
INCENSE: Information-Centric Run-Time Support for
Component-Based Embedded Real-Time Systems ∗

Andreas Hjertström, Dag Nyström, Mikael Åkerholm, and Mikael Nolin
Mälardalen Real-Time Research Centre, Västerås, Sweden

{andreas.hjertstrom, dag.nystrom, mikael.akerholm, mikael.nolin}@mdh.se

Abstract

In this paper we present a technique to allow the use of
real-time database management together with component-
based software development, to achieve an information cen-
tric run-time platform for the development of embedded
real-time systems. The technique allows components to
benefit from the advantages of a real-time database man-
agement system while still retaining desirable component
properties, such as isolation and a high level of reusabil-
ity. We propose that a database is integrated in the com-
ponent framework, and introduce the concept of database
proxies to decouple components from the database schema.
The resulting system fully benefits from the advantages of
component-based software development, such as reusabil-
ity, all component interaction through interfaces, etc, com-
bined with the advantages of a real-time database manage-
ment system, i.e., system openness, controlled data access,
and dynamic query language capabilities.

1. Introduction

Today’s vehicle systems have an increasing number of
computer nodes, called Electronic Control Units (ECUs),
often developed by different hardware vendors, controlling
engine, brakes, gearbox etc. The cost for development of
electronics in high-end vehicles have increased to more than
23% of the total manufacturing cost [4]. Including sub-
systems a modern automotive system can contain over 70
ECUs communicating on different networks and exchang-
ing up to 2500 signals [6]. The continuous increase of ECUs
and exchanging of signals, leads to an growing amount of
data that needs to be managed. A significant amount of
the tasks using this data are critical hard real-time transac-
tions, often operating at high frequencies and updated peri-
odically. Furthermore, current trends also show an increase
∗This work is supported by the Swedish Foundation for Strategic Re-

search within the PROGRESS Centre for Predictable Embedded Software
Systems.

of tasks running non-critical, soft transactions in the system
at lower frequency. These transactions, often read transac-
tions, use the same data as hard critical tasks for logging or
to present statistical information about the current state of
the vehicle to the user.

To handle the increasing complexity in these systems,
new approaches and design paradigms to reduce complex-
ity are needed, since current techniques (internal data struc-
tures) are becoming increasingly insufficient. Two upcom-
ing approaches to reduce complexity are Component-Based
Software Engineering (CBSE) and DataBase Management
Systems (DBMS). Real-Time Database (RTDB) [10] and
RTDBMS (Real-Time Database Management System) are
upcoming technologies both within research society and
in industry [5] to help developers solve information man-
agement problems regarding synchronization, deadlock and
persistency. This area has mainly been focused towards
concurrency-control, temporal consistency, overload man-
agement and scheduling. The focus within CBSE is to cre-
ate software components that are reusable entities mounted
together as building blocks with a possibility to maintain
and improve systems by replacing individual components
[3]. Even though RTDBMS and CBSE share the same goal,
their means of achieving it is unfortunately conflicting.
One key philosophy for most component models is that all
communication with the surrounding environment should
be performed through the component’s interface, eliminat-
ing all component side-effects. By introducing a real-time
database management system (RTDBMS) and giving com-
ponents direct access to shared data in the database intro-
duces such side-effects. Furthermore, constructing compo-
nents that query a certain database engine, with a certain
database structure (schema) severely reduces the possibil-
ity of component reuse. To remove conflicts between RT-
DBMS and CBSE we introduce INCENSE (information-
centric run-time support for component-based embedded
real-time systems), a framework which combines the best
of these technologies.

It would be desirable to achieve a component-based sys-
tem where data is reliably managed and structured to enable



TASK oilTemp(void){
//Initialization part
int temp;

1 MimerDbP dbp;
2 MimRTDBPBind(&dbp,"Select TEMP from

ENGINE where
SUBSYSTEM=’oil’");

//Control part
while(1){

3 temp=readOilTempSensor();
4 MimRTWriteInt(dbp,temp);

waitForNextPeriod();
}

}

Figure 1. An I/O task that uses a Mimer RT
database pointer.

flexibility, a system where soft and hard real-time tasks can
execute and keep isolation properties, a system that can han-
dle critical transactions and at the same time enable open-
ness, a system where new functionality can be added or re-
moved without side effects to the system. To achieve this
we propose to use a RTDBMS, in this case Mimer SQL
Real-Time Edition [5], a commercially available1 real-time
database, together with a component technology, in this
case SaveCCT, to achieve an information-centric run-time
platform.

1.1. Mimer SQL Real-Time Edition

The Mimer SQL Real-Time Edition (Mimer RT) [5] is a
real-time database management system intended for appli-
cations with a mix of hard and soft real-time requirements.
The hard real-time algorithms are based upon the work per-
formed within the COMET research project [8]. Mimer RT
uses the concept of database pointers [9] to access individ-
ual data elements in an efficient and deterministic manner.
For soft real-time database management, standard SQL [2]
queries are used. To achieve database consistency without
jeopardizing the real-time requirements the 2V-DBP con-
currency control algorithm [7] is used. 2V-DBP allows
hard and soft transactions to share data independent of each
other.

