
Mälardalen University Press Dissertations

No. 44

Event Pattern Detection for

Embedded Systems

Jan Carlson

2007

Department of Computer Science and Electronics

Mälardalen University

Copyright c© Jan Carlson, 2007
ISSN 1651-4238
ISBN 978-91-85485-48-2
Printed by Arkitektkopia, Väster̊as, Sweden

Abstract

Events play an important role in many computer systems, from small
reactive embedded applications to large distributed systems. Many ap-
plications react to events generated by a graphical user interface or by
external sensors that monitor the system environment, and other systems
use events for communication and synchronisation between independent
subsystems. In some applications, however, individual event occurrences
are not the main point of concern. Instead, the system should respond
to certain event patterns, such as “the start button being pushed, fol-
lowed by a temperature alarm within two seconds”. One way to specify
such event patterns is by means of an event algebra with operators for
combining the simple events of a system into specifications of complex
patterns.

This thesis presents an event algebra with two important character-
istics. First, it complies with a number of algebraic laws, which shows
that the algebra operators behave as expected. Second, any pattern rep-
resented by an expression in this algebra can be efficiently detected with
bounded resources in terms of memory and time, which is particularly
important when event pattern detection is used in embedded systems,
where resource efficiency and predictability are crucial.

In addition to the formal algebra semantics and an efficient detec-
tion algorithm, the thesis describes how event pattern detection can be
used in real-time systems without support from the underlying operating
system, and presents schedulability theory for such systems. It also de-
scribes how the event algebra can be combined with a component model
for embedded system, to support high level design of systems that react
to event patterns.

i

Acknowledgements

First and foremost, I want to thank my supervisor, Professor Björn
Lisper, for supporting me during my PhD studies, and in particular
for having patience with my repeated excursions outside the scope of
the original project plan.

For proof-reading various parts of the thesis, and for comments and
discussions (especially on some particularly elusive aspects of real-time
scheduling), well deserved credit goes to Radu Dobrin, Kaj Hänninen,
Jukka Mäki-Turja and Jonas Mellin.

Also, my warmest thanks go to past and present colleagues at the
department, for a friendly atmosphere and for long and pointless coffee
break discussions: Nerina Bermudo, Markus Bohlin, Waldemar Kocjan,
Johan Lindhult, Andreas Sjögren, Xavier Vera and all the rest.

I am also grateful to the people I have collaborated with over the
years. How come other people’s research always seems much more in-
teresting? Those that have not been mentioned elsewhere on this page
are, roughly in order of appearance, Pawel Pietrzak, Gerhard Fohler,
Tomas Lennvall, Mikael Åkerholm, Hans Hansson, Paul Pettersson, John
H̊akansson, Thomas Nolte, Massimo Tivoli, Mikael Nolin, Ivica Crnkovic
and Rikard Land.

Finally, I am truly indebted to my family for their love, encourage-
ment and support: Marina, Nell, Em, Bengt, Kerstin, Lena and Peter.

Jan Carlson
Väster̊as, May, 2007

This research was funded in part by CUGS (the National Graduate School
in Computer Science, Sweden).

iii

Contents

1 Introduction 1
1.1 Objectives and motivation 2
1.2 The approach . 3
1.3 Contributions . 5
1.4 Related publications . 5
1.5 Thesis outline . 7

2 Background 9
2.1 Events and event patterns 9
2.2 Application domains . 10

2.2.1 Reactive systems 11
2.2.2 Event-based communication 12
2.2.3 Monitoring and event data mining 13

2.3 Primitive events . 13
2.3.1 Ordering and timestamping 14
2.3.2 Event parameters 15
2.3.3 Hierarchical events 15

2.4 Issues in event pattern detection 17
2.4.1 Offline or online detection 17
2.4.2 Static or dynamic detection 18
2.4.3 Compositionality and event algebras 18
2.4.4 Timestamping pattern occurrences 20
2.4.5 Pattern parameters 21
2.4.6 Declarative or procedural pattern specification . . 21
2.4.7 Single, repeated or overlapping detection 22
2.4.8 Single point or interval semantics 23
2.4.9 Parameter contexts 25

v

vi Contents

2.4.10 Event correlation 27
2.5 Embedded and real-time systems 28

2.5.1 Events in embedded real-time systems 29
2.6 Component based development 30

2.6.1 Events in component based systems 32

3 Overview of Related Work 33
3.1 Temporal logic . 33

3.1.1 LTL, CTL* and CTL 34
3.1.2 Interval Temporal Logic and Event Calculus 36
3.1.3 Event specification in FTL and PTL 37
3.1.4 Event specification in Past FOTL 37
3.1.5 Intrusion detection with EAGLE 38

3.2 Automata based detection 38
3.2.1 Composite event detection automata 40
3.2.2 ECL and PAR . 41

3.3 Active databases . 42
3.3.1 Ode/COMPOSE 43
3.3.2 SAMOS . 43
3.3.3 Snoop . 44

3.4 Embedded and real-time systems 45
3.4.1 Specifying event patterns in RTL 46
3.4.2 Solicitor . 47

3.5 Additional work on event notification 47
3.5.1 GEM . 48
3.5.2 Chronicle recognition 48

4 The Event Algebra 51
4.1 Preliminaries and syntax 51
4.2 Semantics . 55
4.3 Properties . 59

5 Realisation and Resource Analysis 63
5.1 Detection algorithm . 64
5.2 Algorithm correctness . 68

5.2.1 Correctness properties 68
5.2.2 Correctness results 70

5.3 Algorithm improvements 71
5.4 Complexity analysis . 72

Contents vii

5.5 Memory and execution time analysis 75
5.5.1 Experiments . 78

6 Event Pattern Triggered Tasks 83
6.1 Triggering tasks by patterns 83

6.1.1 Task model and assumptions 84
6.1.2 Realisation . 86
6.1.3 Scheduling and schedulability 88

6.2 Fixed priority scheduling 91
6.2.1 Pattern triggered tasks under FPS 92

6.3 Scheduling with dynamic priorities 96
6.3.1 Pattern triggered tasks under EDF 97

7 Event Pattern Triggered Components 101
7.1 SaveCCM syntax and semantics 102
7.2 Event pattern triggering 104

7.2.1 Event elements . 105
7.2.2 Synthesis . 108
7.2.3 Analysis support 109

8 Conclusions 111
8.1 Summary and contributions 111
8.2 Comparison with related work 113

8.2.1 Active databases 113
8.2.2 Automata and regular expressions 114
8.2.3 Temporal logic . 115
8.2.4 Additional work on event notification 115
8.2.5 Real-time scheduling 116
8.2.6 Component models 116

8.3 Future work . 117
8.3.1 Non-instantaneous primitive events 117
8.3.2 Expressiveness . 117
8.3.3 Optimisation and more detailed WCET 118
8.3.4 Specification of triggering patterns 119
8.3.5 Optional triggering in SaveCCM 119

A Proofs 121

B Memory and Time Analysis Algorithm 133

viii Contents

C Schedulability Analysis Examples 137

D Publication List 145

E Notation List 149

Bibliography 153

Index 171

List of Figures

1.1 Integrated and dedicated detection of event patterns. . . . 2

2.1 The publish/subscribe interaction paradigm. 12
2.2 Parts of a possible GUI event hierarchy. 16
2.3 Staff database in XML. 16
2.4 Example of dynamicity in GEM. 18
2.5 Comparison of single, repeated and overlapping detection. 23
2.6 Comparison between single point and interval semantics. . 24
2.7 Interval relations. 25
2.8 Example illustrating the need for parameter contexts. . . 26

3.1 Three notions of time. 35
3.2 Right and left branching versions of a pattern. 36
3.3 Snoop event contexts. 45
3.4 Chronicle specification example. 49

4.1 Graphical representation of Example 4.5. 56
4.2 All occurrences of T+P. 57
4.3 All occurrences of (T+P);B, and the valid restricted streams. 58

5.1 Graphical representation of Example 5.1. 64
5.2 Algorithm for detecting the event expression E 66
5.3 Statically simplified algorithm for detecting (T+P)−B. . 67
5.4 Part of the original sequence operator algorithm. 73
5.5 Improved version of the algorithm in Figure 5.4. 73
5.6 Time and memory analysis algorithm. 77
5.7 Memory usage in the simple framework. 80
5.8 Memory usage in the value framework. 80

ix

x List of Figures

5.9 Worst case execution times in the simple framework. . . . 81
5.10 Worst case execution times in the value framework. 81

6.1 Task level realisation of a pattern triggered task. 87

7.1 The graphical notation of SaveCCM. 102
7.2 Alarm assembly. 105
7.3 An example of the extended SaveCCM syntax. 106
7.4 Translation of an event element into SaveCCM constructs. 108
7.5 Event element translation for temporal analysis. 110

List of Tables

1.1 Informal description of the algebra operators. 4

5.1 Variables used in the detection algorithm. 65

6.1 Original task set. 86
6.2 Auxiliary task set. 91
6.3 Auxiliary task set, including response times 96

xi

Chapter 1

Introduction

The concept of events appears in many different forms in different areas
of computer system design and implementation. For example, interrupt
events indicate that something has happened in the environment that
the system might want to react to, for example a sensor update or a key
being pressed. On a higher level, large systems can be designed according
to an event-based architectural style, meaning that the communication
between different parts of the system is based on a publish/subscribe
interaction paradigm, where event consumers that have expressed an in-
terest in a certain event is notified whenever a matching event occurrence
is published [50]. Events can also be also useful when monitoring com-
plex systems, such as telecommunication networks [48], air traffic [91]
and stock markets [62].

In some applications, the desired behaviour is related to complex
patterns of events rather than to single event occurrences. A systematic
way to handle this is to separate the detection of such event patterns
from the implementation of the appropriate reactions. The detection
mechanism processes the simple events of the system and matches them
against the patterns that are of interest. When a full match is detected,
this is announced to the rest of the system, where pattern occurrences
can be used in the same way as occurrences of simple events, for example
to trigger a response or to modify an internal state. This separation of
concerns facilitates design and analysis, since the specification of complex
event patterns can be given a formal semantics independent from the
application in which it is used, and the other parts of the system are free

1

2 Chapter 1. Introduction

B
-

P -

T -
...

A-
...

Application logic

B
-

P -

T -
...

E -
...

A-
...

Event
detection

Application
logic

Figure 1.1: Integrated (left) and dedicated (right) detection of event
patterns.

from auxiliary detection rules and information about partially completed
patterns.

As an example, consider a system where the external events include
a button B, a pressure alarm P and a temperature alarm T, where one
desired reaction is that the system should perform a particular action
A when the button is pressed twice within two seconds, unless either of
the alarms occurs in between. This could, for example, be achieved by
a collection of rules that specify reactions to the three primitive events,
so that the combined behaviour implements the desired reaction. Alter-
natively, a pattern E can be defined that corresponds to the described
situation, in which case the desired reaction can be achieved by a single
rule stating that an occurrence of E should trigger the action A. The
two approaches are illustrated in Figure 1.1.

In some related work, the term composite event is used for what is
called event pattern in this thesis, emphasising the fact that the pattern
is viewed, and used, as an event in the rest of the system.

1.1 Objectives and motivation

A number of methods have been proposed to specify event patterns in
different settings. Some frameworks use regular expressions [61] or finite
automata [122, 160, 72], and other use some variant of modal or temporal
logic with explicit support for events [139, 38, 111]. Another technique
is event algebras, where event patterns are defined by expressions built
from simple events and algebra operators. This approach is common in

1.2 The approach 3

languages for active databases [35, 109, 161], but also in some general,
high-level event notification systems [65, 76, 157].

Naturally, the nature of the domain in which event pattern detec-
tion is used determines the criteria against which a particular technique
should be evaluated. This thesis focuses on the area of embedded real-
time systems, where low and predictable resource usage is crucial [28].
These applications typically require that bounds for memory usage and
execution time can be determined statically, in order to guarantee timely
responses. Furthermore, they often appear in safety-critical applica-
tions, meaning that failure or malfunction may result in serious damage
to people, equipment or the environment [144]. Because of this, tradi-
tional testing is often complemented by some type of formal verification,
which requires that the semantics of the pattern specification technique
is formally defined.

Concretely, the main goal of this project has been the development
of a declarative event algebra that (i) complies with algebraic laws that
intuitively ought to hold for the operators, and (ii) permits an efficient
detection mechanism for which resource bounds can be determined sta-
tically. To the best of our knowledge, there exists no event pattern
detection technique where both these aspects are addressed satisfactory.
In isolation, a bounded implementation is straightforward to achieve, for
example based on finite automata, but these methods are typically not
able to detect pattern instances that overlap in time, or suffer from other
peculiarities (see Section 3.2 for examples). Similarly, there are highly
expressive languages with simple and intuitive semantics, for which no
bounded detection method exists in the general case.

We also wanted to investigate some aspects that are specific for event
pattern detection in the context of embedded systems. These include
high-level design support for embedded systems that react to event pat-
terns, how event pattern detection can be used in a real-time system
without direct support from the underlying operating system, and how
event pattern detection affects scheduling and schedulability.

1.2 The approach

Table 1.1 lists the operators of the proposed algebra, and describes their
meaning informally. For formal definitions, see Section 4.2. As an ex-
ample, the pattern “the button (B) is pressed twice within two seconds,

4 Chapter 1. Introduction

Table 1.1: Informal description of the algebra operators.

Operator Notation Informal meaning

Disjunction A∨B A or B (or both) occurs.

Conjunction A+B A and B have occurred (in any order,
and possibly not simultaneously).

Sequence A;B An occurrence of A followed by an oc-
currence of B.

Negation A−B An occurrence of A, during which B
does not occur.

Temporal
restriction

Aτ An occurrence of A shorter than τ time
units.

unless either of the alarms (P or T) occurs in between”, discussed above,
can be specified by the expression (B;B)2 sec−(P∨T). These operators, or
variants of them, are found in many of the existing event algebras from
different application domains [35, 65, 76, 161], but the use of interval
based semantics (see Section 2.4.8) allows more general constructs for
negation and temporal restriction, compared to many other formalisms.

The algebra is defined by a set-based declarative semantics, rather
than in terms of state automata, Petri nets or similar. This simplifies the
tasks of proving algebraic properties, at the cost of not providing a direct
model of how the algebra can be implemented. Instead, we provide a
separate imperative detection algorithm to investigate time and memory
usage in detail, and verify that this algorithm correctly implements the
declarative algebra semantics.

To preserve intuitive operator properties under operator composition,
techniques such as interval based semantics are used, and a carefully
designed restriction policy is applied to handle the memory complexity
caused by some of the properties. These techniques are described further
in Sections 2.4.8 and 4.2.

To the user of this algebra, the impact of the restriction policy is that
at any time when there are one or more occurrences of a pattern accord-
ing to the operator semantics defined informally in Table 1.1, exactly
one of them will be detected.

1.3 Contributions 5

1.3 Contributions

The main contributions of the thesis are summarised below. A more
detailed presentation of the contributions is given in Section 8.1, followed
by a discussion on how these contributions relate to existing work in the
area.

• A novel declarative event algebra with well-defined algebraic prop-
erties that intuitively ought to hold for the algebra operators.
These properties facilitate formal as well as informal reasoning
about the algebra and the behaviour of a system that uses it.

• A detection algorithm for the algebra that correctly detects any ex-
pression with bounded memory. The algorithm is formally verified
with respect to correctness and complexity.

• A task model for real-time systems where some tasks are triggered
by event patterns, schedulability analysis techniques for this task
model, and a strategy for realising pattern triggered tasks without
support from the operating system.

• An extension of a software component framework for embedded
systems, which allows components to be triggered by complex event
patterns.

1.4 Related publications

The event algebra has evolved into the current form through a number
of preliminary versions. Below are listed the publications that relate to
the work presented in this thesis. A complete publication list can be
found in Appendix D.

• An Interval-Based Algebra for Restricted Event Detec-
tion, Jan Carlson and Björn Lisper, In Proceedings of the First In-
ternational Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS 2003), Marseille, France, September 2003.

This paper presents a first version of the algebra. The temporal
restriction construct is not present, and two different restriction
policies are used (one for sequences and one for the remaining op-
erators). No general resource bounds are given, and the algebraic

6 Chapter 1. Introduction

properties are weak compared to the current version, in particu-
lar the relation between the unrestricted semantics and the result
when the restriction policy is applied.

• An Improved Algebra for Restricted Event Detection, Jan
Carlson and Björn Lisper. MRTC Technical Report MDH-MRTC-
159/2004-1-SE, February 2004.

Here, the algebra is extended with a temporal restriction, but for
sequence constructs only. The main result is that detection with
limited memory is ensured for expressions where every sequence
has a finite temporal restriction.

• An Intuitive and Resource-Efficient Event Detection Alge-
bra, Jan Carlson. Licentiate thesis No. 29, Mälardalen University,
ISBN 91-88834-49-2, June 2004.

The licentiate thesis contains the current version of the algebra se-
mantics, but the detection mechanism is significantly weaker than
later versions. Bounded memory can be ensured only for a sub-
set of expressions, and the memory footprint depends on the time
restrictions used in the expression, and on the minimum interar-
rival time of primitive events. The licentiate thesis also presents
an optimisation algorithm that transforms an expression into an
equivalent form that can be more efficiently detected, and a pro-
totype Java implementation.

• An Event Detection Algebra for Reactive Systems, Jan
Carlson and Björn Lisper. In Proceedings of the fourth ACM Inter-
national Conference on Embedded Software (EMSOFT’04), Pisa,
Italy, September 2004.

This paper presents the algebra and the detection algorithm from
the licentiate thesis.

• An Event Detection Algebra for Reactive Systems, Jan
Carlson and Björn Lisper. MRTC Technical Report MDH-MRTC-
117/2004-1-SE, April 2004.

This technical report extends the previous paper with formal proofs.

1.5 Thesis outline 7

• An Event Algebra Extension of the Triggering Mechanism
in a Component Model for Embedded Systems, Jan Carlson
and Mikael Åkerholm. In Proceedings of the Workshop on Formal
Foundations of Embedded Software and Component-Based Software
Architectures (FESCA), Edinburgh, Scotland, April, 2005.

The paper explains how the event algebra can be used to extend
the triggering mechanism of SaveCCM, a component model for
embedded systems.

1.5 Thesis outline

Chapter 2 gives an overview of the application domains where events
and event patterns are commonly found, and introduces basic terms and
concepts related to event pattern detection. In particular, the chapter
discusses qualities and properties that are typically desired in a mecha-
nism for event pattern detection, as well as techniques that can be used
to achieve these goals. Chapter 3 surveys related work, describing a num-
ber of approaches to handle event pattern specification and detection in
different domains.

The syntax and semantics of the proposed event algebra is given in
detail in Chapter 4, together with a description of algebraic laws and
other significant properties. Chapter 5 presents the detection algorithm
and gives a formal proof that this algorithm correctly implements the
algebra semantics from the previous chapter. The algorithm is analysed
with respect to complexity, and experimental results are presented to
give a more detailed view of the resource requirements.

Chapter 6 addresses how event pattern detection can be incorpo-
rated in a real-time system to support activities that should only be
performed in response to certain event patterns. We show how this can
be achieved without support from the underlying operating system, and
present schedulability theory for the proposed task model. In Chapter 7,
the event algebra is combined with SaveCCM, a component model for
embedded systems, to support high level design of systems that react to
event patterns.

Finally, Chapter 8 concludes the thesis by highlighting the main con-
tributions and comparing them with existing work in the area. A number
of possible future research directions are also described.

Chapter 2

Background

This chapter provides a general overview of how events and event pattern
detection are used in computer systems, and more detailed discussions
on issues that are closely related to the work in this thesis.

2.1 Events and event patterns

In a very general sense, an event represents a particular type of action or
change that is of interest to the system, occurring either internally within
the system or externally in the environment with which the system in-
teracts. We refer to one particular case of such an action or change as an
event occurrence (or, in the formal definitions, an event instance). For
example, consider the event MouseClick in a graphical user interface.
In a particular runtime scenario there will be a number of occurrences of
this event, one for each time the user clicks the mouse button. In gen-
eral, events are considered to be recurrent, meaning that an event can
occur several times, although there are certain events that have exactly
one occurrence, such as a calendar event or a SystemStartup event.

In some event based applications, individual event occurrences are
not the main point of concern, but rather the occurrences of certain event
patterns. To support this, an event framework can provide means to
specify event patterns, allowing these patterns to be used in the same way
as ordinary events. To the rest of the system, the pattern is viewed as a
composite event (sometimes called a complex or compound event) that

9

10 Chapter 2. Background

occurs whenever the primitive events of the system occur in accordance
with the pattern.

