
Experiences from Applying WCET Analysis in Industrial Settings∗†�

Jan Gustafsson and Andreas Ermedahl
Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden

{jan.gustafsson,andreas.ermedahl}@mdh.se

Abstract

Knowing the program timing characteristics is funda-
mental to the successful design and execution of real-time
systems. Today, measurement-based timing analysis tools
such as in-circuit emulators, logic analyzers and oscillo-
scopes, are used in industry. A critical timing measure is
the worst-case execution time (WCET) of a program. Re-
cently, tools for deriving WCET estimates, mostly based on
static program analysis, have reached the market.

In this article we summarize experiences from five differ-
ent industrial case-studies. The studies were made on typi-
cal industrial systems, in close cooperation with the system
developers, using both static and measurement-based tools.
The primary purpose was to investigate the difficulties in-
volved in applying current timing analysis methods to in-
dustrial code. We were also interested how WCET estimates
can be derived by different methods, how labor-intensive the
methods are, and the accuracy of obtained results.

As a result, we provide observations on the benefits and
drawbacks of the different timing analysis methods used and
specify general conditions when a particular method should
be most beneficial. We also show the benefits of having sev-
eral types of timing analysis tools available.

1 Introduction

A program timing analysis obtains information about the
execution time characteristics of a program. The fundamen-
tal problem of such an analysis is that the execution time of-
ten varies, with different probability of occurrence, across a
range of times. These variations occur due to variations in
input data, as well as the characteristics of the software, the
processor and the used computer system.

The worst-case execution time (WCET) of a program is
a key timing measure. For example, it is an important com-
ponent of schedulability analysis, it is used to ensure that in-
terrupts have sufficiently short reaction times, that periodic

∗ Supported by KK-foundation (www.kks.se), grant 2005/0271.
† ARTIST2 European Network of Excellence provided travel support.
� This article is an extended version of [13].

processing is performed quickly enough, and that operating-
system calls return to the user application within a specified
time-bound. The simplest case is whether a piece of code
will execute within its allocated time budget [16].

Reliable timing and WCET estimates are important
when designing and verifying many types of embedded sys-
tems and real-time systems, especially when the system is
used to control safety critical products such as vehicles,
aircrafts, military equipment and industrial plants. Basi-
cally, only if each hard real-time component of such a sys-
tem fulfills its timing requirements, the whole system could
be shown to meet its timing requirements. For less safety-
critical systems exact timing and WCET estimates are not
always required. It is really a business issue, where the cost
of a timing-related failure has to be weighed against the cost
of various means of preventing or handling such a failure.
In some applications, only limited parts of the system soft-
ware are time critical and in need of timing analysis.

Timing and WCET analysis are today performed in a
number of ways, using different tools. The two main
methodologies employed are measurements and static anal-
yses (see Section 2). In general, measurements are suitable
for less time-critical software, where the average case be-
havior or an approximate WCET estimate is of interest. For
time-critical software, where the WCET must be known,
static analysis or some type of hybrid method is preferable.

In this article we summarize experiences drawn from five
different industrial case studies on timing analysis. We be-
lieve that doing case studies, with careful evaluations, pro-
vides valuable input both for research and tool development.
The studies were made on typical industrial embedded sys-
tems and in close cooperation with the developing compa-
nies. By the large variety of systems investigated and meth-
ods used, we believe that our experiences should be repre-
sentative for a large class of industrial embedded systems.

All studies were performed as MSc theses works, mean-
ing that the students spent about five months on their work
and were initially no system experts. Thus, obtained re-
sults can be seen as typical for an analysis made by a well-
educated but external person; the work should probably
have taken less time for an expert or system programmer.

The primary purpose of the studies was to investigate the
practical and methodological difficulties that arise when ap-
plying current timing analysis methods to industrial code.
In particular, we were interested in how different meth-
ods could be used to obtain WCET estimates, how labor-
intensive the methods are, and the accuracy of the obtained
results. As a result, we provide general observations on the
benefits and drawbacks of different timing analysis methods
used. We also point out important areas for future research
and development of timing analysis tools.

The rest of this article is organized as follows: Sec-
tion 2 gives an overview and categorization of timing ana-
lysis methods. Section 3 shortly presents the different tim-
ing analysis tools used in the case studies. Sections 4–8
present, in chronological order, our five case studies. Sec-
tion 9 presents related work, and in Section 10 we draw
some conclusions and present ideas for future work.

2 Timing Analysis Overview

This section gives an overview and categorisation of timing
analysis methods, and shortly discusses their benefits and
drawbacks. A more detailed description is found in [12].

Measurements (dynamic timing analysis). The tradi-
tional, and still most common, method in industry to de-
termine program timing is by measurements. Basically, the
program is executed many times with different inputs and
the execution time is measured for each test run. Measure-
ments are often immediately at the disposal of a program-
mer, and are useful when the average case timing behavior
or an approximate WCET value is of interest.

It should be noted that each measurement run exercises
only one path. For programs with only one single path, or
a few paths, measurements might be feasible. However, for
most programs, the number of possible execution paths is
too large to do exhaustive testing. This means that the mea-
sured times will in many cases underestimate the WCET. To
compensate for this, it is common to add a safety margin to
the worst-case measured timing, in the hope that the actual
WCET lies below the resulting WCET estimate. However,
if too much margin is added, resources will be wasted, and
if the added margin is too small, the system could become
unsafe. Measurements can be made for a subset of the pos-
sible input values, e.g., by giving potential “nasty” inputs,
which are likely to provoke the WCET, based on some man-
ual inspection of the code. Unfortunately, this approach is
not guaranteed to give a safe WCET, especially when com-
plex software and hardware is being analysed.