In Figure 1 an I/O task that reads a sensor and propagates
it into the database is shown. The task consists of two parts,
an initializing part, and a control part. In the initialization
part, the database pointer is created (line 1) and associated
with a data element (line 2). The MimRTDBPBind func-
tion executes the query and a direct link to the data element
is established. In the control part, the sensor is scanned
(line 3) and its value is written to the database (line 4). The

1Mimer SQL Real-Time edition will be available during Q2 2007.

MimRTWriteInt call uses the direct link and performs
the write in constant time.

1.2. SaveCCT Real-Time Component Tech-
nology

The SaveComp Component Technology (SaveCCT) [1]
is described by distinguishing manual design, automated
activities, and execution. The entry point for a developer
is the Integrated Development Environment (IDE), a tool
supporting graphical composition of components, where the
application is created. Developers can utilize a number of
available analysis tools with automated connectivity to the
design tool. SaveCCT is based on a textual XML syntax
which allows components and applications to be specified.
Automated synthesis activities generate code used to glue
components together and allocate them to tasks. Resource
usage and timing are resolved statically during the synthesis
instead of using costly run-time algorithms. SaveCCT is, as
Mimer RT, intended for applications with both hard and soft
real-time requirements.

<<Assembly>>
EngineContoller

<<SaveComp>>

oilTempIO
50 Hz

oilTempSensor

<<SaveComp>>

oilTempIO
50 Hz50 Hz

oilTempSensoroilTempSensor

Figure 2. Save graphical application design

In SaveCCT applications are built by connecting compo-
nents input and output ports using well defined interfaces,
see Figure 2. Components are then executed using trigger
based strict "read-execute-write" semantics. A component
is always inactive until triggered. Once triggered it starts to
execute by reading data on input ports to perform its compu-
tations. Data is then written to its output ports and outgoing
triggering ports are activated.

Figure 2 shows how the XML code in Figure 3 is graph-
ically represented. There are two inports into the Engine
Controller application, data and trigger port. Data is read
by the oilTempIO component from its inport oilTempSen-
sor once triggered every 50Hz. Computations are done and
results propagated onto the output port. In this case the out-
put port is a combined trigger and output port. The XML
code also includes ATTRIBUTE which describes the differ-
ent component properties. In this example we have chosen
to exclude all attributes except Worst Case Execution Time
(WCET), which is analyzed and entered to the system.



<APPLICATION id="EngineController">
<IODEF>

<INPORT mode="trig" type="void"
id="trigFiftyHz" value="20"/>

<INPORT mode="data" type="int"
id="oilTempSensor" />

</IODEF>
<TYPEDEFS>

<COMPONENTDESC id="oilTempIO">
<INPORT mode="trig" type="void"

id="trigOilTemp" />
<INPORT mode="data" type="int"

id="oilTemp" />
<OUTPORT mode="combined" type="int"

id="newOilTemp" />
<ATTRIBUTE id="WCET" type="ms"

value="5" />
</COMPONENTDESC>
...

</TYPEDEFS>
<CONNECTIONLIST>

<CONNECTION>
<FROM id="EngineController"

port="trigFiftyHz" />
<TO id="oilTempIO"

port="trigOilTemp" />
</CONNECTION>
<CONNECTION>

<FROM id="EngineController"
port="oilTempSensor" />

<TO id="OilTempIO" port="oilTemp" />
</CONNECTION>
...

</CONNECTIONLIST>
</APPLICATION>

(Figure simplified for readability)

Figure 3. SaveCCT XML description file

2. The Information-centric Component
Framework

To efficiently integrate real-time database management
and component-based software engineering in order to gain
the potential benefits of both approaches, we propose that
the RTDBMS is made part of the component framework.
Figure 4 shows the architecture of the framework in which
it acts as a proxy between the application components and
the RTDBMS. This allows components to be database un-
aware. We define a database unaware component as a com-
ponent which does not have knowledge of the database
schema, i.e., the structure of the data in the database. This
database decoupling is made possible due to database prox-
ies, see Figure 4, which creates a database view that is con-
sistent with the interface of the component.

If components are database aware, i.e., calls to a database
is made from within the component-code, a number of un-
wanted properties emerge, such as (i) decreased component
reusability, since the component can only be used in sys-

tems with a certain database schema, and (ii) undesirable
component side-effects since interaction with the environ-
ment is made from outside the component interface.

In this paper, we distinguish between two types of
database proxies, namely hard real-time database prox-
ies (hard proxies) and soft real-time database proxies (soft
proxies).

Component Framework

DB 
Unaware
Comp. A

DB 
Unaware
Comp. B

DB Proxies

Mimer SQL Real-Time Edition

Figure 4. The Incense component framework

2.1. Hard real-time database proxies

Hard proxies are intended for hard real-time compo-
nents, which need efficient and deterministic access to indi-
vidual data elements. In Figure 5, a hard proxy is declared
as a DBHARDPROXY. The declaration contains all informa-
tion to set up a database pointer, which will be constructed
in the component framework as glue code between compo-
nent calls. Since 2V-DBP provides constant response-time
for database pointers, an attribute for worst-case execution
time is included in the declaration.