Moving the details of pattern detection from the application to the
event framework provides a clear separation of concerns between the
mechanisms of pattern detection on one hand, and the definition of how
to respond to them on the other. This separation has a number of
possible benefits, including the following:

• Patterns are explicitly defined, rather than being an implicit con-
sequence of how the responses are defined. This means that the
patterns are available for analysis, transformation, formal and in-
formal reasoning, etc. It might, for example, be possible to de-
termine automatically how often a particular pattern can occur,
which can be of great importance if timely responses have to be
guaranteed.

• In a case where several parts of the system are interested in the
same pattern, or patterns with some common parts, it can be more
efficient to perform the overlapping parts in one place, instead of
letting each part perform the detection locally.

• The number of event occurrences that are sent between nodes in a
distributed system can sometimes be significantly decreased. This
is of particular importance in systems where the bandwidth be-
tween where an event occurs and where it is to be handled, is
limited. If pattern detection can be performed close to the event
source, the network load can be reduced.

• If the event framework provides a simple and intuitive way to spec-
ify event patterns, it may be easier for the developer to quickly
achieve the desired behaviour.

2.2 Application domains

For the following discussion, we have identified three categories of ap-
plication domains where events and event pattern detection are found,
namely “reactive systems”, “event based communication” and “ moni-
toring and event data mining”. These categories are neither disjoint nor
covering all aspects of events, but serve to give some structure to the
presentation.

2.2 Application domains 11

2.2.1 Reactive systems

In some systems, events are the main means by which execution is driven.
A reactive system is designed to remain inactive until triggered by an
occurrence from a particular set of events. This category includes em-
bedded systems where hardware interrupts from sensors cause tasks or
transactions to be released for execution, carrying out the proper re-
sponse to that particular event.

Non-embedded software is also sometimes designed with an event
driven execution model. In particular, many graphical user interfaces
generate events according to user actions such as moving the mouse
over a particular object or clicking a button, and each event triggers
the execution of some associated code [14, 118]. It can also be the case
that some parts of the system follow a traditional style of control, and
other parts are reactive. For example, in a simulation application or
a computer game designed according to the model-view-control design
pattern [56], the model subsystem typically executes continuously, but
it is affected by user interaction events in the reactive control subsystem.

Visual Basic [155] and JavaScript [110] are examples of programming
languages that are often used in reactive, event driven applications where
the overall flow of the program is determined by user actions, rather
than by explicit control structures in the program. Other programming
languages support event-based communication and control transfer as
a complement to the ordinary language mechanisms, either as an inte-
grated part of the language, e.g., in Java [52], C# [135] and Tcl [152],
or through libraries or extensions such as libevent [124] and liboop [49].

Finally, active databases should be mentioned as an example from
this category, since the algebra presented in this thesis has much in com-
mon with work in this area. In an active database the functionality of an
ordinary, passive database is extended with means to define reactions to
situations that arise within or outside the database [120]. The reactions
are often specified by so called event-condition-action rules (ECA rules)
stating that when a certain event occurs, the action should be performed
if the condition is satisfied. As an example, a staff database could con-
tain a ECA rule stating that when the salary table is updated, and if
the new value is more than 10% higher than the old value, a notification
should be sent to the management. To further increase the flexibility,
many active databases allow rules that are triggered by event patterns
specified, for example, by an event algebra [35, 57, 60].

12 Chapter 2. Background

2.2.2 Event-based communication

Events can also be used for communication within a system, as a com-
plement to message passing, remote procedure calls, etc. The pub-
lish/subscribe interaction paradigm [50, 51] allows components or sub-
systems to indicate their interest in receiving notifications about occur-
rences of a particular event by registering a subscription, either directly
to the event producer (as in the observer pattern [56]) or to an inter-
mediary subscription engine. When an event occurrence is published, it
is matched against the current subscriptions and distributed to the ap-
propriate subscribers (see Figure 2.1). Subscription can either be topic
based , i.e., a component subscribes to occurrences of particular events,
or content based , in which subscribers are notified whenever the contents
of a published event occurrence match the constraints of the subscrip-
tion [50].

Subscriber

C1

Publisher

C2

Subscription

engine

1
2

3

Figure 2.1: Example of the publish/subscribe interaction paradigm.
Component C1 registers a subscription with the subscription engine (1).
When component C2 publishes an occurrence that matches the subscrip-
tion (2), the occurrence is forwarded to C1(3).

An important advantage of this communication style is that com-
municating entities need not be aware of each other, and can commu-
nicate asynchronously without blocking. Furthermore, they need not
be physically connected, or active at the same time, in order for the
communication to take place, since the subscription engine can delay
the notification of subscribers that are temporarily unavailable without
affecting the event producer. This spatial and temporal decoupling is
particularly suitable for large, heterogeneous and distributed systems,
since it allows parts of the system to be modified or replaced, possibly
even dynamically during runtime, without having to modify the rest of
the system [51].

Some publish/subscribe frameworks support subscription to event
patterns as well as to single events [90, 122]. For example, a subsystem
might subscribe to the pattern “A and B occur within 2 seconds”, instead

2.3 Primitive events 13

of subscribing to the individual events A and B and then detect the
desired situation internally.

Event related services can be supplied by the operating system, by
a programming language or environment, or by an event based middle-
ware. Middleware, i.e., software located between the operating system
and the applications [87], facilitates the design of complex, distributed
systems by hiding low-level details related to distribution and the un-
derlying operating system and hardware. Event based middleware, e.g.,
Hermes [122] and READY [65], provide a uniform high-level interface of
event related services, which makes it easier for heterogeneous subsys-
tems to communicate seamlessly.

2.2.3 Monitoring and event data mining

Events are also used for managing, monitoring or exploring complex
systems, including software systems [104] or networks [22] but also real-
world systems like stock markets [62]. Contrasting the first category,
these systems are typically not reactive in the sense that they become
active only in response to event occurrences. Rather, they look for
trends, patterns and relationships in event data, either with respect
to a given description (for example monitoring the correctness of a
system by matching output events to a specification), or establishing
new, statistically valid, correlations as in the work of Padmanabhan and
Tuzhilin [117]. Here, a main concern is dealing effectively with very
large volumes of event occurrences, and to filter out only those that are
of interest in a particular situation.

Work that falls into this category includes monitoring of real-time
systems [104], supervision of telecommunication networks [48] and air
traffic control [91]. Additional examples are network monitoring [23]
and specification of event based security properties [25].

2.3 Primitive events

The primitive events can originate from within the system, as is the case
for event based communication between subsystems, or from external
devices such as sensors. It is also possible that an external real-world
action causes an internal primitive event to occur, e.g., clicking the mouse
button might result in an occurrence of the WindowClosed event or

14 Chapter 2. Background

the MenueItemSelected event, depending on the current location of
the mouse pointer.

Monitoring an external system can either be based on the visible
input- and output events, or with access to internal events in the un-
derlying architecture, such as timeouts, communication, synchronisation
events, exceptions, etc. Another possibility is to modify the existing
system to generate specific monitoring events that provides sufficient
information about the internal processes to allow adequate monitoring.

2.3.1 Ordering and timestamping

For event pattern detection, the relative order of primitive event oc-
currences is clearly significant. Typically, the framework must be able
to handle the fact that occurrences sometimes are reported at a faster
rate than they are processed by the detection mechanism. This happens
in particular if pattern detection is performed periodically at predeter-
mined points in time, or when detection can be delayed by more critical
activities, but it can also be that several primitive events occur during
the processing of an earlier occurrence. A straightforward solution to
uphold the occurrence order is to store primitive occurrences in a queue,
sometimes called the event history [34], as soon as they are reported.
When invoked, the pattern detection mechanism processes the queued
occurrences in FIFO (first-in-first-out) order, either one occurrence at a
time, or all at once but taking the order into account when processing
them.

Systems that are distributed over multiple computational nodes re-
quire some additional efforts. In particular, primitive occurrences can
no longer be inserted into a global queue directly when they occur, since
detection might not take place on the node where the queue is located. A
common technique is to include an explicit timestamp in the representa-
tion of an event occurrence, which allows the event history to be ordered
based on occurrence time rather than the order in which occurrences are
inserted. For external events, the timestamp can either represent the
time when the occurrence entered the system, or it can be set by the ex-
ternal event source [142]. Timestamping of primitive occurrences is also
required if the formalism allows patterns that depend explicitly on ab-
solute occurrence times or the relative time between several occurrences,
e.g., “A followed by B within 2 seconds”.

In order to ensure that occurrences are processed in the same or-

2.3 Primitive events 15

der in which they occurred, processing must be delayed until the first
occurrence in the queue is older than the maximum time it can take
to distribute information about a primitive occurrence to the event his-
tory [142]. Alternatively, occurrences can be processed as soon as they
arrive, if a roll-back mechanism can be invoked should an occurrence
with earlier timestamp arrive later.

In a distributed setting, one must also consider issues such as clock
drifting, i.e., that the clocks on different nodes might drift over the sys-
tem lifetime. This means that if two events occur on different nodes,
the order of their timestamps might differ from the order in which they
actually occurred. This is generally handled by some clock synchro-
nisation technique that bounds the maximum difference between two
clocks at any given time. For details on clock synchronisation, see
Tanenbaum [146] and the survey by Ramanathan et al. [127]. Detec-
tion of event patterns in distributed systems has been addressed by, e.g.,
Schwiderski [136], Liebig et al. [92] and Pietzuch [122].

2.3.2 Event parameters

In addition to time, many primitive events have specific information
associated with each occurrence, to further specify the nature of the
action or condition that caused the event to occur. This additional
information is often referred to as event parameters [136]. For example,
a HighTemperature event raised by an external sensor might include
the measured temperature, a ButtonPressed event in a graphical user
interface typically carry a reference to the particular button that was
pressed, and an internal communication event occurrence can contain
parameters similar to those of a function call.

2.3.3 Hierarchical events

Primitive events can be hierarchically structured, meaning that a group
of events are categorised under a common name, and this name is also
seen as an event. A subscriber can chose to subscribe either to a specific
event in the group or to the general event, in which case it will receive
the occurrences of all events in that group. For example, Figure 2.2
depicts parts of the event hierarchy of a graphical user interface. In
this scenario, a subscription to the pattern “A ButtonPressed event
followed by a Mouse event”, would match both the case of the button

16 Chapter 2. Background

GUI Event
���������

PPPPPPPPP
Keyboard Mouse Window

���������

PPPPPPPPP
MouseButton MouseMovement MouseWheel

�
�

�
�

Z
Z

Z
Z

MouseButton

Pressed

MouseButton

Released

Figure 2.2: Parts of a possible GUI event hierarchy.

being pressed and released, or pressing the button and then moving the
mouse.

Another example of hierarchically structured events, is presented by
Bernauer et al. [20]. They describe an event algebra suited for XML
document events, such as modification of attributes, or the insertion
and deletion of nodes. The hierarchical structure of XML is reflected
in the primitive events, so that the modification of a particular node in
the XML document is considered as a modification event on that node,
but also on each enclosing node. For example, if the XML document
is the staff database depicted in Figure 2.3, then changing the value
of the position attribute from “PhD Student” to “Postdoc” would be
interpreted as an Employee mod occurrence, but also as an occurrence
of Staff mod.

<Staff>

<Employee

name="Jan Carlson" position="PhD Student" ... />

...

</Staff>

Figure 2.3: Staff database in XML.

2.4 Issues in event pattern detection 17

2.4 Issues in event pattern detection

Event frameworks that support specification and detection of event pat-
terns come in a variety of types and styles, influenced by the require-
ments and particulars of different application domains. This section sur-
veys some aspects that distinguish different frameworks, and discusses
qualities and properties that are often desired in event pattern detection.

2.4.1 Offline or online detection

In offline event pattern detection, there is a clear separation between the
time at which the events occur and the time at which pattern detection
takes place. Contrasting this, online detection continuously detects
patterns as the primitive events occur, which is needed when the occur-
rence of a pattern is supposed to trigger some direct response, or when
events are used for communication.

If online detection is to be performed for a long time, and in particu-
lar if bounds on memory, processing time or detection latency have to be
ensured, the detection mechanism must be fast enough to process events
in the same rate as they occur, at least when viewed over a longer period
of time. As a consequence, storing all past occurrences and searching
among them when detecting future patterns, is not a feasible strategy
since this eventually becomes too costly. Instead, the detection mecha-
nism typically maintains a state, preferably of bounded size, containing
only the information about past occurrences that is required to correctly
detect future instances of the pattern.

Harada and Hotta describe a number of problems encountered when
developing an online detection system based on a previous version for of-
fline use, such as event occurrences that are reported “out of order” [69].

The main focus of this thesis is online detection, but the proposed
event algebra can be used for offline detection as well. In particular, the
efficiency of the detection mechanism and the bounded-memory prop-
erty allow the algebra to be used also for detection of complex patterns
on very large event logs. A majority of the languages and frameworks
discussed in this thesis address online detection. Examples of offline
detection include analysis of medical orders in a hospital computer sys-
tem [69], computer forensics [1] and extraction of usability information
by monitoring events of a graphical user interface [74].

18 Chapter 2. Background

2.4.2 Static or dynamic detection

Online techniques for event pattern detection differ in the level of flexibil-
ity they support. In a fully static setting, the patterns are defined before
the detection starts, and remain fixed throughout the detection process.

In other frameworks, for example those providing publish/subscribe
functionality, the patterns of interest can change dynamically at run-
time, which requires more support from the event framework. For ex-
ample, if all patterns are known at compile time, it is possible to generate
specific, optimised code for detecting them. This allows the runtime en-
vironment to have little or no knowledge about pattern detection, com-
pared to a dynamic setting where there must be support for processing
arbitrary pattern specifications and setting up appropriate mechanisms
for detecting them.

Between the static and the fully dynamic approach where new pattern
definitions are created at runtime, are frameworks where a number of
patterns are defined statically, but the detection of each pattern can
be turned on and off dynamically. For example, the language GEM [98]
allows rules that are activated or deactivated in response to the detection
of a particular pattern. Combined with a delay construct, this makes
it possible to specify rule sets that report at most one occurrence of a
pattern within a given time interval, as exemplified in Figure 2.4.

rule A: On pattern P , forward P and deactivate rule A
rule B: On pattern P + 5 sec, activate rule A

Figure 2.4: Example of dynamicity in GEM. This rule set ensures that
during any five second interval, at most one occurrence of the pattern P
is reported to the rest of the system.

2.4.3 Compositionality and event algebras

Composition, i.e., the possibility of combining simple concepts into in-
creasingly more complex concepts, is supported in some form in virtually
all languages. In the context of event pattern detection, it is desirable
that the composition options make sense from a pattern point of view,
and not just with respect to the underlying detection mechanism, since
this allows a user to reason about the meaning of a composite pattern

2.4 Issues in event pattern detection 19

specification without knowing the details of how the detection is imple-
mented. For example, if patterns are defined by ordinary program code,
then two definitions can be combined by, for example, sequential com-
position, conditional jumps, etc., but it is not always straightforward to
see what pattern the resulting program detects. So, rather than using
the compositions of the underlying detection language, it is advanta-
geous to introduce specialised pattern composition operators to allow
specification on a conceptual level. For example, the binary operator
or combines two patterns P1 and P2 into the slightly more complex
pattern P1 or P2. With additional operators, and parentheses to avoid
ambiguity, expressions like “P1 followed by ((P1 and P2) or P3)” can be
constructed.

Together, a collection of such pattern operators form an event alge-
bra. An algebra is a very general mathematical structure, consisting of a
domain, a family of operators over this domain, and constants (although
constants can formally be represented as operators that take no argu-
ments). In the case of event algebras, the domain consists of possible
event occurrence scenarios, and there is typically a constant for each
simple primitive event. Then, for a given assignment of an occurrence
scenario to each constant, the operator semantics defines the occurrences
of compound expressions. For brevity, and to distinguish between for-
mal operators and informal descriptions, operators are usually denoted
by single symbols. For example, the pattern “P1 followed by ((P1 and
P2) or P3)” above, is denoted P1;((P1 +P2)∨P3) in the algebra pre-
sented in this thesis. An overview of algebra theory is outside the scope
of this thesis, and we refer to Meinke and Tucker [99] or Burris and
Sankappanavar [29] for this.

Of course, the concrete detection mechanism implements the pattern
operators by means of some low level composition operators, but this
is of little concern to the user once they are given their own semantics.
When developing the algebra, however, the detection mechanism typi-
cally influences the choice of pattern operators, since there are operators
that are straightforward to implement in some formalisms but very hard
in others. For example, two automata detecting patterns P1 and P2, re-
spectively, can be combined into an automaton detecting the composite
pattern “P1 followed by P2” by simply associating the accepting states
of the P1 automaton with the initial state of the P2 automaton.1 On the

1At least, it can be done with a bit of handwaving. Depending on the desired
semantics, it might not be that straightforward, as will be demonstrated later.

20 Chapter 2. Background

other hand, non-occurrence of events is more difficult to express with
finite automata. An automaton for the pattern “P1 followed by P2 with
no P3 in between” is not easily constructed from the automata for the
constituent patterns, since an occurrence of P3 must invalidate any par-
tial detection of the P2 pattern, and thus affects all states of the P2

automata.
Detection methods, i.e., the concrete mechanisms that perform the

detection, can also be classified with respect to compositionality. With
compositional detection, each subpattern can be detected in isolation,
independently from whether it is part of a larger pattern or not. For
example, to detect the pattern A followed by (B or C), the subpattern
B or C is detected separately, and the detected occurrences, together
with the primitive occurrences of A, are used as input to the detection
of the whole pattern.

2.4.4 Timestamping pattern occurrences

Like primitive occurrences, occurrences of a composite event should be
timestamped. The simplest approach is to use the time of detection,
and then include the occurrence in the event history just as if it was a
primitive occurrence. If this occurrence is later used as the constituent of
some other composite event, it can be treated uniformly with the prim-
itive occurrences. However, this simple approach has some drawbacks
when it is used in a compositional detection mechanism. For example,
consider the pattern A followed by (A or B) and a single occurrence of
A at time t1. This results in an occurrence of A or B, but with a time
model of high enough granularity, this occurrence will be given a some-
what later timestamp t2. Thus, since t1 < t2, there exists an occurrence
of A followed by an occurrence of A or B, which results in a detection
of the whole pattern, which is probably not the intended meaning.

Alternatively, occurrences of composite events can inherit the time-
stamp from the occurrences that caused the detection, typically from
the latest occurrence [136]. In the example above, this would mean
that the A or B occurrence is given timestamp t1. One drawback with
this approach is that it introduces simultaneous occurrences also when
primitive event occurrences are non-simultaneous.

The difference between occurrence time (i.e., timestamp) and detec-
tion time is sometimes assumed to be negligible, in which case the two
approaches are essentially the same. However, some frameworks (includ-

2.4 Issues in event pattern detection 21

ing the event algebras developed by Roncancio [130] and by Galton and
Augusto [55]) include operators for composite events that can only be
detected later than the time associated with the occurrence. For ex-
ample, the pattern “A not followed by B for 2 seconds” can be said
to occur at the time of the A occurrence, but it can only be detected
two seconds later. This is not particularly problematic in a framework
for offline detection, but an online detection mechanism must be able
to deal with occurrences that are detected “out of order”, and to delay
reporting a detection until the point in time when no future detection
of a constituent event can invalidate it.

2.4.5 Pattern parameters

In frameworks where primitive event occurrences are associated with ad-
ditional information in the form of event parameters (see Section 2.3.2),
it is natural to capture this information in the representation of pattern
occurrences as well. The most straightforward solution is to associate a
pattern occurrence with a collection of parameters from all constituent
event occurrences that caused the pattern to occur [136]. Alternatively,
the specification language can allow the user to describe, as a part of the
pattern specification, how the pattern parameters should be constructed
from the parameters of constituent events [48, 105].

Some methods also allow parameters to directly influence the pattern
specification [58, 70]. For example, it might be possible to define patterns
such as “two consecutive occurrences of A associated with the same user”
or “an occurrence of A followed by an occurrence of B with a higher
temperature parameter value”.