Measurement-based methods can be divided into
hardware-based and software-based methods. Hardware-
based methods include oscilloscopes, logic analyzers, and
in-circuit emulators. Software-based methods can be tim-
ing functions provided by operating systems, cycle-accurate

simulators, or programs provided by tool vendors and de-
signed specifically for execution time measurement.

Most types of measurements have the advantage of being
performed on the actual hardware, which avoids the need
to construct a hardware model. On the other hand, mea-
surements require that hardware is available, which might
not be the case for systems where hardware is developed
in parallel with software. In many cases it might also be
problematic to set up an environment which acts like the
final system. Some measurement methods also introduce
the problem of intrusiveness, i.e., the measurements them-
selves add to the execution time of the analysed program.
This problem can be reduced, e.g., by using hardware mea-
surement tools with no or very small intrusiveness, or by
simply letting the added measurement code (and thus the
extra execution time) remain in the final program. When
doing measurements, possible disturbances, e.g., interrupts,
also have to be identified and compensated for.

Static WCET analysis. An alternative technique to deter-
mine WCET estimates is static WCET analysis. Instead of
running the program, it derives a WCET estimate by stati-
cally analysing the timing properties of the program. Given
that inputs and analyses are correct, such a tool will derive a
safe estimate, i.e., that is larger than or equal to the WCET.

Static WCET analysis is usually divided into three
phases: a flow analysis where information about the possi-
ble program execution paths is derived, a low-level analysis
where the execution time for atomic parts of the code (e.g.,
instructions, basic blocks or larger code sections) is decided
from a model of the target architecture, and a final calcula-
tion phase where the derived flow and timing information
are combined into a resulting WCET estimate.

Flow analysis research has mostly focussed on loop
bound analysis [17, 18], since bounds on loop iterations
must be known in order to derive WCET estimates. Au-
tomatic methods to find these exist, but for many WCET
tools, some loop bounds must be provided manually. Flow
analysis can also identify infeasible paths, i.e., paths which
are executable according to the control-flow graph (CFG)
structure, but not feasible when considering the semantics
of the program and possible input data values [17].

The main issue for the low-level analysis is the complex
behaviour of modern hardware, with features like pipelines,
caches, and out-of-order execution. Models, e.g., simula-
tors, of the hardware are used in the low-level analysis ana-
lysis. This eliminates the need of having the actual hard-
ware available, but a (safe) timing model of the hardware
must be developed to be used during the analysis, some-
thing which can be very complicated.

Due to the complexity of today’s software and hard-
ware, both flow- and low-level analysis may result in over-
approximations, e.g., reporting too many paths as feasible
or too large timings to instructions. Thus, the calculation

(a) Oscilloscope (b) Logic analyzer (c) In-circuit emulator

Figure 1. Tools for dynamic timing analysis

will give a safe but potentially pessimistic WCET value.
Today, static WCET tools are commercially available,

including aiT [1] and Bound-T [32]. There also exists sev-
eral research prototypes, including Chronos [8], the Florida
State University tool [18], Heptane [19], and SWEET [17].

Hybrid WCET analysis. Hybrid analysis techniques
combine measurements and static analyses techniques. The
tools use measurements to extract timing for smaller pro-
gram parts, and static analysis to deduce the final program
WCET estimate from the program part timings. Example
tools include Rapitime [25] and MTime [33]. No hybrid
WCET analysis tool was used in the case studies.

3 Used Timing Analysis Tools

The following is a short summary of the timing analysis
tools used in the presented case studies.

SWEET. SWEET is a static WCET analysis research tool
developed at Mälardalen University [23]. SWEET consists
of three main parts; a flow analysis, a low-level analysis,
and a final WCET calculation. The flow analysis analyze
intermediate code produced by a research compiler. Current
focus is to develop automatic flow analysis methods [17].

aiT. The aiT tool is a commercial static WCET analysis
tool from AbsInt GmbH [1]. In contrast to SWEET, aiT
does not rely on a specific compiler, but analyses executable
binaries, and has support for a larger number of targets hard-
wares. It performs many types of analyses, most of them
based on abstract interpretation [30]. The tool includes an
automatic loop bound analysis, which catches simple cases.

Oscilloscope. Using an oscilloscope often involves adding
a bit-flip on an accessible pin of the processor at some pro-
gram points, and then observing the resulting waveform to
find the periodicity and thus the execution time.

Logic analyzer. A logic analyzer looks at the data- or
address bus of the system to see when certain instructions
are being fetched. However, it requires that relevant mem-
ory transactions reach the bus, which not always the case on
systems with a cache.

In-circuit emulator. An in-circuit emulator behaves like
a particular processor, but with better debug and inspection
capabilities. Provided that they do match the target proces-
sor, they can provide very detailed data. Today, emulators
are being replaced with hardware trace facilities, since they
are too hard to construct for current processors.

4 First Study: Static Analysis for Disable-
Interrupt Regions in a RTOS (2001)

Enea OSE is a real-time operating system (OS) used in
many type of embedded applications, e.g., in mobile phones
and aircrafts. The purpose of the first case study was to see
if static WCET analysis could be used to bound the exe-
cution time of Disable Interrupts (DI) regions in the delta
kernel (ARM9 version) of the Enea OSE [10]. DI regions
should preferably have short execution times, since the exe-
cution of these regions can potentially delay other activities
in the system. The study is described in more detail in [5, 6].