Hard proxies are connected to a component’s in- or out-
port, and the data element in the database is either provided
to the component or written back to the database after com-
pletion of the component’s execution. As a hard proxy can
provide a data element of any type, they can be used with
any existing components since the database is fully trans-
parent to the component.

2.2. Soft real-time database proxies

Soft proxies are intended for soft real-time components,
which might need more complex data-structures. Consider
a component monitoring the overall status of a subsystem,
e.g., all the temperatures in an engine, or logging of errors
etc.

In order for a component to be able to use a soft proxy, it
must have a relational interface, which means that it must
be able to take a relational table as a parameter (or return
value). Therefore, the SaveCCT component-model is ex-
tended to include TABLEDESC’s as parameters, see Fig-



<TYPEDEFS>
<TABLEDESC id="temperatureTable">

<ATTRIBUTES>
<ATTRIBUTE type="CHAR(20)"

id="subsystem"
key="primary" />

<ATTRIBUTE type="int"
id="temperature"
key="false" />

</ATTRIBUTES>
</TABLEDESC>

</TYPEDEFS>

<DBPROXIES>
<DBHARDPROXY type="int" id="oilTemperature"

bind="SELECT temp FROM engine
WHERE subsystem=’oil’"

<ATTRIBUTE id="WCET" type="us"
value="5" />

/>
<DBSOFTPROXY type="temperatureTable"

id="engineTemperatures"
bind="SELECT temp from engine"
<ATTRIBUTE id="WCET" type="ms"

value="3" />
/>

</DBPROXIES>

Figure 5. SaveCCT proxy representations

ure 5. A TABLEDESC table descriptor is a relational ta-
ble containing the information needed by the component. It
is worth noting that the structure of this descriptor is com-
pletely decoupled from the database schema.

Soft proxies are, as hard proxies, connected to a compo-
nent’s in- or out-ports. At run-time, the soft proxy converts
the database schema into the format of the table descriptor.
This glue-code, i.e., the database query associated with the
proxy, is embedded into the component framework.

This approach implies that the component is aware that
an RTDBMS is present, but it is still generic with respect
to the schema of the database, i.e., component reusability is
maintained.

3. Conclusions and Future Work

In this paper we present a technique to integrate a real-
time database management system into a component-based
system, and thereby gaining the advantages of high level
data management while retaining important properties, such
as component isolation and reusability, of component-based
software engineering. We introduce the concept of a
database proxy to enable components to be database un-
aware, i.e., components do not need to be tailored to fit
a certain database engine or database schema. Instead all
database interactions are performed from the information-
centric component framework used in this technique.

Key benefits of this approach include, system openness
due to standardized query language languages, the possi-
bility of creating on-the-fly dynamic database queries, to-
tal decoupling of data and components. Furthermore, when
using a hard real-time database engine such as Mimer SQL
Real-Time edition, hard real-time guarantees on data access
is provided and synchronization of shared data is transpar-
ently managed. By separating data access and components,
component isolation is retained and managed by applica-
tion specific database proxies connected to component in-
terfaces.

In our future work we intend to extend the information-
centric view with high level tools and design paradigms
to manage and organize data in a logical view rather than
a physical. During design, developers should have full
control of each data item involved, who are the produc-
ers/consumers, timing requirements etc. The overall aim
of our work is to create an information-centric design
paradigm for real-time systems, where data management is
treated as its own design entity.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
Save Approach to Component-Based Development of Ve-
hicular Systems. Journal of Systems and Software, 2006.

[2] S. Cannan and G. Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[3] I. Crnkovic. Component-Based Software Engineering - New
Challenges in Software Development. Software Focus, De-
cember 2001.

[4] L. Gabriel and H. Donal. Expanding Automotive Electronic
Systems. Computer, 35(1):88–93, Jan 2002.

[5] Mimer SQL Real-Time Edition, Mimer Information Tech-
nology. Uppsala, Sweden. http://www.mimer.se.

[6] N. Navet. Trends in Automotive Communication Systems.
In Proceedings of the IEEE.

[7] D. Nyström, M. Nolin, A. Tešanović, C. Norström, and
J. Hansson. Pessimistic Concurrency Control and Version-
ing to Support Database Pointers in Real-Time Databases.
In Proceedings of the 16th Euromicro Conference on Real-
Time Systems, 2004.

[8] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and
J. Hansson. COMET: A Component-Based Real-Time
Database for Automotive Systems. In Proceedings of the
Workshop on Software Engineering for Automotive Systems,
pages 1–8. The IEE, June 2004.

[9] D. Nyström, A. Tešanović, C. Norström, and J. Hansson.
Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the
9th International Conference on Real-Time and Embed-
ded Computing Systems and Applications, pages 623–634,
February 2003.

[10] K. Ramamritham, S. H. Son, and L. C. Dipippo. Real-Time
Databases and Data Services. Journal of Real-Time Systems,
28(2/3):179–215, November/December 2004.


