Supervisor : Henrik Thane, Malardalens University

Debugging the Asterix Framework by
Deterministic Replay and Slmulatlon

Daniel Sundmark, 750409
e-mail : it96das@student.docs.uu.se

Mailardalen Real-Time Research Centre, MRTC
Milardalen University
P.O. Box 883, SE-721 23 Visteras, SWEDEN

Abstract

In recent years, the focus on embedded real-time systems has largely intensified. More and more products use
embedded microcontrollers in order to enhance their functionality and user-interfaces. Unfortunately, analysis
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systems, like monitoring, debugging and visualization, is made difficult from the temporal and embedded nature
of real-time systems. This paper describes a prototype of a real-time debugging system for the Asteriz real-time
kernel. The system proposed supports deterministic replay, a way of reproducing executions in order to isolate
the bugs that cause errors. The executions are replayed in a debugger using a software simulator of the target
hardware, making it possible to track down bugs only using a host PC for debuggging.
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Chapter 1

Introduction

This chapter consists of five parts: First, a back-
ground to the research area of real-time systems anal-
ysis is given. Second, the main idea behind the Asterix
framework is presented. This is followed by a descrip-
tion of the requirements put on the implementation of
this thesis project, the Asterix kernel debugging sys-
tem. Fourth, a brief summary of the thesis work is
presented and fifth, the outline of the remaining doc-
ument is presented.

1.1 Background

In recent years, the focus on embedded real-time sys-
tems has largely intensified. A diminishing percent-
age of all processors manufactured today are proces-
sors for personal computers. Instead, small microcon-
trollers, designed for embedded applications are domi-
nating the market. These units are suitable for a wide
range of systems including a vast number of applica-
tions. The main advantages of an embedded microcon-
troller are low power consumption, high stability and
low cost. Compared to a dedicated regulating circuit,
it also provides a greatly improved flexibility, due to
the software implementation of the regulating system.

Together with a set of real-time tasks and often a
real-time operating system, the microcontroller forms
an embedded real-time system. A real-time system
differs from an ordinary computer system in that the
correctness of the system not only depends on the
system’s ability to produce correct results, but also
on the system’s ability to produce those results in a
given time-interval. Real-time systems typically inter-
act with an external process by sampling and respond-
ing to sampled data. One example of such a system is
a system controlling the airbag releases in a car. When
a collision occurs, the airbag must be activated. This
is the functional correctness of the system. In addi-
tion, the airbag must not be activated too soon or too
late as it would cause the driver to plunge into an not
entirely filled airbag. This is the temporal correctness
of the system.

Due to the embedded and the temporal nature of
embedded real-time systems, the ability to efficiently
monitor and observe the system behavior and activi-
ties has always been poor. I/O resources are sparse
and adding basic system monitoring support, such as
print-outs to a display, will affect the timing of the

system. This can be lethal to real-time system tempo-
ral correctness. In addition, sufficient debugging sup-
port is most often not included in real-time system
development environments. This makes the process of
real-time software engineering an even harder one than
that of normal software engineering.

So why do many existing real-time operating sys-
tems lack sufficient debugging support? This is a sim-
ple question, but the answer is quite complex. Tra-
ditionally, debugging is the process of revealing and
isolating errors that cause already discovered failures.
This is most often done by reproducing an erroneous
execution in a specialized analysis tool called a debug-
ger. To be certain to reproduce the same failure, the
reexecution must follow exactly the same path through
the execution as the initial run. In other words, we
need to achieve a deterministic replay [7] of the initial
execution. In their article, Thane and Hansson state
that for ordinary sequential programs, providing the
same start conditions and the same internal state is
sufficient to achieve a deterministic replay of the ini-
tial execution. For multi-tasking real-time programs,
several factors, such as interactions with an external
process, task interleavings and accesses to the inter-
nal real-time clock, make the process of reaching an
deterministic replay more difficult.

Most solutions proposed to these problems pay a
high price, sometimes in efficiency, sometimes finan-
cially and not seldom in flexibility, due to hardware-
dependent monitoring of kernel activities. These ap-
proaches will be discussed later in the Basics section
of this paper.

1.2 The Asterix real-time kernel

Lack of sufficient debugging tools is not the only prob-
lem with existing real-time operating systems. Eng-
berg and Petterson [3] claim that most current off-the-
shelf RTOS are based on old assumptions of real-time
systems and lack support for state-of-the-art schedul-
ing and analysis theory and that this raises a problem
when new theories are to be designed, implemented
and tested. Some real-time operating systems, how-
ever, are based on state-of-the-art RTOS theory, but
these are in most cases dedicated systems, special-
ized towards just one type of hardware or one type
of scheduling theory. Furthermore, answers to exactly



what features are supported in an existing RTOS can
often be hard to find. In addition, although most com-
mercial RTOS are configurable to fit a variety of em-
bedded applications, not many provide the developer
with the source code of the operating system, needed
to make changes in the system.

All these drawbacks of existing RTOS gave birth
to an idea of a new RTOS at the Department of Com-
puter Engineering at M#lardalens University. The new
system would consist of a highly configurable com-
piling distributed real-time kernel, a task model sup-
porting state-of-the-art scheduling theory, wait- and
lock-free interprocess communication and support for
monitoring and debugging. All these features are col-
lected in an open-source framework, called the Asterix
framework [3] [2]. This paper is a description of the
monitoring and debugging system of the Asterix ker-
nel.

1.3 Requirements of the
Asterix debugging system

Most of the requirements of the Asterix debugging sys-
tem are extracted from the paper Deterministic Replay
for Debugging of Distributed Real-Time Systems [7] by
Henrik Thane and Hans Hansson. Some of the require-
ments are however specific to the Asterix kernel and
are extracted from the papers dealing with the Asterix
Framework [3] [2]. Below is a list of the most impor-
tant requirements of the Asterix debugging system.

- The key requirement of the Asterix debugging sys-
tem is that of determinism. The system must be
able to reproduce an execution in such a way that
all program states visited in the first run of the
execution must be present in the replay execution,
and in the same order.

