
A Model for Reuse and Optimization of Embedded Software Components

Mikael Åkerholm, Joakim Fröberg, Kristian Sandström, Ivica Crnkovic
MRTC, Mälardalen University

Västerås, Sweden
mikael.akerholm@mdh.se

Abstract. In software engineering for embedded
systems generic reusable software components
must often be discarded in favor of using re-
source optimized solutions.

In this paper we outline a model that enables
the utilization of component-based principles
even for embedded systems with high optimiza-
tion demands. The model supports the creation of
component variants optimized for different sce-
narios, through the introduction of an entrance
preparation step and an ending verification step
into the component design process. These activi-
ties are proposed to be supported by tools work-
ing on metadata associated with components,
where the metadata is possible to automatically
retrieve from many development tools.

This paper outlines the theoretical model that
is the basis for our current realization work.

Keywords. Optimization, Embedded, Reuse,
Component-Based Software Engineering

1. Introduction

Component-Based Software Engineering
(CBSE), promises independent development and
reuse of software components [7]. The founda-
tion is that general components are reused in
many applications, and that problems with archi-
tectural mismatches can be eliminated [9]. How-
ever, there are studies, e.g., [5, 6, 15] indicating
that the development of reusable components in
comparison with optimized components for cer-
tain applications requires up to five times the
effort. A substantial part of the extra effort in-
volves development addressing potential future
usage scenarios.

Due to extra-functional requirements present
in embedded systems, software must often be
optimized and tailored for each application [20].
Embedded systems are often produced in high
volumes, implying that smaller memory capsules
and cheaper processors has high impact on the
total production cost. To enable the verification
of other extra-functional properties, e.g., reliabil-
ity, safety, and timing; design choices must be

simple in order to enhance predictability, test-
ability, and analyzability. Thus, reusable compo-
nents, which are bigger and more complex, are
often discarded for optimized solutions.

There are several promising component tech-
nologies for embedded systems, e.g., the Rubus
component technology [13], Koala [17], and our
research prototype SaveCCT [1]. These tech-
nologies proves that different important needs
for embedded systems can be satisfied, e.g., real-
time support, and resource efficient run-time
systems. However, in industrial case-studies
where SaveCCT have been applied, we have
found that much of the necessary support is pro-
vided (or possible to provide) but that the need
to optimize components for certain applications
remains a challenge [1].

The optimization problem has also been rec-
ognized in related research, and a classification
of different techniques is presented in [11].
Common for many of these techniques is the
support for configuration of components, e.g.,
[2, 3]. However, the flip-side is that future sce-
narios must be predicted, and that the configura-
tion code increase complexity and thereby re-
source usage. The other main principle for exist-
ing techniques is to apply external adaptation
through wrappers [22], or adaptors [21]. The
main limitation here is that optimization of the
component’s internal realization is not possible,
e.g., it is not possible to remove functionality.
Thus, these techniques it is not suitable for re-
source constrained embedded systems.

To address the problem, we are creating a
framework supporting engineering activities re-
lated to optimization and adaptation of compo-
nents. The framework should be used in combi-
nation with a component technology, in our case
it will be a part of SaveCCT. In this paper we
present the founding model for the framework,
and this model is the contribution. The model is
based on using component metadata, most of
which can be automatically retrieved from de-
velopment tools. Associating metadata with
components is common, e.g., the MS .Net

framework [16] uses metadata for certain run-
time properties. In [18] it is showed how meta-
data can be used to improve the test phase. In
our work we use that idea and extend it to cover
the whole component development phase. Simi-
lar to Built-In-Test (BIT) [4, 8, 19], our model
includes reuse of tests, but as specifications and
results in the metadata instead of executable test
cases embedded in the components. In an initial
phase of component design, our model supports
preparation activities such as selection of a suit-
able candidate component to adapt, given a set
of requirements forming a new usage scenario.
This initial phase provides an estimate of the
amount of specialization that must be performed.
The need for similar component retrieval support
has also been recognized in, e.g., [12], [14]. Dur-
ing component design our model collects key
metadata from the tool-suite, in the design, reali-
zation, and test phases. At the end of the process
the model supports verification activities such as
detection of side-effects that have occurred dur-
ing the specialization process.

In section 2, an overview of the proposed
model is given. In section 3, the central distinc-
tion of components, variants, and versions is de-
fined. Section 4 presents the metadata that is a
core part of the model, while algorithms using
the metadata are presented in section 5. Section
6 demonstrates the model by an example. Finally
section 7 concludes the paper.