We had access to the Enea OSE source and object code.
The object code was generated by ARM tools, containing
symbol tables which were helpful to relate object code con-
structs to its source code counterparts.

The case study was performed with the low-level and
calculation parts of an early version of SWEET. During the
case study, a timing model for ARM9 was implemented.
We also made prototype tools to extract the DI regions and
to build the CFG for the extracted regions. Flow constraints
for the CFGs had to be manually provided. Of particular
importance was to provide loop bounds. We thought that
these should be simply deducible from the source code, but
in practice this was hard (see below). Finally, SWEET was
used to calculate a WCET estimate for each DI region.

We identified 612 DI regions in the kernel. Most of these
were very simple. We selected ten DI regions for a more de-
tailed investigation. These regions had a more complex con-
trol structure than the others, and several contained loops.

Experiences and conclusions.
• An OS is often run in modes which may affect loop

bounds, making the WCET typically mode-dependent.

• The usefulness of WCET analysis increases with the
level of automation. To construct tools for identifying
DI regions and to extract CFGs required a lot of work.
However, when done, the analysis task got simplified.

5 Second Study: Static Analysis for DI Re-
gions and System Calls in a RTOS (2003)

The Enea OSE was also analyzed in our second study.
Some of the tools developed in the first study were re-used,
such as the DI region extractor tool. The CPU chosen was
the ARM7TDMI and the static WCET analysis tool used
was aiT [1]. The study is described in detail in [27, 28].

The aiT ARM7 tool analyses executables generated by
the ARM C compiler. The information derivable from ex-
ecutable is often not sufficient to yield information about
program flow, such as loop bounds and knowledge of infea-
sible paths, so these have to be provided by the user. There-
fore, aiT supports a set of user annotations [15]. Some of
the more important annotations used in this study were loop
bounds, dead code, and (static) outcome of conditions.

We used the ARMulator simulator to do some rudimen-
tary measurements for timing. The ARMulator is not guar-
anteed to be cycle-accurate. However, since ARM7TDMI
is not a very complex processor without a cache, we expect
the ARMulator to be rather timing accurate.

We made a series of experiments. First we analyzed 180
of the previously extracted DI regions, as well as four sys-
tem calls, using the aiT tool. Secondly, we investigated the
influence of code optimization on WCET analysis. We then
compiled some standard benchmark programs with differ-
ent levels of optimization, and performed WCET analyses
on the resulting binaries, again using the aiT tool.

To get some justification of the quality of calculated
WCET estimates, we compared timing estimates from aiT
and the ARMulator for a number of benchmarks. Since
both methods rely on software models of the hardware we
cannot say if one timing estimate is more correct than the
other. The benchmarks contained features like system calls,
loops and branches, but had only a single execution path
through the program. By keeping track of the number of
times each basic block was taken during a simulator run,
we were able, by annotations, to provide exact bounds on
the executions of each basic block for the aiT WCET cal-
culation. Thus, the resulting timing discrepancies were not
due to incorrect flow information, but only to differences in
the hardware timing models. The experiments showed that
the aiT WCET estimates were on average about 5% larger
than the times obtained using the ARMulator. For none of
the benchmarks aiT gave a WCET lower than the timing
from the ARMulator.

Experiences and conclusions. We discovered that the ex-
ecution time of the system calls depended on many parame-

ters. A global WCET bound, valid for all possible parame-
ter values, could become very poor for actual configurations
and standard running modes. We dealt with this problem in
our experiments by assuming some “typical” scenarios for
parameters affecting the WCET (after correspondence with
the OSE designers). We also excluded uninteresting execu-
tion paths from the analysis by manual annotations.

We made the following general observations:

• Many annotations were required for each system call; for
routines of sizes between 78 and 143 instructions, the
number of annotations were between 10 and 33.

• The exclusion of error handling code in the OSE system
calls yielded significantly smaller code to analyze.

• Code optimizations do not seem to affect the precision
of the static WCET analysis.

• Many loops in the OSE kernel were dependent on dy-
namic data structures. As a consequence, the aiT loop
bound analysis did not perform well for these loops.

• Providing upper bounds manually for these loops re-
quired a deep understanding of the code and discussions
with the OSE designers. The analysis became therefore
quite labor-consuming, even if the codes were small.

• A simulator like the ARMulator gives timing estimates
that seem to be fairly accurate (i.e., within a few %).

We conclude that the usefulness of WCET analysis would
improve with a higher level of automation and support from
the tool. Especially, it should be important to develop better
loop bound analyses. Furthermore, absolute WCET bounds
are not always appropriate for real-time operating system
code. The reason is, as mentioned above, that the WCET
often depends on dynamic system parameters.

6 Third Study: Static Analysis for Automo-
tive Communication Code (2004)

This case study targeted automotive code, namely the
Volcano Tool Suite for design and implementation of in-
vehicle communication over CAN and/or LIN networks.
The company Volcano Communications Technologies AB
(VCT) [34] provides tools for embedded network systems,
principally used within the car industry. The Volcano LIN
Target package (LTP) was selected as a suitable part of the
Volcano LIN tool suite to analyse. The microcontroller used
was a MC9S12DP256 from Motorola, which includes a 16-
bit Star12 CPU of the MC68HC12 family. The aiT HC12
tool was used for static WCET analysis. The work is de-
scribed in closer detail in [3, 4].

We selected nine different LIN API functions, and were
able to obtain WCET values for all of them with the aiT
HC12 tool. The WCET values were often not a constant
single value, but instead dependent on some system param-
eters. Moreover, for many code parts it was hard to directly
see how system parameter values affected the execution of

the code. We therefore analyzed each function in a number
of specific cases. Each case gave a WCET for the function
under some specific conditions. All functions needed man-
ual annotations to be analysed. The number of annotations
ranged between 6 – 14 for codes of sizes between 2 – 14 kb.