- The system must be able to provide the developer
with all the debugging possibilities as in an ordi-
nary single-tasking non-real-time debugging ses-
sion, unless the developer interacts with the de-
bugging run in such a way that the flow of control
is changed and the debugging run is corrupted.

- All jitter caused by the probes and the monitoring
mechanisms must be minimized.

- The interference to the system done by the probes
and the monitoring mechanisms in terms of CPU
cycles must be minimized.

- The interference to the system done by the control
flow and data flow recording buffers in terms of
memory storage space must be minimized.

- All Asterix kernel features, such as signals, wait-
free communication and semaphores must be sup-
ported by the Asterix debugging system.

- All probe and monitoring mechanism overhead
must be predictable and computable.

- The Asterix debugging system must be compil-
able, portable and scalable.

1.4 Summary

In the spring term of 2000, two master thesis works of
major importance to this thesis were conducted at the
Real-Time System Design Laboratory at Mélardalens
University. The first one was called Asteriz: A pro-
totype of a small-sized real-time kernel [3] and con-
sisted of a well-documented real-time kernel proto-
type. The other thesis was called Obelixz develop-
ment environment [2] and consisted of an equally well-
documented development environment for the Asterix
kernel. These thesis works were the first two contribu-
tions to the Asterix framework. This is the third, De-
bugging the Asterixz kernel by deterministic replay and
consists of monitoring and debugging support for the
Asterix kernel. The monitoring and debugging config-
uration is built in into the Obelix configuration system.
This thesis was conducted at the fall term of 2000 dur-
ing a 20 weeks period, also at the Real-Time System
Design Laboratory at Mélardalens University.

1.5 Document Outline

Next, we will be looking at the terminology used in
this document in order to avoid misunderstandings of
the concepts of this thesis. This is followed by a de-
scription of the problems of debugging multitasking
real-time systems and how other contributions in this
area have approached these problems. After that, the
different parts of the Asterix debugging system are de-
scribed in detail. Eventually, future work and conclu-
sions will be discussed.



Chapter 2

Name definitions in the Asterix debugging

system

This chapter deals with name definitions of differ-
ent parts of the Asterix debugging system. For more
general name definitions in the Asterix framework, see

3]

Deterministic replay

Deterministic replay is the process of re-creating an
execution in a way that it runs through exactly the
same path as the initial execution did.

Control flow

The control flow is the turn of events in an execution
run. It describes how taskswitches, interrupts, ker-
nel invocations, preemptions and task starts and stops
interact with each other along the time-axis of an ex-
ecution.

Control flow buffer

In the Asterix debugging system, the control flow
buffer is a memory storage space implemented as a
cyclic buffer in order to record the control flow events
of the current run.

Data flow probes

A data flow probe is the mechanism used in the Asterix
debugging system to support the recording of signif-
icant user-task data, such as readings of sensors, re-
ceived messages and task states.

Data flow buffers

The data flow buffers are a set of cyclic buffers, used
to record the data monitored by the data flow probes.

Conditional breakpoint

A conditional breakpoint is a debugger breakpoint
with a break condition. The breakpoint only halts
the execution if the break condition is true.

Conditional breakpoint macro

A conditional breakpoint macro is a conditional break-
point with a set of debugger commands associated with
it. Once the breakpoint is activated, the commands
are stepped through and executed one by one.



Chapter 3

Basics

task a {
int x;

while (x < 67) {

Figure 3.1: Example of an uninitialized variable

While software engineers working with non-real-
time software have been able to use debugging tools
for decades, the real-time engineers have fought their
battles without them. Some attempts to break this
trend have been made, but the fact remains: A vast
majority of all real-time systems today lack sufficient
debugging support.

3.1 Defining the problem

So, what makes the process of debugging real-time
systems so much harder than the one of debugging
non-real-time systems? In the next three sections, we
will in a step-by-step manner look at the differences
of debugging non-real-time and real-time systems. A
similar approach was made by Thane and Hansson [7].

3.1.1 Single-tasking non-real-time

systems

We have already stated that debugging is the process
of revealing and isolating bugs that cause errors dis-
covered during run-time in a certain system. In a
traditional single-tasking non-real-time program, this
process is quite trivial. Consider, for example, the fol-
lowing lines of code in figure 3.1.

The code sequence will loop until the counter x
reaches the value 67. However, the variable x is not
initiated and for some compilers the code will work like

the developer thought it would, but for other compil-
ers, it might not. If this program would be run in
a debugger, the developer would be able to reproduce
an erroneous execution just by starting the program all
over again with the exact same arguments (if any) as
input. In the debugger, he would also be able to step
through the program line by line or instruction by in-
struction and at each step examine whatever parts of
the program state he would like to. In this example,
watching the variable x would lead to an early discov-
ery of the bug that led to the first erroneous execution.

3.1.2 Single-tasking real-time systems

Moving from single-tasking non-real-time programs to
single-tasking real-time programs adds the concept of
interaction with, and dependency of, an external con-
text. The system can be equipped with sensors, sam-
pling the external context and motors, interacting with
the context. In addition, the system is equipped with
a real-time clock, giving the external and the internal
process a shared timebase. If we try to debug such a
program, we will encounter two major problems: First,
how do we reproduce the readings of sensors done in
the first run? These readings need to be reproduced in
order not to violate the requirement of having exactly
the same inputs to the system for achieving a deter-
ministic replay. Second, how do we keep the shared
timebase intact? In the debugging reproduction phase,
the developer needs to be able to set breakpoints and
single-step through the execution. However, breaking
the execution will only break the progress of the inter-
nal run while the external process will continue. Con-
sider, for instance, an ABS-breaking system in a car.
During a testing phase, an error is discovered and the
system is run in a debugger. While the system is run
in the debugger, the testing crew tries to reproduce
the erroneous state by maneuvering the vehicle in the
same way as in the first run. However, breaking the
execution of the system by setting a breakpoint some-
where in the code will only cause the program to halt.
The vehicle, naturally, will not freeze in the middle of
the maneuver and the shared timebase of the internal
and external system is lost. This makes it impossible
to reproduce the error deterministically and simulta-
neously thoroughly examining the state of the system
at different times in the execution.