2. Model Overview

Figure 1, shows a schematic overview of the
suggested model, fitted into a design process for
software components. Characterizing for CBSE
is that component development and system de-
velopment (using components) are separated
activities. It is important to be aware of that the
focus in this work is on the component develop-
ment process, and that the majority of the re-
search targeting software components are con-
cerned with system development using compo-
nents Referring to the figure, the shown design
process prior the integration of our model can be
imagined as a waterfall model with four steps,
design, realization, test execution, and finally
delivery to the component repository. The main
characteristics to emphasize after the introduc-
tion of our model are:
• There is a preparation step added as an en-
trance step into the process. At this stage, given
the requirements forming a new usage scenario,
the decision to create a component from scratch
or to select a component to specialize are taken

through evaluation of the amount of work
needed for specialization. The output from this
step is a plan, or work-order, guiding design and
verification efforts.
• There is an additional verification step at the
end of the process. Here unplanned side-effects
(not according to the plan from the work-order)
are detected, e.g., functionality that has changed
without intention in a specialization.
• The model is based on metadata, which is
automatically retrieved in the design process.
Given that tools are capable of exporting data,
the need for manual intervention is small.

Not shown in the figure, but also a central
concept, is that the model distinguish compo-
nents from variants and versions in the reposi-
tory. This is described in next section.

Metadata

Realization

Test
Execution

Repository

Verification

Design

Preparation

Start

Figure 1, overview of the model

3. Components, Variants, and Versions

In the repository a component may exist in
several variants and versions. An overview of
the repository is shown in figure 2. The elements
shown in the figure are defined below:
• The repository Rep = {C1, …, Cn}. The reposi-
tory on the top-level stores all components in a
flat set. The structure is flat since the compo-
nents have no dependencies to each others in
contrast to, e.g., object-oriented approaches were
the inheritance relations may affect the storage
structure.
• Ci is an abstract component. It is a root node in
the repository representing all variants of the ith
component in the repository. Ci = {Ci1, …, Cin}.
The structure is flat indicating no interdependen-
cies between the different variants; they are
separate units for usage and maintenance.
• Each variant may exist in several versions Cij =
{Cij1, …, Cijn}. Versioning of the variants is han-
dled according to the rules of common version
management theory. The version created latest in
time will have the highest version number.
• Referring to a component Cijk, means version k
of variant j of the ith component in the repository.
Cijk is a concrete component in a component

technology, e.g., [1][17], according to common
component definitions, e.g. [10].

Assume that the function Req(x) gives the set
of uniquely identified requirements fulfilled by
element x. How this is realized is described in
the next section. The following guarding condi-
tions must be fulfilled for a software element to
qualify as a variant, or version of a component
respectively:

Commonality guard - for all variants j and
versions k of component i, {∩jk Req(Cijk)} ≠ ∅.
This implies that there must be at least one re-
quirement in common between all variants and
versions of a certain component. If this guard is
not fulfilled, the variants and versions cannot be
stored under same component.

Compatibility guard - for a new version k+1
of variant k, Req(Cijk) ⊆ Req(Cijk+1). This implies
that a new version of a variant should fulfill at
least the same requirements as the previous ver-
sion. When this strict guard is fulfilled the new
version is backwards compatible with the older
version, typically bug-corrections and improve-
ments will sort under this category. In our
model, if this guard is not fulfilled the compo-
nent may be qualified as a new variant; other-
wise a new component should be created.

Figure 2, repository layout

4. Metadata definition

Metadata units are associated with all con-
crete components, i.e., all versions of all variants
of a component. The metadata manage require-
ments, elements of design and verification of the
software in the repository.

An overview of the metadata is shown in fig-
ure 3. The figure show more metadata compared
to what will be formally defined in this paper;
this is to give an idea of the overall concept. The
core metadata (thicker lines in the figure), are the
necessary parts required to provide the support
that is emphasized in this paper. Non core parts
may be useful when browsing the repository,
e.g., containing abstract, keywords, usage statis-

tics, and key design patterns practiced when the
component was developed .

To define the core parts of the metadata, let
Mijk = (Sijk,Gijk) be the metadata associated with
Cijk. Sijk is a specification of the component Sijk
= (Rijk, Dijk, Vijk) where:
• Rijk is a set of uniquely identified requirements
Rijk ={r1, …, rn}. Rijk contains all documented
requirements that the software element tries to
fulfill, including both functional and extra-
functional requirements. The actual formulation
or semantics of the requirement is not strictly
required. The important matter is that a unique
identity is associated with each requirement.
• Dijk is a set of uniquely identified architectural
entities Dijk = {d1, …, dn}. Depending on the
realization of the software element, these design
entities can be different artifacts, e.g., functions,
data structures, objects, components or analysis.
As for requirements, design entities must be as-
sociated with a unique identifier.
• Vijk is a set of uniquely identified verification
cases Vijk = {v1, …, vn}. Vijk includes all test-
cases, together with expected results, and also
obtained results after the test phase. As for Rijk
and Dijk each case needs to be represented.