Experiences and conclusions. As for the OSE code,
the WCET for the studied LIN functions were often depen-
dent on some specific system configuration parameters and
modes. A mode- and input-sensitive WCET analysis would
give better resource utilization.

For many parts of the LIN API it was possible to man-
ually create parametrical WCET formulas. This allowed us
to test how certain parameter values affected the WCET and
gave a good understanding of the execution behavior of the
analyzed code. It seems interesting to develop methods to
automatically derive these parametrical formulas.

Much work was required to set annotations manually and
this required a detailed understanding of the code. Ways to
automate this would be beneficial, e.g., better support for
loop bound analysis would avoid much manual work.

After discussions with the VCT employees it turned out
that not only the WCET, but also the jitter of a piece of code,
is of large interest. Jitter is the difference between the best-
case execution time (BCET) and the WCET. Thus, better
support for BCET analysis would be useful.

7 Fourth Study: Static Analysis and Measu-
rements for Welding Systems Code (2005)

In this case study, several timing analysis methods, i.e.,
oscilloscope, logical analyzer and static analysis, were used
to analyse the timing for time-critical code in products from
CC-Systems AB (CCS) [7]. The case study was performed
as two cooperating Master’s theses and are described in two
reports: [36] (measurements) and [11] (static analysis).

CCS develops and delivers electronic solutions and soft-
ware for tough environments, including forestry machines,
construction equipments, trucks, marine vessels, industrial
automation, railway vehicles and military vehicles.

The program code in the analyzed system was written in
C++ and run on an Infineon SAK-C167CS-LM microcon-
troller. The analysis was performed for a number of inter-
rupt routines. By using several types of analysis methods
upon the same code we could compare the work required to
obtain a result, as well as the quality of the timing estimates
obtained by each method.

There was no OS in the system, so we could not get
any help from time-functions that an OS provides. To get
as non-intrusive measurements as possible, an oscilloscope
and a logic analyzer was selected as measurement tools.

Measurements using an oscilloscope. There was a num-
ber of issues concerning setup that had to be solved before
the measurements could start; the report [36] describes this

in detail. Once measurements were possible, a number of
methodological issues were raised. One problem was to
find out the execution path that corresponded to a measured
value. This was very difficult to do, since the only help
was three LEDs on the microcontroller. There were many
if-else- and switch-statements in the interrupt functions, and
to figure out the path executed through those statements was
almost impossible. Due to the limited visibility, it was hard
to guarantee that the WCET had been measured.

To get closer to the WCET, the following method was
used: some branch conditions were modified to always give
an outcome according to the worst case path, as calculated
by the static analysis (see below). After the program code
was changed and directed into a longer path, a longer execu-
tion time was obtained. However, these code modifications
also caused some unexpected system behaviours.

We made the following general observations:

• It was hard to set up the complete system.
• Only a few measurement points were possible.
• It was hard to identify the execution path taken.
• It was difficult to detect if other interrupts had disturbed

the measurement of the current interrupt.
• It was hard to trigger all possible executions (only a few

scenarios could be tested).
• It is dangerous to modify code to force WCET execution

since it might affect the system in unpredictable manner.
Furthermore, we do not know if the modified scenario
could occur in reality, giving that the we might make an
overestimation of the WCET.

• Some errors could not occur in the testing environment.
Could they occur in reality?

• A small probe effect was introduced due to inserted mea-
surement points.

Measurements using a logic analyser. These measure-
ments were done in a non-intrusive way by listening to the
address-bus. A whole trace of accessed addresses could be
observed and stored with their corresponding access times.
The execution time for the interrupt was calculated as the
time difference between the times corresponding to the start
and return addresses of the interrupt-routine.

To find out what happened during the execution, these
addresses had to be matched with program code to find out
the actual execution path through the program. This meant
a lot of detailed level work, see [36] for more info.

One interrupt was studied both at the system start-up
phase, and during normal operation. The result showed
a significant difference. The traces of the execution paths
were compared, and the reason to the difference was found.

Other interrupts were studied in detail during normal op-
eration. Typically, each interrupt showed a set of different
possible execution times. The path for the longest was ana-
lysed to find out the reason for the longer time.

Some of the interrupts under study had large execution

time variations. By detailed study of the extracted execu-
tion traces, we discovered that other interrupts sometimes
occurred in the middle of the interrupt under investigation.
These interrupts took some time to handle, and should be
removed from the timing of the investigated interrupt.

We made the following general observations:

• The logic analyzer gave non-intrusive measurements.
There was not a single line of program code changed or
inserted for probing.

• The logic analyzer provided better means to identify the
execution paths taken in comparision to the oscilloscope.

• Much time was needed to investigate address traces to
find the execution path that was taken. With the aiSee
tool from aiT, which presents the CFGs graphically, the
address traces became much more useful.

• We experienced large variation in measured times, both
due to different paths taken and to interfering interrupts.

• Sometimes the interrupt handling was disabled and an
occurred interrupt was handled at a later time. This made
it hard to measure the time of just the interrupt, since it
did not always start exactly when it occurred.

• The interrupts often had a longer execution time during
system start-up than during normal operation.