3.1.3 Multi-tasking real-time systems

The last step (of this thesis) is moving from single-
tasking real-time systems to multi-tasking real-time
systems. This adds the problem of concurrency within
the system. When the system consists of a set of tasks
instead of one, the tasks will interact with each other
both in a temporal and a functional manner. Kernel
invocations and hardware interrupts will change the
flow of control in the system. In addition, tasks sharing
resources leads to the problems with critical regions
and race conditions. Consider a system with two tasks,
A and B, both sharing the resource X. In a test run
shown in figure 3.2, A beats B in a race situation for
X and this leads to an error.

A

>
v

A 4

Task A grabs resource X

System failure

Figure 3.2: Task A grabs resource X before being pre-
empted by task B.

The developer tries to investigate what led to the
error and inserts some kind of software probe in the
system in order to monitor what happened. When this
probe executes, it causes a timing effect in the system
which makes B beat A in the same race that A won
in the first execution. This scenario is described in
figure 3.3.

A A

7y 7y ? 7 N

t
A grabs X

Probe executes B grabs X

B preempts A A resumes

Figure 3.3: Task B preempts task A before A grabs re-
source X.

This time, the execution does not encounter any er-
rors and the cause of the first error is still unknown.
This type of behavior, when the insertion and removal
of probes affect the execution of the system, is called
probe effects [4].

3.2 Recent work

The research area of real-time system debugging is
young and very few real-time targeted implementa-
tions of real-time debuggers have been presented. To
enhance the description of previous work done in this
area, one can expand the research area to the one of
concurrent program debugging. Multi-tasking real-
time debugging can be seen as a subset of concur-
rent program debugging and many of the difficulties
appearing in concurrent program debugging will also
appear in multi-tasking real-time systems.

In a survey studying the state-of-the-art of concur-
rent program debugging [6], McDowell and Helmbold
define the problems of parallel program debugging:

The classic approach to debugging se-
quential programs involves repeatedly stop-
ping the program during execution, examin-
ing the state, and then either continuing or
reexecuting in order to stop at an earlier point
in the execution. This style of debugging is
called cyclical debugging. Unfortunately,
parallel programs do not always have repro-
ducible behavior. FEven when they are run
with the same inputs, their results can be rad-
ically different. These differences are caused
by races, which occur whenever two activi-
ties are allowed to progress in parallel.

Moving on from concurrent program debugging to
real-time system debugging, we add the problems of
temporal constraints on the system and interactions
with an external process. However, we will continue
with the ideas of McDowell and Helmbold as they
make an attempt to divide the approaches of solv-
ing the problem of concurrent program debugging into
four different subgroups. This is interesting since the
same division can be made out of real-time debug-
ging approaches. The first group is the one of tra-
ditional debugging techniques. The second one deals
with event-based debuggers. The third describes tech-
niques for displaying data and control flow in the sys-
tem and the fourth deals with techniques for static
analysis of data flow.

3.2.1 Traditional debugging techniques

Traditional debugging techniques can very well be used
to find certain types of bugs in the code of real-time
systems. Assuming one could isolate and debug the
execution of every task in a multitasking system, all
bugs not dependent on the timing of the system or the
interaction with the external process can be found.
Unfortunately, the most troublesome bugs are more
malignant than that.

3.2.2 Event-based debuggers

The event-based debuggers use a different point of
view when trying to debug multi-tasking real-time sys-
tems. In the example of the erroneous ABS-breaking



system in section 3.1.2, we saw that an erroneous real-
time execution can be virtually impossible to repro-
duce. Because of the fact that one never can be cer-
tain of achieving an identical reexecution of the one
in which the error occured, the erroneous execution
is recorded, analysed and reproduced in a debugger
session. The recording can be done in two different
ways: Either by using hardware-dependent noninter-
fering probes or by using software-dependent interfer-
ing probes. Both approaches have their own pros and
cons.

Hardware-based solutions

Most, if not all, existing event-based debuggers use
hardware-dependent probes to monitor the execution
of the real-time system. Examples of such systems are
proposed by Tsai et. al. [5] and Banda et. al. [1].
The main advantage of these systems is the ability to
monitor sufficient information of the system without
using any of the system’s resources. The probes have
different hardware-based techniques for gathering in-
formation, such as listening to the system bus, usually
called eavesdropping or using dual port memory, that
is memory circuits that can be read or written to by
two systems simultaneously.

There are two major drawbacks of the hardware-
based probes. First, the flexibility and portability is
very low. If a new microcontroller is introduced to the
market, new probe circuits need to be developed and
distributed. For a hardware solution this is a time-
consuming process. Second, the cost of such systems
would be significantly higher due to production and
distribution costs.

Software-based solutions

This is the section in which the Asterix debugging sys-
tem could be included. The monitoring is performed
by software mechanisms, leading to significantly in-
creased flexibility and portability, but is at the same
time intrusive. Intrusive probes may lead to increased
system load or lack of reproduction correctness.

If the drawback would consist of decreased utiliza-
tion or correctness depends on if the software probes
are left in the system after the debugging phase is
through or if they are removed. Removing the probes
will lead to probe-effects in the system, which in turn
might lead to new timing bugs. Letting the probes re-
main in the system will lead to decreased utilization of
system resources, since CPU cycles and memory space
are used to perform the recording.

Another example of a software-based solution is pro-
posed by Mellor-Crummey et. al. who suggests a
software instruction counter [] to make software-based
real-time debugging easier.

3.2.3 Visualization techniques

When the control flow and data flow of the system is
monitored, it can be used to visualize the execution
history in different ways instead of building an replay

basis. This can be useful for finding bugs, but will not
provide the same possibility of examining the execu-
tion in depth as a cyclic debugging replay.

