COM class that implements the IPassiveCon-
troller interface. Note that, although this COM class has the same human
readable name as in the application described above, it has a distinct identity
to the COM run-time environment. To avoid confusion we use the notation
Control2.PIDController when appropriate. IPassiveController ex-
tends IController as follows:

interface IPassiveController : IController {
 HRESULT UpdateOutput();
 HRESULT UpdateState();
};

These operations are used by the PIDController_Proxy object to imple-
ment a control loop that performs the same control task as in the previous ex-
ample.

134 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

Figure 6-5 An application using a controller component with services

PIDController_Proxy was generated with the use of the tool by checking
the cyclic execution service under the Control2.PIDController’s IPas-
siveController interface and the synchronization service under the Up-
dateState operation as well as the operations for accessing the desired value
and the control parameters. The DummyProcess_Proxy provides the inter-
face pointers for the controller’s SensorInterface and ActuatorInter-
face properties. Behind this proxy is a DummyProcess object with the same
functionality as in the previous example. DummyProcess_Proxy was gener-
ated by the tool with the logging service checked. As a result, all data read and
written via the sensor and actuator interfaces are logged. The interfaces ISen-
sor_Proxy, IActuator_Proxy and IPIDController_Proxy are only
used to set up the connections between proxies and other objects. They are de-
fined as follows:

 6.3 Prototype Tool 135

interface ISensor_Proxy : IUnknown {
 HRESULT Attach([in] ISensor *pTarget);
};

interface IActuator_Proxy : IUnknown {
 HRESULT Attach([in] IActuator *pTarget);
};

interface IPIDController_Proxy : IUnknown {
 HRESULT Attach([in] IPassiveController *pTarget);
};

In order to evaluate to two test applications we built and executed them on the
Windows CE 4.0 Emulator. Since the timing accuracy on the emulator is 10
milliseconds, it was not possible to measure any timing differences between
the two applications. In both cases the controller worked satisfactory for cycle
times of 20 milliseconds or more (the measured input-output delay as well as
sampling variability was zero – from which we can only conclude that the ac-
tual times are closer to zero than 10 milliseconds). For shorter cycle times, both
controllers ultimately halted since the limited timer accuracy caused the con-
trol loop to fail to complete its execution before the start of the next cycle. Also,
we were not able to see any systematic difference in memory usage for the two
applications. Clearly, further evaluation of the effects of the services on timing
and memory usage is desirable.

To estimate the difference in programming effort and code size for the two
applications we compared the amounts of source code and sizes of compiled
files. These size metrics for the various components are presented in Table 6-1.
The middle column shows the number of non-empty lines of source code. For
the first three components, the number only include the source code of the
C++ classes implementing the COM objects, i.e. the automatically generated
code included in all COM components is not included. Taking these numbers
as (admittedly primitive) measurements of programming effort, we see that
using the tool to generate service proxies has resulted in a saving of 127 lines
or 42 per cent. On the other hand, we see that the effort required for the client
program is substantially greater in the case where the proxies are used. This is
due to the need for the program to set up the connections between the proxies
and the other objects. We conclude that the usefulness of our approach would
greatly benefit from automation of this task.

136 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

Table 6-1 Size metrics for components

Component Lines of source code File size in KB

Control1.dll 300 56.5

Control2.dll 173 53.5

Control2_Proxy.dll 351 60.5

TestControl1.exe 81 12.5

TestControl2.exe 157 14

As for the code size, there is only a small difference between the three COM
components, leading to an overhead of roughly 100 per cent from using the
proxies. This is largely due to the fact that the implemented COM objects are
relatively small, leading to the obligatory house-keeping code of all COM
components taking up a large percentage of the code size. For larger COM ob-
jects, the relative code sizes approaches the relative sizes of the source code.
The small size of the COM objects is also the main reason that the component
implementing the proxy objects is the largest of all the components. In addi-
tion, the generated code is designed to be robust in the sense that all the opera-
tions of the proxy objects verify that the interface pointers have been set before
forwarding operation calls. An obvious trade-off would be to sacrifice this ro-
bustness for less overhead in execution time as well as space. From the file size
of the two test programs we find that the code overhead for setting up the
connections between the proxies and the other objects is a little more than 10
per cent. This overhead, unlike the overhead on programming effort, cannot
be eliminated by automating the setup task.

6.4 Related Work
The services discussed in this paper have already been adopted by some cur-
rent and emerging technologies. As a base for our discussions, we have se-
lected a few of the most common solutions for these. In addition, this section
briefly reviews some existing research on binary components for real-time sys-
tems.

 6.4 Related Work 137

Microsoft’s component model COM [3] originally targets the desktop software
domain. Thus, it has good support for specifying and maintaining functional
aspects of components while disregarding temporal behavior and resource
utilization. Often this can only be overcome with a substantial amount of
component specific programming. There is no built in support to automati-
cally measure and record execution times for methods in components. This is
typically done by third party applications that instrument the code in run-
time. These applications are typically not well suited for executing on embed-
ded resource constrained systems. The desktop version of COM, as well as the
DCOM package available for Windows CE, has some support for synchroniz-
ing calls to components that are not inherently thread safe. This is achieved
through the use of so-called apartments, which can be used to ensure that only
one thread can execute code in the apartment at a time. Since this technique
origins from the desktop version of COM, there is no built in support for time
determinism and the resource overhead is larger than desired for many em-
bedded systems.

COM+ [15] is Microsoft's extension of their own COM model with services for
distributed information systems. These services provide functionality such as
transaction handling and persistent data management, which is common for
applications in this domain and which is often time consuming and error
prone to implement for each component. Builders of COM+ application de-
clare which services are required for each component and the run-time system
provides the services by intercepting calls between components. COM+ is a
major source of inspiration for our work in two different ways. Firstly, we use
the same criteria for selecting which services our component model should
standardize, namely that they should provide non-trivial functionality that is
commonly required in the application domain. Since our component model
targets a different domain than COM+, the services we have selected are dif-
ferent from those of COM+ as well. Secondly, we are inspired by the technique
of providing services by interception. This mechanism is also used in other
technologies and is sometimes called interceptors rather than proxies, e.g. in the
Common Object Request Broker Architecture (CORBA) [14] and the MEAD frame-
work for fault-tolerant real-time CORBA applications [13].

The approach presented in this paper is similar to the concept of aspects and
weaving. In [21], a real-time component model called RTCOM is presented
which have support for weaving of functionality into components as aspects
while maintaining real-time policies, e.g. execution times. However, RTCOM
is a proprietary source code component model. Moreover, functionality is

138 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

weaved in at the level of source code in RTCOM whereas in our approach,
services are introduced at the system composition level.

Another aspect-oriented approach is presented in [18], which describes a
method using C# attributes to generate a proxy that handles component repli-
cation for fault tolerance. Our work is primarily targeting COM and C++,
which does not support attributes as used in that paper. An obstacle to the use
of C# for the type of systems we are interested in is the lack of real-time pre-
dictability in the underlying .NET Framework [16]. The possibility of adding
real-time capabilities to the .NET framework are described in [23].

A model for monitoring of components in order to gain more realistic WCET
estimations is described in [20]. In this model the WCET is guessed at devel-
opment time and the component is then continuously monitored at runtime
and measurements of execution times are accumulated. This technique is very
similar to our execution time measurement service.

Another effort to support binary software components for embedded real-time
systems is the Robocop project [12], which builds on the aforementioned Koala
model and primarily targets the consumer electronics domain. This work is
similar to ours in that the component model defined as part of this project is
largely based on the basic concepts of COM. Furthermore, the sequel of the
project, called Space4U [19], also seems to use a mechanism similar to proxy
objects, e.g. to support fault-tolerance.

6.5 Conclusion and Future Work
The aim of this work has been to lay the groundwork for component services
for embedded real-time systems using COM as a base technology. A major
benefit of this approach is that industrial programmers can leverage their
knowledge of existing technologies. Also, extending COM with real-time ser-
vices probably requires less effort than inventing a new component technol-
ogy from the ground.

The initial experiences with the prototype shows that it is possible to create a
tool that more or less invisibly add real-time services to a standard component
model. The example application demonstrates that the use of generated prox-
ies to implement services may substantially reduce the complexity of software
components. Another conclusion to be drawn from the example is that our

 6.6 References 139

approach would benefit from also automating the configuration of applica-
tions with proxies.

We have been able to identify some component services which we believe are
useful for embedded real-time systems. As part of our future work, we plan to
evaluate the usefulness of the services as well as to extend the set of services.
We hope to do this with the help of input from organizations developing
products in such domains as industrial automation, telecommunication, and
vehicle control systems.

We realize that the proposed solutions imposes some time and memory over-
head, and we believe that this is an acceptable price for many embedded real-
time systems if using the model reduces the software development effort. It is,
however, necessary that this overhead can be kept within known limits. So far,
our prototype implementation has been tested with the Windows CE emula-
tor, where we have found no noticeable run-time overheads. In our future
work, we plan to evaluate the solution experimentally on a system running
Windows CE. Measurements will be made to determine the effect on timing
predictability as well as time and memory overhead.

We furthermore aim to empirically evaluate our approach with respect to its
effect on development effort and such quality attributes as reliability and re-
usability. Our hypothesis concerning reliability is that it may improve as a re-
sult of reduced complexity of application components, provided of course that
the generated proxies are reliable. We also believe reusability may be affected
positively, as e.g. the use of synchronization services could make it easier to
reuse components across applications that share some functionality but rely on
different synchronization policies. The primary evaluating technique will be to
conduct replicated student projects where software is developed both with
and without the prototype tool. A possible complementary technique is indus-
trial case studies, which implies a lower level of control and replication but
may allow more realistic development efforts to be investigated.

6.6 References
[1] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory and De-

sign, 2nd edition. Prentice Hall, 1990.

[2] Avizienis, “The Methodology of N-version Programming.” In M. R. Lyu (edi-
tor), Fault Tolerance. Wiley, 1995.

140 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time
Systems

[3] D. Box, Essential COM. Addison-Wesley, 1997.

[4] D. Chappell, Understanding ActiveX and OLE. Microsoft Press, 1996.

[5] R. Englander, Developing Java Beans. O'Reilly, 1997.

[6] T. Genßler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R.
Wuyts, G. Arévalo, B. Schönhage, and P. Müller, “Components for Embedded
Software – The PECOS Approach.” In Proceedings of the 2002 International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, 2002.

[7] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren, “SaveCCM – A
Component Model for Safety-Critical Real-Time Systems. In Proceedings of the
30th EROMICRO Conference, 2004.

[8] G. T. Heineman and W. T. Council (editors), Component-Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

[9] F. Lüders, “Adopting a Software Component Model in Real-Time Systems De-
velopment.” In Proceedings of the 28th Annual IEEE/NASA Software Engineering
Workshop, 2004.

[10] F. Lüders, I. Crnkovic, and P. Runeson, “Adopting a Component-Based Soft-
ware Architecture for an Industrial Control System – A Case Study.” In C. At-
kinson, C. Bunse, H.-G. Gross, and C. Peper (editors), Component-Based Software
Development for Embedded Systems: An Overview of Current Research Trends.
Springer, 2005.