2.4.6 Declarative or procedural pattern specification

We also make the distinction between declarative and procedural tech-
niques for event pattern specification. Procedural methods describe how
to achieve the desired result, while a declarative method defines what the
desired result is. In event pattern detection, automata based techniques
are typical representatives of the procedural approach, explicitly defin-
ing the effects of a particular event occurrence, depending on the current
state. Declarative techniques include temporal logics, where patterns are
described by the relations between the constituent event occurrences.

22 Chapter 2. Background

Generally speaking, declarative specifications ca be easier to manipu-
late and analyse, but they require some external mechanism that knows
how to perform detection of a given pattern, which means that the user
has less control over the actual detection process, potentially resulting
in less efficient detection.

2.4.7 Single, repeated or overlapping detection

Some applications only require that the first occurrence of the speci-
fied pattern is detected, but in other cases such single detection tech-
niques are not adequate. A straightforward way to detect multiple pat-
tern occurrences, here termed repeated detection, is to simply restart
the detection mechanism once the first occurrence is detected and re-
ported. A drawback of this approach, however, is that it only detects
non-overlapping pattern instances. Consequently, to determine if a par-
ticular instance of a pattern will in fact be detected, we need to look
outside the time interval in which it occurs. In fact, we might have to
consider the entire sequence of events preceding it.

If, on the other hand, occurrences are detected also when they over-
lap in time, the detection of a particular pattern instance is indepen-
dent from other instances of that pattern. We refer to this approach as
overlapping detection. Methods based on single or repeated detection
include ECL [131] and Ode [60], while overlapping detection is used in,
e.g., Snoop [35] and chronicle recognition [47]

Figure 2.5 illustrates these three approaches to the detection of the
pattern “A followed by A followed by B”. If we consider only the event
occurrences between times 2 and 5, it is clear that the pattern appear
once in this interval (with A occurring at times 2 and 4, followed by a B
occurrence at 5). This pattern instance is however not detected with the
repeated detection approach, since the detection procedure is restarted
after the first detection of the pattern at time 3.

These different detection approaches also have an impact on com-
positionality. As described above, two automata detecting the first oc-
currence of patterns P1 and P2 respectively, can easily be composed to
detect the first occurrence of “P1 followed by P2”. However, if the two
automata are designed to detect all occurrences of P1 and P2, it is far
more complicated to combine them in order to create an automaton that
detects all occurrences of “P1 followed by P2”.

2.4 Issues in event pattern detection 23

Time: 0 1 2 3 4 5 6 7 · · ·

Primitive occurrences: -A B A B A B A B

Single detection: -

Repeated detection: -

Overlapping detection: -

Figure 2.5: Comparison of single, repeated and overlapping detection of
the pattern “A followed by A followed by B”.

2.4.8 Single point or interval semantics

In most event pattern frameworks, each occurrence of an event pat-
tern is associated with a single time point (typically either the actual
time of detection, or the time of the last primitive occurrence that was
required to form the pattern). This is termed single point semantics
(or sometimes detection semantics or termination semantics). Pattern
occurrences are thus considered to be instantaneous, just like primitive
occurrences. However, as shown by Galton and Augusto [55], associating
a pattern occurrence with a single point in time can result in unintended
semantics in some cases of composition.

As an example, consider the sequence operator, with the intuitive
interpretation of A;B being “A followed by B”. Figure 2.6 illustrates a
scenario where we have one occurrence each of A, B and C, occurring
in that order. Time flows from left to right in these figures, the top row
shows the occurrences of primitive events and the rows below show the
detected occurrences of different event patterns. With single point se-
mantics (left column), these occurrences are accepted as an occurrence of
the pattern B;(A;C), since there is an occurrence of A;C (associated with
the occurrence time of C), preceded by a B occurrence. Consequently,
with single point semantics, B;(A;C) has exactly the same meaning as
A;(B;C), which does not fit well with the intuitive meaning of sequential
composition.

As a solution to this problem, Galton and Augusto propose that oc-
currences should be associated with intervals rather than single time

24 Chapter 2. Background

points, following the practice of knowledge representation techniques
such as Event Calculus [86] and Interval Algebra [9] (see Section 3.1.2).
With interval semantics (also called occurrence semantics or durative
events), the sequence A;B can be defined to occur only if the intervals of
A and B are non-overlapping. In our example, no occurrence of B;(A;C)
would be detected, since there is no occurrence of B prior to the interval
associated with the occurrence of A;C. The result of the interval-based
version is depicted in the right column of Figure 2.6.

Prim.: -A B C Prim.: -A B C

B;C - B;C -

A;(B;C) - A;(B;C) -

A;C - A;C -

B;(A;C) - B;(A;C) -

Figure 2.6: Comparison between single point semantics (left) and inter-
val semantics (right).

A problem with interval semantics is that is leads to more complex
operator semantics. Two points in time can be related in three different
ways (x < y, x = y or x > y), but, as formalised by Allen [8], there are
thirteen possible relations between two intervals. Figure 2.7 illustrates
seven of them, and the remaining six are the inverses of these (excluding
equality, which is reflexive). For example, consider the semantics of
an operator representing the non-occurrence of a pattern within a given
interval. Let i be a potential candidate interval and p the only occurrence
of the pattern close to this interval. Clearly p during i should invalidate
the interval, meaning that no non-occurrence should be reported in this
case. Other relations, however, are not as easily classified. It is not
clear, for example, whether or not i during p and p overlap i should be
considered as valid non-occurrences.

Examples of event frameworks based on intervals include a formali-
sation of Snoop [3], the work by Roncancio [130] (and the improvement
suggested by Gómez and Augusto [64]), Solicitor [100], and ECCO [157],
all of which are discussed further in Chapter 3. A different use of inter-

2.4 Issues in event pattern detection 25

A equals B

A
B

A before B

A
B

A during B

A
B

A meets B

A
B

A starts B

A
B

A overlaps B

A
B

A finishes B

A
B

Figure 2.7: Interval relations.

vals in event pattern semantics is presented by Liebig et al. [92], namely
as a way to deal with the absence of global clock in distributed systems
(see Section 2.3.1). They associate each occurrence (primitive and com-
posite) with an interval indicating the clock uncertainty, meaning that
the event occurred at some arbitrary point within the given interval.

2.4.9 Parameter contexts

Declarative approaches to pattern specification and detection are often
simple and intuitive to reason about, as discussed in Section 2.4.6. How-
ever, they can be difficult to realise efficiently, especially when primitive
occurrences carry additional information.

For example, consider the conjunction operator (+), with the intu-
itive, declarative meaning that A+B occurs when both A and B have
occurred, in any order and possibly at different times. In a scenario
where we have two occurrence of A, followed by three occurrences of B
(as depicted in Figure 2.8), there are in fact six possible combinations
of A and B occurrences that match the constraints of the conjunction

26 Chapter 2. Background

operator. In particular, with interval based semantics or when event
parameters are used, the six pairs are all different from each other. In
some applications, especially those where detection is performed offline,
it might be acceptable, or even desirable, to detect all of them as occur-
rences of A+B. However, the memory consumption (each occurrence
of A and B must be remembered forever) and the increasing number
of simultaneously reported events means that it is unsuitable in many
online detection frameworks.

Primitives: -A A B B B

A+B -

Figure 2.8: Example illustrating the need for parameter contexts. Two
occurrence of A followed by three B occurrences result in six potential
occurrences of the conjunction A+B.

A common approach to deal with this problem is by augmenting
the declarative operator semantics with parameter contexts (sometimes
termed event contexts) that specify how occurrences should be selected.
Mellin [100] describes the relation between operator semantics and pa-
rameter contexts as follows:

“The event operators aspect addresses the relative constraints
between contributing event occurrences, whereas the event
contexts aspect addresses the selection of event occurrences
from an event stream with respect to event occurrences that
are used or invalidated during event monitoring.”

For example, the recent context in Snoop specifies that only the most
recent occurrence of constituent events should be used each time the
semantics of the operator is satisfied [35]. For the example in Figure 2.8,
this means that only the three pairs containing the second A occurrence
is valid in the recent context.

Zimmer and Unland [161] present a formal framework where parame-
ter contexts are based on two orthogonal concepts: An instance selection

2.4 Issues in event pattern detection 27

policy that concerns the selection among constituent occurrences that
satisfy the basic operator semantics, and an instance consumption pol-
icy that defines how a successful detection affects the detection of future
occurrences, for example if the same constituent occurrence may be used
more than once. A similar approach is used by Zhang and Unger in their
event specification language YALES [158]. Other formalisms provide a
set of more specialised contexts instead, each of which addresses both
selection and consumption. For a concrete example, see Figure 3.3 on
page 45 where the four contexts of Snoop are illustrated.

Event contexts can be seen as a pragmatic way to address the effi-
ciency problems related to declarative operators, or, alternatively, as a
way to increase the expressive power of a formalism by allowing more
detailed specification of which pattern occurrences that are of interest.
However, using contexts typically result in a less declarative detection,
since selection and consumption depend on previous occurrences. Also,
the exact meaning of an operator in a particular context is not always
trivial to understand and reason about, especially if there are depen-
dencies, explicit or implicit, between the operator semantics and the
contexts.

In addition to the work mentioned above, parameter contexts (or
similar constructs) are used in, for example, Solicitor [100], the event
algebra developed by Baily and Mikulás [16], ECCO [157], and in the
work of Hinze and Voisard [75]. These formalisms are all described
further in Chapter 3.

2.4.10 Event correlation

In systems where a single action or situation give rise to a large number
of primitive events, there is a need to deal with such event bursts. For
example, in a network monitoring system, unplugging a network cable
results in a burst of events representing that packets were lost, connec-
tion requests failed, acknowledgement timeouts were reached, etc. [95].
While the role of event pattern detection is to identify a particular situ-
ation (i.e., when primitive events occur in accordance with the pattern),
event correlation aims at congregating primitive events that share some
characteristics. For example, a network monitoring system might specify
that all Timeout events associated with the same physical connection
occurring within two seconds should be reported as a single Broken-

Connection event.

28 Chapter 2. Background

Although event correlation has much in common with event pattern
detection, and the separation of the two concepts is somewhat arbi-
trary, the focus of this thesis is on detecting the occurrences of particu-
lar event patterns, rather than on congregating correlated events. Event
correlation has been thorougly studied for management of computer and
telephone networks [54, 78, 95], but it has also been applied to, e.g.,
security [66] and power delivery networks [121].

2.5 Embedded and real-time systems

An embedded system is a special purpose computer that is built into
a larger device. Contrasting general purpose computers, such as PCs,
which are designed to support many different types of activities, an em-
bedded system is designated to perform a specific task [148]. Repre-
sentative examples of embedded systems include handheld devices such
as mobile phones and PDAs, cash machines, DVD players, avionic and
automotive controllers, but also large stationary systems for example in
industrial automation.

Embedded systems are commonly used in safety-critical applications,
meaning that failure or malfunction may result in serious damage to
people, equipment or the environment [144], and in many cases they are
supposed to run continuously for years without errors or manual inter-
action. As a consequence, much effort is spent ensuring that the system
behaves according to the specification, both with respect to functional
requirements and non-functional aspects such as performance and relia-
bility.

Another characteristic is that embedded systems typically have to
function under severe resource limitations compared to general pur-
pose computers, e.g., in terms of available memory, bandwidth and en-
ergy [28]. Many embedded systems are subject to real-time constraints,
meaning that the correctness of the system depends not only on the re-
sults it produces, but also on the time at which the results are available.

To cope with issues such as timing and safety, real-time embedded
systems are typically structured as a collection of computational activ-
ities, called tasks, that collaborate to provide the desired system be-
haviour. Some tasks can execute independently from each other, while
others are subject to constraints, e.g., when a result produced by one
task is required by another task, their relative order is restricted. When

2.5 Embedded and real-time systems 29

several tasks are available for execution at the same time, a scheduler
is responsible for allocating processor time to them according to some
predefined scheduling policy. Such policies range from simply following
a static schedule that was created offline from the task constraints, to
online scheduling policies based on dynamic task properties such as the
remaining time to deadline.

One focus of research on real-time systems is to develop suitable
scheduling policies for various application types, taking into account
factors such as energy consumption, distribution, task dependencies of
different kinds, and tradeoffs between worst and average case proper-
ties [30]. Another line of research regards techniques to analyse system
behaviour under a given scheduling policy, for example to guarantee
schedulability, i.e., that there are no circumstances under which a task
violates its constraints, or to establish statistically sound estimates of
the average response times for system services [83].

2.5.1 Events in embedded real-time systems

In many real-time systems, tasks are executed periodically at predeter-
mined points in time, since this gives a high level of predictability, and
because the main functionality of many embedded systems should be
carried out continuously, for example controlling a motor based on a de-
sired speed and feedback from sensors. Such time triggered execution is
not very suitable, however, when the system is supposed to respond to
situations that occur rarely, but where a quick response is crucial when
they do occur [28]. In a time triggered setting, this means that the task
responsible for this activity must be run at a high frequency to ensure
that the next activation is always sufficiently close in time, whenever
the situation occurs. During time periods when the rare situation does
not occur, the periodic task will in fact use very little of the allotted
computational resources. Unfortunately, if other tasks must meet their
deadlines under all circumstances, they can not depend on this time be-
ing available, which leads to poor processor utilisation and possibly a
non-schedulable system.

As an alternative to time triggered task activation, event triggered
activation means that tasks are activated by occurrence of external or
internal events, rather than at predefined points in time. When task
activation times are unknown, more complex scheduling decisions must
be made during runtime. To keep scheduling overhead at a minimum,

30 Chapter 2. Background

many systems use fixed priority scheduling (FPS), meaning that each
task is assigned a static priority offline, typically based on the relative
frequency, urgency and criticality of the task. At runtime, scheduling is
reduced to selecting the task with highest priority for execution, from
those that are currently ready.

In order to make static timeliness guarantees possible in an event
triggered system, the occurrences of events that activate tasks must be
bounded in some way, based on knowledge or assumptions about the
system environment. For example, periodic tasks are activated by events
occurring periodically at a given frequency. For other tasks, it might
be evident from the nature of the environment that two consecutive
occurrences of the activation event are always separated by at least a
certain amount of time, called the minimum interarrival time (MINT).
Such tasks are often referred to as sporadic, and tasks with an unbounded
arrival rate are termed aperiodic.

For perspectives on the difference between time and event triggered
systems, and the respective merits of the two approaches, see Kopetz [84],
Audsley et al. [15]. The related issue of offline scheduling versus pri-
ority based scheduling has been covered by Xu and Parnas [156] and
Locke [96]. It should also be mentioned that there are several lines
of work that aims at bridging the gap between the two paradigms, or
to combine their respective desirable properties. For example, the slot
shifting method, developed by Fohler [53], allows sporadic and aperiodic
tasks to be handled efficiently in a time triggered setting. Dobrin [46]
describe how FPS attributes can be derived from an offline schedule, in
such a way that the FPS execution matches the execution of the offline
schedule in some respects.

2.6 Component based development

Since one topic of the thesis concerns event detection in the context of
a component model for embedded systems, we provide a brief introduc-
tion to component based development. For a more complete picture, the
reader is referred to existing literature, for example Heineman and Coun-
cill [73] or Crnkovic and Larsson [44]. The key principle of component
based development (CBD) is to build software systems from existing
software units, termed components, that are developed separately with
reuse and integration in mind. This approach aims to reduce develop-

2.6 Component based development 31

ment time and the complexity associated with software development,
thereby reducing development and maintenance costs.

The central CBD concept component can be defined as a software
element with well defined interfaces that specify what services the com-
ponent provides and what services it requires from the environment, i.e.,
the surrounding components. The exact form of these interface specifi-
cations is defined by the component model, which also specifies in what
ways, and with what results, components can be composed. An im-
portant aspect of component composition, which distinguishes it from
the mechanical task of combining components that have matching inter-
faces, is the notion that an assembly of composed components should
have properties that can be derived from properties of the constituent
parts and the relations between them [143].

Most existing component technologies either target general purpose
desktop applications or large distributed systems. Examples of the
former include JavaBeans [145] from Sun Microsystems and Microsoft
COM [26], while the CORBA Component Model [116], Enterprise Jav-
aBeans [108] and .NET [41] target distributed systems. The component
based strategy has been less successful in the area of embedded systems,
due to the specific demands of this domain [42, 151]. In particular, with
limited resources and strict timeliness requirements, it becomes more
difficult to provide predictable composition of components. Ideally, the
behaviour of a component should be the same regardless of the environ-
ment in which it is deployed, i.e., the other components in the system,
but this is not straightforward to achieve for extra functional proper-
ties such as timing. Also, the runtime mechanisms needed to replace
or reconfigure components dymamically without halting the application,
introduce an overhead that is unacceptable for many embedded applica-
tions.

Nevertheless, there are component models that specifically target em-
bedded systems, including SaveCCM [6], which is described in Chapter 7,
Koala [149] and PECOS [112]. Also, some general purpose component
models come in variants that focus on particular aspects that are im-
portant to embedded systems, such as Real-Time CORBA [115] and
Minimum CORBA [114], addressing issues related to real-time demands
and resource limitations, respectively.

32 Chapter 2. Background

2.6.1 Events in component based systems

The event based style of communication is well suited for the component
based approach where components are developed without exact knowl-
edge of what other entities they will communicate with in a particular
system, and where components may be added and removed dynamically.
For example, the JavaBeans specification lists event communication as
one of the core features [145]. The mechanisms for subscription and
notification follow those in Java [52], with event listener interfaces indi-
cating that a class is capable of responding to a particular type of events,
and registration methods in event sources that allow event listeners to
dynamically subscribe to an event, or remove a subscription. While the
subscription is active, the producer and consumer are tightly coupled,
since the producer has explicit knowledge of the currently registered
subscribers.

The CORBA component model provides a more loosely coupled, dis-
tributed publish/subscribe event model, where the distribution of event
occurrences to subscribers is done via event channels managed by the
underlying framework [116].

A recent example of a component based technology that uses events
for communication is Microsoft Robotics Studio (MSRS), a development
environment for robotic applications [102]. A MSRS application consists
of components, called services, that communicate and synchronise via
event subscription and notification provided by CCR [39], which is the
part of the underlying runtime framework responsible for concurrence
and coordination.

Chapter 3

Overview of Related
Work

This chapter surveys some existing languages and methods for event pat-
tern specification and detection. For a discussion on how these methods
relate to the algebra presented in this thesis, see Section 8.2.

3.1 Temporal logic

The aim of of temporal logics and similar formalisms is to formally rep-
resent and reason about information with temporal aspects. This is
motivated by, for example, work in artificial intelligence such as plan-
ning and natural language semantics, but it is also used for example to
specify real-time systems [11, 19]. In the context of event pattern detec-
tion, these techniques can be used to specify a particular event pattern
as a logical formula which is true in that very situation only. Then,
the general deduction mechanism of the formalism can be used to deter-
mine if, and when, the pattern occurs. In the case of online detection
(see Section 2.4.1) this task is simplified if the deduction mechanism
supports incremental reasoning when new facts are added (in this case,
new facts about primitive event occurrences), to avoid re-evaluating the
whole formula every time a new event occurs.

Alternatively, temporal logic can be used as the underlying formalism
defining the semantics of a more high-level event pattern specification

33

34 Chapter 3. Overview of Related Work

technique, as in, for example, the event algebra developed by Baily and
Mikulás [16] or in the work of Kiringa [82].

In a temporal logic, the truth value of statements or predicates can
vary over time, and thus, so does the truth value of formulas. In addition
to the ordinary connectives and quantifiers, most temporal logics also
include a number of operators to quantify over time. There are two
fundamental ways in which time can be considered. With linear time,
each moment is considered to have a unique future, while with branching
time there might be several possible futures [150]. The latter is for
example appropriate when reasoning about the possible behaviours of
a nondeterministic computer program. This type of branching time is
sometimes more precisely termed right branching time, distinguishing
it from the opposite left branching time where each moment may have
several possible pasts, which is useful for reasoning “backwards” in time.

Figure 3.1 illustrates these concepts. With linear time, we can make
statements such as “A will occur in the future” and “it will always be
true that A will occur at some later point in time”. Branching time
allows quantification over the possible future (or past) branches, such as
“it is possible that A never occurs in the future” and “up to this point,
A has either occurred twice, or not at all”.