In addition, for event-based debuggers, like the As-
terix debugging system, just building the replay basis
does not remove the possibility of providing the user
with a thorough visualization of the execution history.
In the Asterix debugging system, a prototype text-
based visualization is used to make the execution his-
tory easier to understand.

3.2.4 Formal methods

The last section is formal methods. These are the tech-
niques that differ most from the traditional debug-
ging techniques. There are a wide variety of formal
method techniques, but most aim at describing the
system specifications with some kind of formal math-
ematical language and to use this description to build
and to verify the system.

The major reason for using formal methods is that
the process of identifying and formalizing system re-
quirements and specifications is very helpful in ac-
chieving system design correctness. The drawbacks
of formal methods include difficulty in understanding
and learning the formal method and errors in translat-
ing system specifications to the formal mathematical
language.



Chapter 4

The Asterix debugging system

In short, the Asterix debugging system is a set of
programs and add-ons making it possible to record sig-
nificant system events on-line, provide off-line possibil-
ity to analyze these data in order to build a complete
basis for the deterministic replay mechanism. This
chapter gives a description of the mechanisms needed
to achieve a deterministic debugging in the Asterix
Framework, starting with the monitoring process - how
to collect data and monitor configuration. Next, the
off-line analysis of monitored data is explained and
last, the replay mechanism and the debugger interface
are described.

4.1 Monitoring

Monitoring is an essential part of the Asterix debug-
ging system. The monitor probes are the eyes and
ears of the system and without them, interaction with
the system would be impossible. However, vision and
hearing are useless unless you know where to look and
what to listen to.

4.1.1 What should be monitored?

To achieve deterministic replay of an execution,
enough information of the execution must be gathered.
Bare in mind though that, over-enthusiastic gather-
ing of information will decrease overall system perfor-
mance, since every monitored event or data cost time
and memory. It is therefore important not to monitor
and record too much data.

In order to make the Asterix debugging system easy
to understand for developers and users, the storage
space for monitored data is divided into two parts:
Control flow buffers and the dataflow buffers.

4.1.2 The control flow buffer

The control flow buffer is used to store all significant
kernel events, such as taskswitches, interrupts and
missed deadlines. It consists of a cyclic buffer of a
user-defined number of entries and an index pointing
at the next entry available to write. Each entry in the
buffer consists of a 7-tuple and is defined as:

event < T,ST,PC,SP,C,E,ET > (4.1)

where T and ST define the time of the event. T is the
value of an software-based tick counter, incremented
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by a timer interrupt. ST, on the other hand can be
viewed upon as fractions of a tick and is the value of a
free-running hardware counter, reset at each tick. This
means that an event that occurred at T=43, ST=256
predates an event occurring at 7=43 and ST=398.
Henceforth, an event occurring at T=X and ST=Y
will be referred to as occurring at X.Y. Moving on, we
have PC, which is the value of the program counter
register at the time of the event. SP is the value of
the stack pointer and C is a 16-bit register checksum.
Finally, we have E and ET. ET tells us what type of
event that occurred and E is an identifier of the event.
For example, if a hardware interrupt occurs, ET tells
us that an interrupt occurred and F tells us which in-
terrupt service routine that was run. Another example
can be made out of a taskswitch. If a taskswitch oc-
curred, ET tells us that a taskswitch occurred (and
what type of taskswitch that occurred) and E tells us
which task that gained control after the taskswitch.
The structure of an event in the control flow buffer is
shown in figure 4.1.

IN_T I [ T [ T 1]

Control flow buffer

ST|PC|SP ET

Event

Figure 4.1: A magnified event in the control flow buffer.

In the Asterix kernel there are four different entries
into the kernel, causing a taskswitch: timertick, return,
irq and yield. The first one, timertick is called when
a timer interrupt is generated. The second, return, is
called each time a task terminates and wants to hand
over the control to the kernel '. The third, irg, is a
taskswitch generated by an external interrupt and the
forth, yield, is a taskswitch generated by a semaphore

LAll tasks in the Asterix Framework are of the terminating
type.



race. In addition to these event types, ET can also
indicate a missed deadline or, as mentioned above, an
interrupt.

At the start of the execution, the control flow buffer
is empty and the write index points to the first entry
in the buffer. This is shown in figure 4.2.

index

0 N

Figure 4.2: An empty control flow buffer of size N+1.

As an event occurs, the values of T, ST, PC, SP,
C, E and ET at the time of the event are written to
the first entry in the buffer. Then the write index is
incremented, so that it points to the second entry in
the buffer and so on. This is shown in figure 4.3.

index

0 N

Figure 4.3: An event occurs, the entry is written to and
the index is incremented.

When the index reaches the end of the control flow
buffer, it is reset to its initial value. In other words, it
points to the first entry of the buffer, which contains
the oldest event. This can be seen in figure 4.4.

index

0 N

Figure 4.4: The index reaches the end of the buffer and
starts over.

When an event occurs, the variables of the new in-
terrupt overwrite the old ones. The old event is lost
and will can not be reproduced during replay. It is
therefor important that the developer in an early state
of the design allocates enough space to achieve a re-
play long enough to reveal the causes of errors. That
is, the precision of the replay is proportional to the
amount of data recorded

4.1.3 The data flow buffers

The other part of the memory storage space for mon-
itor data is the data flow buffers. This is a set of
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user-defined buffers, used to record user-task data in-
stead of kernel events, which was the case with the
control flow buffer. The data recorded here could be
data external to the task, such as inputs to the task,
system state, readings of sensors and messages from
other tasks or nodes. In other words, data, that can-
not be reproduced just by providing the same internal
state as in the first run, should be recorded. A thing
to keep in mind is that in contrast to the control flow
buffer, each data flow buffer is tied to a specific user-
task. The control flow buffer is global and is used only
by the kernel.