[11] R. Monson-Haefel, B. Burke, and S. Labourey, Enterprise JavaBeans, 4th edition.
O'Reilly, 2004.

[12] J. Muskens, M. R. V. Chaudron, and J. J. Lukkien, “A Component Framework
for Consumer Electronics Middleware.” In C. Atkinson, C. Bunse, H.-G. Gross,
and C. Peper (editors), Component-Based Software Development for Embedded Sys-
tems: An Overview of Current Research Trends. Springer, 2005.

[13] P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte, J. G.
Slember, and D. Srivastava, “MEAD: Support for Real-Time Fault-Tolerant
CORBA.” In Concurrency and Computation: Practice and Experience, volume 17,
issue 12, 2005.

[14] Object Management Group, Common object request broker architecture: Core
specification. OMG formal/04-03-12, 2004.

[15] D. S. Platt, Understanding COM+. Microsoft Press, 1999.

 6.6 References 141

[16] D. S. Platt, Introducing Microsoft .NET, 3rd edition. Microsoft Press, 2003.

[17] F. E. Redmond III, DCOM: Microsoft Distributed Component Object Model. Wiley,
1997.

[18] W. Schult and A. Polze, “Aspect-Oriented Programming with C# and .NET.”
In Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, 2002.

[19] Space4U Project, “Space4U Public Hompage.” http://www.hitech-pro-
jects.com/euprojects/space4u/, accessed on 28 April 2006.

[20] D. Sundmark, A. Möller, and M. Nolin, “Monitored Software Components – A
Novel Software Engineering Approach.” In Proceedings of the 11th Asia-Pacific
Software Engineering Conference, Workshop on Software Architectures and Compo-
nent Technologies, 2004.

[21] A. Tešanović, D. Nyström, J. Hansson, and C. Norström, “Aspects and Com-
ponents in Real-Time System Development: Towards Reconfigurable and Re-
usable Software.” In Journal of Embedded Computing, volume 1, issue 1, 2004.

[22] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[23] Zerzelidis and A. J. Wellings, “Requirements for a Real-Time .NET Frame-
work.” In ACM SIGPLAN Notices, volume 40, issue 2, 2005.

143

Chapter 7

Use of Software Component Models and
Services in Embedded Real-Time
Systems
with Shoaib Ahmad, Faisal Khizer, and Gurjodh Singh-Dhillon

Abstract
While the use of software component models has become popular in the develop-
ment of desktop applications and distributed information systems, such models
have not been widely used in the domain of embedded real-time systems. Pre-
sumably, this is due to the requirements such systems have to meet with respect to
predictable timing and limited use of resources. There is a considerable amount of
research on component models for embedded real-time systems that focuses on
source code components, statically configured systems, and relatively narrow ap-
plication domains. This paper explores the alternative approach of using a main-
stream component model based on binary components. The effects of using the
model on timing and resource usage have been measured by implementing exam-
ple applications both with and without using the model. In addition, the use of a
prototype tool for supporting software component services has been investigated
in the same manner.

7.1 Introduction
The use of software component models has become popular in the develop-
ment of desktop applications and distributed information systems, where
popular component models include JavaBeans [1] and ActiveX [2] for desktop
applications and Enterprise JavaBeans (EJB) [3] and COM+ [4] for information
systems. In addition to basic standards for naming, interfacing, binding, etc.,

144 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

these models also define standardized sets of run-time services oriented to-
wards the application domains they target. This concept is generally termed
software component services [5].

Software component models have not been widely used in the development of
real-time and embedded systems. It is generally assumed that this is due to the
special requirements such systems have to meet, in particular with respect to
timing predictability and limited use of resources such as memory and CPU
time. Much research has been directed towards defining new component
models for real-time and embedded systems, typically focusing on relatively
small and statically configured systems. Most of the published research pro-
poses models based on source code components and targeting relatively nar-
row application domains. Examples of such models include the Koala compo-
nent model for consumer electronics [6], PECOS for industrial field devices [7],
and SaveCCM for vehicle control systems [8].

An alternative approach is to strive for a component model for embedded real-
time systems based on binary components and targeting a broader domain of
applications, similarly to the domain targeted by a typical real-time operating
system. This paper explores the possibility of using a mainstream component
model as the starting point for such a model. Specifically, the use of the Com-
ponent Object Model (COM) [9] with the real-time operating system Windows CE
[10] is investigated. We have empirically evaluated the effect of using COM by
implementing applications both with and without using the model. In addi-
tion, we have evaluated the effects of using a prototype tool for supporting
software component services in embedded real-time systems.

The rest of this paper is organized as follows. Section 7.2 provides background
information on COM and the prototype tool. Section 7.3 presents an automatic
control applications that we use as an example to evaluate the use of these
technologies. In Section 7.4, we described the tests we have conducted and
their results. These results are discussed in Section 7.5. Section 7.6 is an over-
view of some related work. Conclusions and ideas for future work are pre-
sented in Section 7.7.

 7.2 Background 145

7.2 Background

7.2.1 The Component Object Model (COM)
Microsoft’s Component Object Model (COM) [9] is one of the most commonly
used software component models for desktop and server side applications. Al-
though the model is increasingly being replaced by the newer .NET technol-
ogy [11] in these domains, we believe COM is a more suitable starting point
for a model aimed at embedded real-time systems because of its relative sim-
plicity. In particular, the use of automatic memory management (garbage col-
lection) in .NET is a serious barrier against ensuring predictable timing.

A key principle of COM is that interfaces are specified separately from both
the components that implement them and those that use them. COM defines a
dialect of the Interface Definition Language (IDL) that is used to specify object-
oriented interfaces. Interfaces are object-oriented in the sense that their opera-
tions are to be implemented by a class and passed a reference to a particular
instance of that class when invoked. The code that uses a component does not
refer directly to any objects, however. Instead, the operations of an interface
supported by an object are invoked via what is known as an interface pointer.
A concept known as interface navigation makes it possible for the user to ob-
tain a pointer to every interface supported by the object.

COM also defines a run-time format for interface pointers. What an interface
pointer really references is an interface node, which in turn, contains a pointer
to a table of function pointers, called a VTABLE. Typically, the node also con-
tains a pointer to an object’s instance data, although this is implementation
specific. This use of VTABLEs is identical to the way that many C++ compilers
implement virtual methods. Thus, the time and space overhead associated
with accessing an object through an interface pointer is presumably the same
as that incurred with C++ virtual methods. Figure 7-1 illustrates the typical
format of interface nodes.

For most real-time systems, a more serious concern than these modest over-
heads is that interface navigation introduces a possible source of run-time er-
rors. If the user of a component asks an object for a pointer to an interface that
the object does not support, this will not be detected during compilation. It
may be argued, in fact, that this is the principal difference between interface
navigation and interface inheritance in traditional object-oriented program-

146 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

ming. This can be seen as a necessary price to pay for the otherwise desirable
reduced compile-time dependence between components.

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

Figure 7-1 Typical format of COM interface nodes

As already mentioned, a COM component is implemented in classes. The
mechanism for creating instances of these classes is closely linked with how
and when the code in different components is linked together. COM defines a
policy for instantiation, which is intended to ensure that different components
can be installed in a system at different times. When a component is installed,
information about it must be registered somewhere in the system, linking the
identity of its classes to the code that implement these. COM also requires a
run-time library, called the COM library, to be installed on the system. When
some code wants to use a component, it uses an operation provided by the
COM library to ask for an instance of a class and an initial interface pointer to
it. If the code of the component is not already loaded into memory, the COM
library uses the registered information to locate the code and load it before an
instance is created. This process is illustrated in Figure 7-2.

Thus, creation of an instance involves searching the information about regis-
tered classes and possibly loading of code. This leads to a noticeable overhead
when compared to instantiation in for instance C++. Furthermore, this over-
head will vary, depending on whether the code implementing a class has al-
ready been loaded or not. This variability can be eliminated, however, by de-
signing the software such that all components that may be used will be loaded
at start-up. Note that removal of instances is subject to the same variability,
since the COM standard states that code can be unloaded when the last in-
stance that rely on it is removed.

 7.2 Background 147

Client Component

COM Library Registry

1) Request object by
class and interface

2) Look up component

3) Load component if necessary
and request object

4) Return interface
pointer

5) Invoke
operations

Figure 7-2 Instance creation and dynamic loading of code in COM

A benefit that follows from COM’s way of creating instances is that the code
that implements a component can be built independently of any code that uses
the component. Since instantiation involves passing the identity of the desired
class as a parameter to a system operation, it is a possible source of run-time
errors, which is not present during instantiation in traditional object-oriented
programming, since attempting to instantiate a class that does not exist will
result in a compilation error in this case. Again, this is a necessary price to be
paid for decreased coupling.

7.2.2 Software Component Services for Embedded Real-Time Systems
A prototype tool for supporting software component services in embedded
real time systems is presented in [12]. The tool adds services to COM compo-
nents on Windows CE through the use of proxy object that intercept method
calls. Figure 7-3 illustrates the use of a proxy object that provides a simple log-
ging service. The object C2 implements an interface IC2 for which we wish to
apply a logging service. A proxy object that also implements IC2 is placed be-
tween C2 and a client that uses the operations exposed through IC2. The op-
erations implemented by the proxy forward all invocations to the correspond-
ing operations in C2 in addition to writing information about parameter val-
ues, return codes, and invocation and return times to some logging medium.

148 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

Figure 7-3 A logging service proxy

The tool takes as inputs a component specification along with specifications of
desired services and generates source code for a proxy object. Component
specifications may be in the form of Interface Definition Language (IDL) files
or their binary equivalent Type Library (TLB) files. Desired services are either
specified in a separate file using an XML-based format or in the tool´s graphi-
cal user interface, described further below. Note that access to component
source code is not required. Based on these inputs, the tool generates a com-
plete set of files that can be used with Microsoft eMbedded Visual C++ to build a
COM component implementing the proxy objects (i.e., the proxies are them-
selves COM objects). This process is depicted in Figure 7-4.

This use of proxy objects for interception is inspired by COM+. However,
rather than to generate proxies at run-time, they are generated and compiled
on a host computer and downloaded to the embedded system along with the
application components. This process may occur when the software is initially
downloaded to the system or as part of dynamic reconfiguration of a system
that supports this. In the latter case, one can imagine updating or adding prox-
ies without updating or adding any application components. The current ver-
sion of the tool only generates proxy code and does not address the registra-
tion and run-time instantiation of components. This means that the client code
must instantiate each proxy along with the affected COM object and set up the
necessary connection between them.

 7.2 Background 149

Figure 7-4 Proxy object generation

In addition to logging, the tool supports generating proxies that implement
one or more of the following services: execution time measurement of method
invocations; synchronization between concurrent invocations; execution time-
out on invocations; and cyclic execution of methods.

Figure 7-5 shows the graphical user interface of the tool. After a TLB or IDL
file has been loaded all COM classes defined in the file are listed. Checking the
box to the left of a COM class causes a proxy for that class to be generated
when the button at the bottom of the tool is pressed. Under each COM class,
the interfaces implemented by the class is listed and, under each interface, the
operations implemented by the interface. In addition, the available services are
listed with their names set in brackets. Checking the box to the left of a service
causes code to be generated that provides the service for the element under
which the service is listed. In the current version of the tool, a service for cyclic
execution may only be specified for the IPassiveController interface while all
other services may only be specified for individual operations. The IPas-
siveController interface is described in connection with the example applica-
tion in the next section.