Static Analysis. The aiT C167 WCET analysis tool
[1] was used for the static WCET analysis. The code for
which the oscilloscope and logic analyzer measurements
was made was also analysed using aiT. To do WCET cal-
culations using aiT, a set of mandatory annotations had to
be given, see [11], e.g., to specify the clock frequency, the
compiler used, and the hardware system configuration.

aiT was able to find loop bounds for many of the loops in
the analyzed routines. For the remaining loops, loop bounds
had to be given manually. When all loop bounds were given,
and aiT had managed to calculate a WCET value, it was
important to check that the execution path was correct and
didn’t include infeasible paths. If so, more annotations to
restrict the flow of the program had to be added. When
the execution path that yielded the WCET was found, there
were two choices, either to accept the WCET value ob-
tained or to add extra annotations, e.g., on valid addresses
for memory-accesses, to get a tighter WCET value.

Eriksson [11] describes in detail, for each analysed code,
which problems that came up and how they were solved.
During the handling of an interrupt up to six CAN messages
can be received. One problem was to make aiT calculate the
time to receive just one message. Other parts of the code
required other annotations, e.g., to turn error handling off.

The same codes were analyzed using different compiler
optimisations. As a result, some loops bounds needed to
be changed, and all flow constraints that were given using
absolute addresses had to be modified (aiT supports relative
addressing of flow constraints to avoid this).

Result comparison. To be able to compare the results of
different methods, the same codes were analysed using both
dynamic and static WCET analysis methods. This was done
to see how much overestimation aiT introduced, and also to
see if the dynamic methods could find the WCET path. The
term overestimation is only valid if the path that leads to the
WCET is measured, and this wasn’t always the case here.
But the time difference can give a hint about the overesti-
mations of aiT if the same execution path is analysed with
both static and dynamic methods.

We first compared WCET estimates derived using oscil-
loscope and aiT. As mentioned above, it was hard to iden-
tify the execution path(s) taken when using the oscilloscope.
However, since the code only contained a limited set of
paths, the measured values should be comparable with the
ones obtained by the static method. The difference was 4 –
8%, which can be considered as acceptable.

The time differences of another more complex code, for
handling a special CAN status message, was 19 – 117%,
which was not considered as acceptable. The reason for
these large time differences was hard to deduce, since the
measured paths were not completely known.

Secondly, we compared estimates derived using the logic
analyser with estimates from aiT. The execution paths of the
measurements were extracted from the traces, then aiT was
forced to execute the same path so execution times could
be compared. The execution path in aiT was changed with
flow annotations. The difference between the values was 3
– 8%, which was considered as acceptable. The difference
was reduced to 1 – 5% when additional memory annotations
were added to the aiT analysis.

We also tried to force measurement executions to take
the path aiT chose as the WCET path. This required a lot
of modification of the code. Moreover, this affected sys-
tem behaviour and it was not certain that the path measured
could be taken in reality.

In fact, what we can say for certain (under the assump-
tion that we have removed all interfering interrupts in the
measurements and that all annotations given to aiT are cor-
rect) is that: WCETm ≤ WCETa ≤ WCETc where WCETm

is the worst measured timing, WCETa is the WCET of the
program and WCETc is the estimate calculated by aiT.

General conclusions of the case study.
• An oscilloscope has limited amount of measuring points

and limited granularity. It is difficult to find the exact
execution path using the oscilloscope. The measured re-
sults have rather coarse time resolution and cannot be
guaranteed to be the WCET.

• A logic analyzer is a better option for a detailed timing
analysis. It can observe several measuring points simul-
taneously, and give results on a level of single instruc-
tions. Furthermore, the measurements can be done in
a totally non-intrusive way. A shortcoming is that the

measured result cannot be guaranteed to be the WCET.
• The aiT tool can do WCET analysis without the target

system and the result is guaranteed to be a safe WCET
estimate. But it requires the user to have a good under-
standing of both the aiT tool and the program code; oth-
erwise the quality of the estimated results can be seri-
ously affected and result in large overestimations.

8 Fifth Study: Static Analysis and Measure-
ments for Articulated Haulers Code (2005)

In this case study we used both measurements and static
analysis to analyze code in articulated haulers developed by
Volvo CE [35]. The study is described in detail in [29].

Volvo CE is one of the world’s leading manufacturers
of construction equipment. Their product range encom-
passes backhoe loaders, wheel loaders, excavators, articu-
lated haulers and motor graders. The vehicles are controlled
by a distributed, computerized control system, consisting of
a set of networked ECU’s (Electronic Control Units). The
ECU’s currently used in the articulated haulers are based on
the Infineon C167CS processor.

The software for the vehicle systems at Volvo CE uses
the Rubus real-time operating system from Arcticus Sys-
tems [2]. Rubus forces the designer to structure the system
in a task-oriented way. Rubus also contains a mechanism to
measure the execution time of tasks during run-time, which
can be used to do high-water-marking of the execution time,
which bounds the WCET from below. However, since the
measurements are done in software, there is a probe effect,
which is hard to compensate for in a precise way.

We used the Trace32Fire in-circuit emulator (from
Lauterbach Datentechnik GmbH [22]) for the timing mea-
surements. The aiT C167 WCET analysis tool [1] was used
for the static WCET analysis.

Static analysis. We first tested if it was possible to stat-
ically derive WCET estimates with a minimal amount of
effort, i.e., only providing hardware configuration and start-
ing points for tasks to the aiT tool, for an initial selection
of 24 tasks. For 17 of the tasks aiT was able to derive a
WCET estimate. For the remaining seven tasks no WCET
estimate could be derived automatically, mainly due to un-
bounded loops. When comparing these calculated WCET
estimates with the WCET parameters set using Rubus tim-
ing mechanism, we got an average time reduction of 59%1.
We consequently concluded that it was possible, with a very
limited effort, to use aiT to calculate WCET estimates for
many tasks in the system, and that aiT gives tighter esti-
mates than the ones based on measurements.