Gijk = (CRijk, VRijk), contains manually de-
fined relations, over the automatically derived
sets Dijk, Rijk, and Vijk.
• CRijk ⊆ Dijk × Rijk represents the causal rela-
tionships between elements of the design and
their respective requirements. It represents the
reason, or the cause, for design elements to exist.
• VRijk ⊆ Vijk × (Rijk ∪ Dijk) represents the ver-
ify relationships from elements of the verifica-
tion cases, to which requirements and/or design
entities, each case verifies. Relations from Vijk to
Dijk represent white-box test cases, while edges
from Vijk to Rijk represent black-box cases.

Abstract

Requirements VerificationArchitectural
Entites

Design and
development

Key Patterns

Metadata

Figure 3, metadata associated with Cijk

5. Central algorithms on the metadata

Figure 1 emphasized the support provided
first and last in the component design process,
the algorithms applied in the two different stages
are described in the following sub-sections.

Component Root 1
C1

Component 1
Variant 1
Version 1

C111

…

Component Root n
Cn

Component 1
Variant 1
Version n

C11n

Component 1
Variant n
Version 1

C1n1

Component 1
Variant n
Version n

C1nn

…
commonality

co
m
pa
tib
ili
ty

Component n
Variant 1
Version 1

Cn11

5.1 Preparation

When a need for a new component is de-
tected, a central decision is to decide if the new
component should be obtained through adapta-
tion of an existing component or if a new com-
ponent should be developed. To support this de-
cision, the metadata can be used to compare
candidates for reuse and adaptation. The follow-
ing expressions determine what requirements
that are addressed by variants and versions of a
specific component:
• SRi derives all requirements shared by all vari-
ants and versions of a component. It is defined as
the intersection of all requirements addressed by
all entities of a certain component Ci: SRi = {∩jk
Req(Cijk)}
• NRi is the set containing the requirements ad-
dressed only by a sub-set of the variants and ver-
sions of a certain component Ci. NRi = {∪jk
Req(Cijk)} - SRi
• AR(r) gives the set of versions and variants
that address the requirement r, of a certain com-
ponent Ci, AR(r)= { Cijk | {r} ⊆ Req(Cijk)}

The application of the expressions above pro-
vides overview information about the compo-
nents. We can see divide requirements into those
addressed by all versions and variants, and those
requirements addressed by certain sub-sets. With
this information developers are guided in the
choice of candidate components to investigate in
the work to find a suitable component to reuse.

It is possible to derive a work-order for each
concrete component, i.e., Cijk. Initially work-
orders are used to estimate the amount of work
to apply changes to certain concrete components
to fit a new usage scenario. Thus, finding the
most feasible candidate to adapt is supported by
comparison of work orders. A component whose
work order shows little need for adaptation is
likely a suitable starting point for a new variant.
Later, during the development, the work is
guided by the work-order. For a certain concrete
candidate Cijk, and given the requirements form-
ing a new usage scenario, the work order show
what design entities and what test cases to reuse
as-is, to change, and to remove. It also shows
what requirements that remains unimplemented
and thus will require new development. The
functions that are needed to be applied on the
metadata are defined here.

An estimation of consequences of a changed
requirement, r, in terms of the set of affected
design entities, AD(r), and set of affected test
cases, AT(r), is determined through:

• AD(r) = {x | CRijk (x,r)}
• AT(r) = { x | VRijk (x,r)}

The consequences of a removed requirement,
r, in terms of affected design entities can simi-
larly be determined by the same expressions.
However, to determine if the deign entity or test
case is not only affected, but according to the
relationships expressed in the graphs can be re-
moved, we must take the whole set of all re-
moved requirements into consideration. Let RR
be the set of requirements that is planned to be
removed. Design entities that may be removed
are determined through the function RD(RR).
Similarly test-cases that may be removed are
derived by the function RT(RR).
• RD(RR) = { x | ¬∃r : [CRijk (x,r) ∧

 r ∈ Rijk-RR] }
• RT(RR) = { x | ¬∃r : [VRijk (x,r) ∧
 r ∈ Rijk-RR] }

5.2 Verification

When a resulting variant or version is created
based on reuse of another, it is possible to detect
un-planned effects of the changes. To detect un-
planned side-effects that may have occurred in
the process, regression testing is applied based
on information in the work order. The only al-
lowed changes between the results of reused test
cases are those we knew would be affected in the
work order. If any other changes are detected,
they must be investigated. There can be one of
two reasons that must be corrected by the devel-
opers:
• Unplanned or unnecessary parts were changed
during the development of the new variant,
which must be found and corrected.
• Undocumented dependencies in the relations
CRijk and/or VRijk should be updated and added
to achieve a continuous improvement of the de-
cision supporting relations. It may also be useful
to store statistics when undocumented depend-
encies are discovered, to estimate a precision for
work orders.