150 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

Figure 7-5 User interface of the prototype tool

If the cyclic execution service is checked, the proxy will implement an interface
called IActiveController instead of IPassiveController (see the ex-
ample in the next section). IActiveController includes operations for set-
ting the period and threading priority of the cyclic execution. Checking the
logging service results in a proxy that logs each invocation of the affected op-
eration. The timing service causes the proxy to measure the execution time of
the process and write it to the log at each invocation (if timing is checked but
not logging, execution times will be measured but not saved).

 7.3 Example Application 151

The synchronization service means that each invocation of the operation will
be synchronized with all other invocations of all other operations on the proxy
object for which the synchronization service is checked. The only synchroniza-
tion policy currently supported is mutual exclusion. The timeout service has a
numeric parameter. When this service is selected (by clicking the name rather
than the box) as in Figure 7-5, an input field marked Milliseconds is visible
near the bottom of the tool. Checking the service results in a proxy where in-
vocations of the operation always terminate within the specified number of
milliseconds. In the case that the object behind the proxy does not complete
the execution of the operation within this time, the proxy forcefully terminates
the execution and returns en error code.

7.3 Example Application
To evaluate the effects of using both COM and the prototype tool, we used the
example application presented in [12]. At the center of this application is a
component that encapsulates a proportional-integral-differential (PID) controller
[13]. Four different versions of the application were implemented. They are
presented here in the order in which they were first developed. The four ver-
sions are summarized in Table 7-1 at the end of this section.

Figure 7-6 Implementation with COM

We first implemented a version using COM, shown in Figure 7-6, which we
term Control2. PIDController is a COM class that implements an interface
IActiveController and relies on the two interfaces ISensor and IAc-

152 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

tuator to read and write data from/to the controlled process. For the pur-
pose of this example, these interfaces are implemented by the simple COM
class DummyProcess that does nothing except returning a constant value to
the controller. The interfaces are defined as follows:

interface ISensor : IUnknown
{
 [propget] HRESULT ActualValue(
 [out, retval] double *pVal);
};

interface IActuator : IUnknown
{
 [propget] HRESULT DesiredValue(
 [out, retval] double *pVal);
 [propput] HRESULT DesiredValue(
 [in] double newVal);
};

interface IController : IActuator
{
 [propget] HRESULT SensorInterface(
 [out, retval] ISensor **pVal);
 [propput] HRESULT SensorInterface(
 [in] ISensor *newVal);
 [propget] HRESULT ActuatorInterface(
 [out, retval] IActuator **pVal);
 [propput] HRESULT ActuatorInterface(
 [in] IActuator *newVal);
 [propget] HRESULT CycleTime(
 [out, retval] double *pVal);
 [propput] HRESULT CycleTime(
 [in] double newVal);
 [propget] HRESULT Parameter(
 [in] short Index, [out, retval] double *pVal);
 [propput] HRESULT Parameter(
 [in] short Index, [in] double newVal);
};

interface IActiveController : IController
{
 [propget] HRESULT Priority(
 [out, retval] short *pVal);

 7.3 Example Application 153

 [propput] HRESULT Priority(
 [in] short newVal);
 HRESULT Start();
 HRESULT Stop();
};

IController is a generic interface for a single-variable controller with con-
figurable cycle time and an arbitrary number of control parameters. PIDCon-
troller uses three parameters for the proportional, integral, and differential
gain. IActiveController extends this interface to allow control of the con-
troller´s execution in a separate thread. (The reason for splitting the interface
definitions like this was to reuse IController for a controller that uses the
cyclic execution service rather than maintaining its own thread.) Note that
IController inherits the DesiredValue property from IActuator. This
definition was chosen to allow the interface to be used for cascaded control
loops where the output of one controller forms the input to another.

The test application TestControl2.exe creates one instance of PIDController
and one instance of DummyController. It then connects the two objects by
setting the SensorInterface and ActuatorInterface properties of the
PIDController object. After this it sets the cycle time and the control pa-
rameters before invoking the Start operation. This causes the PIDControl-
ler object to create a new thread that executes a control loop. A simple timing
mechanism is used to control the execution of the loop in accordance with the
cycle time property. At each iteration the loop reads a value from the sensor
interface, which it uses in conjunction with the desired value, the control pa-
rameters, and an internal state based on previous inputs to compute and write
a new value to the actuator interface. To minimize jitter (input-output delay as
well as sampling variability), this part of the loop uses internal copies of all
variables, eliminating the need for any synchronization.

Next, the control loop updates its internal variables for subsequent iterations.
Since the desired value and the control parameters may be changed by the ap-
plication while the controller is running, this part of the loop uses a mutual
exclusion mechanism for synchronization. In addition to performing its con-
trol task the loop timestamps and writes the sensor and actuator data to a log.
The control loop is illustrated by the following pseudo code:

while (Run)
{

154 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

 WaitForTimer();
 ReadSensorInput();
 ComputeAndWriteActuatorOutput();
 WriteDataToLog();
 WaitForMutex();
 UpdateInternalState();
 ReleaseMutex();
}

Note that, due to the simple timing mechanism, the control loop will halt
unless all iterations complete within the cycle time.

Figure 7-7 Implementation with COM and generated proxies

Next, we implemented a component intended to perform the same function,
but relying on services provided by generated proxies. A test application us-
ing this component and proxies is shown in Figure 7-7. In this application,

 7.3 Example Application 155

termed Control3, PIDController is a COM class that implements the IPas-
siveController interface. Note that, although this COM class has the same
human readable name as in the application described above, it has a distinct
identity to the COM run-time environment. To avoid confusion we use the no-
tation Control3.PIDController when appropriate. IPassiveControl-
ler extends IController as follows:

interface IPassiveController : IController
{
 HRESULT UpdateOutput();
 HRESULT UpdateState();
};

These operations are used by the proxy_PIDController object to imple-
ment a control loop that performs the same control task as in the previous ex-
ample.

The proxy_PIDController COM class was generated with the use of the
tool by checking the cyclic execution service under the IPassiveControl-
ler interface of Control3.PIDController. The proxy_DummyProc-
ess COM class provides the interface pointers for the controller’s Sen-
sorInterface and ActuatorInterface properties. Behind this proxy is a
DummyProcess object with the same functionality as in the Control2 ap-
plication. proxy_DummyProcess was generated by the tool with the logging
service checked. As a result, all data read and written via the sensor and actua-
tor interfaces are logged. The interfaces IDummyProcess_Proxy and IPID-
Controller_Proxy are only used to set up the connections between proxies
and other objects. They are defined as follows:

interface IProxy_DummyProcess : IUnknown
{
 HRESULT AttachISensor([in] IUnknown *pTarget);
 HRESULT AttachIActuator([in] IUnknown *pTarget);
};

interface IProxy_PIDController : IUnknown
{
 HRESULT AttachIPassiveController(
 [in] IUnknown *pTarget);
};

156 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

To be able to evaluate the overhead introduced by the use of COM and the
generated proxies, we implemented two non-component-based versions of the
application, each consisting of a single executable file. Figure 7-8 shows the
internal structure of these programs, termed Control0 and Control1, as UML
class diagrams.

Figure 7-8 Non-component-based implementations

The application termed Control1 was constructed by making very modest
modifications to the source code of the Control2 application. The main modifi-
cation was that the calls to the COM library for creating instances of COM
classes were replaced by simple instantiation of C++ classes. The C++ classes
CPIDController and CDummyProcess are identical to those used internally
to implement the COM classes of Control2. ISensor and IActuator are ab-
stract C++ classes that correspond directly to the COM interfaces of the same
names. They are specified in C++ as follows:

class ISensor : public IUnknown
{
 virtual HRESULT get_ActualValue(double *pVal) = 0;
};

class IActuator : public IUnknown
{
 virtual HRESULT get_DesiredValue(double *pVal) = 0;
 virtual HRESULT put_DesiredValue(double val) = 0;
};

Control0 is a modified version of Control1, where the classes are modified
such that virtual methods are not used. This means that calls to the methods
are not performed using VTABLES of function pointers, and the address of the

 7.4 Tests 157

methods are determined at compile-time rather than at run-time. The abstract
classes are removed, since such classes rely entirely on virtual methods. Table
7-1 summarizes the four different versions of the application.

Table 7-1 Summary of application versions

Name Description

Control0 Using C++ without virtual methods

Control1 Using C++ with virtual methods

Control2 Using COM

Control3 Using COM and proxy-based services

7.4 Tests

7.4.1 Test Setup
 The example application described in the previous section was tested on a
system running Window CE 5.00. The hardware used was a PC with a 2.8
GHz Pentium 4 processor. The Windows CE run-time image was built using
Microsoft Platform Builder 5.00 with the standard board support package for a
Windows CE based PC (CEPC) and the standard setting provided by the “In-
dustrial Controller” platform template. This platform allowed time measure-
ments to be made with a resolution of one millisecond. Each of the four ver-
sions of the application was built with Microsoft eMbedded Visual C++ and
tested on the target computer one at a time, resetting the target between each
test.

For each of the four versions of the example application, two different execu-
tion times were measured. The first was the time required for invocation of the
get_ActualValue method of the DummyProcess COM objects or, in the
case of Control0 and Control1, of the CDummyProcess C++ objects. Given the
one millisecond resolution, we were required to modify the control loop of the
programs by adding an inner loop that performed two million invocations of
get_ActualValue instead of a single invocation to obtain usable time meas-
urements. For each of the versions, this measurement was made 170 times.

158 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

The second measurement made for each of the versions was the time required
for initialization of the application. This initialization includes instantiation of
the COM or C++ objects and setting up of the connections between them. This
test was performed 20 times for each of the versions of the example applica-
tion.

In addition to execution times, measurements of memory usage were also per-
formed. However, we were not able to see any difference between the four dif-
ferent versions of the test application on the test platform we used. Also, dif-
ferences between the size of source code and binary files were presented in
[12] and are not repeated here. Thus, the following presentation and discus-
sion of the results focus on execution times.

7.4.2 Results

Comparing Measured Execution Times of All Programs During
Control Execution

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Sample Number

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Control 0
Control 1
Control 2
Control 3

Figure 7-9 Measured execution times

Figure 7-9 shows measured execution times of making two million invocations
of get_ActualValue for the four different version of the example applica-

 7.4 Tests 159

tion. The measurements for Control0 (without COM and not using virtual
methods) are the lowest with an average of four milliseconds. These meas-
urements show no variation, but given that the resolution is one millisecond
the uncertainty per measurement is 25%.

Control1 (without COM but using virtual methods) and Contro2 (with COM)
give similar results of approximately 19 milliseconds on average and 5% varia-
tion. This indicates that the overhead of using COM as well as of using virtual
methods in C++ is approximately 15 milliseconds. Taking into account that
two million invocations were made per measurement, this correspond to an
invocation overhead of 7.5 nanoseconds for this particular processor.