Event pattern detection is in most cases based on a linear model of
time, since it is applied to a single concrete sequence of event occur-
rences, rather than, say, a non-deterministic model of the possible event
occurrence scenarios (in which case right-branching time could be use-
ful). It is possible, though, to view a pattern specification as a branching
time scenario. For example, Figure 3.2 depicts right and left branching
versions of the same pattern. In an offline detection framework, where
occurrences can be accessed in any order, this particular pattern is more
efficiently detected in the left branching version. The right branching
variant must always consider all three branches, but the left branching
version can combine them during the detection of the common parts at
the end. In an online framework, however, detection would probably fol-
low the right branching version anyway, in order to process occurrences
in the order in which they happen.

3.1.1 LTL, CTL* and CTL

Linear temporal logic (LTL) is based on a linear time, and contains tem-
poral quantifiers denoting that a certain formula holds in the next time

3.1 Temporal logic 35

Linear: -
now

r
A

r
C

r
A

r
B

Right

branching: -
now

b

-

b

-

b

-

r
A

r
A

r
C

r
B

r
C

r
C

r
B

r
B

Left

branching: -
now

b

b

r
A

r
A

r
C

r
B

r
A

r
B

Figure 3.1: Three notions of time: Linear, right branching and left
branching.

instant, that it holds always in the future, or eventually in the future,
respectively. LTL is a strict subset of Computation tree logic (CTL*),
which is based on a right branching notion of time. Hence, in addition
to the temporal quantifiers of LTL there are two path quantifiers, one
representing that a formula holds for all paths, and another denoting
the existence of a path for which it holds. In CTL*, path quantifiers
and temporal quantifiers can be mixed freely, but there is an important
subset, termed CTL, where they are only allowed in pairs consisting of
a path quantifiers followed by a temporal quantifier. As a result, verifi-
cation of a CTL formula can be performed significantly more efficiently.
See, for example, the work of Clarke et al. [40] for a formal treatment of
this subject.

Sen et al. [137] describe how a deterministic finite automaton can be

36 Chapter 3. Overview of Related Work

Right branching

b r
B

r
B

r
D

r
C

r
D

r
C

r
D

r
C

r
D

r
A

r
C

r
D

Left branching

bbr
B

r
B

r
D

r
C

r
D

r
C

r
A

Figure 3.2: Right and left branching versions of a pattern.

generated from a given LTL formula. The automaton recognises good
prefix, meaning that no sequence of subsequent events can make the
formula false, and bad prefixes for which no combination of future events
can satisfy the formula. The method works for any LTL formula, but
the size of the automaton monitoring a formula of size m, is O(22m

).

3.1.2 Interval Temporal Logic and Event Calculus

Allen’s interval algebra [8] defines thirteen possible relations between
temporal intervals, illustrated in Figure 2.7. An algorithm is described
by which a network of interval relations can be updated and to some ex-
tent checked for inconsistencies when new information is added. Based
on this interval algebra, an interval temporal logic is defined that sup-
ports reasoning about actions and events [9].

Event calculus [85, 86] is similar in style to the interval temporal logic
but avoids the use of non-classical logic. Events are expressed by means
of Horn clauses with time as an additional parameter, and the formalism
uses negation as failure, which means that pattern specifications can be
executed as Prolog programs.

These methods are primarily concerned with representing and rea-
soning about event information, and not so much with the issue of how
a particular event pattern can be detected, but in the work of Ron-
cancio [130], the relations of Allen’s interval algebra are used as event
algebra operators. E.g., “A starts B” defines a composite event that
occurs when there is an occurrence of B with the same start time, and
later end time, as some A occurrence. Gómez and Augusto later sug-
gested an alternative semantics for the operators to avoid some undesired
effects [64].

3.1 Temporal logic 37

3.1.3 Event specification in FTL and PTL

Sistla and Wolfson [139] present two temporal logics, called Future time
logic (FTL) and Past time logic (PTL), for specifying temporal triggers
(i.e., events patterns) in an active database. They argue that some
triggers are more naturally expressed with temporal operators that refer
to the future (such as next-time and until in FTL) and others with
operators referring to the past (last-time and since in PTL).

In both FTL and PTL, the standard first-order quantifiers (∃ and ∀)
are replaced by a so called freeze quantifier on the form [x ← t]F with
the meaning that F is evaluated with variable x bound to the current
value of t, where “current” refers to the temporal context in which the
subformula is being evaluated. For example, the formula

[x← traffic] (eventually (traffic > 2 ∗ x))

represents that the current value of traffic is doubled sometimes in the
future, while the formula

always ([x← traffic] (eventually (traffic > 2 ∗ x)))

means that traffic at any point in the future will eventually be doubled.
Sistla and Wolfson also describe an algorithm for detecting patterns

defined by expressions in these two languages. Detection of an FTL
expression is performed by dynamically maintaining a directed acyclic
graph that represents those parts of the pattern that are still to be satis-
fied. For PTL expressions, on the other hand, the temporal operators are
eliminated by transforming them into database queries on past database
states.

3.1.4 Event specification in Past FOTL

Chomicki [38] describes how expressions on the contents of a temporal
database, in past first-order temporal logic, can be monitored without
requiring that the entire database history is stored. Instead, the database
is extended with auxiliary relations that contain enough information
about past states to correctly detect the given pattern. The auxiliary
relations are updated incrementally as time passed, and it can be shown
that their size is bounded by the size of the value domains used in the
database.

38 Chapter 3. Overview of Related Work

For example, consider the following formula, expressing that the re-
ception of a message is always preceded by the sending of that message:

∀x(recieved(x)→ (sometimes-in-the-past sent(x)))

To efficiently monitor this formula, an auxiliary relation is used that
specifies all values of x for which “sometimes-in-the-past sent(x)” holds,
i.e., all messages that has been sent so far. Naturally, the size of this
relation is bounded by the domain of the predicate sent.

3.1.5 Intrusion detection with EAGLE

The intrusion detection framework presented by Naldurg et al. [111] al-
lows specification of signatures (i.e., event patterns) corresponding to
known types of computer system attacks. These signatures are moni-
tored by an online detection algorithm that raises an intrusion alarm
upon detection.

Signatures are expressed in EAGLE [17], a language based on a tem-
poral logic with three temporal operators (next time, previous time and
concatenation) and a minimal/maximal fixpoint semantics. The seman-
tics of EAGLE is defined for finite traces, i.e., in the general case one
must reach the end of the trace before it can be determined if a given
formula is true or false. To use EAGLE for online detection in systems
that in theory runs forever, an attack pattern must be specified as a for-
mula which turns true when the pattern occurs, rather than as a general
statement over finite traces.

3.2 Automata based detection

Many event pattern specification frameworks are based on some vari-
ant of finite state automata, as they provide a formal, well understood
and easily implemented foundation. In particular, they can easily be
implemented with limited and predictable resource usage.

A detection automaton consists of a finite number of states, including
one initial state and a number of accepting states. States are connected
by transitions labelled with the primitive events of the system. Starting
in the initial state, the automaton follows a transition leading out of
the current state at the occurrence of the primitive event labelling that
transition. If the transition leads to an accepting state, a detection is

3.2 Automata based detection 39

signalled, otherwise the procedure is repeated. After a detection, some
frameworks reset the automaton to the initial state, resulting in repeated
detection (see Section 2.4.7). Other frameworks let the automaton re-
main in the accepting state once the detection is signalled, and treat
subsequent occurrences in the same way as before the detection, for ex-
ample to achieve a more declarative detection.

The basic notion of automata can be extended in a number of ways.
Allowing multiple outgoing transitions with the same label, or empty
transitions that can be followed at any time, introduces non-determinism,
which does not increase the expressive power but can significantly reduce
the size of the automata. Similarly, allowing variables that can be as-
signed and tested on the transitions, can be seen as shorthand for a larger
automaton without variables, provided that the variables only take val-
ues from some finite domain. For patterns where the occurrences times
are significant, and not only the relative order of occurrences, the au-
tomata must be augmented with some concept of time. For example,
the timed automata formalism includes real-valued clocks that can be
tested and reset [10].

Regular expressions have the same expressive power as finite au-
tomata [77], but provide a more readable and concise notation. In the
context of event pattern detection, the ordinary regular expression oper-
ators (e.g., concatenation, alternation and iteration) are sometimes sup-
plemented by additional operators to simplify the specification of com-
mon pattern types. These can either be derived from the basic operators
or related to particular extensions such as timing or event parameters.

Motaki and Zaniolo [109] point at three main drawbacks with au-
tomata based methods for event pattern specification:

1. Parameterised events. If primitive event occurrences carry addi-
tional information, as discussed in Section 2.3.2, the standard finite
automata concept must be extended to allow this information to
be taken into consideration. Although this can be done, it impairs
the simplicity of the original formalism.

2. Simultaneous occurrences. Automata based methods typically work
on a conceptual sequence of primitive event occurrence, i.e., assum-
ing that the occurrences of primitive events are non-simultaneous.
Simultaneous occurrences can be supported by labelling transitions
with combinations of events, but this result in significantly more
complex automata.

40 Chapter 3. Overview of Related Work

3. Exponential blow-up. Constructs that require that the constituent
patterns are detected concurrently, such as conjunction and non-
occurrence of complex patterns, typically result in very large au-
tomata compared to the size of the automata detecting the con-
stituent parts.

Simultaneous occurrences can also be supported by introducing an
explicit time event, meaning that events occurring between two consecu-
tive time events should be considered as simultaneous. For this approach
to be reasonable, it should be shown that simultaneous events can rep-
resented in arbitrary order without changing the overall outcome of the
automaton.

As a consequence of the exponential blow-up caused by concurrent
detection, automata do not provide good support for specifying non-
occurrence of patterns, such as in the pattern “P1 unless P2”, meaning
that an occurrence of the pattern P2 should invalidate any partially
detected P1 pattern. Non-occurrence of single, primitive events is eas-
ily expressed and typically provided as a negation operator in a regu-
lar expression language, but non-occurrence of complex patterns is less
straightforward. Detecting pattern instances that partially overlap in
time, termed overlapping detection in Section 2.4.7, also typically re-
quire complex automata.

In addition to the work described below, approaches based on au-
tomata and regular expressions include the active database system Ode
(described in Section 3.3.1), the general event pattern specification lan-
guage SEL [160], the event language developed by Hayton et al. [72], and
the BMSL language for specification of event based security properties,
developed by Bowen et al. [25].

3.2.1 Composite event detection automata

Pietzuch et al. [122, 123] describe a general framework for event pattern
detection that is based on finite automata with some extensions. The
framework targets distributed systems, where it is not always possible to
determine the exact ordering of all event occurrences, especially between
occurrences originating from different nodes. This is reflected by one of
the extensions to the ordinary automata constructs, namely that there
are two types of transitions. Strong transitions can only be traversed
if it can be established that the associated event definitely occurred
later than the previously consumed occurrences. Weak transitions only

3.2 Automata based detection 41

require that the occurrences are correctly ordered with respect to their
latest possible occurrence times (considering clock drift bounds, etc.).

To allow patterns with temporal constraints to be specified, the au-
tomata can contain generative states that, when reached, publish a new
event occurrence after a specified amount of time. This event can be
used on subsequent transitions in the automaton, for example to discard
a partial detection that does not meet the temporal constraints of the
desired pattern, or to mark the end of a non-occurrence interval. There is
also a construct that detects two patterns in parallel, and succeeds once
both have been detected. This is accomplished by multiple, interacting
automata running in parallel, but since the semantics of the extended
automata framework is only defined informally, the exact semantics of
this construct is unclear.

3.2.2 ECL and PAR

ECL is a language for event pattern specification developed by Sánchez
et al. [131]. They also define the equally expressive sublanguage PAR to
simplify analysis, in particular on pattern specification equivalence [132].
The PAR language resembles regular expressions in style, and any pat-
tern specified in PAR can be detected with bounded resources. A central
result is that the opposite holds as well, i.e., that every event pattern
that can be detected by a finite state automaton, and thus by any rea-
sonable1 finite memory formalism, can be expressed in PAR [133]. The
assumptions, under which this property is proved, are that the input is
a sequence of elements from a finite set of events, i.e., no timestamps or
additional information is associated with the occurrences, and no simul-
taneous occurrences are allowed.

In addition to operators that correspond to the standard operators of
regular languages (i.e., concatenation, alternation and iteration), PAR
contains an explicit output operator which, for example, allows a suc-
cessful detection of a particular subpattern to be signalled, an not only
the detection of the full pattern. There is also a binary preemption op-
erator for specifying non-occurrences. As an example, the pattern “try
P1 unless P2” results in parallel detection of the two subpatterns P1

and P2, and succeeds if P1 is detected unless P2 is detected first, in

1By reasonable they mean methods that provide immediate reactions and satisfy
determinism and causality.

42 Chapter 3. Overview of Related Work

which case the whole detection fails. The PAR language normally as-
sumes single detection, but repeated detection can also be achieved since
the language includes a repetition operator which restarts the detection
procedure when an occurrence is detected.

3.3 Active databases

Active databases, unlike ordinary, passive databases, have the ability to
react automatically to situations that arise within or outside the data-
base [120]. These reactions are typically specified by ECA rules stating
that when a certain event occurs, the given action should be performed if
the condition is satisfied. The event part of an ECA rule can include an
event algebra to allow the database to react to complex event patterns.

The initial research in the area of active databases was to a large
extent empirical in nature, and resulted in a number of approaches that
share some characteristics, but with different languages and underlying
execution models, often lacking formal semantics [119]. For example, the
detection mechanisms in Snoop, SAMOS and Ode are based on different
strategies, which introduce some subtle differences in the way patterns
are defined although their respective event algebras look quite similar.
Later research has been aimed at providing formal foundations for these
and other methods, and establishing common underlying theory that
unifies the different approaches. For example, Zimmer and Unland [161]
present a formal event context framework (see Section 2.4.9) in which the
event algebras of Ode, SAMOS, Snoop and a few other systems are com-
pared. They also highlight a number of ambiguities and inconsistencies
of the various approaches.

The event algebra presented by Baily and Mikulás [16] follows the
Zimmer and Unland framework. It is defined formally in temporal logic
and includes four event contexts. They identify a class of composite
events for which testing for event equivalence is decidable, and show that
testing for implication is undecidable. I.e., in general it is not possible to
check for two composite events whether an occurrence of the first always
implies that the other occurs as well.

Motakis and Zaniolo have developed the Event pattern language (EPL)
with a semantics based on Datalog rules [109]. Datalog is a subset of
Prolog with restrictions that ensure more efficient querying, such as not
allowing complex terms as arguments of predicates. They also show how

3.3 Active databases 43

event pattern definitions from Ode, SAMOS and Snoop can be trans-
lated into equivalent, or in some case similar, EPL expressions, thereby
providing a basis for comparing the three languages.

An overview of other research initiatives to formalise different aspects
of active databases is given by Paton et al. [119].

3.3.1 Ode/COMPOSE

The event expression language COMPOSE [59] extends the active ob-
ject database Ode [60] with support for composite events. The language
consists of four basic operators and sixteen additional operators, most
of which are derived from the basic ones, including for example disjunc-
tion, negation and simultaneous conjunction. There are also counting
operators that can refer explicitly to the nth occurrence of an event, or
to every nth occurrence. The formalism is based on a global, totally or-
dered set of primitive event occurrences, implying that primitive events
can not occur simultaneously.

The operators of COMPOSE has the same expressive power as reg-
ular expressions [61], which allows the detection mechanism to be im-
plemented by finite state automata. To support event parameters, and
composite events that occur only under given restrictions on the para-
meters of the constituent events, the automata mechanism is extended
with data structures that store the parameters of past event occurrences.

3.3.2 SAMOS

In the active object-oriented database SAMOS [57, 58], event detection is
defined and implemented using Petri nets. The event algebra consists of
operators for disjunction, conjunction and sequence. There are also three
constructs that take an interval specification as an additional argument,
namely a counting construct that is signalled every time n occurrences of
an event has happened within the interval, an operator that only signals
the first occurrence within the interval, and a negation that occurs at
the end of the interval if the interval contained no occurrence of the
given event. For these constructs, interval start and end points can be
specified either as absolute time points or relative to the occurrences of
some event.

SAMOS events can have parameters identifying, e.g., which transac-
tion and user a particular occurrences is associated with, and parameter

44 Chapter 3. Overview of Related Work

equivalence restrictions can be included in the pattern specifications.
For example, a sequence A;B can be decorated with a restriction that
only cases when the A occurrence and the following B occurrence are
associated with the same user, should be considered. To support this,
the semantics is based on coloured Petri nets [80], an extension of ordi-
nary Petri nets in which each token has a value that can be tested and
manipulated by the transitions.

3.3.3 Snoop

Snoop [34, 35] is an event specification language developed to extend a
passive database system with active functionality, but it can be used as
a standalone event detection system as well. The operators of Snoop
are disjunction, conjunction, sequence, negation, aperiodic and periodic.
Conjunction also comes in a more general variant, representing that n
out of m given events have occurred (with n = m = 2, this is equivalent
to the binary conjunction operator).

The aperiodic and periodic constructs take three arguments, two of
which define the start and end of an interval during which the composite
event is active. The aperiodic event A(E1, E2, E3) occurs each time E2

occurs inside an interval started by an E1 occurrence and ended by an
occurrence of E3, and the periodic event P (E1, T, E3) occurs periodically
with period T during the interval from E1 to E3. Both of these constructs
also come in cumulative versions (A∗ and P ∗, respectively) in which no
occurrences are signalled inside the interval. Instead, the corresponding
values are accumulated and associated with a single occurrence at the
end of the interval.

Snoop also defines four event contexts. We describe them informally
by their effect on the sequence A;B, rather than giving the general defi-
nition. In the recent context, an occurrence of B is only combined with
the most recent occurrence of A. In chronicle, the first occurrence of A
is combined with the first occurrence of B, the second A with the second
B, etc. The continuous context means that a B occurrence is combined
with all earlier A occurrences that have not yet been combined with a
B occurrence. Finally, in cumulative, an occurrence of B results in at
most one occurrence of A;B, but the occurrence carries a collection of
values gathered from all earlier occurrences of A (but these values are
not included again in subsequent occurrences). An example illustrating
the four contexts is given in Figure 3.3.

3.4 Embedded and real-time systems 45

Primitives: -A A B A B

A;B -

A;〈recent〉B -

A;〈chronicle〉B -

A;〈continuous〉B -

A;〈cumulative〉B -

Figure 3.3: Detection of the sequence A;B in various Snoop event con-
texts.

The detection mechanism includes a specific procedural implemen-
tation for each operator/context combination, and the detection of a
particular event pattern is structured according to the event expression
tree. Occurrences of primitive events are inserted at the leaves, causing
the execution of the implementation associated with the operator in the
parent node. As more complex events are detected, event occurrences
are propagated upwards in the tree.

Early work on Snoop defined operator semantics formally, but the
event contexts were only described informally. Later, Chakravarthy and
Yang formalised the recent, chronicle and continuous contexts [36]. Also,
Adaikkalavan and Chakravarthy [3, 4] developed an interval based se-
mantics (see Section 2.4.8) for some of the Snoop operators in the recent,
cumulative and chronicle contexts.

3.4 Embedded and real-time systems

Event detection frameworks that target the embedded systems domain
have to address resource issues in some way. For applications with hard
real time constraints, bounds on memory and processing time must be
determined statically. Some formalisms, such as finite automata, are

46 Chapter 3. Overview of Related Work

inherently resource bounded, but other methods require careful design
and analysis.

The work of Hansson and Berndtsson [21, 68] and Sivasankaran et
al. [140] on active real-time databases is clearly relevant to the work
presented in this thesis. They address how active functionality in the
form of ECA rules can be handled in a database that is subject to real-
time constraints, which includes, e.g., allocation of detection activities
to tasks, priority assignment of events and transactions, and appropriate
coupling modes for ECA rules describing how information is transfered
between the event, condition and action parts of a rule.

3.4.1 Specifying event patterns in RTL

Mok et al. present a framework based on real time logic (RTL), which
is a first order logic with a dedicated predicate encoding event occur-
rences. The framework has been used in the context of network manage-
ment [95] and in an electronic brokerage application [105]. It has also
been suggested as the basis for composite event specification in active
databases [94].

Composite events are expressed as RTL timing constraints and han-
dled by general RTL monitoring techniques [105]. In addition to compos-
ing whole events as in “an occurrence of A or an occurrence of B”, it is
possible to refer to individual event occurrences, which allows patterns
such as “the second occurrence of A followed by an occurrence of B”.
Like the temporal logics discussed in Section 3.1, RTL can be used to
specify general properties, and not just event patterns. Consequently, as
well as detecting that a specification is satisfied (e.g., that the specified
event pattern has occurred), violations must also be recognised. In par-
ticular, RTL provides early detection of temporal constraint violation,
meaning that the violation of a specification such as “an occurrence of
A should be followed by a B within 2 seconds”, is reported immediately
at the end of that time interval, and not when B finally occurs.