An entry in a data flow buffer is defined as a 3-tuple:

data < T,ST,D > (4.2)

where the meanings of 7" and ST are analogous to
those in the control flow buffer. D, however, is a set of
user-defined data recording entries, that can be used
to record data during a run-time execution of the user-
task. This might seem a little tricky, but consider the
following example:

S is a system regulating the fluid level in an indus-
try process. The system has three tasks: A, B, and
C. A is the task reading the level of the fluid from
two different sensors in the fluid tank. It then decides
through a regulator if the flow into the tank should be
decreased, increased or if it should remain constant.
It sends this decision to task B as a message and task
B translates the decision to motor control information
for the motor controlling the fluid inflow hatch. Task
C is an interrupt-driven task, independent from A and
B, only responding to a button that resets the entire
system.

So, how should the tasks in system S be monitored?
Let us start with task A. We only need to monitor the
data that is impossible to reproduce just by providing
the same internal state and inputs to the system. The
values of the level-sensor readings are such data. Be-
lieving that fluid flow is deterministically reproducible
just by keeping the initial level close to the same is the
same as saying that a dice will always show the same
value if you try to toss it in the same velocity from the
same level of height at different points in time. Reality
is chaotic and minimal changes in the initial state of a
process will show large effects on the outcome. Any-
way, the two values read from the level-sensors each
time task A is invoked must be recorded. Moving on
to task B we see that it reads a message from task A.
This wouldn’t be a problem if the replay started at the
same point as the beginning of the original run. How-
ever, this is a system that might run for weeks, even
months, before running into an erroneous state. This
means that the monitored execution history would be
enormous and never fit in the memory of an embedded
system. In the Asterix debugging system we make use
of cyclic buffers of user-defined length, allowing us only
to replay a certain time-interval back in the execution
history. This leaves us with the possible problem of
starting the replay at a point in time where A already
sent a message, but B hasn’t received it yet, and in
the replay run, B never will. This is illustrated in fig-



ure 4.5, where 0 is a execution point with a message
in transit mode and ¢! is a point where no messages
are in transite mode.

message

A

v

Figure 4.5: Transit mode.

There are two solutions to this problem: Either you
can make sure that the replay starts at a transitless
state [|, a state where no messages are in transit-mode.
Or you can record all messages received, making sure
no messages are lost. Currently, the Asterix debugging
system supports only the latter of these approaches.
This means that task B in our system S needs to
record the message from task A.

Looking at the last task in our system (task C), we
see that the only external interaction here is the inter-
rupt starting the task. But interrupts are covered by
the control flow buffer (which is automatically added
and configured if the system uses monitoring) and task
C doesn’t need to monitor any data.

As shown in figure 4.6, our system S has three tasks,
but only two with task monitors. All buffer sizes are
user defined, such as the types and names of the data
recorded.

The data flow buffers are cyclic and their recording
mechanism works in the exact same way as the control
flow buffer.

4.2 Monitor configuration
The configuration of the Asterix debugging system is

built into the Obelix configuration system [2] used to
configure the Asterix kernel. Here, the developer has

Task_A_Monitor:
buffer of < T, ST, < sensorl, sensor2>>

Task_B_Monitor:
buffer of < T, ST, < message >>

Task_C_Monitor:
null

Figure 4.6: Data flow buffers of system S
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the ability to tell the system what size the monitor
recording storage should be and what types and names
the variables recorded should have. The easiest way of
allocating space for the monitoring is to simply tell
the system the size of the time-interval the recording
should cover. If, for example, the developer tells the
system to keep track of all events and data for the
last 300 clock ticks, the Obelix configuration system
translates this time-interval to control flow buffer and
data flow buffer storage space.

Doing this time-interval-storage-space translation
for the data flow buffers of periodic user tasks is fairly
trivial. If we have a periodic task, invoked at every
30 ticks and a recording time interval of 300 ticks, we
need a data flow buffer size of 300/30 = 10 to be ab-
solutely certain that we have recorded all invocations
of the task during the last 300 ticks.

Doing the same translation for the control flow
buffer is a little more tricky. If we just consider record-
ing taskswitches, we have a set of tasks with differ-
ent priorities. All these tasks, but one (the task with
the lowest priority, in the Asterix kernel, the idletask)
has the potential to preempt another task’s execution.
This preemption will produce two taskswitches, first
the one to the task with the higher priority, then the
one back to the preempted task when the task with
the higher priority terminates. This means that the
maximum number of taskswitches N during a period
of T ticks in a system of only periodic tasks can be
calculated by the formula:

N 2y T/PERk

k

(4.3)

Adding aperiodic task starts, interrupts and dead-
line misses, the algorithm becomes slightly more com-
plex. A more thorough and user-oriented description
of the configuration can be found in appendix A along
with a monitor configuration tutorial.

4.3 Off-line analysis

The main objective of the off-line analysis is to pro-
vide a complete basis for the deterministic replay de-
bugging mechanism. The input to the off-line anal-
ysis is the raw data of the control flow buffer and
the data flow buffers recorded on the target system.
The idea is to use the information from system events
to create breakpoints in the replay execution where
the events occurred in the recorded execution. Once
halted at a breakpoint, different parts of the system
state can be altered in order to simulate an interrupt
or a taskswitch. When the system state variables are
set, the execution resumes. In this way, all external
system events can be simulated.

4.3.1 The debugger

The debugger used in the Asterix debugging system
is the GNU source-level C-debugger, gdb. The cur-
rent version of Asterix uses gdb-4.17 configured with a



break [BREAKPOINT] if [BREAK_CONDITION]
commands
[COMMAND_1]
[COMMAND_2]

[COMMAND_N]
end

Figure 4.7: Structure of conditional breakpoint

break *0x8845 if (sp==0x9lae &&
register_checksum==0x53c2)

Figure 4.8: Conditional breakpoint

h8300-hitachi-hms microcontroller software simulator.
The simulator is used to perform the entire debugging
on the host (or development) machine instead of us-
ing remote debugging with the h8300, which would
decrease flexibility and debugging speed heavily.

Gdb supports script command files, which means
that the breakpoints and settings of system variables
can be defined as macros in script files, automati-
cally generated by the Asterix off-line analysis tool.
A gdb macro breakpoint can have different commands
attached to it and will follow the syntax seen in fig-
ure 4.7.