Control3 (with COM and all invocations passing through a proxy objects)
gives approximately 27 milliseconds on average and 11% variation. This indi-
cates an additional overhead of approximately eight milliseconds compared to
Control2, corresponding to four nanoseconds per invocation. Table 7-2 sum-
marizes the measurements depicted in Figure 7-9.

Table 7-2 Summary of execution times

Execution time (ms)
Version

Min. Max. Average

Control0 4 4 4

Control1 19 20 19.00588

Control2 19 20 19.01176

Control3 27 30 27.12353

Figure 7-10 shows measured execution times of application initialization for
Control0, Control1, and Control2. The measurements for Control0 (where the
initialization consists of instantiating two C++ classes and passing a reference
of one instance to the other) give an average of 0.4 milliseconds. For Control1
(where the initialization is very similar) the average is 0.7 milliseconds and for
Control2 (where initialization involves calling the COM library to instantiate
the COM classes) one millisecond. Given that these values are so small com-
pared to the one millisecond resolution and that only 20 measurements were

160 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

collected in each case, they can only be viewed as crude estimations of the real
execution time.

Comparing Measured Execution Times for
Initialization of Control0, Control1 & Control2

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

Sample Number

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Control0
Control1
Control2

Figure 7-10 Measured initialization times for Control0, Control1, and Control2

Figure 7-11 shows measured execution times of application initialization for
Control3. For this implementation (where the initialization comprises calling
the COM library to instantiate four different COM classes in three different
components and performing a comparatively complex setup task) the average
is approximately 2940 milliseconds, which is of course notably higher than for
the other implementations. The variation is also quite high with a difference of
4686 milliseconds between the minimum and maximum. If we treat the maxi-
mum value as an outlier we get approximately 2730 milliseconds on average
and 40% variation. The measured execution times of application initialization
are summarized in Table 7-3.

 7.5 Discussion 161

Control3

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample Number

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Figure 7-11 Measured initialization times for Control3

Table 7-3 Summary of initialization times

Execution time (ms)
Version

Min. Max. Average

Control0 0 1 0.4

Control1 0 1 0.7

Control2 1 1 1

Control3 2264 6950 2940.85

7.5 Discussion
The measured execution times during control execution constitute quite strong
evidence that the overheads of using both COM and the proxy-based services
are modest and, even more importantly in many real-time systems, quite pre-
dictable. The overhead of using COM interfaces pointers are found to be es-

162 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

sentially equal to that of using C++ virtual methods. It should be noted here,
however, that using C++ classes allows mixing of virtual and statically bound
methods. Typically, a carefully designed C++ class will use virtual methods
only where variability is desired, leading to a lower average overhead than for
an equivalent COM class where invocation through interface pointers is man-
datory.

Comparing the use of proxy-based services with the use of COM without ser-
vices, the additional overhead is found to be quite modest. In some cases,
however, the increased number of indirections might be expected to lead to an
increase in the number of cache misses and thereby a higher penalty. Clearly,
the tests presented in this paper, where a single operation has been invoked
repeatedly in a loop, is much less likely to result in cache misses than more
realistic usage scenarios.

Based on the measured execution times during application initialization, it
seams safe to conclude that the times required when C++ or COM is used are
of the same order of magnitude, while the time required when proxy-based
services are used are several orders of magnitude higher. Nonetheless, these
measurements leave much to be desired. For Control0, Control1, and Control2,
it would be desirable to perform additional measurements using loops that
repeat the initializations to obtain higher values and hence increased accuracy.
For Control3, additional measurements to reveal the most time consuming
parts of the initialization phase would be very desirable.

7.6 Related Work
Although models based on source code component still seem to dominate,
there are other efforts to support binary software components for embedded
real-time systems. One example is the Robocop research project [14], which
builds on the aforementioned Koala component model and primarily targets
the consumer electronics domain. The component model defined as part of
this project is largely based on the basic concepts of COM. Furthermore, the
sequel of the project, called Space4U [15], also seems to use a mechanism simi-
lar to software component services, e.g. to support fault-tolerance.

The approach to software component services discussed in this paper relies
heavily on the technique of providing services by interception. This mecha-
nism is also used in other technologies and is sometimes called interceptors

 7.7 Conclusion and Future Work 163

rather than proxies, e.g. in the Common Object Request Broker Architecture
(CORBA) [16] and the MEAD framework for fault-tolerant real-time CORBA
applications [17]. The approach is furthermore similar to the concept of aspects
and weaving. In [18], a real-time component model called RTCOM is pre-
sented which have support for weaving of functionality into components as
aspects while maintaining real-time properties. An important difference with
our approach is that, in RTCOM, functionality is weaved in at the level of
source code.

Another effort towards adapting a mainstream component model to the em-
bedded real-time systems domain is presented in [19]. This work aims to ex-
tend the Enterprise JavaBeans model with means for specifying timing proper-
ties of software components. As it focuses on specification and not run-time
issues, it is complementary to our work rather than an alternative. The fact
that it is based on EJB rather than COM is not of principal importance, but the
lack of Java run-time environments for embedded real-time systems may
mean that the approach is further from real-world application.

In general, the concept of software component services can be seen as a special
case of middleware. The use of middleware in embedded real-time systems is
an active topic of research (and practice) not necessarily related to software
components. Similar to our approach of adapting a mainstream component
model, efforts have been made to adapt mainstream middleware to the do-
main of embedded real-time systems [20]. Specialized middleware frame-
works for this domain also exist, including OSA+ [21] that provides services
for distributed systems and Kokyu [22] that provides flexible scheduling and
dispatching services.

7.7 Conclusion and Future Work
The aim of the work presented in this paper has been to investigate the possi-
bility of using a mainstream software component model, as well as an exten-
sion of this model with run-time services, for developing embedded real-time
systems. We believe that the results show that this is a promising approach, al-
though further investigation, in particular of the overheads related to object
instantiation, should be undertaken. The overheads related to invoking opera-
tions through COM interfaces as well as through a forwarding proxy were
found to be both modest and predictable. Thus, these overheads would
probably be quite acceptable in many embedded real-time systems. In particu-

164 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

lar, we can conclude that a system that can afford the invocation overhead of
C++ virtual methods can also afford COM interfaces, since the cost is nearly
identical.

Since we view the use of a mainstream component model like COM as an al-
ternative to more specialized models, it would be interesting to conduct a
comparative study of COM (and possibly other mainstream models) and at
least one specialized model. A possible object of such a study is the aforemen-
tioned Koala component model, which is supported by freely available tools.
Differences between models, e.g. in terms of time and memory overheads,
should be investigated empirically by implementing example applications.

In addition to the run-time effects on resource usage and predictability, the
effects of using the approach on development effort and such quality attrib-
utes as reliability and reusability should be evaluated. In our future work, we
aim to do this using different empirical techniques, including both controlled
experiments and case studies with student participation. In addition, it would
be desirable to perform industrial case studies, which implies a lower level of
control and replication, but allows more realistic situations to be investigated.

7.8 References
[1] R. Englander, Developing Java Beans. O'Reilly, 1997.

[2] D. Chappell, Understanding ActiveX and OLE. Microsoft Press, 1996.

[3] R. Monson-Haefel, B. Burke, and S. Labourey, Enterprise JavaBeans, 4th edition.
O'Reilly, 2004.

[4] D. S. Platt, Understanding COM+. Microsoft Press, 1999.

[5] G. T. Heineman and W. T. Council (editors), Component-Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

[6] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[7] T. Genßler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R.
Wuyts, G. Arévalo, B. Schönhage, and P. Müller, “Components for Embedded
Software – The PECOS Approach.” In Proceedings of the 2002 International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, 2002.

 7.8 References 165

[8] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren, “SaveCCM – A
Component Model for Safety-Critical Real-Time Systems.” In Proceedings of the
30th EROMICRO Conference, 2004.

[9] D. Box, Essential COM. Addison-Wesley, 1997.

[10] J. Murray, Inside Microsoft Windows CE, Microsoft Press, 1998.

[11] D.S. Platt, Introducing Microsoft .NET, 3rd edition. Microsoft Press, 2003.

[12] F. Lüders, D. Flemström, A. Wall, and I. Crnkovic, “A Prototype Tool for Soft-
ware Component Services in Embedded Real-Time Systems.” In Proceedings of
the 9th International Symposium on Component-Based Software Engineering, 2006.

[13] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory and De-
sign, 2nd edition. Prentice Hall, 1990.

[14] J. Muskens, M. R. V. Chaudron, and J. J. Lukkien, “A Component Framework
for Consumer Electronics Middleware.” In C. Atkinson, C. Bunse, H. Gross,
and C. Peper (editors.), Component-Based Software Development for Embedded Sys-
tems: An Overview of Current Research Trends. Springer, 2005.

[15] Space4U Project, “Space4U Public Homepage.” http://www.hitech-pro-
jects.com/euprojects/space4u/, accessed on 28 April 2006.

[16] Object Management Group, Common Object Request Broker Architecture: Core
Specification. OMG formal/04-03-12, 2004.

[17] P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte, J. G.
Slember, and D. Srivastava, “MEAD: Support for Real-Time Fault-Tolerant
CORBA.” In Concurrency and Computation: Practice and Experience, volume 17,
issue 12, 2005.

[18] A. Tešanović, D. Nyström, J. Hansson, and C. Norström, “Aspects and Com-
ponents in Real-Time System Development: Towards Reconfigurable and Re-
usable Software.” In Journal of Embedded Computing, volume 1, issue 1, 2004.

[19] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao, “Real-Time Component-
Based Systems.” In Proceedings of the 11th IEEE Real Time and Embedded Technol-
ogy and Applications Symposium, 2005.

[20] D. C. Schmidt, “Middleware for Real-Time and Embedded Systems.” In Com-
munications of the ACM, volume 45, issue 6, 2002.

166 Chapter 7 Use of Software Component Models and Services in Embedded Real-Time
Systems

[21] F. Picioroaga, A. Bechina, U. Brinkschulte, and E. Schneider, “OSA+ Real-Time
Middleware, Results and Perspectives.” In Proceeding of the 7th International
IEEE Symposium on Object-Oriented Real-Time Distributed Computing, 2004.

[22] C. D. Gill, R. K. Cytron, and D. C. Schmidt, “Multiparadigm Scheduling for
Distributed Real-Time Embedded Computing.” In Proceedings of the IEEE, vol-
ume 91, issue 1, 2003.

167

Chapter 8

Evaluation of a Tool for Supporting
Software Component Services in
Embedded Real-Time Systems
with Ivica Crnkovic and Per Runeson

Abstract
The use of software component models has become popular in the development of
desktop applications and distributed information systems. The most successful
models incorporate support for run-time services of general use in their intended
application domains. There has been no widespread use of such models in the de-
velopment of embedded real-time systems and much research is currently directed
at defining new component models for this domain. We have explored the alterna-
tive approach of extending a mainstream component model with run-time services
for embedded real-time systems. A prototype tool has been developed that gener-
ates code for a number of such services. To evaluate this tool, we have conducted a
multiple-case study, where four teams of students were given the same develop-
ment task. Two teams were given the tool while the remaining two were not. This
paper describes the design of the study and our initial analysis of the results.