For the remaining experiments we selected 13 Rubus
tasks for a closer study (including some, but not all, of the

1These values were set using the measurement facilities of Rubus plus
adding a safety margin which explains why they are larger.

24 tasks used in the initial experiment). For these 13 tasks
we first investigated how few annotations, in order to obtain
a WCET estimate at all, that must be manually given. Thus,
we made sure that all loops in the code got upper bounded
(either by aiT flow analysis or by manual annotations). Only
three of the 13 selected tasks contained loops. In total, 12
out of 19 loops had to be manually bounded.

Next, we investigated how much the calculated WCET
estimates could be tightened by extra manual annotations.
The studied code contained some if-statements where the
conditions are mutually exclusive. This kind of code gives
rise to infeasible paths. After analysing the code, we were
able to add a number of (183) manual annotations that re-
moved many infeasible paths. This reduced the calculated
WCET estimates for the 13 tasks between 5 – 31%.

Measurements using an in-circuit emulator. The Rubus
timing mechanism was not used for the measurements. This
was partly due to the inexactness of this mechanism, but
mostly due to limited monitoring possibilities on the real
hardware, meaning that it was hard to identify the actual
path(s) taken during measurements.

We used the Trace32Fire in-circuit emulator for the mea-
surements instead, which was believed to be quite cycle ac-
curate. In order to obtain some evidence for this, we com-
pared timing values from the emulator with measured val-
ues on the hardware obtained by the Rubus timing mecha-
nism. They showed consistently that the overhead from the
Rubus timing mechanism was about 3.5 microseconds.

The main advantage of using the in-circuit emulator is
that it gives full control over the execution and full monitor-
ing capability. Thus, we could force the emulator to execute
the same path that aiT derived as the WCET path. Since the
emulator might be forced to execute a non-feasible path, the
result might overapproximate the WCET.

For all tasks, both the first static analysis (with minimal
number of flow annotations) and the second static analysis
(with extra flow constraints) yielded WCET estimates larger
than emulator values. The second static analysis overesti-
mated the emulator with 4 – 33%.

For all tasks except one, the original WCET values, set
by the Rubus timing mechanism, substantially larger (at
least 38%) than the best aiT estimate. Consequently, using
aiT values should improve schedulability, and leave room
for more activities in the system.

For one task, the WCET value derived by Rubus timing
mechanism was lower than both the aiT and emulator es-
timates. However, it cannot be guaranteed that the Rubus
value is below the WCET, since both the aiT and the emu-
lator estimates might have been obtained for an infeasible
path. A closer examination of the code would be needed to
determine whether this is the case or not.

Conclusions drawn from the case study. Static WCET
analysis tools seem to be useful for the type of task-oriented
real-time code studied. Such tools are suitable for Rubus,
and other similar real-time operating systems, which require
that the WCET’s of tasks are explicitly given.

The code studied had a fairly simple control structure,
with few loops, no recursion, and few if any dynamic fea-
tures. For such code, it is easy to provide the minimal
information needed to get a WCET analysis tool to pro-
duce a WCET estimate. Furthermore, the simply calcu-
lated WCET estimates are in almost all cases tighter than
WCET estimates based on measurements with a safety mar-
gin added. However, if tighter WCET estimates are de-
sired, then substantially more work is required. The code
under study happened to be written in a style with many if-
statements with more or less exclusive conditions. We don’t
know how common such code is, but it gives rise to many
infeasible paths. A tight WCET estimate requires that most
of these paths are pruned away in the analysis, even if the
mutual exclusion occurs between instructions in different
functions. To do this conveniently by hand requires good
support from the annotation language, to allow such con-
straints to be easily expressed.

A tool such as aiT can improve the system utilization as
well as detect potential sources of timing errors. For the sys-
tem under study, this is clearly the case, since the WCET es-
timates obtained by aiT are substantially more precise than
the current WCET parameters set in Rubus. The use of a
WCET tool also gives a possibility to remove the use of
high-water measurements. This may reduce system load,
especially in systems with many small tasks.

9 Related Work

There have been a number of studies of WCET ana-
lysis of industrial code. There are some reports on using
commercial, static analysis WCET tools to analyze code
for space applications [20, 21, 26], and in avionics indus-
try [14, 24, 31]. Colin et al. [9] analyzed operating system
functions of RTEMS, a small, open-source real-time kernel.

The conclusions from these studies confirm our observa-
tions. Much work is connected with finding loop bounds
and infeasible paths. Montag et al. [24] reports another
issue; imprecision due to conservative assumptions in the
WCET tool during floating-point calculations.

10 Conclusions, Discussion and Future Work

The case studies, presented in Sections 4 to 8, provided
a number of detailed results, experiences, and conclusions.
Some common conclusions can be drawn from these.

What timing value is really wanted? It is important to
understand that the method used should be selected accord-

ing to the type of system and the needs of the system de-
signer. Some of the issues are described below.

• Is a safe upper bound required? If so, then static analysis
probably is the right way to go.

• Is an approximate bound (yielding either over- or under-
estimation) ok? That may be the case, if the system is a
soft real-time system, or if the system can tolerate occa-
sional overruns. In that case measurement-based timing
values can be sufficient.

• What part of the code should be analysed? Is it the whole
task, or part of it? Do we differ between, e.g., the start-up
phase of the system and the system during normal oper-
ation? Should error handling be considered? Prepare for
more work the more detailed the restrictions are.