6. Usage Example

Now that we have defined the elements in the
model we will demonstrate the support for de-
sign decisions. We do this through a simplified
industrial case.

6.1 Initial Component

As a part of an order of a larger system, a
component providing an interface to a CAN chip
is ordered forming requirements Rijk as below:
Rijk = {(11, Send),

 (12, Receive),
 (13, EnableRemoteReply),
 (14, worst case latency for Send 1 ms)}
Given that this component is built from

scratch, and stored in an empty repository, i.e.,
Rep = {C1}, where C1={C111}. Depending on the
developers design decisions, D111, and V111 of
the local metadata associated with C111 may have
the following structure in the repository:
D111 = {(21, FrameTypes),

 (22, ReceiveBuffer),
 (23, Send),
 (24, Receive),
 (25, EnableRemoteReply),
 (26, Analysis of send, result 500ms)}

V111 = {(31, receive buffer test, expected: oldest
dropped, observed: oldest dropped),

 (32, send test, expected: all sent observed:
all sent),

 (33, receive test, expected: id sequence
2,3,66, observed: 2,3,66),

 (34, remote reply test, expected: remote
frame 2, observed: remote frame 2),

 (35, timing analysis send, expected:
<500ms, observed: 450ms)}

R D

11

12
22

24

14
26

13

23

25

21

Figure 4, causal relations

VR D

11

12

23 21

22

24

31

32

33

14
26

35

13

25
34

Figure 5, verify relations

Notice that the requirements, design, and
verification sets R111, D111, and V111 should be
automatically created, given that it is possible to
export data from the tools. However, the causal

and verification relations CR111 and VR111 re-
main to be manually defined. These relations can
be presented and created graphically, through
directed graphs. CR111 and VR111 for the case are
defined below, and the corresponding graphs are
shown in figure 4 and 5 respectively. For now,
ignore the fields surrounding, e.g., nodes with id
14 and 26.
CR111 = {(21,11), (21,12), (21,13), (23,11),
(22,12), (24,12), (25,13), (26,14)}
VR111 = {(31,22), (32,11), (33,12), (34,13),
(35,26), (35,14)}

The metadata unit for C111 is now complete
M111 = (S111,G111) = ((R111, D111, V111), (CR111,
VR111)).

 We have now the initial version of a
variant of a component that can not only be
reused. The component is also prepared for
adaptation and specialization to form new
variants addressing sets of requrements forming
other usage scenarios.

6.2 New Component

In negotiation with another customer at a
later point in time, the requirements on a similar
component as a part of another system forms Rijk
as below. Requirement id 13 has changed, indi-
cated here only by a “*”, requirement id 14 has
been removed, and requirement id 15 has been
added.
Rijk = {(11, Send),

 (12, Receive),
 (13, EnableRemoteReply*),
 (15, GetRemoteFrameStatistics)}

Applying the expressions in section 5.1, the
work-order contains the information in table 1.
The results from the expressions are visualized
in figure 4 and figure 5. The fields in the figures
surrounding certain relations show the same as
the table, e.g., that due to changes in requirement
id 13, design entities {21, 25} may be affected as
well as test case 35.

Table 1, A work order for the specialization
 Design Entities Test Cases

Reuse ids {22, 23, 24} {31,32,33}
Affected ids {21, 25} {34}
Remove ids {26} {35}

Covered requirement ids: {11,12,13}
Uncovered requirement ids: {15}

The process may proceed guided by the work
order, eventually when tests are complete the
results are verified according to section 5.2. In
this case according to the work-order it is ex-
pected that test case 34 might show other results,

and that observed results of cases {31, 32, 33}
should be unchanged.

7. Conclusions

We are convinced that component-based
principles are beneficial for all types of software.
Mature engineering disciplines always use stan-
dardized components. One of the most important
prerequisites for component based principles is
that components are general, so that they can be
(re)used many times. This prerequisite has
shown be hard to meet in development of certain
software, e.g., embedded software with high
specialization demands.