8.1 Introduction
The use of software component models has become popular over the last dec-
ade, in particular in the development of desktop applications and distributed
information systems. The most successful component models in these domains
include JavaBeans [1] and ActiveX [2] for desktop applications and Enterprise
JavaBeans (EJB) [3] and COM+ [4] for information systems. In addition to basic
standards for naming, interfacing, binding, etc., these models also define stan-

168 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

dardized sets of run-time services oriented towards the application domains
they target. This concept is generally termed software component services [5].

Software component models have not been widely used in the development of
real-time and embedded systems. It is generally assumed that this is due to the
special requirements such systems have to meet, in particular with respect to
timing predictability and limited use of resources. Much research has been di-
rected towards defining new component models for real-time and embedded
systems, typically focusing on relatively small and statically configured sys-
tems. Most of the published research proposes models based on source code
components and targeting relatively narrow application domains. Examples of
such models include Koala for consumer electronics [6] and SaveCCM for ve-
hicle control systems [7].

An alternative approach is to strive for a component model for embedded real-
time systems based on binary components and targeting a broader domain of
applications, similarly to the domain targeted by a typical real-time operating
system. In our previous work we have explored the possibility of using a
mainstream component model as the starting point and extending it with
software component services for embedded real-time systems [8]. Specifically,
we have investigated the use of the Component Object Model (COM) [9] with the
real-time operating system Windows CE [10] and developed a prototype tool
that generates code for a number of services.

To evaluate the usefulness of the prototype tool, we have conducted a multi-
ple-case study where four development projects were run in parallel. Two of
these used the tool and two did not. Before describing the study, we briefly
present the prototype tool and its rationale in Section 8.2. Section 8.3 describes
the design of the case study, Section 8.4 discusses the process of data collection
in more detail, and Section 8.5 presents our initial analysis of the results. Some
related work is briefly reviewed in Section 8.6 while Section 8.7 presents con-
clusions and our plans for future work.

8.2 Background
Software component models like EJB and COM+ include support for various
services that are generally useful in the domain of distributed information sys-
tems. Examples of such services include transaction control, data persistence,
and security. Our focus here is on services that address common challenges in

 8.2 Background 169

embedded real-time systems, including logging, synchronization, and timing
control. Although the sets of services are different, the principles used to pro-
vide the run-time services are similar in many respects.

A prototype tool for supporting software component services in embedded
real time systems was presented in [8]. The tool adds services to COM compo-
nents on Windows CE through the use of proxy objects that intercept method
calls. Figure 8-1 illustrates the use of a proxy object that provides a simple log-
ging service. The object C2 implements an interface IC2 for which one wishes
to apply a logging service. A proxy object that also implements IC2 is placed
between C2 and a client that uses the operations exposed through IC2. The
operations implemented by the proxy forward all invocations to the corre-
sponding operations in C2 in addition to writing information about each invo-
cation to some logging medium.

Figure 8-1 A logging service proxy

The tool takes as inputs a component specification along with specifications of
desired services and generates source code for a proxy object. Component
specifications may be in the form of Interface Definition Language (IDL) files
or their binary equivalent Type Library (TLB) files. Desired services are either
specified in a separate file using an XML-based format or in the tool’s graphi-

170 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

cal user interface, described further below. Access to component source code is
not required. Based on these inputs, the tool generates a complete set of files
that can be used with Microsoft eMbedded Visual C++ to build a COM com-
ponent implementing the proxy objects (i.e., the proxies are themselves COM
objects). This process is depicted in Figure 8-2.

Figure 8-2 Proxy object generation

This use of proxy objects for interception is inspired by COM+. However,
rather than to generate proxies at run-time, they are generated and compiled
on a host computer and downloaded to the embedded system along with the
application components. This process may occur when the software is initially
downloaded to the system or as part of dynamic reconfiguration of a system
that supports this. In the latter case, one can imagine updating or adding prox-
ies without updating or adding any application components. The current ver-
sion of the tool only generates proxy code and does not address the registra-
tion and run-time instantiation of components. This means that the client code
must instantiate each proxy along with the affected COM object and set up the
necessary connection between them.

 8.2 Background 171

Figure 8-3 User interface of the prototype tool

Figure 8-3 shows the graphical user interface of the tool. After a TLB or IDL
file has been loaded all COM classes defined in the file are listed. Checking the
box to the left of a COM class causes a proxy for that class to be generated
when the button at the bottom of the tool is pressed. Under each COM class,
the interfaces implemented by the class is listed and, under each interface, the
operations implemented by the interface. In addition, the available services are
listed with their names set in brackets. Checking the box to the left of a service
causes code to be generated that provides the service for the element under

172 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

which the service is listed. In the current version of the tool, a service for cyclic
execution may only be specified for the IPassiveController interface while all
other services may only be specified for individual operations. The IPassive-
Controller interface is described further below.

Checking the logging service results in a proxy that logs each invocation of the
affected operations. The timing service causes the proxy to measure the execu-
tion time of the operation and write it to the log at each invocation (if timing is
checked but not logging, execution times will be measured but not saved). The
synchronization service means that each invocation of the operation will be
synchronized with all other invocations of all other operations on the proxy
object for which the synchronization service is checked. The only synchroniza-
tion policy currently supported is mutual exclusion.

The timeout service has a numeric parameter. When this service is selected (by
clicking the name rather than the box) as in Figure 8-3, an input field marked
Milliseconds is visible near the bottom of the tool. Checking the service results
in a proxy where invocations of the operation always terminate within the
specified number of milliseconds. In the case that the object behind the proxy
does not complete the execution of the operation within this time, the proxy
forcefully terminates the execution and returns en error code.

The cyclic execution service is particularly suited for components that imple-
ment process controllers [11]. If this service is checked, the proxy will imple-
ment an interface called IActiveController instead of IPassiveController. Both
interfaces share a common set of operations for accessing control parameters,
including the controller’s set point. IActiveController includes operations for
setting the period and threading priority of the cyclic execution. IPassiveCon-
troller includes one operation for updating the controller’s output and one for
updating the its internal state. The proxy invokes both these operations cycli-
cally and the latter is synchronized with the operations for accessing control
parameters.

8.3 Case Study Design
In order to evaluate the tool support, we launched an empirical study. The
study is conducted using a multiple-case study design [12]. We prefer consid-
ering it a case study rather than an experiment, since from an experimental
point of view, it is a quasi-experimental “post-test non-equivalent groups de-

 8.3 Case Study Design 173

sign” according to Robson’s terminology [13, pp. 133-146]. We observe four
different project teams, solving the same problem with two different sets of
working conditions – access to tool or not. We measure their results in quanti-
tative terms of time consumption, problem reporting and a qualitative analysis
of their technical solutions. We can not distinguish quantitatively between the
effects of the tool and the teams’ capabilities, but seen as a case study, we may
find indications and opinions regarding the value and contribution of the tool.

The study was conducted in the context of a project assignment for third year
students in computer science that runs over 10 weeks with 50% workload –
corresponding to 7.5 standard European credit units. There were 30 students,
who were divided into four project teams of seven or eight members. During
the early phases of the projects, some students dropped of from the course,
such that the team sizes varied from five to eight members.

The assignment of the projects was to develop a component-based application
to be run under Windows CE on a PC connected to two water tanks where the
water level can be controlled by individual pumps. A requirement was that
the software should include a component implementing a PID controller [11]
able to control the pumps. The controller had to sample the current water level
and update the pump voltage in a timely fashion. It should furthermore be
possible to change the desired water level and control parameters during the
operation of the controller in a thread-safe manner.

The detailed requirements of each project were elicited by the project teams
through negotiation with a course instructor acting as customer. Thus, the re-
quirements were not identical. Over the course of the projects, some changes
in the requirements were introduced by the customer. This was in part based
on each team’s achievements to avoid the task being too simple for some
teams. In addition, two of the teams were given the additional requirement
that they should use the prototype tool to implement multithreading, syn-
chronization, and logging of process data,

The design used for the study is summarized as follows:

1. The subjects were divided into four teams by the course instructors with
the intention of making the teams as equal as possible.

2. The team capabilities were assessed based on the earliest phases of the
projects – requirements capture and user interface prototyping. We
found that two teams were “strong” and two teams were “weak”.

174 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

3. All four teams were given (almost) the same task – implementation of
the control system for a water tank. One strong and one weak team were
given access to the tool, while the other two teams were not.

4. Data was collected during the course of the project from time sheets and
weekly project reports, and the project deliverables were assessed – a
project description, project final report, design description and code.

The case study teams are summarized in Table 8-1.

Table 8-1 Case study design overview

 Tool support No tool support

Strong team Team 1 Team 2

Weak team Team 3 Team 4

Threats to the validity of a case study may be grouped into three categories;
reactivity, respondent bias and researcher bias [13, p.172]. Reactivity means
that the studied phenomenon behaves differently due to the fact that it is ob-
served. The studied context is clearly artificial and observed in a teaching con-
text, but all four teams are observed in the same way. Respondent bias means
the risk that the respondents act based on expectations. The tool evaluation is a
minor part of the study, and hence it is not clear to them what is expected. Fur-
ther, the triangulation using both quantitative and qualitative measurements
reduces the bias. Researcher bias means the risk that the researchers only see
the positive signs pro their proposed tool. This is addressed by involving a
third author for peer debriefing and negative case analysis. Triangulation also
reduces researcher bias.

8.4 Data Collection
Each of the four project teams were charged with delivering a number of
documents during the course of the project. In addition, the status of each pro-
ject was presented orally at weekly meetings with a steering group, consisting
of two course instructors for each project. Among the information collected
was the number of working hours for each team member and activity. Table 8-

 8.4 Data Collection 175

2 summarizes the reported working hours per activity for each group in num-
ber of hours as well as in percent of the total.

Table 8-2 Reported working hours

Activity Team 1 Team 2 Team 3 Team 4

Project mgt. 80h 6% 37h 3% 13h 12% 12h 17%

Configuration mgt. 40h 3% 23h 2% 64h 6% 40h 6%

Requirements mgt. 400h 28% 210h 20% 78h 7% 70h 10%

Software design 280h 19% 160h 15% 131h 12% 80h 11%

Software coding 480h 33% 345h 32% 290h 26% 220h 31%

Software testing 160h 11% 160h 15% 115h 10% 131h 18%

Other activities 0h 0% 130h 12% 300h 27% 60h 8%

Total 1440h 100% 1065h 100% 1109h 100% 721h 100%

Obviously, each team was also expected to deliver a number of software com-
ponents. At the end of the project, the executable software was demonstrated
with the target equipment and all components – including source code – were
delivered. Since the tool under evaluation is primarily intended to help with
the implementation of cyclic execution and synchronization, we inspected the
source code of all teams with respect to thread safety and timeliness. More
specifically we studied the controller component and its relation to other com-
ponents to determine if the following criteria were met:

• A timing mechanism is used to ensure that the control loop executes
with the correct cycle time.

• A synchronization mechanism is used to prevent set-points and control
parameters from being written by the application while they are being
read by the control loop.

The properties of each team’s controller component are summarized in Table
8-3 and described in more detail below.