Recent tests have shown that this approach should
also work perfectly well with any commercial debugger
supporting similar macros.

4.3.2 Analyzing control flow

As we stated earlier, a control flow buffer entry is made
up of a 7-tuple: event < T, ST, PC, SP, C, E, ET >
and represents an event in the history of the recorded
execution. To reproduce these events, each entry in the
buffer has to be transformed into a conditional break-
point macro. This is done in a number of steps. When
the control flow buffer and the data flow buffers are
uploaded from the recorded execution, they are rep-
resented as a bunch of unsorted raw data. Therefore,
the first step is to separate the control flow buffer and
the different data flow buffers from each other. Next,
they are sorted in a chronological order. After that,
each entry in the control flow buffer is translated into
a gdb conditional breakpoint macro.

This conditional breakpoint will be slightly differ-
ent for different types of events, but the principle is
the same. Consider a fictional event, el: < T=12,
ST=285, PC=0x8845, SP=0x91ae, C=0x53c2, E=3,
ET=timertick >. The first thing to do is to create the
breakpoint and the breakpoint conditions. For el, it
would look something like the breakpoint in figure 4.8

The break condition is there to make sure that the
execution is not halted at the wrong iteration of a loop
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break *0x8845 if (sp==0x91lae &&
register_checksum==0x53c2)

commands

set tasklist[0].LDP = LO
set tasklist[1].LDP = L1
set tasklist[3].LDP = 0

set tasklist[N].LDP = LN

jump timertick
end

Figure 4.9: Conditional breakpoint macro

or at the wrong instance of a recursive call, where the
same program counter value is visited a number of
times, but almost never with the same stack pointer
or register checksum values. This is not a waterproof
technique, but it is definitely enough to handle most
situations.

To make sure that the system behaves in exactly
the same way as in the recorded run, we must see
to it that tasks are invoked at the right clock ticks.
This is done by setting the task’s length-to-next-period
(LDP )-variable [3] at the different breakpoints. At
event el, the tick counter has reached a value of 12.
We also see that event el is a timertick taskswitch to
task 3 (ET=timertick and E=3). In other words, task
3 is invoked at T'=12 and the time distance to the next
invocation of task 3 is 12 - 12 = 0 ticks. This means
that the LDP variable of task 3 should be set to 0.
This will cause the kernel to perform a taskswitch to
task 3. In the conditional breakpoint macro, this will
look like the one in figure 4.9.

Here, N is the number of tasks - 1 and Lx is the
LDP calculated for task z. At each breakpoint, the
LDP for all tasks is calculated and set. There are also
a few additional commands in the conditional break-
point macros, but most of these are static commands
for making the debugging run a little smoother.

4.3.3 Analyzing data flow

Creating a replay basis of the data flow buffers is a lot
easier than creating the conditional breakpoints from
the control flow buffer. The data flow buffers are just
a set of sorted data arrays, which are written back in
the system by gdb command files. The data is written
back at the same storage in memory where it once was
recorded. Then the index is set to the initial value and
when the replay debugging run starts, the same kernel
mechanisms that once stored the data can be used to
retrieve data instead. In other words, this time the
data is read from the recording area into user tasks
variables instead of the other way round.



4.3.4 Setting a valid
replay starting point

The last step of the off-line analysis that has to be
performed before we can start debugging the system
by deterministic replay is the task of setting a valid
replay starting point. Consider the recorded control
flow in figure 4.10, representing an execution history.

i

Figure 4.10: A non-valid replay starting point.

The first task executing at starting point s in our ex-
ecution history is task B. After task B has terminated,
task A is scheduled. However, we know nothing of
this invocation of task A. Is it a resumed preempted
execution or is it a initial task start? We don’t know.
The easiest way around this problem is to find the first
point in the execution history where no user-tasks are
in the ready-queue. We could call this an idle point.
At such a point, no task will be in a preempted state
and therefor all task executions will be reproducible.
In figure 4.11, the first idle point in the recorded exe-
cution is identified and set to starting point s.

B 4

Figure 4.11: A valid replay starting point.

4.4 Replay mechanism

Having understood the concepts of the monitoring and
the off-line analysis, there is little else to learn about
the replay mechanism. Once all gdb command files
are created by the Asterix off-line analysis tool, gdb
can be started. A static initiation file is read into gdb,
which in turn reads all dynamic command files cre-
ated by the off-line analysis. This sets all conditional
breakpoints in the system. After this, the system can
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be debugged in the same way as any ordinary non-real-
time single-tasking system. The breakpoints causing
the simulated events are stepped through and the re-
play execution will run exactly the same path as the
recorded run did.

However, one has to remember that if the developer
at some point in the debug execution interacts with
the system in such a way that the flow of control of
the system is altered, some breakpoint condition might
never be met and the replay run is corrupted.



Chapter 5
Future work

Since this thesis is just a prototype of the Asterix
debugging system, not all features of the system are
optimized, thoroughly tested or even implemented. In
this chapter, the most important improvements and
new features are listed. Apart from those, there prob-
ably exist a few dozen that the author did not think
of when writing this thesis.

5.1 Improvements

Due to limitations in time, some parts of this thesis
was not implemented in the best possible way. Fol-
lowing is a set of system parts whose functionality and
efficiency could be heavily improved.

5.1.1 Optimization

Although most software probes are well-optimized
with regards to CPU cycles, there is work to be done
in the area of jitter-minimization of probes. Further-
more, the size of the control flow and data flow record-
ing buffers could be optimized to minimize the size of
memory storage space needed to record an event or a
data.

In addition, the control flow probes, monitoring the
taskswitches and the hardware interrupts are quite
messy and not very easy to understand just by looking
at their code. They could very well be improved in a
user-understandability point of view.

5.1.2 Name definitions

The variables of the Asterix debugging system source
code don’t follow any standardized variable name-
patterns and provide the developer with little infor-
mation of their function in the program.