For a particular class of specifications (informally, conjunctions of
simple constraints on pairs of event occurrences), violation and satisfac-
tion detection algorithms are presented that run in O(n) time at each
check point [103]. The number of event occurrences that must be stored
by the detection algorithm is bounded, as is the number of simultane-
ously active timeouts, and these bounds can be derived from the con-
straints at compile time [103].

3.5 Additional work on event notification 47

3.4.2 Solicitor

The event specification language Solicitor [100, 101], developed by Mellin
and Andler, also targets real-time systems in particular. The operators
and parameter contexts resemble those in Snoop, but Solicitor is based
on a formal schema where event operators and contexts are defined as
fully orthogonal concepts. This separation makes it easier to reason
about the algebra, compared to frameworks where each combination of
operator and context requires an individual formal definition.

The memory requirement of the detection mechanism is bounded, un-
der the assumptions that a minimum interarrival time is known for each
primitive event in the system, and each composite event is associated
with an expiration time that restricts the time between the earliest and
latest occurrence that may form an occurrence of the composite event.

3.5 Additional work on event notification

When event pattern detection is viewed in a broader perspective, for
example as one aspect of the event support provided by a middleware,
or in a general purpose notification framework, there are many factors to
consider in addition to the specification and detection of patterns. When
ECA rules are used, the specification and evaluation of the condition
and action parts of rules, and how information is transfered between the
three parts, must be addressed. There are also issues concerning rule
management, such as dynamic introduction of new rules and scheduling
of rules that may trigger at the same time. In distributed systems, there
are additional problems related to timing. In particular, primitive event
occurrences originating from different nodes can not always be totally
ordered as a result of clock synchronisation inaccuracy. Also, the time
it takes to propagate an event occurrence to the node at which pattern
detection is performed must be take into account.

READY is an event notification service, developed by Gruber et
al. [65]. It targets distributed, heterogeneous systems based on the
publish/subscribe paradigm, and contains a simple event algebra for reg-
istering composite events. The ECCO framework, developed by Yoneki,
addresses asynchronous group communication over wireless ad hoc net-
works [157]. Subscription to composite events is handled by a mechanism
based on our algebra and on the work of Pietzuch et al. [123]. The work
by Hinze and Voisard [75, 76] on event notification services includes an

48 Chapter 3. Overview of Related Work

event algebra for specifying composite events. The algebra is parame-
terised with respect to policies for event instance selection and consump-
tion, but the two concepts are not treated independently as suggested in
the work of Zimmer and Unland [161].

3.5.1 GEM

GEM, by Mansouri-Samani and Sloman [98], is a declarative event mon-
itoring language for distributed systems, where special consideration is
given to problems related to the delay introduced when patterns consist
of events detected on different nodes. The event pattern specification
part of GEM is interval based, and a noticeable detail is that the lan-
guage includes constructs that explicitly refer to the start and end time
of occurrences, to be used in condition expressions. Thus, it is possible
to express both patterns such as “A and B occurs in any order within 2
seconds”, but also “an A occurrence and a B occurrence with the same
start time”. The action part of a GEM rule can publish new event occur-
rences in response to a complete detection, but they can also dynamically
activate or deactivate certain rules, as exemplified in Section 2.4.2.

3.5.2 Chronicle recognition

Chronicle recognition [47, 48] stems from work in the domain of artificial
intelligence and knowledge representation, and addresses the detection of
a certain type of event patterns called chronicles. A chronicle is specified
by a set of events that must occur and a set of temporal constraints over
their respective occurrence times. Furthermore, it can contain assertions
stating that a certain property must hold during an interval with start
and end times given by two of the constituent event occurrences, and
finally a set of forbidden events that invalidates the pattern should they
occur within the specified interval. Figure 3.4 gives an example of a
chronicle specification, in a somewhat simplified syntax. The full syntax
also includes specifications of the desired reaction and occurrence criteria
for the primitive events.

The chronicle descriptions are translated into graphs of temporal
constraints, in a preprocessing phase. The online detection mechanism
manages a collection of partially satisfied chronicles, and their respec-
tive temporal constraints graph. When a primitive event occurs, it is
included in partial chronicles that still wait for that event, if this is al-

3.5 Additional work on event notification 49

chronicle E {
A occurs at time a1

A occurs at time a2

B occurs at time b
2 < a2 − a1 ≤ 6
a1 < b < a2

no C occurrence in [a1, b]
}

Figure 3.4: Chronicle specification example (simplified syntax).

lowed by the temporal constraint graph. Partial chronicles that contain
a currently open interval of non-occurrence of this event are invalidated,
i.e., removed from the collection. Invalidation can also be triggered when
a certain time point is reached, if it is the case that no future occurrence
can satisfy the temporal constraints.

Before an occurrence is included in a partial chronicle, the chron-
icle is duplicated, and the occurrence is only included in one of the
copies. Thus, the collection will investigate the possibility that the cur-
rent occurrence eventually will contribute to the detection of the whole
chronicle, but also, in parallel, the cases where some other occurrence is
used in its place. As a result, chronicle recognition can detect pattern
instances that overlap in time (see Section 2.4.7).

Chapter 4

The Event Algebra

This chapter presents the syntax and semantics of the proposed event
algebra, and establishes algebraic laws and other significant properties.
The most important consideration when developing the algebra has been
that the formal meaning of a pattern specification should differ as little
as possible from the informal, expected behaviour, without preventing
detection with bounded memory. The semantics is interval based to
ensure that operators obey desired algebraic laws, and resource efficiency
is addressed by means of a declarative restriction policy, similar in style
to a parameter context.

The algebra is primarily intended for online detection, although the
bounded memory property makes it an interesting candidate also for
offline detection over very large event sequences. It provides overlapping
detection, meaning that pattern instances are detected also when they
are temporally overlapping. Primitive events can have parameters, i.e.,
additional information associated with the individual occurrences, and
simultaneously occurring primitive events is supported.

4.1 Preliminaries and syntax

We assume a discrete time model, but the declarative semantics of the
algebra could be used with a dense time model as well, under restrictions
that prevent primitive events that occur infinitely many times in a finite
time interval.

51

52 Chapter 4. The Event Algebra

Definition 4.1. The temporal domain T is the set of natural numbers.

Definition 4.2. Let P be a finite set of identifiers that represent the
primitive event types that are available to the system.

Definition 4.3. If A ∈ P, then A is a primitive event expression. If A
and B are event expressions, and τ ∈ T , then A∨B, A+B, A−B, A;B
and Aτ are composite event expressions.

Informally, a disjunction A∨B represents that either of A and B
occurs. A conjunction means that both events have occurred, in any
order and possibly at different times, and is denoted A+B. The negation,
denoted A−B, occurs when there is an occurrence of A during which
there is no occurrence of B. A sequence A;B is an occurrence of A
followed by an occurrence of B. Finally, there is a temporal restriction
Aτ which occurs when there is an occurrence of A shorter than τ time
units.

Example 4.1. Continuing the running example from the introduction,
we consider a system with a button B, a pressure alarm P and a temper-
ature alarm T, where some action should be performed every time the
button is pressed twice within two seconds, unless either of the alarms
occurs in between. For this system we have P = {B,P,T}, and the de-
scribed situation can be defined by the expression (B;B)2 sec−(P∨T) in
the algebra. �

Occurrences are represented by event instances. Since the informa-
tion associated with an occurrence varies between different applications,
we define an underlying abstract framework rather than providing a
single concrete representation. Primitive event occurrences are instanta-
neous and atomic, but composite occurrences are associated with time
intervals rather than single time points. As discussed in Section 2.4.8,
this is required in order to achieve some of the desired algebraic proper-
ties.

The interval of an event instance e is captured by the functions
start(e) and end(e), where end denote the time of occurrence, and the
full interval from start(e) to end(e) represents the smallest interval con-
taining everything that caused e to occur. The framework also contains a
constructor operator⊕ by which composite instances can be constructed.
E.g., each instance of A;B will be constructed from one instance of A
and one instance of B.

4.1 Preliminaries and syntax 53

Definition 4.4. An instance framework consists of:

• a domain D of event instances;

• a commutative and associative function ⊕ : D ×D → D;

• a function start : D → T with start(e⊕e′) = min(start(e), start(e′))
for any e, e′ ∈ D ; and

• a function end : D → T with end(e ⊕ e′) = max(end(e), end(e′))
for any e, e′ ∈ D.

Example 4.2. For systems where no additional information is associ-
ated with event occurrences, event instances can simply be represented
as start and end time tuples. This would correspond to an instance
framework where:

• D = {〈s, e〉 | s, e ∈ T };

• 〈s, e〉 ⊕ 〈s′, e′〉 = 〈min(s, s′),max(e, e′)〉;

• start(〈s, e〉) = s; and

• end(〈s, e〉) = e.

�

Example 4.3. In some applications it is useful to tag event occurrence
with additional information, e.g., to be used in the responding action.
For A ∈ P, we let dom(A) denote the domain of values associated with
occurrences of A, and define the following instance framework:

• D is the powerset of {〈p, υ, τ〉 | p ∈ P, υ ∈ dom(p), τ ∈ T };

• e⊕ e′ = e ∪ e′;

• start(e) = min({τ | 〈p, υ, τ〉 ∈ e}); and

• end(e) = max({τ | 〈p, υ, τ〉 ∈ e}).

In our example system, the temperature alarm occurrences might carry
the measured temperature value, while the pressure alarm is less sen-
sitive and only indicate whether the pressure is too high or too low.
The button instances carry no additional information, which is rep-
resented by a dummy value ⊥ in the framework. This corresponds

54 Chapter 4. The Event Algebra

to dom(T) = R, dom(P) = {high, low} and dom(B) = {⊥}. Then
{〈T, 38.5, 6〉}, {〈P, low, 4〉} and {〈P, low, 4〉, 〈B,⊥, 6〉} are examples of
event instances in this framework. �

For some applications, it might be more convenient to use a construc-
tion operator that does not satisfy the commutativity and associativity
requirements. Most results presented in this thesis hold for such frame-
works as well (the exceptions are discussed in Section 4.3, on page 60).

Together, all occurrences of a certain event (primitive or composite)
form an event stream. We require that primitive event occurrences are in-
stantaneous, and that the occurrences of a primitive event are separated
in time, although several primitive events can occur simultaneously. An
interpretation represents a particular scenario, as it captures one of the
possible ways in which the primitive events can occur.

Definition 4.5. An event stream is a set of event instances. A primitive
event stream is an event stream S for which the following holds:

1. ∀e (e ∈ S ⇒ start(e) = end(e))

2. ∀e ∀e′ ((e ∈ S ∧ e′ ∈ S ∧ end(e) = end(e′)) ⇒ e = e′)

Definition 4.6. An interpretation is a function I mapping each iden-
tifier in P to a primitive event stream.

Example 4.4. Using the framework from Example 4.2, the following
interpretation corresponds to a particular scenario with two occurrences
of T and one occurrence each of P and B:

I(B) = {〈6, 6〉} I(P) = {〈4, 4〉} I(T) = {〈1, 1〉, 〈6, 6〉}

In the more detailed framework of Example 4.3, the same scenario might
be represented as

I(B) = {{〈B,⊥, 6〉}}

I(P) = {{〈P, low, 4〉}}

I(T) = {{〈T, 38.2, 1〉}, {〈T, 38.5, 6〉}}

�

The naming convention is to use S, T and U for event streams, and
A, B and C for event expressions. Lower case letters are used for event
instances. In general, s belongs to the event stream S, and a to an event
stream defined by A, etc.

4.2 Semantics 55

4.2 Semantics

The following functions over event streams form the core of the algebra
semantics, as they define the basic meaning of the five operators.

Definition 4.7. For event streams S and T , and for τ ∈ T , define:

dis(S, T) = S ∪ T

con(S, T) = {s⊕ t | s ∈ S ∧ t ∈ T}

neg(S, T) = {s | s ∈ S ∧ ¬∃t(t ∈ T ∧ start(s) ≤ start(t)∧

end(t) ≤ end(s))}

seq(S, T) = {s⊕ t | s ∈ S ∧ t ∈ T ∧ end(s) < start(t)}

tim(S, τ) = {s | s ∈ S ∧ end(s)− start(s) ≤ τ}

The semantics of the algebra is defined by recursively applying the cor-
responding function for each operator in the expression.

Definition 4.8. The meaning of an event expression for a given inter-
pretation I is defined as follows:

[[A]]I = I(A) if A ∈ P

[[A∨B]]I = dis([[A]]I , [[B]]I)

[[A+B]]I = con([[A]]I , [[B]]I)

[[A−B]]I = neg([[A]]I , [[B]]I)

[[A;B]]I = seq([[A]]I , [[B]]I)

[[Aτ]]I = tim([[A]]I , τ)

To simplify the presentation, we will use the notation [[A]] instead of
[[A]]I when the choice of I is obvious or arbitrary.

Example 4.5. Let I be the interpretation defined in Example 4.4. This
scenario gives the following result, for the simple framework and for the
framework with values, from Examples 4.2 and 4.3, respectively:

Simple framework Framework with values

[[B∨P]]I = {〈4, 4〉, 〈6, 6〉} {{〈P, low, 4〉}, {〈B,⊥, 6〉}}

[[P+T]]I = {〈1, 4〉, 〈4, 6〉} {{〈P, low, 4〉, 〈T, 38.2, 1〉},

{〈P, low, 4〉, 〈T, 38.5, 6〉}}

[[T;B]]I = {〈1, 6〉} {{〈T, 38.2, 1〉, 〈B,⊥, 6〉}}

[[(P+T)−B]]I = {〈1, 4〉} {{〈P, low, 4〉, 〈T, 38.2, 1〉}}

[[(P+T)2]]
I = {〈4, 6〉} {{〈P, low, 4〉, 〈T, 38.5, 6〉}}

56 Chapter 4. The Event Algebra

Figure 4.1 presents this scenario graphically. �

Time: 0 1 2 3 4 5 6

Primitives: -T P TB

B∨P -

P+T -

T;B -

(P+T)−B -

(P+T)2 -

Figure 4.1: Graphical representation of Example 4.5.

These definitions result in an algebra with simple semantics and intu-
itive algebraic properties, but which can not be implemented efficiently.
In particular, the sequence and conjunction operators result in many
simultaneous occurrences, and detecting all of them correctly requires
that all occurrences of some constituent events are stored throughout
the system lifetime.

Example 4.6. Figure 4.2 shows the detection of the expression T+P.
Whenever there is an occurrence of T it should be combined with all
previous occurrences of P to create instances of T+P, and vice versa.
Thus, every occurrence of T and P must be stored for future use. �

To deal with resource limitations, we introduce a formal restriction
policy that defines a subset of instances that must be detected. The
basic idea is to ignore simultaneous occurrences, while at the same time
retaining the desired properties of the semantics.

The restriction policy is defined as a binary relation res over event
streams, where res(S, S′) means that S′ is a valid restriction of S. Al-
ternatively, it can be seen as a non-deterministic restriction function, or
a family of acceptable restriction functions. Rather than computing [[A]]
for a given event expression A, an implementation of the algebra should
compute an event stream S′ for which res([[A]], S′) holds.

4.2 Semantics 57

Time: 0 1 2 3 4 5 6

Primitives: -T T P P T

T+P -

Figure 4.2: All occurrences of T+P.

Definition 4.9. For two event streams, S and S′, res(S, S′) holds if the
following conditions hold:

1. S′ ⊆ S

2. ∀s (s ∈ S ⇒ ∃s′(s′ ∈ S′∧start(s) ≤ start(s′)∧end(s) = end(s′)))

3. ∀s, s′ ((s ∈ S′ ∧ s′ ∈ S′ ∧ end(s) = end(s′)) ⇒ s = s′)

Example 4.7. Figure 4.3 shows the detected instances of (T+P);B
in a particular scenario, and two valid restrictions S′

1 and S′
2 (i.e., both

res([[(T+P);B]], S′
1) and res([[(T+P);B]], S′

2) hold). To see this, consider
first the two instances with end time 4. The third criterion in the defin-
ition of res demands that only one of them is included in the restricted
stream. The first and second criteria states that one of them must be
included, and that we must in fact select the one that starts at time
2. In the same way, from the three instances with end time 6 we must
include exactly one in the restricted stream, and it must be one of the
two with start time 2. The choice between them, however, is arbitrary,
and thus there are two valid restrictions, S′

1 and S′
2. �

For the user of the algebra, an important property of this policy is
that at any time when there is one or more occurrences of A according
to the semantics defined above, one of them will be detected (as ensured
by the second criterion).

The fact that it is always an instance with maximum start time that
is detected, is probably less significant to the user. However, this choice
is crucial since it allows the restriction policy to be applied recursively
to all subexpressions, without affecting the overall result. In order to

58 Chapter 4. The Event Algebra

Time: 0 1 2 3 4 5 6

Primitives: -P T P B P B

(T+P);B -

S′
1 -

S′
2 -

Figure 4.3: All occurrences of (T+P);B, and the two valid restricted
streams S′

1 and S′
2.

get the desired efficiency, all parts of an expression must be detected in
an efficient way, and this is possible if the restriction policy is applied to
each subexpression. This would normally require a user of the algebra
to understand how the restrictions in different subexpressions interfere
with each other, and how they affect different operator combinations. To
avoid this, the restriction policy has been designed to support the fol-
lowing theorem, which ensures that applying the restriction to all subex-
pressions gives a result which is valid also for the case when restriction
is applied only at the top level. Thus, to the user, the restriction policy
is applied only once to the whole expression, but a detection algorithm
can freely apply it to the subexpressions as well.

Theorem 4.1. If res(S, S′) and res(T, T ′) hold, than for any event
stream U and τ ∈ T the following implications hold:

• res(dis(S′, T ′), U) ⇒ res(dis(S, T), U)

• res(con(S′, T ′), U) ⇒ res(con(S, T), U)

• res(neg(S′, T ′), U) ⇒ res(neg(S, T), U)

• res(seq(S′, T ′), U) ⇒ res(seq(S, T), U)

• res(tim(S′, τ), U) ⇒ res(tim(S, τ), U)

4.3 Properties 59

Proof. The proof can be found in Appendix A.

Although a single stream may have several valid restrictions, they all
share an important characteristic: They are equivalent with respect to
instance start and end times.

Proposition 4.2. If res(S, T) and res(S, T ′) then for each t ∈ T there
exists a t′ ∈ T ′ with start(t) = start(t′) and end(t) = end(t′).

Proof. Since T ⊆ S, t∈S. By the second condition in the definition of
res, there exists some t′ ∈ T ′ such that start(t)≤ start(t′) and end(t)=
end(t′). We also have t′ ∈ S, and thus there is some t′′ ∈ T such
that start(t′)≤ start(t′′) and end(t′) = end(t′′). According to the third
condition in the definition of res this implies t = t′′, which means that
we have start(t)≤start(t′)≤start(t) and thus start(t′)=start(t).

4.3 Properties

To aid a user of this algebra, we present a selection of algebraic laws.
These laws facilitate formal and informal reasoning about the algebra
and a system in which it is embedded, and show to what extent the op-
erators behave according to intuition. For this, we first define expression
equivalence.

Definition 4.10. For event expressions A and B we define A ≡ B to
hold if [[A]]I = [[B]]I for any interpretation I.

Trivially, ≡ is an equivalence relation. Moreover, the following propo-
sition shows that it satisfies the substitutive condition, and thus defines
structural congruence over event expressions.

Proposition 4.3. If A ≡ A′, B ≡ B′ and τ ∈ T , then we have A∨B ≡
A′∨B′, A+B ≡ A′+B′, A;B ≡ A′;B′, A−B ≡ A′−B′ and Aτ ≡ A′

τ .

Proof. This follows directly from Definition 4.8.

The laws presented later in this section identify expressions that are
semantically equivalent with respect to the operator semantics, but in
order to deal with resource limitations, we expect an implementation of
the algebra to compute an event stream S such that res([[A]], S), rather
than the full [[A]] stream. Since res is a predicate and not a function,

60 Chapter 4. The Event Algebra

detecting A might potentially yield a different stream than detecting A′,
even when A ≡ A′. Consequently, it should be clarified to what extent
the restriction policy affects expression equivalence.