176 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

Table 8-3 Control loop properties

 Team 1 Team 2 Team 3 Team 4

Timely Yes Yes Yes Yes

Thread safe No No No No

Team 1 had used the prototype tool and the cyclic execution service to gener-
ate a proxy that ensured correct timing of the control loop. Team 3 also used
the tool to generate a proxy for the controller, but had failed to select the cyclic
execution. Instead they had manually written code to execute the control loop
in a separate thread, as had Teams 2 and 4, who did not use the tool at all.
These three teams had all used appropriate timing mechanisms correctly.

Although Team 1 had used the tool with the cyclic execution service, they had
failed to ensure thread safe execution of the control loop. As described in Sec-
tion 8.2, the interface IPassiveController contains one operation for updating
the controller output and one for updating its internal state, and only the latter
is synchronized with other operations. Team 1’s component was not thread
safe, because the first operation updates the output as well as the internal
state, while the implementation of the latter operation was left empty.

Of the remaining three teams, who had not used the cyclic execution service,
Teams 2 and 3 had not used any synchronization mechanism at all in neither
the control loop nor the operations for accessing the controller’s data. Team 4
had used a mutual exclusion mechanism in the control loop but not in the
other operations; the mechanism had been used in such a way that the control
loops for the two water tanks were (quite unnecessarily) synchronized with
each other. Consequently, none of these controller components are thread safe
either.

8.5 Analysis
Based on the collected data, described in the previous section, we have per-
formed a preliminary analysis to see whether there are any indications that the
different conditions for the four project teams – i.e. use of tool or not – has re-
sulted in any significant differences in the projects’ results. The analysis is
somewhat complicated by the fact that Team 3, who used the tool, failed to use

 8.5 Analysis 177

the cyclic execution service. Thus, with respect to implementation of the cyclic
execution of the control loop, this team should be considered as not having
used the tool, as indicated in Table 8-4.

Table 8-4 Overview of teams with respect to cyclic execution of control loop

 Tool support No tool support

Strong team Team 1 Team 2

Weak team Teams 3 and 4

The reported worked hours for the four teams, summarized in Table 1, reveals
no correlation between the use of the tool and the number of worked hours for
the different activities. This is true both for the absolute number of hours as
well as the percentages of the worked hours spent on the different activities. In
particular, there are no significant differences with respect to the relative
amount of work required for software coding. This can probably be attributed,
at least in part, to the fact that the amount of code generated by the tool consti-
tutes relatively small portions of the total amount of the code produced by the
projects. Thus, a more detailed investigation of the working hours related to
those parts of the software where the tool is most effective – i.e. the implemen-
tation of the control loop with multithreading and synchronization – would be
desirable.

The properties of the four teams’ controller components summarized in Table
8-3 shows a success rate of zero when it comes to thread safe execution of the
control loops. Before analyzing this further, it should be pointed out that the
subjects did not have prior knowledge of neither real-time systems in general
nor computer-based control systems in particular. Although the necessity of
using some synchronization mechanism to ensure thread safety was pointed
out by the instructors at the start of the project, it seams that this was not made
sufficiently clear, as at least two of the teams completely neglected to address
the issue. This is not an unexpected mistake from someone without experience
in concurrent system development, in particular since the error only occasion-
ally results in failure and is likely to go undetected by testing.

Of the two teams whose control loops included some synchronization mecha-
nism Team 1 had used the tool to generate the synchronization code. The fact
that the team had only implemented the operation intended to update the con-

178 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

troller output prior to synchronization may be an indication that they too did
not realize the need for synchronization, although an alternative scenario is
that they were mistaken and believed that synchronization was provided. In
any case, this observation shows that the way we have chosen to implement
the tool to rely on two operations for updating the output and internal state
respectively, is a potential source of error. This potential could easily be elimi-
nated at the cost of removing the ability to generate the controller output in a
way that is guarantied not to be blocked by threads of lower priority. Another
possible improvement may be to rename the operations from UpdateOutput
and UpdateState to reflect that the former operation do not support thread
safety.

Team 4 seems to have attempted to ensure thread safe execution of the control
loop by using a mutual exclusion mechanism. The attempt failed because
other operations that may update the controller’s state did not use the same
mechanism. A possible interpretation of this observation is that the team erro-
neously assumed that using the mechanism, called critical section in Windows
CE, would prevent the thread executing the control loop from conflicting with
any other threads in the system.

8.6 Related Work
The major source of inspiration for our approach and the prototype tool pre-
sented in this paper is COM+ [4], which is Microsoft's extension of their own
COM model with services for distributed information systems. These services
provide functionality such as transaction handling and persistent data man-
agement, which is common for applications in this domain and which is often
time consuming and error prone to implement for each component. We use
the same criteria for selecting which services our component model should
standardize, namely that they should provide non-trivial functionality that is
commonly required in the application domain. Since our component model
targets a different domain than COM+, the services we have selected are dif-
ferent from those of COM+ as well.

We are furthermore inspired by the technique of providing services by inter-
ception. This mechanism is also used in other technologies and is sometimes
called interceptors rather than proxies, e.g. in the Common Object Request Broker
Architecture (CORBA) [14] and the MEAD framework for fault-tolerant real-
time CORBA applications [15].

 8.7 Conclusion and Future Work 179

The approach presented in this paper is similar to the concept of aspects and
weaving. The real-time component model RTCOM [16] supports weaving of
functionality into components as aspects while maintaining real-time policies,
e.g. execution times. However, RTCOM is a proprietary source code compo-
nent model. Moreover, functionality is weaved in at the level of source code in
RTCOM whereas in our approach, services are introduced at the system com-
position level.

Another effort to support binary software components for embedded real-time
systems is the Robocop project [17], which builds on the aforementioned Koala
model and primarily targets the consumer electronics domain. This work is
similar to ours in that the component model defined as part of this project is
largely based on the basic concepts of COM. Furthermore, the sequel of the
project, called Space4U [18], also seems to use a mechanism similar to proxy
objects, e.g. to support fault-tolerance.

8.7 Conclusion and Future Work
This paper describes a multiple-case study we have launched to evaluate the
usefulness of a prototype tool that supports the concept of software compo-
nent services in embedded real-time systems. The study is based on four par-
allel software development projects, where two of the project teams were
given the tool. One of these only partly used the tool as intended, however, so
in some important respects, three of the projects were conducted without tool
support and only one with tool support.

The projects are completed and have resulted in delivery of documentation
and software from each of the four teams. This paper presents our first analy-
ses of some of this data – the reported number of working hours for different
activities and the properties of the delivered software with respect to timeli-
ness and thread safety. We have not been able to draw any conclusion from
the reported working hours, except that it is desirable to study the required
development effort related to certain parts of the software in more detail. The
analysis of software properties has shown that the students participating in
the projects were not well prepared for implementing the required functional-
ity in a thread safe manner, neither with the support of the tool nor without it.
However, we have identified possible changes to the tool that would probably
make it easier to avoid such errors, even for developers without experience of
multithreaded software.

180 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in
Embedded Real-Time Systems

In the immediate continuation of the work presented here we plan to expand
upon our analysis of the differences between the four projects. In addition to
the already identified task of analyzing the development effort in more detail,
we expect to undertake a more comprehensive and systematic qualitative
analysis of the delivered documentation and software. We also plan to launch
further empirical studies to evaluate our approach for software component
services and the prototype tool. For instance, it would be of great interest to
investigate the use of the tool in connection with reuse of components across
projects. One possibility is to conduct another study with students as partici-
pants, either as a multiple-case study again or as a controlled experiment. It
would also be desirable to apply the prototype tool in an industrial case study,
which would imply a lower level of replication and control but allow us to
evaluate our approach in a more realistic setting. We plan to evaluate and ex-
tend the set of services supported by the tool. We hope to do this with the help
of industrial partners in such domains as industrial automation, telecommuni-
cations, and vehicle control systems.

8.8 References
[1] R. Englander, Developing Java Beans. O'Reilly, 1997.

[2] D. Chappell, Understanding ActiveX and OLE. Microsoft Press, 1996.

[3] R. Monson-Haefel, B. Burke, and S. Labourey, Enterprise JavaBeans, 4th edition.
O'Reilly, 2004.

[4] D. S. Platt, Understanding COM+. Microsoft Press, 1999.

[5] G. T. Heineman and W. T. Council (editors), Component-Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

[6] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala
Component Model for Consumer Electronics Software.” In Computer, volume
33, issue 3, 2000.

[7] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren, “SaveCCM – A
Component Model for Safety-Critical Real-Time Systems.” In Proceedings of the
30th EROMICRO Conference, 2004.

 8.8 References 181

[8] F. Lüders, D. Flemström, I. Crnkovic, and A. Wall, “A Prototype Tool for Soft-
ware Component Services in Embedded Real-Time Systems.” In Proceedings of
the 9th International Symposium on Component-Based Software Engineering, 2006.

[9] D. Box, Essential COM. Addison-Wesley, 1997.

[10] J. Murray, Inside Microsoft Windows CE. Microsoft Press, 1998.

[11] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory and De-
sign, 2nd edition. Prentice Hall, 1990.

[12] R. K. Yin, Case Study Research: Design and Methods, 3rd edition. Sage Publica-
tions, 2003.

[13] C. Robson, Real World Research: A Resource for Social Scientists and Practitioner-
researchers, 2nd edition. Blackwell, 2002.

[14] Object Management Group, Common Object Request Broker Architecture: Core
Specification. OMG formal/04-03-12, 2004.

[15] P. Narasimhan, T. A. Dumitras, A .M. Paulos, S. M. Pertet, C. F. Reverte, J. G.
Slember, and D. Srivastava, “MEAD: Support for Real-Time Fault-Tolerant
CORBA.” In Concurrency and Computation: Practice and Experience, volume 17,
issue 12, 2005.

[16] A. Tešanović, D. Nyström, J. Hansson, and C. Norström, “Aspects and Com-
ponents in Real-Time System Development: Towards Reconfigurable and Re-
usable Software.” In Journal of Embedded Computing, volume 1, issue 1, 2004.

[17] J. Muskens, M. R. V. Chaudron, and J. J. Lukkien, “A Component Framework
for Consumer Electronics Middleware.” In C. Atkinson, C. Bunse, H. Gross,
and C. Peper (editors.), Component-Based Software Development for Embedded Sys-
tems: An Overview of Current Research Trends. Springer, 2005.

[18] Space4U Project, “Space4U Public Home Page.” http://www.hitech-pro-
jects.com/euprojects/space4u/, accessed 28 April 2006.

183

Chapter 9

Conclusion

9.1 Summary of Results
This dissertation investigates the use of a software component model based on
binary components in the development of software for embedded real-time
systems. Section 2.3.3 reviews a set of requirements for component models to
be used in such systems and discusses how well a component model based on
binary components, exemplified by COM, can satisfy these requirements. It is
concluded that this model is well suited to most of the requirements, such as
limited use of resources, support for standard modeling techniques, and ease
of introduction. Other requirements can be satisfied by augmenting the model
or putting restrictions on its use. For instance, analyzability can be supported
by delivering models for this purpose along with the executable components.
Similarly, white-box or testing and debugging are possible if components are
built with debugging information and delivered with source code. Some re-
quirements, such as those for reusability and maintainability, are highly de-
pendant on the programming language and style used to implement compo-
nents. Thus, these are orthogonal to the model itself, which defines a binary
standard and is independent of programming language.