Furthermore, some configuration variables in the
revised Obelix grammar have confusing types and
names. These variables should be altered to provide a
more user-friendly configuration environment.

5.1.3 Calculating buffer sizes

The algorithm calculating the number of entries in the
control flow buffer is not fully implemented and will
currently set the buffer size to a pre-compilation de-
clared integer. The algorithm itself, even when thor-
oughly implemented will only calculate a worst-case
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scenario size for the buffer, which in most cases might
crave a much larger memory storage space than actu-
ally needed. An improvment of the algorithm would
be welcome.

5.1.4 Off-line analysis robustness

Some parts of the off-line analysis tool, which reads
recorded data and builds a basis for the debugging
replay, are not well-enough tested. They will proba-
bly have some difficulties with certain types of record-
ings, especially in the process of setting a valid starting
point for replay.

5.2 New features

The list of possible new features for the Asterix de-
bugging system goes on and on, but there are a few
that seem a little more important than the others.

5.2.1 Semaphores

The only thing that the Asterix debugging system
lacks to be able to completely debug the entire As-
terix kernel by deterministic replay is the support for
semaphore recording and analysis. This will probably
be the next feature added to the Asterix debugging
system.

5.2.2 Distributed debugging

In the future, the Asterix Framework will support a
network of real-time nodes, each running their own in-
stance of the Asterix kernel. This will crave support
for distributed debugging with a global timebase, al-
lowing the system to debug the entire network.



Chapter 6
Conclusions

In the documentation of the Asterix kernel kernel,
the authors discussed the possibility of adding mon-
itoring and debugging mechanisms to the kernel in
order to make the process of creating Asterix-based
real-time systems easier than the one of most other
real-time operating systems. In addition, debugging
by deterministic replay support would make further
development of the kernel easier and less frustrating.

In the same article, the authors also described the
structures of the kernel that prepared the Asterix sys-
tem for debugging by deterministic replay. The idea
was to use the same mechanisms that save task states
for the debugging recording. This would save us the
trouble of saving the same data twice at each event.
As it turned out, these structures were not used in the
debugging recording due to their massive memory us-
age, but the changes were easily made and the basic
idea remains the same.

In many articles promoting monitoring and debug-
ging by hardware-dependent non-interfering probes,
the software probe concept is said to be unacceptable
due to two main reasons: First, the removal of the
probes will cause probe-effects in the system, making
it impossible to achieve an identical execution in the
replay run or in the post-probe-removal runs. Second,
the recording mechanisms and probes are said to use
an unacceptably large percentage of system resources,
such as CPU cycles and memory storage.

By this thesis, we have shown that multi-tasking
real-time debugging by deterministic replay using soft-
ware probes is no impossible-to-implement research
project, but a working real-time analysis tool with ac-
ceptable losses in kernel performance and memory us-
age. The probe effect is eliminated by letting the mon-
itoring probes remain in the system even after the de-
bugging phase is through. Unfortunately, no thorough
performance analysis of the monitoring mechanisms in
the kernel have been made, so no exact numbers can
be presented in this thesis.

The Asterix debugging system provides an easy-to-
use interface and is flexible and easily portable due to
its software implementation. Currently, the debugging
system supports only one hardware platform, the Hi-
tachi H8/300 microcontroller, used in the Lego Mind-
storm platform, upon which the entire Asterix Frame-
work prototype is built. In the near future, however,
all platform-dependent parts of the Asterix Framework
will be ported to other hardware platforms.
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In conclusion, as were the case with the Asterix ker-
nel prototype, not all requirements and visions have
been implemented in a fully satisfactory way. How-
ever, there is a working prototype of the Asterix de-
bugging system, which have been used for demonstra-
tion purposes and, hopefully, will be used in educa-
tional and real-life system development.



Appendix A

Configuring the Asterix debugging system

- a tutorial

To help the developer to understand the process of
configuring the Asterix debugging system, this tutorial
is added to the thesis. In this tutorial, we will use the
fictional system S described earlier in the thesis. Ob-
serve that the configuration of tasks is not explained
in this tutorial. For task configuration, see the Obelix
documentation obelizconftool. The entire configura-
tion file of the system S is shown in the end of this
tutorial.

S is a system regulating the fluid level in an indus-
try process. The system has three tasks: A, B, and
C. A is the task reading the level of the fluid from
two different sensors in the fluid tank. It then decides
through a regulator if the flow into the tank should be
decreased, increased or if it should remain constant.
It sends this decision to task B as a message and task
B translates the decision to motor control information
for the motor controlling the fluid inflow hatch. Task
C'is an interrupt-driven task, independent from A and
B, only responding to a button that resets the entire
system.

The first thing to do is to tell the system that de-
bugging support should be included. This looks like
this:

DEBUG {
};

This tells the system to activate the recording mech-
anisms in the kernel. However, no recording storage
for control flow is allocated yet. Next, we decide that
we would like to have a recording of at least the last
300 system ticks. This declaration would look like the
following;:

DEBUG {

BUFFER_TIME = 300;
};

Ok, now storage space will be allocated for 300 ticks
of control flow. However, no data flow buffers are in-
cluded in the system. Task A will need a monitor to
record the two data read from the level sensors and
Task B will need a monitor to record the messege sent
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from A. The declarations of the data flow buffers are
shown in the following lines.

DEBUG {
BUFFER_TIME = 300;

MONITOR PERIODIC A {
DATAENTRY "sensor_t" sensorl;
DATAENTRY "sensor_t" sensor2;
};

MONITOR PERIODIC B {
DATAENTRY "message_t'" message;
s

};

This will allocate space for recordings of data from
task A and B. The sensor_t and message_t declara-
tions tell the system the types of the variables sensorl,
sensor2 and message. Last but not least, control flow
space has to be allocated for aperiodic events, such as
activation of task C. If we need to be able to store a
maximum of two invocations of task C in 300 ticks,
the declaration should look like the one in the next
section.