Proposition 4.4. If A ≡ A′ and res([[A]], S), then res([[A′]], S).

Proof. Since A ≡ A′ implies that [[A]]=[[A′]], this holds trivially.

Thus, A ≡ A′ ensures that for any implementation consistent with
the restriction policy, the detected occurrences of A is always a valid
result for A′ as well. Any reasoning based on the algebra semantics and
the restriction policy, and not on the details of a particular detection
algorithm, will be equally valid for equivalent expressions.

The next proposition ensures that although the detection of A and
A′ may not be exactly identical, they must be equivalent with respect
to start and end times.

Proposition 4.5. If A ≡ A′, res([[A]], S) and res([[A′]], S′), then for any
s ∈ S there exists a s′ ∈ S′ with start(s) = start(s′) and end(s) =
end(s′).

Proof. This follows straightforwardly from Proposition 4.2.

The algebraic properties are given in the theorems below. Derived
laws are indicated by an asterisk (∗), and the proofs can be found in
Appendix A. For instance frameworks with an construction operator
that does not satisfy the commutativity and associativity requirements,
all laws except number 3 (requires commutativity), 5 and 6 (require
associativity) still hold. Note that the laws derived from these three laws
(8, 13, 21, 30 and 32) hold anyway, since they can be proven individually.

Theorem 4.6. For event expressions A, B and C, the following laws
hold:

1. A∨A ≡ A

2. A∨B ≡ B∨A

3. A+B ≡ B+A

4. A∨(B∨C) ≡ (A∨B)∨C

5. A+(B+C) ≡ (A+B)+C

6. A;(B;C) ≡ (A;B);C

7. (A∨B)+C ≡ (A+C)∨(B+C)

∗8. A+(B∨C) ≡ (A+B)∨(A+C)

9. (A∨B);C ≡ (A;C)∨(B;C)

10. A;(B∨C) ≡ (A;B)∨(A;C)

4.3 Properties 61

Theorem 4.7. For event expressions A, B and C, the following laws
hold:

11. (A∨B)−C ≡ (A−C)∨(B−C)

12. (A+B)−C ≡ ((A−C)+B)−C

∗13. (A+B)−C ≡ (A+(B−C))−C

14. (A−B)−C ≡ A−(B∨C)

∗15. (A−B)−B ≡ A−B

∗16. (A−B)−C ≡ (A−C)−B

17. (A;B)−C ≡ ((A−C);B)−C

18. (A;B)−C ≡ (A;(B−C))−C

Theorem 4.8. For event expressions A and B, and τ ∈T , the following
laws hold:

19. (A∨B)τ ≡ Aτ∨Bτ

20. (A+B)τ ≡ (Aτ +B)τ

∗21. (A+B)τ ≡ (A+Bτ)τ

22. (A−B)τ ≡ Aτ−B

23. (A−B)τ ≡ (A−Bτ)τ

24. (A;B)τ ≡ (Aτ ;B)τ

25. (A;B)τ ≡ (A;Bτ)τ

26. A ≡ Aτ if A ∈ P

27. (Aτ)τ ′ ≡ Amin(τ,τ ′)

∗28. (Aτ)τ ′ ≡ (Aτ ′)τ

Finally, we introduce the notion of an empty event that never occurs,
and laws related to this.

Definition 4.11. Let the constant 0 denote the empty event, semanti-
cally defined as [[0]]I =∅ for any interpretation I.

Theorem 4.9. For an event expression A the following laws hold:

29. 0∨A ≡ A

∗30. A∨0 ≡ A

31. 0+A ≡ 0

∗32. A+0 ≡ 0

33. A−A ≡ 0

34. 0−A ≡ 0

35. A−0 ≡ A

36. 0;A ≡ 0

37. A;0 ≡ 0

38. 0τ ≡ 0

Proof. These laws follow straightforwardly from the operator semantics
and the definition of 0.

Alternatively, 0 can be defined as shorthand for an expression A−A,
where A is an arbitrary event expression (compare with law 33).

Chapter 5

Realisation and Resource
Analysis

A primary ambition when designing the algebra has been to ensure that
it can be implemented in such a way that bounds on memory foot-
print and processing time can be determined statically. As discussed
in Section 4.2, the restriction policy is introduced to deal with resource
problems associated with the declarative semantics. With this policy,
most operators can be given bounded implementations straightforwardly.
However, the following example illustrates why this is not the case for
the sequence operator, and outlines how we address the problem.

Example 5.1. Consider an event expression A;B, where A and B
are composite expressions. Figure 4.2 illustrates a scenario where at
time 10, six previous occurrences of A has been detected. When b1 is
detected at time 12, the sequence operator semantics specifies that it can
be matched with any of a1 . . . a4 to form an instance of A;B. However,
the restriction policy stipulates that the resulting instance should be one
with maximum start time, and thus a4 is the only valid choice.

The problem is that at time 10, we do not know which of the six A
instances that will be the best match for some future B occurrence. In
fact, we know that a3 will not be used, since any B instance starting
after the end of a3 also starts after the end of a2, and since the restric-
tion policy requires that the combination with maximum start time is
selected, a2 will always be preferred over a3. Each of the remaining five

63

64 Chapter 5. Realisation and Resource Analysis

Time: 0 2 4 6 8 10 12 · · ·

A -

a3
a2 a5

a1 a4

a6

B -
b1

A;B -
a4 ⊕ b1

Figure 5.1: Graphical representation of Example 5.1.

A instances, however, may be the only valid alternative for some future
B instance, and hence all of them have to be stored by a naive detection
algorithm.

Our approach to this problem is to propagate not only full detections
of B, but also the possible start times of future B occurrences, to the
mechanism responsible for detecting the A;B sequence. If, at time 10,
we know that the start time of all future instances of B will be 6, 9 or
greater than 10, then it suffices to store a2, a4 and a6. Fortunately, the
number of simultaneously active “possible start times” can be bounded,
which allows a bounded memory implementation of the algebra. �

This chapter first presents an imperative detection algorithm based
on this idea, and shows that this algorithm correctly implements the
algebra semantics and the restriction policy. The algorithm is analysed
with respect to time and memory complexity, and experiments are pre-
sented that investigate the actual worst case time and memory usage for
randomly generated expressions.

5.1 Detection algorithm

Figure 5.2 presents a detection algorithm that, for a given event ex-
pression E, detects instances of an event stream S for which res([[E]], S)
holds. The algorithm is executed once every time tick, i.e., once for each
element in T , and computes the current instance of E from the current
instances of the primitive events, and from stored information about past
occurrences. This time driven execution style simplifies the presentation
and analysis of the algorithm, but it is clearly not an optimal strategy

5.1 Detection algorithm 65

in resource constrained systems where events occur rarely with respect
to the granularity of the temporal domain. For this reason, Section 5.3
describes how this algorithm can be used in a more efficient, event driven
setting.

Throughout this chapter, E denotes the event expression that is to
be detected. The numbers 1 . . . m are assigned to the subexpressions of
E in an arbitrary bottom-up order, and we let Ei denote subexpression
number i. Consequently, we have Em =E and E1∈P. The symbol ε is
used to represent a non-occurrence, and we define start(ε)=end(ε)=−1
to simplify the algorithm.

The variables used in the algorithm can be divided into three cate-
gories (see Table 5.1). Persistent variables store information that must
be remembered from one time tick to the next in order to detect the event
properly. Since each subexpression requires its own persistent variables,
they are indexed from 1 to m. Auxiliary variables are used to pass infor-
mation from a subexpression to its parent node in the expression tree.
In particular, ai is used to store the current instance of Ei, and thus am

contains the output of the algorithm after each execution. The auxiliary
variables are indexed in the same way as the persistent variables. Fi-
nally, there are temporary variables that are used locally within a single
subexpression in a single tick. These are not indexed, indicating that
the content is never used outside that scope.

Table 5.1: Variables used in the detection algorithm.

Category Variable Type Initial value

Persistent li, ri instance ε

Qi instance set ∅

ti time −1

Auxiliary ai instance

Si time set ∅

Temporary t time

e, e′ instance

Q′ instance set

66 Chapter 5. Realisation and Resource Analysis

for i from 1 to m

if Ei ∈ P then

if there is a current instance e of Ei then ai := e

else ai := ε

if Ei = Ej∨Ek then

if start(aj)≤start(ak) then ai := ak else ai := aj

Si := Sj ∪ Sk

if Ei = Ej +Ek then

if start(li)<start(aj) then li := aj

if start(ri)<start(ak) then ri := ak

if li =ε ∨ ri =ε ∨ (aj =ε ∧ ak =ε) then ai := ε

else if start(ak)≤start(aj) then ai := aj ⊕ ri

else ai := li ⊕ ak

Si := Sj ∪ Sk ∪ {start(li), start(ri)}\{−1}

if Ei = Ej−Ek then

if ti <start(ak) then ti := start(ak)

if ti <start(aj) then ai := aj else ai := ε

Si := Sj

if Ei = Ej ;Ek then

e′ := ε

foreach e in Qi ∪ {li}

if end(e)<start(ak) ∧ start(e′)<start(e) then e′ := e

if e′ 6=ε then ai := ak ⊕ e′ else ai := ε

Q′ := ∅

foreach t in Sk

e′ := ε

foreach e in Qi ∪ {li}

if end(e)<t ∧ start(e′)<start(e) then e′ := e

Q′ := Q′ ∪ {e′}

Qi := Q′

if start(li) < start(aj) then li := aj

Si := Sj ∪ {start(e) | e ∈ Qi ∪ {li}}\{−1}

if Ei = (Ej)τ then

if end(aj)−start(aj)≤τ then ai := aj else ai := ε

Si := Sj

Figure 5.2: The detection algorithm. For an event expression E, the
content of am at the end of each time tick form an event stream A(m)
which satisfies res([[E]],A(m)). Initially, ti =−1, li =ri =ε and Si =Qi =
∅ for 1≤ i≤m.

5.1 Detection algorithm 67

After executing the algorithm, the variable ai contains the detected
occurrence of Ei in the current tick, or ε if there is none. To connect this
with the algorithm semantics, we define an event stream corresponding
to each ai variable.

Definition 5.1. For 1 ≤ i ≤ m, define

A(i) = {e | e is the value of ai at the end of some time tick ∧ e 6= ε}

Thus, the output of the algorithm is the event stream A(m), and
as established by Theorem 5.5 in the next section, this event stream
satisfies res([[E]],A(m)).

The algorithm is designed for detection of arbitrary expressions, and
the main loop selects dynamically which part of the algorithm to execute
for each subexpression. For systems where the event patterns of interest
are static and known at compile-time, the main loop can be unrolled
and the top-level conditionals, as well as all indices, can be statically
determined. Also, the assignments of Si variables can be removed for all
subexpressions except those occurring somewhere within the right-hand
argument of a sequence operator. A concrete example of this is given in
Figure 5.3.

if there is a current instance e of T then a1 := e else a1 := ε

if there is a current instance e of P then a2 := e else a2 := ε

if start(l3)<start(a1) then l3 := a1

if start(r3)<start(a2) then r3 := a2

if l3 =ε ∨ r3 =ε ∨ (a1 =ε ∧ a2 =ε) then a3 := ε

else if start(a2)≤start(a1) then a3 := a1 ⊕ r3

else a3 := l3 ⊕ a2

if there is a current instance e of B then a4 := e else a4 := ε

if t5 <start(a4) then t5 := start(a4)

if t5 <start(a3) then a5 := a3 else a5 := ε

Figure 5.3: Statically simplified algorithm for detecting (T+P)−B. Ini-
tially, t5 =−1 and l3 =r3 =ε.

68 Chapter 5. Realisation and Resource Analysis

5.2 Algorithm correctness

In order to prove that this algorithm correctly implements the algebra
semantics and the restriction policy, we first introduce a number of pred-
icates that capture different correctness properties of the algorithm. We
proceed by proving the correctness of a single operator at a single time
tick, for each of these properties. The full correctness proof is organised
as two nested inductions: an inner induction over the subexpressions of
E, and an outer induction over time.

5.2.1 Correctness properties

To achieve bounded memory, the sequence operator requires some knowl-
edge about what is stored in the persistent variables of its subexpressions.
This information is propagated by the Si variables, and the following
predicate indirectly defines their meaning. Informally, it states that the
start time of any detected non-instantaneous event was already propa-
gated in the previous tick, and that the Si variables are not updated
with arbitrary values, only with the current time.

Definition 5.2. Define pcorr(i, τ) to hold iff the following criteria hold:

1. ai = ε ∨ start(ai) = τ ∨ start(ai) ∈ S

2. ∀t (t ∈ Si ⇒ (t = τ ∨ t ∈ S))

where S was the content of Si at the start of the current time tick.

The operators that require information about what has happened in
the past, store this state information in the persistent variables ri, li, ti
and Qi. The following predicate defines what they should contain at the
start of time tick τ .

Definition 5.3. Define state(i, τ) as follows:

• For Ei ∈ P, Ei = Ej∨Ek and Ei = Ej
τ ′ state(i, τ) holds trivially.

• For Ei = Ej +Ek, state(i, τ) holds iff

◦ li is an element in {e | e ∈ A(j) ∧ end(e) < τ} ∪ {ε} with
maximum start time; and

◦ ri is an element in {e | e ∈ A(k) ∧ end(e) < τ} ∪ {ε} with
maximum start time.

5.2 Algorithm correctness 69

• For Ei = Ej−Ek, state(i, τ) holds iff

◦ ti is the maximum element in {start(e) | e ∈ A(k) ∧
end(e) < τ} ∪ {−1}.

• For Ei = Ej ;Ek, state(i, τ) holds iff

◦ li is an element in {e | e ∈ A(j) ∧ end(e) < τ} ∪ {ε} with
maximum start time; and

◦ for each t ∈ Sk such that {e | e ∈ A(j) ∧ end(e) < t} is
non-empty, Qi contains an element with maximum start time
from that set.

The fact that the output of the algorithm at a single time tick is
consistent with the restriction policy, is captured by what can be thought
of as a pointwise restriction predicate, and a lemma that relates it to the
ordinary restriction policy.

Definition 5.4. For an event instance e, an event stream S and τ ∈ T ,
define valid(e, S, τ) to hold if:

(

e ∈ S ∧ end(e) = τ ∧ ¬∃s(s ∈ S ∧ end(s) = τ ∧ start(e) < start(s))
)

∨
(

e = ε ∧ ¬∃s(s ∈ S ∧ end(s) = τ)
)

Lemma 5.1. For an event stream S and event instances e0, e1, e2, . . .
such that valid(eτ , S, τ) holds for any τ ∈ T , let S′ = {e0, e1, e2, . . .}\{ε}.
Then res(S, S′) holds.

Proof. By the definition of valid, it follows that S′ ⊆ S. Next, take
an arbitrary s ∈ S, and let τ = end(s). Since valid(eτ , S, τ), we must
have eτ 6= ε, and thus eτ ∈ S′. From the definition of valid, we know
that start(s) ≤ start(eτ). We also have end(eτ) = end(s), which means
that the second requirement in the definition of res is satisfied. Finally,
all elements in S′ have different end times. Together, this implies that
res(S, S′) holds.

The following correctness property represents that the detected instance,
or non-occurrence, of Ei is correct with respect to the instances detected
for the subexpressions.

70 Chapter 5. Realisation and Resource Analysis

Definition 5.5. Define acorr(i, τ) as follows:

• For Ei ∈ P, acorr(i, τ) holds iff valid(ai, [[E
i]], τ)

• For Ei = Ej∨Ek, acorr(i, τ) holds iff valid(ai,dis(A(j),A(k)), τ)

• For Ei = Ej+Ek, acorr(i, τ) holds iff valid(ai, con(A(j),A(k)), τ)

• For Ei = Ej−Ek, acorr(i, τ) holds iff valid(ai,neg(A(j),A(k)), τ)

• For Ei = Ej ;Ek, acorr(i, τ) holds iff valid(ai, seq(A(j),A(k)), τ)

• For Ei = Ej
τ ′ , acorr(i, τ) holds iff valid(ai, tim(A(j), τ ′), τ)

5.2.2 Correctness results

Focusing first on the result of a single subexpression at a single time tick,
we show that each of the three correctness properties hold under some
given assumptions.

Lemma 5.2. Assume that state(i, τ) held at the start of the current
tick and that pcorr(n, τ) and acorr(n, τ) hold for all 1 ≤ n < i. Then
state(i, τ + 1), pcorr(i, τ) and acorr(i, τ) hold after executing the loop
body once.

Proof. The proof can be found in Appendix A.

The correctness lemma above is used in the inductive step of the two
nested induction proofs over the expression and over time, respectively.

Lemma 5.3 (Inner induction). Let τ be the current time, and assume
that for each 1 ≤ i ≤ m state(i, τ) held at the start of this tick. Then
state(i, τ+1) and acorr(i, τ) holds for each 1 ≤ i ≤ m after executing the
whole detection algorithm.

Proof. In addition to to the assumption about state, assume that after
executing the loop body n− 1 times, pcorr(i, τ) and acorr(i, τ) hold for
all 1 ≤ i < n. As a base case, this clearly holds for n = 1. Then
state(n, τ +1), pcorr(n, τ) and acorr(n, τ) hold after loop iteration n,
according to Lemma 5.2. By induction, the lemma holds.

Lemma 5.4 (Outer induction). For any i such that 1 ≤ i ≤ m, and
any τ ∈ T acorr(i, τ) holds after executing the algorithm at ticks 0 to τ .

5.3 Algorithm improvements 71

Proof. For the base case we see that state(i, 0) holds in an initial state
where ti = −1, li = ri = ε and Qi = ∅. For the inductive case: Assume
that for some τ ∈ T , state(i, τ) holds at the start of tick τ . Then, ac-
cording to Lemma 5.3, state(i, τ+1) and acorr(i, τ) holds after execution
the algorithm, and thus state(i, τ+1) holds at the start of tick τ+1. By
induction over time the lemma thus holds for any τ ∈ T .

So far, we have only shown that the result produced for Ei is correct
with respect to the result produced by its subexpressions. Now, we take
the final step and prove the correctness of the algorithm in the following
theorem.

Theorem 5.5. For any i such that 1 ≤ i ≤ m, res([[Ei]],A(i)) holds.

Proof. Assume that for some i, res([[En]],A(n)) holds for all 1 ≤ n < i.
For the base case, this trivially holds for i = 1. According to Lemma 5.4,
acorr(i, τ) holds at the end of tick τ . For Ei ∈ P, we know from the
definition of acorr that valid(ai, [[E

i]], τ) holds at the end of tick τ , and
then Lemma 5.1 ensures res([[Ei]],A(i)). If Ei = Ej ∨Ek, the defini-
tion of acorr implies that valid(ai,dis(A(j),A(k)), τ) holds at the end
of tick τ , so by Lemma 5.1 we have res(dis(A(j),A(k)),A(i)). Accord-
ing to Theorem 4.1, this together with the induction assumption that
res([[Ej]],A(j)) and res([[Ek]],A(k)) hold (since j < i and k < i), implies
res(dis([[Ej]], [[Ek]]),A(i)) and thus res([[Ei]],A(i)). The proofs for the
remaining operators are analogous.

5.3 Algorithm improvements

To simplify presentation and correctness analysis, the algorithm uses
set variables, and a time driven execution style was assumed where the
algorithm is executed once every time instant. However, these design
alternatives also have an impact on the efficiency of the algorithm, which
must be addressed and resolved.

Considering first the issue of time triggered execution, we can see
that in time ticks where no primitive events occur, none of the persistent
variables are changed by the algorithm, and the ai variables all become
ε. In fact, this means that A(m) remains the same if the algorithm is
executed only in ticks when at least one of the primitive events in E has
occurred. Consequently, the algorithm presented here can be used with
little or no changes also in an event driven setting where the execution

72 Chapter 5. Realisation and Resource Analysis

of the algorithm is triggered by primitive event occurrences rather than
at each tick. If primitive events are non-simultaneous and always trigger
the algorithm in the same order as they occur, the algorithm can be used
without changes. Otherwise, some precautions must be taken to ensure
that occurrences are processed in the right order.

This improvement could be taken further by processing only subex-
pressions that are affected by the current primitive event occurrences.
The identification of what parts of the tree to consider could either be
done statically with respect to the primitive events, or dynamically based
also on the detection result of the subexpressions. The details of this
optimisation technique is yet to be investigated, though, and it is further
discussed as future work in Section 8.3.3.