In addition to these requirements, an obvious requirement is that systems us-
ing the component model must exhibit predictable timing and be able to sat-
isfy real-time constraints. Chapter 4 discusses the effect of using COM and
DCOM on this ability as well as on the use of computational resources. A
study of documentation leads to the conclusion that the models are not inher-
ently incompatible with real-time requirements although their use introduces
some additional sources of potential run-time errors and loss of predictability
compared to traditional object-oriented programming. For instance, the dy-

184 Chapter 9 Conclusion

namic binding between components that occurs transparently during object
instantiation means that there is a potential that the component implementing
a requested object is not present, an error that would be detected at compile-
time in traditional object-oriented software. Also, the time required for instan-
tiation can be unpredictable since it depends on whether the component is al-
ready loaded or not. These sources of potential errors and unpredictability can
be handled by putting restrictions on the use of the models. For instance, sys-
tem can be designed in such a way that all components are loaded during ini-
tialization. The study furthermore finds that the expected run-time overheads
associated with the models are very modest. The run-time overheads of COM
interfaces are the same as those typically incurred by using virtual methods in
C++. The additional costs associated with using DCOM are dominated by the
communication mechanisms themselves rather than the proxy and stub objects
that provide location transparency.

The industrial case study reported in Chapter 5 demonstrates that a compo-
nent-based software architecture, using the basic concepts of COM, can be
beneficially used in the development of an industrial control system. More
specifically, the study shows that the architecture effectively supports distrib-
uted development and leads to effort savings as well as quality gains related
to making extensions to the software. After the study, technical management
at ABB estimated that the investment in the framework was 15–20 person-
years and that the savings in effort for extending the system with one new
communication protocol was 1–3 person-years. The investment in the frame-
work is dominated by the effort required for splitting the functionality into
generic and protocol-specific parts rather than for adopting COM. The quality
gains are related to the fact that the use of externally developed components
has necessitated a well thought-through modularization of the system and that
the identification of generic functionality that can be implemented in the
framework has led to a simplification of protocol implementations. The per-
formance of the system with the component-based architecture was found to
be acceptable and the hard real-time requirements for scheduling of control
programs were not affected, as it is not handled by the part of the system that
was componentized. The additional time for instantiation of protocol handlers
does not interfere with the normal execution of programs since all instances
are created during program download. There are no potential run-time errors
or timing unpredictability related to instantiation since static linking is used.
An interesting aspect is that, while component-based software architectures
are usually viewed as a way to support reuse of components across multiple

 9.1 Summary of Results 185

systems, this project demonstrates their usefulness in supporting integration
of multiple components in a single system.

Three years after the study, a total of 15 protocol handlers have been devel-
oped and the effort estimates are still considered to be valid. The majority of
the developed protocol handlers support protocols that are implemented on
external communication interfaces rather than in the protocol handlers them-
selves. These protocol handlers may still contain a considerable amount for
functionality, e.g. for managing hardware redundancy, reporting status, and
performing diagnostics. The remaining protocol handlers also implement the
actual protocols and communication is performed using either “dumb” exter-
nal interfaces or the controller’s built-in serial or Ethernet ports. Most of the
communication protocols that the control system supported already before the
project have now been re-implemented as protocol handlers, which have been
done in India. Thus, this effort has benefited from the architecture’s inherent
support for distributed development. Due to the demonstrated usefulness of
the component-based architecture for I/O and communication functions, ABB
is now planning to adopt a similar approach for other types of functionality in
the system. For instance, in the Control Builder, a framework to support the
implementation of editors for different programming languages as independ-
ently developed components is being considered.

The framework has also been developed further to meet new requirements. As
the number of protocols has grown and the majority of protocol handlers are
not used in most controllers, it is no longer desirable that all protocol handlers
are statically linked with the rest of the system. To address this, the system has
been extended with a possibility for dynamic download of protocol handlers.
This solution has been developed in-house rather than using the COM imple-
mentation available with VxWorks to avoid the additional licensing costs. This
dynamism brings with it the potential for run-time errors and unpredictable
timing, but this can still only occur during program download. An advantage
of not using an off-the-shelf COM implementation is that it has been possible
to keep the ability to link some protocol handlers statically. This is used for
those protocols that are not optional and, consequently, the potential problems
related to dynamism do not apply to these. Other new requirements for the
framework are related to the use of the controller in safety critical systems. Ef-
fort estimates for the new developments of the framework are not available at
the time of writing.

186 Chapter 9 Conclusion

The dissertation furthermore investigates the possibility of extending the
component model with software component services of general use for em-
bedded real-time systems. Chapter 6 outlines a set of such services, including
logging, synchronization, execution time measurement, invocation timeout,
and cyclic execution. It presents an approach for supporting such services by
the use of proxy objects, using automatic code generation based on declarative
attributes, and a prototype tool that generates code for a number of services.
Unlike in COM+ and the Trust4All project, described in Section 2.3.3, the code
generation is performed off-line. This means that it does not use any computa-
tional resources of the target system and that the system does not need to store
code for services that are not used. The prototype is evaluated by implement-
ing an example application using a general PID controller component. Two
versions of the application is implemented, one where generated proxies are
used for logging, synchronization, and cyclic execution, and one where this is
handled by the controller component. The amount of source code in the in-
volved components is compared in the two versions, to provide an indication
of the required development effort. The use of proxies substantially reduces
the size of the controller component from 300 lines to 173 lines. On the other
hand, for the executables that invoke the operations of the controller compo-
nents, the source code grows from 81 to 157 lines, since the latter executable
must also instantiate the proxy objects and set up the connections between
them and the other objects. It is concluded that automatic generation of code
for this task would be a valuable extension of the work and it is outlined how
this can be quite simply achieved.

The prototype tool is evaluated further in the study reported in Chapter 7. The
different versions of the example application of the previous chapter are tested
on a PC running Windows CE and execution times are measured. In addition
to the two component-based versions of the application, two non-component-
based versions are also implemented and tested. In both of these, COM com-
ponents are replaced by statically linked C++ classes. In one version, these
classes are implemented with only virtual methods and, in the other, without
any virtual methods. The use of virtual methods means that binding between
objects occurs at run-time and operation invocation is performed via tables of
function pointers. In the other version, binding is static and operations are in-
voked without indirection. Execution time measurements of an operation in-
voked repeatedly by the controller components show modest overheads re-
lated to the use of virtual methods, COM, and COM in combination with gen-
erated proxy objects. The average per invocation is approximately 7.5 nano-
seconds when either virtual methods or COM is used and an additional 4

 9.1 Summary of Results 187

nanoseconds with the generated proxies. These measurements were per-
formed 170 times and the variation was approximately 5% with virtual meth-
ods as well as COM and about 11% with proxies, meaning that timing is quite
predictable.

Execution times were also measured during initialization of the different ver-
sions of the example application, which consists of instantiating COM or C++
objects and setting up connections between them. The average measurements
were 0.4 milliseconds for the C++ application without virtual methods, 0.7
millisecond with virtual methods, one millisecond with COM, and nearly
three seconds with COM and generated proxies. The study concludes that
more measurements are desirable to investigate why the time required for ini-
tialization is so much larger in the last version of the application. The meas-
urements were done as a part of Master thesis project and, after the project
was completed, an inspection of the code used for testing found that the long
times were caused by a flaw in the tests. New measurements with the Win-
dows CE emulator after fixing this flaw showed that the time for initialization
is of the same order of magnitude as for the other application versions.

Chapter 8 reports on a multiple-case study where the use of the prototype tool
in a software development project is evaluated with respect to development
efforts and software quality. The study makes use of a term project in software
engineering where four teams of students were given the same software de-
velopment task and only two of the teams were instructed to use the tool.
Sources of evidence include reported working hours, implementations of con-
trol loops, and communication with project members. The reported working
hours did not reveal any substantial difference between those teams that used
the tool and those that did not. It is concluded that the part of the software for
which the tool was used may be too limited for any saving in efforts to make a
noticeable impact on the total and, therefore, that further studies are desirable.
Concerning the implementation of control loops, it was found that only one
team had made full use of the tool as intended. This team used the tool incor-
rectly to support cyclic execution and failed to produce a thread-safe system,
as did the other three teams that hand-coded the cyclic execution. A possible
modification of the tool was identified that would have prevented the incor-
rect use. Further studies should be performed with the modified tool and also
giving the subjects clearer instructions for how to make full use of the tool. It
was furthermore found that all teams successfully implemented the control
loops in a timely fashion. Two teams achieved this by using the tool and the
remaining two by hand-coding the timing control.

188 Chapter 9 Conclusion

Based on an overall evaluation of the evidence, including discussions with
project members, it is concluded that the approach underlying the prototype
tool is promising with respect to both productivity and quality. For instance,
the subjects that used the tool expressed that it was quite easy to understand
and use. Making the tool even easier to use by adding automatic generation of
code for instantiation and configuration of proxies and other objects was iden-
tified as a possible improvement already in Chapter 6. Given the study’s lack
of quantitative evidence, its most important results are the lessons it provides
for designing further studies. Possible modifications to the tool were identified
that should be made before new studies are conducted. Other lessons are that
a system where a larger part of the software can benefit from the tool should
be investigated and clearer instructions for the use of the tool should be given.
A controlled experiment with smaller teams and a more limited development
task is identified as an attractive option.

9.2 Research Questions Revisited
A number of research questions are formulated in Section 1.3, each of which is
further decomposed into sub-questions. The first question and its sub-
questions address the use of a software component model based on binary
components in embedded real-time systems, in particular the use of COM and
DCOM. These questions are quoted below for ease of reference.

Research Question 1
What are the advantages and liabilities of using a software component model based on
binary components in the development of embedded real-time systems?

Research Question 1-1
Is it possible to use COM/DCOM in the development of software for systems with real-
time constraints?

Research Question 1-2
What restrictions (if any) should be placed on the use of COM/DCOM in software for
systems with real-time constraints to ensure predictability?

The following results are based on the study of COM and DCOM reported in
Chapter 4:

Research Result 1-1
It is possible to use COM/DCOM in systems with real-time constraints.

 9.2 Research Questions Revisited 189

Research Result 1-2
Placing restrictions on the use of COM/DCOM may be necessary to ensure predict-
ability and satisfy real-time constraints. In particular, restrictions on when objects are
instantiated and components are dynamically loaded may be necessary.

In addition to these results, which are related to the ability to meet real-time
constraints, the discussion in Section 2.3.3 concludes that software component
models based on binary components, such as COM, are well suited to most of
the other requirements typically found in the domain of embedded real-time
systems. The experiences from the industrial case study, discussed in the pre-
vious section, suggests that it may be desirable for a model targeting this do-
main to also allow static linking of certain components that must always be
present. This is not supported by COM. The empirical study reported in Chap-
ter 7 shows that the run-times overhead of using COM is very modest. In the
particular system studied, the timing overhead per operation was found to be
7.5 nanoseconds ±2.5% while the memory overhead was not noticeable with
the performed measurements. The absolute values for the overheads will of
course depend on the underlying hardware.