• What type of timing values do you want, a single value
or, e.g., parametrical values? Be aware of that today’s
timing analysis methods basically support the calcula-
tion of one value only.

• The structure of the code of a system has significant im-
pact on the analyzability of a system. Systems with many
small and well-defined tasks, scheduled by a strict prior-
ity RTOS or a time-triggered schedule, is easier to ana-
lyze than monolithic interrupt-driven programs based on
an infinite main loop.

Static WCET analysis. It is possible to apply static
WCET analysis to code with properties similar to the anal-
ysed ones. The tools used performs well and produces
safe WCET estimates, once the necessary preparatory work,
such as providing annotations, has been done. However,
there are some issues that have to be considered:

• The WCET analysis process is not automated on a ’one-
click-analysis’ basis. Much manual intervention, and de-
tailed knowledge of the analyzed code, is required to per-
form the analysis. For example, loop bounds have to be
provided for many, especially complex, loops.

• The WCET estimates might be untight. By adding more
annotations the estimates can become tighter, but to the
cost of a lot of work, especially for complex code.

• A graphical interface is beneficial, giving an overview of
the analysed code and illustrating its WCET execution.

• A high degree of support from the tool, for example with
automatic loop bounds calculation, is desirable.

• Absolute WCET bounds are not always sufficient. Sup-
port for some type of parametrical or mode-sensitive
WCET calculation is sometimes needed.

Measurements. Measurements are a possibility, assum-
ing the hardware and the software of the system is available.
The main drawback of measurements is that it is very hard
to find the real WCET, especially for complex code and/or
systems with complex hardware features. To force the pro-
gram to take the worst-case path requires a lot of knowledge
of the code and the hardware. It is often hard to force the

program to take a certain path by just using different in-
puts. Furthermore, using measurements to derive WCET
estimates is only suitable for program with a limited set of
possible execution paths.

A summary of the measurement methods applied in the
presented studies are:

• Oscilloscope: Intrusive method, since measuring code
has to be inserted. It is hard to see what happens, for
example to follow the path, or if interrupts has disturbed
the measurement. The hardware limits the number of
measuring points, and also offers poor resolution. Only
suitable for codes with a very limited set of execution
paths and not too time critical code.

• Logical analyzer and in-circuit emulator: The measure-
ments are non-intrusive. They give a better possibility
to see what happened during measurements as compared
to the oscilloscope. However, a lot of work is required
to see where the trace goes. It offers good resolution of
timing values. The timing can be disturbed by interrupts.

Discussion. It seems like a good way to do the WCET
analysis is to combine measurements and static analysis so
that the two types of methods are able to support and com-
pensate each other. From the static method, we get a com-
plete view of the code of interest, together with the possi-
ble longest execution path. Using dynamic methods we can
find out if this path is feasible or not, and the required condi-
tions/inputs for the program for taking this longest path. If
we can, somehow, make sure that these required conditions
are fulfilled, and afterwards measure the execution time of
this path by a dynamic measuring tool, e.g., a logic ana-
lyzer, then we will be able to say, with high confidence, that
we have found the actual WCET of the program. On the
other hand, the dynamic measurement can provide useful
information, such as addresses of memory accesses, to get
tighter static analysis results.

The address traces produced by the logic analyzer are
very helpful because they give the processor activity list
sorted by time. From this list one can easily see how and
when the program code is executed, and whether the func-
tions are executed exactly in the way that they are designed
or planned to be. If there has been an error, the trace can
also help us to find out why it happened and even how the
error has affected other parts of the system. We can also su-
pervise the memory accesses made using the logic analyzer.
For example, we can see whether there has been an illegal
access in a protected memory area.

If the timing analysis tool has a well-developed graphical
interface, it can provide a clear and easy handled view of
the whole system. For instance, from the graph we can see
which function that is calling which function; we can also
see all the possible execution paths in the program and the
influence from the inputs on the selection of the paths. All
this information is very valuable for the software developers

and timing analysts.
Both static and measurement-based methods benefit

from well-documented code and a nicely structured sys-
tem architecture regarding timing aspects. Therefore, code
should be written to facilitate timing analysis, by adher-
ing to strict coding rules. Typically, you want all loops
to be statically bounded, input-data dependence minimized,
pointer use minimized, and code structure as simple and
straightforward as possible.

Future work. We are currently initiating case studies
where we will evaluate the flow analysis of SWEET [23]
upon industrial code. This allows us to test if our own de-
veloped loop bound and infeasible path analyses [17] are
applicable in these settings. We also plan to use the hybrid
WCET analysis tool Rapitime [25] in industrial case stud-
ies. It should be very interesting to compare this type of
tools to the ones already used. We will also try to analyze
industrial code generated from modeling tools. Compared
to traditional programming, code generated from modeling
tools poses new challenges and possibilities as regards tim-
ing analysis and predictability.

References

[1] AbsInt. aiT tool homepage, 2006.
www.absint.com/ait.

[2] Arcticus Systems homepage, 2006.
www.arcticus-systems.com.

[3] Susanna Byhlin. Evaluation of Static Time Analysis for
Volcano Communications Technologies AB. Master’s the-
sis, Mälardalen University, Västerås, Sweden, Sept 2004.
www.mrtc.mdh.se/publications/0797.pdf.

[4] Susanna Byhlin, Andreas Ermedahl, Jan Gustafsson, and
Björn Lisper. Applying static WCET analysis to automotive
communication software. In Proc. 17th Euromicro Confer-
ence of Real-Time Systems, (ECRTS’05), July 2005.