This paper introduces a model that supports
developers of embedded software components in
using optimized variants of components. The
benefits are achieved by introducing a start and a
completion step into a regular design flow. The
completion-phase provides automatic detection
of accidentally introduced side effects in redes-
ign. The starting phase supports the selection of
the best matching candidate from a repository of
components given a set of requirements.

The model is based on associating metadata
with components, and can be highly automated
and integrated in an existing development tool-
suite, given that it is possible to export data from
the tools. An industrial case study is planned,
where a prototype realization will be integrated
in an existing tool-suite at a sub-contractor com-
pany. A sub-contractor company is often faced
with challenges in adapting and customizing
components to the different needs of customers
with varying system architectures and choices in
technology and standards. Managing adaptation
and optimization of components is therefore a
key value for sub-contractors.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H.
Hansson, J. Håkansson, A. Möller, P. Pettersson,
M. Tivoli, The SAVE approach to component-
based development of vehicular systems, Jour-
nal of Systems and Software, Elsevier, 2006

[2] J. Bosch, Superimposition: A component adapta-
tion technique, Information and Software Tech-
nology, 41(5), March 25, 1999

[3] K. Cooper, J. Zhou, H. Ma, I. L. Yen, and Farokh
Bastani, Code parameterization for satisfaction
of QoS requirements in embedded software,
Proc. Int. Conf. on Engineering of Reconfigur-
able Systems and Algorithms, 2003

[4] Component+, http://www.componentplus.org
[5] I. Crnkovic, Component-based Software Engi-

neering - New Challenges in Software Develop-

ment, Software Focus, John Wiley & Sons, Dec,
2001

[6] I. Crnkovic, M. Larsson, A Case Study: Demands
on Component-based Development, Proc. 22nd
Int. Conf. on Software Engineering, 2000

[7] I. Crnkovic, M. Larsson, Building Reliable Com-
ponent-Based Software Systems, Artech House
publisher, 2002, ISBN:1-58053-327-2

[8] K. J. Fernandez, V. H. Raja, and M. Morley. A
system level testing modeling mechanism in a
reengineering environment. Journal of Concep-
tual Modeling, 2001

[9] D. Garlan, R. Allen, J. Ockerbloom, Architectural
Mismatch or Why it's Hard to Build Systems
Out of Existing Parts, Proc. of the 7th Int. Conf.
on Software Engineering, Apr, 1995

[10] G. T. Heineman, W. T. Councill, Component-
based Software Engineering, Putting the Pieces
Together, Prentice-Hall, 2001, ISBN: 0-201-
70485-4

[11] G. T. Heineman, An evaluation of component
adaptation techniques, 2nd ICSE Workshop on
Component-Based Software Engineering, 1999

[12] Y. Li; J. Yin; J. Dong, A Component Manage-
ment System for Mass Customization, 1st Int.
Symp. on Computer and Computational Sci-
ences, April, 2006

[13] K.L. Lundbäck, J. Lundbäck, M. Lindberg,
Component-Based Development of Dependable
Real-Time Applications, Arcticus Systems:
http://www.arcticus.se

[14] H. Mili, F. Mili, A. Mili, Reusing software: is-
sues and research directions, IEEE Trans. on
Software Engineering, Jun, 1995, 21(6)

[15] M. Mrva, Reuse Factors in Embedded Systems
Design. Siemens AG, Munich, Germany, 1997

[16] MSDN homepage, http://www.msdn.com
[17] R. van Ommering, F. van der Linden, J. Kramer,

The Koala component model for consumer elec-
tronics, IEEE Computer, March, 2000

[18] A. Orso, M. J. Harrold, D, Rosenblum, G.
Rothermel, M. L. Soffa, H. Do, Using Compo-
nent Metacontents to Support the Regression
Testing of Component-Based Software, Proc.
IEEE Int. Conf. on Software Maintenance, Nov,
2001

[19] Y.Wang, G. King, D. Patel, S. Patel, and A. Dor-
ling. On coping with real-time software dynamic
inconsistency by built-in tests. Annals of Soft-
ware Engineering, 7(1), Oxford, 1999.

[20] W. Wolf, What is embedded computing, IEEE
Computer, 35(1), Jan, 2002

[21] D. M. Yellin and R. E. Strom. Protocol Specifi-
cation and Component Adaptors. ACM Trans.
on Programming Languages and Systems,
19(2):292-333, March 1997

[22] J. Brant, B. Foote, R. e. Johnson, D. Roberts,
Wrappers to the Rescue, Proc. 12th European
Conf. Object-Oriented Programming
ECOOP’98, July, 1998