The second question addresses the effects of adopting a component-based
software architecture in the development of an embedded real-time system:

Research Question 2
What are the effects of adopting a component-based software architecture for an em-
bedded real-time system?

Research Question 2-1
What are the effects on the effort required to make extension to the system?

Research Question 2-2
What are the effects on the real-time predictability of the system?

The following results are based on the case study described in Chapter 5:

Research Result 2-1
Adopting a component-based software architecture for an embedded real-time system
may effectively support distributed development.

Research Result 2-2
Adopting a component-based software architecture for an embedded real-time system
may reduce the effort required for making extensions to the system.

190 Chapter 9 Conclusion

Research Result 2-3
It is possible to adopt a component-based software architecture for an embedded real-
time system while maintaining real-time predictability.

Formulations like “may reduce the effort” are chosen because it would surely
be possible to adopt a software architecture that was component-based but did
not have the same positive effects. While demonstrating the positive effects in
a single project is sufficient proof that they may be achieved, the scientific
value of the results depends on the probability that the same advantages will
result from adopting a component-based software architecture for other sys-
tems as well. It is reasonable to assume that the results can be generalized to
other types of systems than industrial control systems and other types of func-
tionality than I/O and communication. The major limitation of the results is
that it only applies to extending a system with functions that have some com-
monality with other functions, such that these can be implemented by compo-
nents complying with the same interfaces and sharing some generic function-
ality that can be provided by a framework. The result that real-time predict-
ability can be maintained is furthermore only applicable to cases where those
parts of the software that are subject to hard real-time constraints are not in-
cluded in the componentization. The study’s observed effort savings came as a
result of redesigning the software architecture and implementing a framework
for providing generic functionality. This required investing some effort in the
first place, and the savings were found to surpass the investment after 8–10
extensions. In general, a number of expected future extensions are required for
this type of componentization to be cost-effective, but the exact number of
such extension is of course difficult to determine a priori. Thus, the approach
is most attractive when new extensions are expected to continue to be required
for a long time.

The third question addresses the extension of a basic component model with
automatically generated support for run-time services of general use for em-
bedded real-time systems:

Research Question 3
What are the effects of using automatically generated support for software component
services in the development of an embedded real-time system?

Research Question 3-1
What are the effects on the software’s size, resource usage, and predictability?

 9.2 Research Questions Revisited 191

Research Question 3-2
What are the effects on the quality of the produced software?

Research Question 3-3
What are the effects on the software development effort?

The following result is based on the experiences with the prototype tool de-
scribed in Chapter 6:

Research Result 3-1
The use of off-line generated COM objects to support software component services in
the development of an embedded real-time system can be expected to result in at most a
doubling of the size of the software.

Research Result 3-2
The use of off-line generated COM objects to support software component services in
the development of an embedded real-time system may reduce the effort required for
software component implementation.

The following result is based on the empirical study reported in Chapter 7:

Research Result 3-3
It is possible to use off-line generated COM objects to support software component
services in the development of an embedded real-time system with predictable and only
modest memory and timing overheads.

The first of these three results is based on the assumption that functionality is
provided by code in either proxy objects or in other objects while housekeep-
ing code will occur in all objects and components. Thus, the size of software
that uses services will approach twice that of the equivalent software that does
not use services as the size of code that provide application functionality ap-
proaches zero and is dominated by the housekeeping code. The second result
is based on the fact that the use of proxy objects substantially reduced the
amount of source code in components. Since it is taken from a single small ex-
ample application and not based on direct effort measurements, this result
should be viewed as preliminary and tested further in additional studies as
discussed further below. In the third result, the formulation “It is possible” is
chosen because it is of course possible to implement services in such a way
that overheads are neither predictable nor modest. The possibility of achieving
predictable and modest overheads is proven by demonstrating it in one sys-
tem. Since it is based on execution time measurements related to object instan-

192 Chapter 9 Conclusion

tiation and operation invocation, which are the basic ways for components to
interact, generalizing the result to other systems that are developed using the
same techniques is straightforward. The timing overhead observed in the
study was 11.5 nanoseconds ±5.5% per operation invocation, including the 7.5
nanoseconds overhead of using COM. Again, the absolute value of overheads
will depend on the hardware.

It is reasonable to assume that the above results are applicable to other operat-
ing systems than Windows CE while generalizing to other component models
than COM is not necessarily possible. For instance, overheads will only be
modest in models with modest overheads on operation invocation and the
overhead on software size might be modest in a model without housekeeping
code in components. Also, the results cannot be generalized to other tech-
niques for automatically generating support for services than that of off-line
generated code for proxy objects. For instance, run-time generation of proxy
objects would incur more run-time overhead but no overhead on software
size. Naturally, such run-time generation would require an extension of the
run-time system that would counteract the effect of reduced software size.

The effects on software quality and development effort are investigated by the
study reported in Chapter 8. As the study produced no quantitative evidence
and its main result is the identified possibilities for further studies, the follow-
ing hypotheses that may be the starting point of such studies are formulated:

Research Hypothesis 3-3
The use of automatically generated support for software component services in the de-
velopment of an embedded real-time system may improve the quality of the software.

Research Hypothesis 3-4
The use of automatically generated support for software component services in the de-
velopment of an embedded real-time system may reduce the effort required for software
development.

The first hypothesis is based on the fact that, although the only team that used
automatically generated support for cyclic execution in the study did not
achieve higher quality than the other teams, a possible modification of the tool
was identified that would have resulted in higher quality in this case. The sec-
ond hypothesis is based on the fact that the tool was considered easy to use by
those participating in the study and that a possible extension of the tool to
make it even easier to use has been identified.

 9.3 Future Work 193

9.3 Future Work
In this dissertation, the possibility of using a software component model based
on binary components in the development of embedded real-time systems is
investigated, first, by studying the documentation of COM and DCOM, which
are some of the more popular models for non-real-time software. The use of a
component-based component based software architecture in an industrial con-
trol system is furthermore investigated by a case-study. Since multiple-case
studies are generally preferable to single-case studies, as discussed in Section
1.4, it would be desirable to study more cases. One way to strengthen the gen-
erality of the results would be to study an embedded real-time system from
another domain than industrial control. For the same reason, it would be de-
sirable to study a case where software components are directly involved in
delivering functionality with hard real-time constraints. It has been noted that
while .NET is increasingly being used instead of COM in the desktop and in-
formation system domains, it is not suitable for software with real-time con-
straints. An obvious research challenge is to make .NET usable for such sys-
tems through the use of predictable mechanisms for garbage collection etc. In
the meantime, it would be useful to study the combined use of .NET and COM
in systems that include software with real-time constraints as well as software
without such constraints. Empirical studies could be designed to investigate
whether .NET can be used to increase the productivity of the development of
those parts of systems that are not subject to real-time constraints without
jeopardizing the predictability of real-time parts.

The dissertation furthermore presents an approach to software components
services for embedded real-time systems and a prototype tool for supporting
such services. An empirical evaluation of the tool shows that it results in pre-
dictable and only modest run-time overheads and at most a doubling of soft-
ware size. Further evaluation could be conducted to obtain more detailed in-
formation, in particular about the timing overheads related to object instantia-
tion and run-time memory overheads. Using a larger application in future
evaluations would be useful to test the assumption that the proportional size
overhead decreases with larger components. Several possible modifications to
the tool are identified. For instance, it could be extended to also generate code
for instantiation and configuration of proxy objects and other objects. A simple
solution would be to let proxy objects instantiate the objects they act as proxies
for, such that the client would only have to instantiate the same number of ob-
jects as when services are not used. The current version of the tool only sup-
ports generation of COM components that each provides a single COM class

194 Chapter 9 Conclusion

implementing a proxy object. Allowing a single component to implement sev-
eral proxy objects would help to reduce the overhead on software size. An-
other possible modification that may reduce the size overhead is to use proxy
objects that are more light-weight than COM objects. To strengthen the gener-
ality of the approach, it would be desirable to use it with other operating sys-
tems than Windows CE and other components models than COM. A possible
candidate is the Robocop model discussed in Section 2.3.3.

The use of the prototype tool in a development project is furthermore evalu-
ated with respect to its effects on software quality and productivity in a multi-
ple-case study. This evaluation did not produce quantitative evidence, and the
need for further investigation has already been discussed. Prior to such inves-
tigation, it would be desirable to modify the tool. The probability of achieving
higher quality could be improved by changing the tool to remove certain pos-
sibilities to use it incorrectly. Extending the tool with code generation to sim-
plify the development of client code as described above, could increase the po-
tential for reducing the software development effort. A lesson from the study
already conducted is that it would be desirable to evaluate the tool in a project
where a larger portion of the software can benefit from the automatic support
for services. This is probably easier to achieve with a more limited develop-
ment task, which would also allow the use of a higher number of smaller de-
velopment teams. Thus, future studies could be designed as controlled ex-
periments.

In addition to controlled studies, which can be conducted with students as
subjects, it would be desirable also to evaluate the approach in industrial case
studies. These two types of studies are complementary in the sense that the
former allows a higher degree of control and replication while the latter pro-
vides a more realistic setting for evaluating the approach. A challenge related
to testing the approach in an industrial setting is that the prototype tool, which
is to a large part developed by students, cannot be expected to satisfy the qual-
ity requirements for use in industrial development projects. This is closely re-
lated to the challenge of technology transfer described at the end of this chap-
ter. Another way to evaluate the approach with respect to its ability to meet
the needs of industry is to use a survey and/or interviews within organiza-
tions developing software for embedded real-time systems to asses the useful-
ness of the services identified. This could also help to identify additional use-
ful services for different application domains.

 9.3 Future Work 195

The approach to software component services presented in this dissertation
intends to support the implementation of certain functionality in embedded
real-time systems by standardizing a set of run-time services, much like soft-
ware component models intend to support run-time interoperability by defin-
ing standards for (primarily) components and run-time environments. In addi-
tion to the challenges of identifying and implementing such services, there are
many research challenges related to the impact of the approach on different
software development activities. For instance, there are challenges related to
modeling, specification, and documentation of component-based systems
where software component services are used. Another example is composi-
tional reasoning about such systems. Other research challenges include inves-
tigating the possible relationships between the approach and such quality at-
tributes as testability and maintainability. A comprehensive approach to re-
search on software component services should consider such challenges as
well as implementation techniques and identification of services for different
application domains.

It was noted in Section 1.5 that this dissertation provides both epistemic con-
tributions, obtained through empirical investigations, and more practical con-
tributions, in the form of a proposed approach to software component services
for embedded real-time system and a prototype tool. A possibility for future
work based on these practical contributions is technology transfer, which
would involve developing the prototype into a production quality tool. This
would require considerable efforts, however, as the tool would essentially
have to be developed from scratch using proper quality assurance methods. If
the tool were to be used for safety-critical systems in such a way that a fault in
the automatically generated code might result in danger, the tool would itself
be safety-critical. As noted in Section 2.3, the development of software for such
systems is much more costly than software development in general. These po-
tential costs strengthen the assertion made earlier that products to support
software component services are most suitably provided by platform vendors,
i.e. organizations that already supply such components as real-time operating
systems and software development environments. This would provide more
opportunities for using the products in a high number of projects and thereby
regaining the costs invested in their development.