DEBUG {
BUFFER_TIME = 300;
APER_EVENTS = 2;

MONITOR PERIODIC A {
DATAENTRY "sensor_t" sensorl;
DATAENTRY "sensor_t" sensor2;
}s
MONITOR PERIODIC B {
DATAENTRY "message_t" message;
};

};

If the task C also needed to record data, we would
add a data flow buffer, looking like the one in figure A.1



MONITOR APERIODIC C {
/* Records two invocations */
NO_BUFFERS = 2;
DATAENTRY "data_t" data;

}s

Figure A.1: Aperiodic task monitor

/* X = user-defined integer */
SZ_CONTROLFLOW = X;
BUFFER_TIME = 300;

APER_EVENTS = 2;

Figure A.2: User-defined control flow size

and if we would like to configure the size of the con-
trol flow buffer ourselves instead of letting the system
calculate it, we would add a line looking like the one
in figure A.2.

In the Obelix configuration file, helpful comments
are added to show users where to put the debug dec-
larations.

The only thing left now to make the debugging sup-
port complete, is to describe how to use the data flow
buffers in user code. Let us take a look at the sensor
reading code of task A. This is shown in figure A.3.

To monitor these two sensor data, only four lines of
code has to be inserted. The first two are the declara-
tion and the definition of the data flow buffer used to
monitor the data. The second and third are monitor
calls, used to copy the data from the read sensor data
to the data flow buffer storage. The calls are shown in
figure A 4.

void a(void *ignore){

sensorVall = readSensoril();
sensorVal2 = readSensor2();

I

return;

Figure A.3: Task A sensor reading code.
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void a(void *ignore){

monitorAbuf_t* mon

mon = (monitorAbuf_t*)getMonitor(self());

sensorVall = readSensoril();

monitor (& (mon->sensorl), sizeof (mon->sensoril),
&sensorVall) ;

sensorVal2 = readSensor2();

monitor (& (mon->sensor2), sizeof (mon->sensor?2),
&sensorVal2) ;

return;

}

Figure A.4: Task A monitoring code.



Appendix A

Revised Obelix configuration language
specification

This is the context free grammar for the Obelix configuration language. The grammar is a 4-tuple:
(v, T, P, S)

e V is syntactic variables, nonterminals, that denote sets of strings. The last two lines are the nonterminals
added in this thesis.

V = { file, systemmode, ram, modes, mode, resolution, tasks, hardtasks,
softtasks, task, activator, args, error_routine, resources,
communication, waitfrees, waitfree, num_buf, readers, reader,
synchronization, signals, signal, users, user, semaphores, semaphore,
debug, monitor, monitors, dataentry, dataentries, no_buffers,
sz_controlflow, buffer_time aper_events }.

e T is terminals, basic symbols from which strings are formed, The word “token” is a synonym for “terminal”.
Again, the last two lines are the tokens added in this thesis.

T = { SYSTEMMODE, SYSMODE, RAM, INT_CONST, MODE, ID, RESOLUTION,
HARD_TASK, SOFT_TASK, ACTIVATOR, OFFSET, DEADLINE, PRIORITY,
ROUTINE, ARGUMENTS, ERR_ROUTINE, STRING_CONST, WAITFREE, WRITER,
TYPE, NUM_BUF, READER, SIGNAL, USER, SEMAPHORE, STACK,
SZ_CONTROLFLOW, DEBUG, MONITOR, DATAENTRY, PERIODIC, APERIODIC,
NO_BUFFERS, APER_EVENTS, BUFFER_TIME }.

e P is productions which specifies the manner in which the terminals and nonterminals can be combined to

form strings. P = { See figure A.1 }. In addition to the old production rules, a new set of rules are
incorporated into P to support configuration of the debugging system. These are presented in figure A.2

e S is the start symbol of the grammar.

S ={ file }.
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file -> systemmode ram modes

systemmode -> SYSTEMMODE = SYSMODE;
ram -> RAM = INT_CONST;
modes -> modes mode

| mode
mode -> MODE ID { resolution tasks resources debug };
resolution -> RESOLUTION = INT_CONST;
tasks -> hardtasks softtasks
hardtasks -> hardtasks HARD_TASK task

| epsilon
softtasks -> softtasks SOFT_TASK task

| epsilon
task -> 1ID { ACTIVATOR = activator;

OFFSET = INT_CONST;
DEADLINE = INT_CONST;

PRIORITY = INT_CONST;
STACK = INT_CONST;
ROUTINE = ID;
args
error_routine };
activator -> INT_CONST
| ID
args -> ARGUMENTS = STRING_CONST;
| epsilon
error_routine -> ERR_ROUTINE = ID;
| epsilon
resources -> communication synchronization
communication -> waitfrees
waitfrees -> waitfrees waitfree
| epsilon
waitfree -> WAITFREE ID { WRITER = ID;
readers
num_buf
TYPE = STRING_CONST; };
num_buf -> NUM_BUF = INT_CONST;
| epsilon
readers -> readers reader
| reader
reader -> READER = ID;
synchronization -> signals semaphores
signals -> signals signal
| epsilon
signal -> SIGNAL ID { users };
users -> users user
| user
user -> TUSER = 1ID;
semaphores -> semaphores sempahore
| epsilon
semaphore -> SEMAPHORE ID { users };

Figure A.1: Obelix configuration language
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debug -> DEBUG { sz_controlflow
buffer_time
aper_events
monitors };

| epsilon
sz_controlflow -> SZ_CONTROLFLOW = INT_CONST;
| epsilon
buffer_time -> BUFFER_TIME = INT_CONST;
| epsilon
aper_events -> APER_EVENTS = INT_CONST;
| epsilon
monitors -> monitors monitor
| epsilon
monitor -> MONITOR PERIODIC ID {

no_buffers
dataentries };

| MONITOR APERIODIC ID {
no_buffers
dataentries };

no_buffers -> NO_BUFFERS = INT_CONST;
| epsilon
dataentries -> dataentries dataentry
| epsilon
dataentry -> DATAENTRY STRING_CONST ID;

Figure A.2: Obelix configuration language, debug extension
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