[5] M. Carlsson. WCET Analysis, Case Study
on Interrupt Latency, for the OSE Real-Time
Operating System. Master’s thesis, Kungliga
Tekniska Högskolan, Sweden, December 2001.
www.e.kth.se/∼e96 mca/WCETAnalysisForOSE.pdf.

[6] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and
B. Lisper. Worst-case execution time analysis of disable
interrupt regions in a commercial real-time operating sys-
tem. In Proc. 2nd International Workshop on Real-Time
Tools (RT-TOOLS’2002), 2002.

[7] CC-Systems AB homepage, 2006.
www.cc-systems.com.

[8] The Chronos WCET analysis tool homepage, 2006.
www.comp.nus.edu.sg/∼rpembed/chronos.

[9] A. Colin and I. Puaut. Worst-Case Execution Time Analysis
for the RTEMS Real-Time Operating System. In Proc. 13th

Euromicro Conference of Real-Time Systems, (ECRTS’01),
June 2001.

[10] Enea Embedded Technology homepage, 2006.
www.enea.com.

[11] O. Eriksson. Evaluation of static time analysis for
CC systems. Master’s thesis, Mälardalen Univer-
sity, Västerås, Sweden, August 2005. 63 pages,
www.mrtc.mdh.se/publications/0978.pdf.

[12] Andreas Ermedahl and Jakob Engblom. Handbook of Real-
Time and Embedded Systems, chapter Execution Time Ana-
lysis for Embedded Real-Time Systems. CRC Press. Ac-
cepted for publication.

[13] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Ex-
periences from industrial WCET analysis case studies. In
Proc. 5th International Workshop on Worst-Case Execution
Time Analysis, (WCET’2005), pages 19–22, July 2005.

[14] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and precise WCET determination for a real-life pro-
cessor. In Proc. 1st International Workshop on Embedded
Systems, (EMSOFT2000), LNCS 2211, Oct 2001.

[15] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient
user annotations for a WCET tool. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2003), 2003.

[16] Jack Ganssle. Really real-time systems. In Proc. of the
Embedded Systems Conference, Silicon Valley 2006 (ESCSV
2006), April 2006.

[17] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and
Björn Lisper. Automatic derivation of loop bounds and infea-
sible paths for WCET analysis using abstract execution. In
Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06),
December 2006.

[18] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van En-
gelen. Supporting timing analysis by automatic bounding of
loop iterations. Journal of Real-Time Systems, May 2000.

[19] Homepage for the Heptane WCET analysis tool, 2006.
www.irisa.fr/aces/work/heptane-demo.

[20] N. Holsti, T. Långbacka, and S. Saarinen. Worst-case
execution-time analysis for digital signal processors. In Proc.
EUSIPCO 2000 Conference (X European Signal Processing
Conference), 2000.

[21] Niklas Holsti, T. Långbacka, and S. Saarinen. Using a worst-
case execution-time tool for real-time verification of the DE-
BIE software. In Proc. DASIA 2000 Conference (Data Sys-
tems in Aerospace 2000, ESA SP-457), September 2000.

[22] Lauterbach. Lauterbach datentechnik GmbH homepage,
2006. www.lauterbach.com.

[23] Mälardalen University. WCET project homepage, 2006.
www.mrtc.mdh.se/projects/wcet.

[24] Pascal Montag, Steffen Goerzig, and Paul Levi. Challenges
of timing verification tools in the automotive domain. In
Proc. 2nd International Symposium on Leveraging Applica-
tions of Formal Methods (ISOLA’06), November 2006.

[25] RapiTime WCET tool homepage, 2006.
www.rapitasystems.com.

[26] M. Rodriguez, N. Silva, J. Esteves, L. Henriques, D. Costa,
N. Holsti, and K. Hjortnaes. Challenges in calculating the
WCET of a complex on-board satellite application. In Proc.
3rd International Workshop on Worst-Case Execution Time
Analysis, (WCET’2003), 2003.

[27] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static
timing analysis of real-time operating system code. In Proc.
1st International Symposium on Leveraging Applications of
Formal Methods (ISOLA’04), October 2004.

[28] Daniel Sandell. Evaluating Static Worst Case
Execution Time Analysis for a Commercial
Real-Time Operating System. Master’s thesis,
Mälardalen University, Västerås, Sweden, June 2004.
www.mrtc.mdh.se/publications/0738.pdf.

[29] Daniel Sehlberg, Andreas Ermedahl, Jan Gustafsson, Björn
Lisper, and Steffen Wiegratz. Static WCET analysis of real-
time task-oriented code in vehicle control systems. In Proc.
2nd International Symposium on Leveraging Applications of
Formal Methods (ISOLA’06), November 2006.

[30] S. Thesing. Safe and Precise WCET Determination by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Saar-
land University, 2004.

[31] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An ab-
stract interpretation-based timing validation of hard real-time
avionics software. In Proc. of the IEEE Int. Conf. on Depend-
able Systems and Networks (DSN-2003), June 2003.

[32] Tidorum. Bound-T tool homepage, 2006.
www.tidorum.fi/bound-t.

[33] Vienna real-time systems group homepage, 2006.
www.vmars.tuwien.ac.at.

[34] Volcano Technologies Communications AB homepage,
2005. www.volcanoautomotive.com.

[35] Volvo CE (construction equipment) homepage, 2006.
www.volvo.com/constructionequipment.

[36] Y. Zhang. Evaluation of Methods for Dynamic
Time Analysis for CC-Systems AB. Master’s the-
sis, Mälardalen University, August 2005. 72 pages,
www.mrtc.mdh.se/publications/0977.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