Turning to the set variables, we notice that the worst part of the algo-
rithm, from a complexity point of view, is the nested foreach constructs
in the sequence part. This source of complexity can be avoided, without
compromising the correctness of the algorithm, if the set variables Si

and Qi are represented as ordered structures.

First, note that Qi never contain fully overlapping instances. New
values that are added to Qi always come from li, and whenever li is
updated, both the start and end time of the new instance is greater than
those of the previous instance. Thus, if Qi is ordered with respect to
end times, it will also be ordered with respect to start time.

The time complexity of the Si assignments is not affected by the
ordered representation. For the sequence part of the algorithm, this
follows from the fact that Qi is ordered with respect to start times. The
assignment of Qi is done by means of a temporary set variable Q′ that is
populated by the best match, from the instances currently stored in Qi

and li, for each element in Sk. In the original detection algorithm, this
is performed by the two nested foreach constructs shown in Figure 5.4,
but when Qi and Sk are ordered, it can be accomplished by a single
pass over the two structures together, as shown in Figure 5.5. An array
style notation is used for references to individual elements of an ordered
structure, e.g., Sk[1] for the first element of Sk.

5.4 Complexity analysis

Most parts of the algorithm are fairly straightforward to analyse with
respect to time and memory usage, but we need to establish bounds on

5.4 Complexity analysis 73

foreach t in Sk

e′ := ε
foreach e in Qi ∪ {li}

if end(e) < t ∧ start(e′) < start(e) then e′ := e
Q′ := Q′ ∪ {e′}

Figure 5.4: Part of the original sequence operator algorithm.

Qi := Qi ∪ {li}
sp := length(Sk)
qp := length(Qi)
while sp > 0 ∧ qp > 0

t := Sk[sp]
e := Qi[qp]
if end(e) < t then

Q′ := Q′ ∪ {e}
sp := sp− 1

else qp := qp− 1

Figure 5.5: Improved version of the algorithm snippet in Figure 5.4 for
the case when Qi and Sk are ordered.

the set variables Si, Qi and Q′. For this, let |X| denote the maximum
size of a set variable X.

Proposition 5.6. If Ei = Ej ;Ek then |Qi| ≤ |Sk|, otherwise |Qi| = 0.
We also have |Q′| = max1≤i≤m(|Qi|).

Proof. This follows straightforwardly from the assignments of Qi and Q′

in the algorithm.

Proposition 5.7. For any i such that 1 ≤ i ≤ m, we have |Si| <
subexp(Ei) where subexp(A) denote the number of subexpressions in A.

Proof. In the base case i = 1, we have Ei ∈ P and thus |Si| = 0 and
subexp(Ei) = 1, which clearly satisfies the claim. For the inductive case
we assume that |Sn| < subexp(En) holds for all 1 ≤ n < i. If Ei ∈ P we

74 Chapter 5. Realisation and Resource Analysis

can repeat the proof for the base case. If Ei = (Ej)τ , then |Si| = |Sj |,
and since j < i, the assumption implies that |Sj | < subexp(Ej). Thus,
we have |Si| < subexp(Ej) < subexp(Ei). In the remaining cases where
Ei is a binary operator applied to Ej and Ek, we have j < i and k < i
and thus the assumption implies that |Sj | ≤ subexp(Ej)− 1 and |Sk| ≤
subexp(Ek) − 1. From the assignments of Si in the algorithm, we see
that |Si| ≤ |Sj | + |Sk| + 2 holds for all operators (for sequence, we use
the fact that |Qi| ≤ |Sk|). Thus, |Si| ≤ |Sj | + |Sk| + 2 ≤ subexp(Ej) +
subexp(Ek) < subexp(Ei), which concludes the proof.

The memory and time complexity of the algorithm also depends on
the particularities of the instance framework. Hence, we introduce the
parameter ω to denote the maximum memory needed to store an in-
stance in the current framework. An instance of a subexpression of E is
constructed from at most dm/2e primitive instances (one from each leaf
in the expression tree). Thus, assuming that primitive instances are of
bounded size, and that the size of a ⊕ b is bounded whenever the size
of a and b is, the instance size is bounded. For the time analysis, we
assume that the time it takes to perform the ⊕ operation is proportional
to ω, or asymptotically lower. As previously, m denotes the number of
subexpressions in E.

Theorem 5.8. The memory complexity of the algorithm is O(m2ω).

Proof. Since subexp(Ei) ≤ m for any 1 ≤ i ≤ m, it follows from Propo-
sitions 5.6 and 5.7 that |Q′| ≤ m and that |Si| ≤ m and |Qi| ≤ m for
any 1 ≤ i ≤ m. This means that the algorithm stores at most O(m2)
instances and time values.

Theorem 5.9. The time complexity of the algorithm is O(m2ω).

Proof. The algorithm performs m iterations of the main loop, each iter-
ation executing one of the operator specific parts of the loop body. Only
the code for the sequece operator contains loop structures, so for the
other operators the primary source of complexity are the assignments of
the set variables Si, and they can be performed in O(|Si|ω), also when
the Si variables are ordered. For the sequence operator, there are two
loop structures, each with a body that runs in O(ω) time. The foreach
loop iterates |Qi| + 1 times, and the while loop |Qi| + 1 + |Sk| times.
Finally, the set assignment can be performed in O(|Si|ω) time when Qi

is ordered with respect to start time. Altogether, since Propositions 5.6

5.5 Memory and execution time analysis 75

and 5.7 ensures that |Qi|, |Si| and |Sk| are less than or equal to m, the
code for each operator can be executed in O(mω) time. Thus, the time
complexity of the whole algorithm is O(m2ω).

Example 5.2. In the simple framework of Example 4.2, ω is a constant
factor, and thus the time and memory complexity are O(m2). In the
framework of Example 4.3, the instance size is bounded by dm/2e, and
thus the memory and time complexity of the algorithm are O(m3). �

5.5 Memory and execution time analysis

The complexity analysis presented in the previous section illustrates how
the resource demands of the detection algorithm, in terms of memory
and time, increase as the size of expressions increases. This indicates
the general usefulness of the proposed algebra for large expressions, but
it does not provide much insight into the resource demand associated
with the detection of a particular pattern. For example, the complexity
analysis regards the worst possible expression of a given size, but most
expressions have significantly lower resource demands since different op-
erator combinations contribute very differently to the overall time and
memory usage. The amount of memory required to detect a certain
pattern is of interest for embedded systems where resources are limited,
but also for safety-critical systems where the absence of errors caused by
memory shortage must be guaranteed statically. Systems with real-time
constraints, e.g., where an external event has to be responded to within
a given time, require information about the execution time of differ-
ent parts of the system in order to guarantee that these constraints are
satisfied. In particular, schedulability and timeliness analysis typically
assume that the worst case excecution time (WCET) is known for each
critical activity in the system [28]. For details on WCET analysis, the
reader is referred to the recent survey by Wilhelm et al. [153].

There are two ways in which an event pattern can be analysed with
respect to the time and memory needed to detect it: via synthesised
code or based directly on the event expression. In systems where event
patterns are static, and specified during the development of the sys-
tem, specific detection code can be synthesised for each expression, as
discussed in Section 5.1. This code can be analysed with standard analy-
sis tools to acquire information about memory footprint and execution

76 Chapter 5. Realisation and Resource Analysis

time. The generated detection code does not utilise any dynamic mem-
ory management, neither by explicit memory allocation, nor by function
calls or parameter passing via the runtime stack. Furthermore, the code
is characterised by a very simple control flow. For example, there are no
subroutine or function calls, and all loops are trivially bounded by the
size of some static data structure. This means that the code does not
contain any of the constructs that Puschner and Koza [125] identify as
the main obstacles when determining the execution time of a program.
Thus, existing techniques and standard tools for execution time analysis,
e.g., SWEET [154], aiT [2] or Bound-T [24] should be applicable.

Alternatively, abstract notions of memory footprint and worst case
execution time can be derived directly from the expression and the in-
stance framework. Memory can be quite closely represented by the num-
ber of basic type variables, i.e., integers, booleans, etc., that are used
by the detection algorithm, abstracting from the exact amount of mem-
ory needed to store them on a particular hardware. Similarly, but less
accurately, worst case response time can be expressed as the number
of assignments, comparisons, arithmetical operations, etc., that are ex-
ecuted in the worst case. This alternative is clearly the only option for
systems where patterns are created dynamically, and where runtime de-
cisions are made based on the resource demands of the patterns, e.g.,
which node in a distributed system that should handle the detection of
a recently created pattern. It can also be useful for systems with static
patterns, either because the target hardware has not yet been deter-
mined (or it is not covered by the available analysis tools), or to provide
quick estimates that can be revised once the code has been generated.

Figure 5.6 presents parts of an analysis algorithm that computes
abstract estimates of the memory footprint and worst case execution
time of a given event expression, and the whole algorithm is given in
Appendix B. If analyse(E) returns 〈m, t〉, this means that the detection
of E requires m memory units and takes t units of time.

The algorithm assumes that time instants, array indices and integers
all require one memory unit, and that sets are represented straightfor-
wardly by ordered structures with direct access to individual elements.
For the time analysis, it is assumed that comparisons, arithmetic op-
erations and assigning a time instant variable take one time unit. The
time it takes to assign an instance variable is the same as the size of
that variable, and a set assignment S′ := S takes 1 + |S| ∗ s time units,
where s is the time it takes to assign a single element of S. In addi-

5.5 Memory and execution time analysis 77

analyse(E) = 〈m + 1, t + 2〉
where
〈s, i,m, t〉 = analyse aux(E, false)

analyse aux(Ej∨Ek, sn) = 〈s, i,m, t〉
where
〈sj , ij ,mj , tj〉 = analyse aux(Ej , sn)
〈sk, ik,mk, tk〉 = analyse aux(Ek, sn)
if sn then s = sj + sk else s = 0
i = unionsize(ij , ik)
m = mj + mk + 1 + s + i
t = tj + tk + 5 + s + i

analyse aux(Ej +Ek, sn) = 〈s, i,m, t〉
...

Figure 5.6: Time and memory analysis algorithm. If analyse(E) returns
〈m, t〉, this means that the detection of E requires m memory units and
takes t units of time.

tion to the complexity improvement described in the previous section
(see Figure 5.5), we assume that the Si variables are assigned only in
subexpressions occuring within the right-hand argument of a sequence
operator.

For example, consider a disjunction operator, and let i and s denote
the instance size and size of Si for this subexpression. Then the operator
requires i units of memory for the ai variable, and 1+s for the Si variable
(s for the stored time instants, and one extra to store the current size
of Si). Thus, the algorithm adds 1 + s + i to the memory usage of
the subexpressions, for a disjunction operator. When the s variable
is computed, the algorithm takes into account the optimisation of Si

variable assignments, as represented by the boolean parameter sn. On
the top level, s is false, and it becomes true only when entering the
right-hand subexpression of a sequence.

To account for different instance frameworks, and the type system
of the underlying language, the following analysis primitives are used in
the algorithm:

78 Chapter 5. Realisation and Resource Analysis

Definition 5.6.

• primsize(A) denotes the maximum instances size of the primitive
event A.

• compsize(x, y) denotes the size of a⊕ b when x and y are the sizes
of a and b, respectively.

• unionsize(x, y) denotes the size of an instance of A∨B when the
size of A and B instances are x and y, respectively.

5.5.1 Experiments

Based on the analysis algorithm, we have conducted a few experiments
to investigate the resource requirements of the algorithm in more detail.
Expressions containing m subexpressions were created randomly, with
equal probability for the five operators to occur, and with a random
structure. For each expression, the memory footprint and the worst
case execution time were analysed, assuming first the simple instance
framework from Example 4.2, where no additional data is associated
with occurrences, and then for the framework with values, defined in
Example 4.3. Each m value is represented by 10.000 random expressions,
and the 95% confidence intervals for the mean values are less than 2%
of the y-value for all points.

Experiment 1: For the memory analysis, we make the following assump-
tions: In the simple framework, all instances are represented by just the
start and end time, and thus require 2 memory units, which is repre-
sented by the following analysis primitives:

primsize(A) = compsize(x, y) = unionsize(x, y) = 2

In the value framework, we assume that all primitives have value
domains with elements that can be represented in a single memory unit.
Thus, primitive instances require 3 units (time, id and value), and the
size of a composite instance a ⊕ b is the summed size of a and b. For
disjunctions, we assume that the instance size equals the largest instance
size of the two constituent events plus an additional unit of memory, as
would be the case if a discriminated union type [67] is used in a C
implementation. Altogether, this is captured by:

primsize(A) = 3, compsize(x, y) = x+y, unionsize(x, y) = max(x, y)+1

5.5 Memory and execution time analysis 79

Figures 5.7 and 5.8 show the mean and maximum memory footprint
of the sample expressions, for different m values. The experiment shows
that the detection algorithm memory usage is fairly low, also for com-
plex expressions. The detection of an average expression consisting of
51 subexpressions requires less than 250 units of memory in the simple
framework and roughly the double when all primitives carry values. Over
the whole experiment, the maximum value is approximately twice as high
as the average for the simple framework, and four times as high in the
value framework. Although the actual worst case might be significantly
higher than the maximum within the samples of 10.000 expressions in-
vestigated in the experiment, this indicates that expressions with high
memory demand are very rare. �

Experiment 2: The execution time analysis is based on the same analy-
sis primitives as the memory experiment above. Figures 5.9 and 5.10
show the mean worst case execution time, as well as the maximum, for
each m value. The detection of an average expression consisting of 51
subexpressions takes less than 650 time units in the simple framework,
and less than 980 in the value framework. As for memory, we note that
the difference between average and maximum is relatively small. For the
simple framework, maximum is approximately three times higher than
average, and in the value framework it is four times higher. �

These experiments show that, although there might exist expressions
with very high resource demands, these are very rare. None of the in-
vestigated expressions have memory footprint and execution time values
that prevent them from being used in an embedded setting. Finally, it
should be pointed out that the second experiment concerns worst case
execution time. The execution time of an average tick depends on the
actual arrival frequencies and patterns of the primitive events.

80 Chapter 5. Realisation and Resource Analysis

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50 55

M
em

or
y

Subexpressions

Mean

Max

Figure 5.7: Memory usage in the simple framework.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30 35 40 45 50 55

M
em

or
y

Subexpressions

Mean

Max

Figure 5.8: Memory usage in the value framework.

5.5 Memory and execution time analysis 81

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40 45 50 55

T
im

e

Subexpressions

Mean

Max

Figure 5.9: Worst case execution times in the simple framework.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40 45 50 55

T
im

e

Subexpressions

Mean

Max

Figure 5.10: Worst case execution times in the value framework.

Chapter 6

Event Pattern Triggered
Tasks

An embedded system can respond to external events either by period-
ically checking at predetermined points in time whether the event has
occurred, or by setting up a task that is explicitly activated by the event
in question [96, 156]. Generally speaking, the time triggered alternative
results in more deterministic system behaviour, which is typically desir-
able for analysis purposes. However, for situations that require a quick
response but occur relatively rarely, the time triggered approach can be
prohibitively inefficient [28].

In this chapter, we address situations where the system should react
to some complex pattern of event occurrences, rather than to individual
occurrences. We introduce the concept of pattern triggered tasks, and
show how they can be incorporated into an ordinary scheduling frame-
work of periodic and sporadic tasks, which includes providing timeliness
analyses for such mixed task sets.

6.1 Triggering tasks by patterns

A straightforward way to construct an embedded system that reacts to
a particular event pattern would be to include a designated task for this
reaction, and make this task responsible for carrying out the response
under the right conditions. In an event triggered setting, the task would

83

84 Chapter 6. Event Pattern Triggered Tasks

be executed periodically, at a frequency determined by the urgency of
the response and the available resources. If the system is event triggered,
the task can be activated by the individual primitive events that are part
of the pattern.

A drawback of this straightforward approach when used in an event
triggered system is that the execution time of the task varies a lot, since
the response code is only executed when the full pattern is detected. If
pattern occurrences are rare compared to the occurrences of individual
primitive events, analysis techniques based on a single WCET value will
be very pessimistic, meaning that the system must be significantly under-
utilised in order to statically guarantee timeliness of all tasks. Splitting
the task into two tasks, one that is responsible for pattern detection and
one that carries out the response, allows more accurate resource usage
estimates, but does not solve the problem. With no information about
the pattern, we must assume that in the worst case any event occurrence
results in a detection of the full pattern, and hence, that the response
task executes as often as the detection task.

We propose a task model where triggering patterns are defined explic-
itly rather than implicitly in the task code. This means that the patterns
are available for analysis, in particular to establish how frequently the
pattern can occur in the worst case, which allows a more efficient use of
resources.

In the following presentation, triggering patterns are specified by
event expressions from our algebra. The algebra allows the developer
to construct a declarative specification of the situations that trigger a
response, which might provide better support for reasoning about the
overall system behaviour than a procedural approach. As described in
Chapter 5, efficient detection code with bounded worst case memory
footprint and execution time can be automatically synthesised from any
event expression in the algebra. However, the concept of pattern trig-
gered tasks, and the proposed schedulability analysis for such tasks, can
be used with other pattern specification techniques as well, as long as
they provide the same type of pattern occurrence rate information. This
is further discussed in Section 8.3.4.

6.1.1 Task model and assumptions

We assume an event triggered system, and the task model includes both
periodic tasks and tasks that are triggered by a particular pattern of

6.1 Triggering tasks by patterns 85

sporadic events. For simplicity, ordinary sporadic tasks are treated as a
special case of pattern triggered tasks where the pattern consists of just
a single event. In our task model, a task is characterised by the following
parameters:

• Worst case execution time (Ci). The longest time it could
take to execute the code of the task, assuming that it is not inter-
rupted.

• Relative deadline (Di). The time, relative to activation, when
the task must be finished.

• Period (Ti). The time between two consequitive activations of
a periodic task.

• Event expression (Ei). A specification of the situation under
which a pattern-triggered task should be activated.

We also make the following assumptions about the system:

• Preemptive scheduling. A task can be interrupted by the sched-
uler at any point during its execution, for example to allow another
task to execute. Later, the scheduler can resume execution of the
interrupted task.

• Hard deadlines. A task that does not meet its deadline is as-
sumed to be of no use, or possibly harmful, to the system.

• No self-suspension. Tasks execute until completion, unless pre-
empted by another task.

• No kernel overhead. The overhead due to scheduling activities,
task switches, etc. is assumed to be negligible.

• Independent tasks. Tasks are not subject to precedence con-
straints, and do not share resources.

Example 6.1. As a running example, we consider a system with three
tasks, two of which are periodic. The third task is triggered by the event
expression (A;B)+C. The basic parameters of this example task set is
presented in Table 6.1. �

86 Chapter 6. Event Pattern Triggered Tasks

Table 6.1: The task set from Example 6.1.

Task ID Ci Ti Di Ei

T1 10 50 30 –

P2 20 – 100 (A;B)+C

T3 30 200 200 –

6.1.2 Realisation

Event pattern detection could be provided as a service in the under-
lying operating system, in which case realisation of pattern triggered
tasks would be straightforward. For use in standard real-time operating
systems, where pattern detection is not provided, there are two ma-
jor alternatives, depending on how complex the event pattern is. For
relatively simple patterns, meaning that the execution time of the corre-
sponding detection algorithm is sufficiently short, pattern detection can
be performed by the interrupt handler that is invoked when an interrupt
signal arrives. Interrupt handlers typically execute at a higher prior-
ity than ordinary tasks, independently of scheduling policy, etc. Thus,
the worst case interference from interrupt handling must be taken into
account in the schedulability analysis, and having interrupt handlers
with long worst case execution time may cause critical tasks to become
non-schedulable. The impact from interrupt handling on schedulability
has been addressed by Gonzalez Harbour et al. [71] and by Jeffay and
Stone [79], for fixed and dynamic priority scheduling, respectively.

Alternatively, detection can be performed at task level, which means
that it is subject to the same scheduling policy as other tasks. Rather
than performing pattern detection, the interrupt handler only activates
all tasks that are triggered by an event expression that includes the
event in question, providing the ID of the primitive event, a time stamp
and any additional data associated with the occurrence, as a part of
the activation. When selected for execution by the scheduler, a pattern
triggered task first executes the event detection mechanism, based on
the event ID and time stamp received from the interrupt handler at
activation. The code for this phase is generated automatically from the
event expression, based on the detection algorithm from Section 5.1.

6.1 Triggering tasks by patterns 87

If the detection algorithm signals a successful detection of the whole
pattern, the task proceeds with executing the response code, otherwise
it terminates.

The reason for including the conceptually different activities of event
detection and response in the same task is related to the fact that the
original deadline of a pattern triggered task is relative to the pattern oc-
currence, not the time at which the pattern is detected and the response
task is released [21]. Consequently, the execution of a response should
not be delayed by the processing of primitive instances that occur later
than the instance that caused the whole pattern occurrence, and thus
triggered the response. Although this could be achieved also if detection
and response were handled as separate tasks, by means of task prop-
erties such as deadlines and priorities, the analysis would have to take
the temporal relation between them into consideration, leading to more
complicated and possibly less exact analysis.

Auto. code

Interrupt handlers Pattern triggered task

User code
A

B

C

Carry out the

proper response

Detect

(A;B)+C

Figure 6.1: Task level realisation of a task triggered by the pattern
(A;B)+C.

Figure 6.1 shows the realisation of the pattern triggered task from the
previous example. The interrupt handler associated with each primitive
event simply activates the task, providing the ID of the event and a time
stamp. When selected for execution by the scheduler, the task executes
the detection algorithm for (A;B)+C and, if a pattern occurrence was
detected, executes the proper reaction to the pattern.

Henceforth, we assume that detection is performed at task level. The
main motivation is that there are no deadlines associated with the detec-
tion as such, only with the combined activity of detection and reacting
to a detected occurrence of the pattern [21]. Performing pattern detec-
tion at interrupt priority potentially interferes with critical tasks without
improving the response time of the desired reaction relative to the oc-
currence of the pattern.

88 Chapter 6. Event Pattern Triggered Tasks

6.1.3 Scheduling and schedulability

The role of a scheduler is to decide when to execute the different tasks,
so as to satisfy any constraints on precedence, timeliness, etc. The aim
of schedulability analysis is to determine whether a task set is schedu-
lable under a particular scheduling policy, meaning that there are no
circumstances under which a task violates its constraints.

In general, providing such guarantees require knowledge about the
resources, in particular processor time, each task may demand over time.
For periodic tasks, this is provided by period and WCET, but for aperi-
odic activities to be included in the guarantee, some assumptions have
to be made about the environment to limit the frequency of the con-
cerned events. For example, by assuming a minimum interarrival time
for the events that activates a task, in which case the task is classified
as sporadic.

Similarly, for event pattern triggered task to be analysable, we have
to be able to make assumptions about the frequency of the primitive
events that are part of the pattern. If no such information is available,
it is difficult to guarantee the timeliness of these tasks or any task that
may be affected by them. In such a scenario, pattern triggered tasks can
only be served on best-effort basis with no guarantees, although there
are ways to ensure that they do not interfere with the timely execution
of periodic tasks, e.g., using some server based scheduling method. A
survey of such techniques is given by Buttazzo [30].

We focus on the case when timely execution of pattern triggered tasks
must be guaranteed as well as that of periodic tasks, and thus assume
that the primitive events are sporadic, i.e., that the minimum interarrival
time for each primitive event is known.

Definition 6.1. The minimum interarrival time of primitive events is
represented by the function mint :P →Z

+. An interpretation I is con-
sistent with a mint function if for all A ∈ P, two elements a and a′ in
I(A) satisfy mint(A) ≤ |end(a′)− end(a)| whenever a 6= a′.

The occurrences of a pattern are in general not sporadic even though
the primitive events are. For a simple example, consider two sporadic
events A and B. Regardless of the minimum interarrival times of the two
events, an occurrence of A can be immediately followed by an occurrence
of B, resulting in two occurrences of the pattern A∨B separated by just
a single clock tick.

6.1 Triggering tasks by patterns 89

Nevertheless, the frequency at which a pattern occurs can be bounded,
but in a more general way than with a single minimum interarrival time
value. For example, we can safely state that in any interval of length
min(mint(A),mint(B)), there can be at most two occurrences of the
pattern A∨B. This resembles the concept of bursty aperiodic tasks [83]
which are triggered by events that can occur arbitrarily close in time, but
which are bounded by a constraint specifying that there can be at most
n occurrences within any interval of length l. For patterns, however, it
is possible to be more specific than the two parameters of bursty tasks
permit. First, we note that a pattern always occur at the same time
as one of the constituent primitive events. In fact, only a subset of the
constituent events can directly result in an occurrence of the pattern.
For example, A;B always occur at the same time as some B occurrence.
The following definition formalises this idea.

Definition 6.2. Let prim(E) denote the primitive events of E, and
term(E) the terminating primitive events of E, defined as follows:

term(A) = {A} if A ∈ P
term(A∨B) = term(A) ∪ term(B)
term(A+B) = term(A) ∪ term(B)
term(A;B) = term(B)
term(A−B) = term(A)
term(Aτ) = term(A)

Proposition 6.1. For any event expression E, interpretation I and
event instance e such that e ∈ [[E]]I , there exists a primitive event A ∈
term(E) and an event instance a ∈ I(A) with end(e) = end(a).

Proof. This follows from the algebra semantics, specified in Definitions 4.7
and 4.8.

Definition 6.3. Let wcet(E) denote the worst case execution time as-
sociated with the detection of E.

The worst case detection execution time wcet(E) can be derived ei-
ther from the generated code using standard WCET analysis tools (e.g.,
SWEET [154], aiT [2] or Bound-T [24]) or by instantiating an abstract
WCET estimate derived directly from the expression, expressed as the
number of assignments, comparisons, arithmetical operations, etc., that
are executed in the worst case. This is further discussed in Section 5.5.

90 Chapter 6. Event Pattern Triggered Tasks

The central idea in the schedulability analysis of systems with pat-
tern triggered tasks is that a task responding to occurrences of a pattern
E requires the same amount of computation resources over time as a
particular set of sporadic tasks. Conceptually, we view those task in-
stances that respond to pattern occurrences that was terminated by an
occurrence of a particular primitive event A as instances of a separate
task that those terminated by B.

Definition 6.4. Let Γ be the original task set, and define the auxiliary
taskset Γaux as the smallest set of tasks such that

• all periodic tasks in Γ are in Γaux;

• for each pattern triggered task ti ∈ Γ, and each A ∈ prim(Ei), Γaux

contains a sporadic task tk with Tk = mint(A), Dk = Di and

Ck =

{

wcet(Ei) + Ci if A ∈ term(Ei)
wcet(Ei) if A 6∈ term(Ei)

Example 6.2. In order to analyse the task set from Example 6.1,
we make the following assumptions about minimum interarrival times
and worst case detection execution time: mint(A) = 60, mint(B) = 70,
mint(C) = 200 and wcet((A;B)+C) = 5.

Note that with the straightforward approach described initially, where
pattern detection is performed implicitly within the task code, this task
set is not schedulable even if the detection overhead is disregarded. Dur-
ing any time interval of length 4200, 84 instances of T1 and 21 instances
of T3 are released for execution. Furthermore, there can be 70, 60 and
21 occurrences of A, B and C, respectively, potentially triggering 151
instances of P2. Thus, the total amount of execution that is released
during the interval is 84 ∗ 10 + 21 ∗ 30 + 151 ∗ 20 = 4490. If 4490 units
of computation can be released in any interval of length 4200, the task
set is clearly not schedulable.

Table 6.2 depicts the auxiliary task set, constructed according to
Definition 6.4. Since prim((A;B)+C) = {A, B, C}, the pattern trig-
gered task will result in three sporadic tasks in the auxiliary taskset,
with minimum interarrival times given by these three primitive events,
respectively. From term((A;B)+C) = {B, C} it follows that the WCET
of the original response task should be included only in those two tasks,
i.e., in t3 and t4. �

6.2 Fixed priority scheduling 91

Table 6.2: The auxiliary task set from Example 6.2.

From task ti Ci Ti Di

T1 t1 10 50 30
t2 5 60 100

P2 t3 25 70 100
t4 25 200 100

T3 t5 30 200 200

The tasks in the auxiliary task set are either periodic or sporadic,
which means that existing schedulability analysis theory can be applied.
The remaining sections investigate this in more detail for two important
scheduling approaches, based on fixed and dynamic priorities, respec-
tively. The basic idea, though, should be possible to utilise in other
scheduling frameworks as well.

6.2 Fixed priority scheduling

In fixed priority scheduling (FPS), each task is assigned a priority at
development time. At runtime, the executing task is always one with
highest priority from those that are currently available for execution.

For periodic tasks, priorities are often assigned according to the rate
monotonic principle, meaning that a task with shorter period should
have a higher priority. When the task set includes tasks that have a
deadline shorter than the period, a deadline monotonic priority assign-
ment can be used instead, where priorities are assigned based on dead-
lines rather than periods. Priorities can also be assigned in a way as to
avoid certain runtime scenarios or to achieve some other goal, for exam-
ple to mimic the execution of a given offline schedule, or to minimise the
number of preemptions [46].

Liu and Layland [93] showed that under certain assumptions, e.g.,
that tasks are independent and that Di = Ti, rate monotonic is an
optimal fixed priority scheduling policy, meaning that any task set that
is schedulable by some fixed priority assignment can be scheduled by rate
monotonic as well. A similar proof for deadline monotonic is provided
by Leung and Whitehead [89].

92 Chapter 6. Event Pattern Triggered Tasks

Joseph and Pandya [81] introduced response time analysis, a tech-
nique for establishing the worst case response time for tasks under FPS.
They considered a relatively simple task set, where tasks are indepen-
dent, have deadlines less than or equal to the period, etc, and their
work has later been extended in various ways in order to avoid these
restrictions, for example by Burns et al. [27] to account for scheduling
overhead, and by Sha et al. [138] to cover tasks that communicate via
shared resources. In particular, Tindell et al. [147] describe how the
standard response time analysis technique can be extended to deal with
the case when deadlines may be greater than the period. Since this is the
case in the analysis of pattern triggered task, a brief overview of their
approach is given.

For the simple task set in the standard response time analysis ver-
sion, the worst case response times occur when all tasks are released
simultaneously. For the case when several instance of a task can be ac-
tive at the same time, however, the impact from such a simultaneous
release can sometimes be higher on a subsequent instance than on the
instances that were released together.

To account for this, let L(Pi) denote the level Pi busy period, i.e.,
the maximum interval during which the processor continuously executes
tasks with priority higher or equal to Pi. The precise definition of busy
period, and an efficient algorithm for computing it, can be found for
example in the work by George et al. [63].

Assuming that one instance of each task is released at the start of the
busy period, and that subsequent instances are released with minimum
interarrival time, the instances of a task ti that arrive within the level
Pi busy period will arrive at times qTi, relative to the start of the busy
period, for q = 0, 1, . . . , bL(Pi)/Tic. These are the instances that must
be investigated in order to surely capture the worst case response time.
For each of them, the response time is computed, taking into account
the impact from higher priority task and from previous instances of ti.
The worst of these response times is the worst case response time of the
task.

6.2.1 Pattern triggered tasks under FPS

For fixed priority scheduling, we extend the task model from Section 6.1.1
with an additional parameter:

• Priority (Pi). The static priority level of the task.

6.2 Fixed priority scheduling 93

We also make the following assumption about the system:

• FIFO. Task instances that have the same priority are served in
the same order as they are released. Ties are broken arbitrarily.

In a situation when several primitive events occur before the first has
been processed, several instances of a pattern triggered task will be ac-
tive at the same time. Since they have the same priority, the FIFO
assumption is required to ensure that the primitive events are processed
in the correct order.

For the schedulability analysis, we let the definition of Γaux cover
priority as well, so that a sporadic tasks tk in Γaux that was generated
by a pattern triggered tasks ti in Γ inherits the priority, i.e., Pk = Pi.

Lemma 6.2. If Γaux is schedulable under FPS, then Γ is schedulable
under FPS.

Proof. We show that any sequence of Γ task arrivals can be mirrored by
a sequence of Γauxtask arrivals with the same arrival times, priorities and
execution times. Since the periodic tasks are the same in both tasksets,
the arrivals of periodic tasks in Γ can be mirrored by identical arrivals in
Γaux. For the pattern triggered tasks, we note that every instances of the
pattern triggered task ti from Γ is triggered by an occurrence of some
event in prim(Ei). Thus, the activation times of the pattern triggered
task can be mirrored by activations of the corresponding sporadic tasks
in Γaux.

Next, consider an individual instance of ti, triggered by an occurrence
of the event A. If A 6∈ term(Ei), then no occurrence of A can result in a
full occurrence of the pattern, according to Proposition 6.1, and thus the
ti instance only executes the detection algorithm and not the response,
which is consistent with the WCET of tk, which is Ck = wcet(Ei) when
A 6∈ term(Ei). For events in term(Ei), Γaux safely approximates Γ by
assuming that they always result in a full occurrence of the pattern.
Clearly, the execution time of the ti instance can not exceed wcet(Ei) +
Ci.

Altogether, this means that any Γ arrival sequence can be mirrored
by a Γaux arrival sequence, consisting of task instances with the same
arrival times, priorities and execution times. Thus, if Γaux is schedulable
under FPS, so is Γ.

To analyse the auxiliary task set, we must allow deadlines to be
larger than periods, as described above, but we also need to take into

94 Chapter 6. Event Pattern Triggered Tasks

consideration that tasks do not have unique priorities. In principle, we
modify the analysis of the qth instance of ti so that the interference from
equally priorities tasks released before this instance is taken into account
in the same way as the interference from previous instances of ti.

We denote by hp(i) and ep(i) the tasks of higher priority than ti,
and tasks of equal priority, respectively. Note that i ∈ ep(i) holds for
any task ti.

Definition 6.5. Let hp(i) = {j | Pj > Pi} and ep(i) = {j | Pj = Pi}.

Next, we define wi(q), which denotes the latest possible finishing
time, relative to the start of the busy period, of the qth instance of ti,
i.e., the instance arriving at time qTi.

Definition 6.6.

wi(q) =
∑

∀j∈ep(i)

(⌊

qTi

Tj

⌋

+ 1

)

Cj +
∑

∀j∈hp(i)

⌈

wi(q)

Tj

⌉

Cj

Note that, when ti has a unique priority, the first sum in the defin-
ition above becomes (q + 1)Ci, in which case the definition wi(q) is the
same as in the original formulation by Tindell et al. where priorities are
unique [147].

Finally, the worst case response time of ti is established as follows:

Definition 6.7.

ri = max
q=0,1,...,

⌊

L(Pi)

Ti

⌋

(wi(q)− qTi)

Proposition 6.3. The original task set Γ is schedulable if ri ≤ Di for
all tasks in Γaux.

Proof. The qth instance of task ti in the busy period is affected by two
types of interference: (1) computations at higher priority that are re-
leased before the instance finishes, and (2) computations at the same
priority that are released before the instance is released, or at the same
time.

The first category is accounted for by the summation over hp(i) in
the definition of wi(q), following Tindell et al. [147]. The second cate-
gory, together with the impact from the WCET of the instance itself,
is accounted for by the summation over ep(i) in the first term of the

6.2 Fixed priority scheduling 95

wi(q) definition. The qth instance of task ti is released at time qTi, and
by that time b(qTi)/Tjc+ 1 instances of tj has been released. Any task
instance with equal priority relesed after this time will not affect the
response time, according to the FIFO assumption.

If ri ≤ Di, then all instances of ti in the busy period meet their
deadlines, and thus Γaux is schedulable. According to Lemma 6.2, this
implies that Γ is schedulable.

Since wi(q) appears on both sides of the equation, it can not be
computed directly. Instead, a sequence of values, w0

i (q), w1
i (q), . . ., is

generated, each of which is used in the right hand side of the equation
when the next value in the sequence is computed. The process starts
with the initial value w0

i (q) = 0, and ends when a fixed point is found,
or when a value greater than qTi + Di is encountered, which indicates
that the response time exceeds the deadline.

w0
i (q) = 0

wn+1
i (q) =

∑

∀j∈ep(i)

(⌊

qTi

Tj

⌋

+ 1

)

Cj +
∑

∀j∈hp(i)

⌈

wn
i (q)

Tj

⌉

Cj

The summation over equally prioritised tasks is the same for all values
in the sequence. Also, the summation over higher priority tasks always
becomes 0 when w1

i (q) is computed in the first step, since w0
i (q) = 0.

Thus, the equations can be reformulated as follows:

w1
i (q) =

∑

∀j∈ep(i)

(⌊

qTi

Tj

⌋

+ 1

)

Cj

wn+1
i (q) = w1

i (q) +
∑

∀j∈hp(i)

⌈

wn
i (q)

Tj

⌉

Cj

Example 6.3. For the example task set, we assume that T1 has highest
priority, followed by P2 and finally T3. These priorities propagate to the
auxiliary task set, as shown in Table 6.3.

The table also presents the response time for each tasks, computed
according to the definitions above. Since ri ≤ Di for all tasks, the task
set is schedulable. For a full explanation of how these values are derived,
see Appendix C. �

96 Chapter 6. Event Pattern Triggered Tasks

Table 6.3: The auxiliary task set from Example 6.3, including response
times.

From task i Pi Ci Ti Di ri

T1 1 High 10 50 30 10

2 Mid 5 60 100 75

P2 3 Mid 25 70 100 75

4 Mid 25 200 100 75

T3 5 Low 30 200 200 190

6.3 Scheduling with dynamic priorities

As an alternative to assigning a priority to each task statically, priorities
can be based on task parameters that change dynamically, either from
one instance of a task to another, or continuously during execution,
e.g., the absolute deadline or remaining execution time. This requires
more support from the runtime platform, and possibly introduces some
additional overhead, but it can also allow a more efficient utilisation of
computational resources.

The most common dynamic priority policy is earliest deadline first
(EDF), in which the scheduler always selects a task for execution that
have the earliest absolute deadline from those that are currently active.
As shown by Dertouzos [45], EDF is optimal for preemptive, independent
tasks, meaning that if a task set is not schedulable by EDF, then it can
not be scheduled by any other scheduling policy either.

Chetto et al. [37] describe how EDF can be used for task sets with
precedence constraints by modifying release times and deadlines, and
Spuri [141] investigates the shedulability of tasks with shared resources
and release jitter. Buttazzo and Stankovic [31] augment EDF with an
online guarantee method to improve the behaviour of in overload situa-
tions, and Anderson et al. [13] use EDF for scheduling of multiprocessor
soft real-time systems.

6.3 Scheduling with dynamic priorities 97

6.3.1 Pattern triggered tasks under EDF

The realisation of pattern triggered task, described in Section 6.1.2, can
be used directly in an EDF scheduled system. When several instances of
a pattern triggered task are active at the same time, the fact that their
absolute deadlines follow the order in which they arrived guarantees that
primitive events are processed in the correct order.

For the schedulability anlaysis, we fist prove the following lemma:

Lemma 6.4. If Γaux is schedulable under EDF, then Γ is schedulable
under EDF.

Proof. Following the proof of Lemma 6.2, we can show that any Γ arrival
sequence can be mirrored by a Γaux arrival sequence consisting of task
instances with the same arrival times, deadlines and execution times.
Thus, if Γaux is schedulable under EDF, so is Γ.

Under EDF, the auxiliary task set can be analysed by existing tech-
niques without modification. We outline the principles below, and refer
to the literature for details and proofs [30, 63].

Definition 6.8. The processor utilisation U of a task set {t1 . . . , tn} is
defined by

U =
n

∑

i=1

Ci/Ti

Under the restriction that Di = Ti, the processor utilisation provides
a sufficient and necessary condition for schedulability [93], but when
deadlines and periods are unrelated, it only gives a necessary condition.

Proposition 6.5. If U > 1, then the task set is not schedulable.

Example 6.4. For the auxiliary task set in Example 6.2, we have the
following processor utilisation:

U = (10/50) + (5/60) + (25/70) + (25/200) + (30/200) ≈ 0.915

Since U ≤ 1, this does not help determine whether the auxiliary task
set is schedulable or not. However, if we for example want to investigate
if it would be possible to double the frequency of the task with lowest
priority, i.e., to change the value of T4 from 200 to 100, we get

U = (10/50) + (5/60) + (25/70) + (25/200) + (30/100) ≈ 1.07

98 Chapter 6. Event Pattern Triggered Tasks

which directly indicates that the auxiliary task set is not schedulable by
any scheduling policy if this change is made. �

If U ≤ 1, a more detailed analysis is required, in which deadlines are
taken into consideration. As shown by Liu and Layland [93] for task sets
where Di = Ti, and extended to less restricted task sets by Spuri [141]
and Ripoll et al. [128] independently, a given task set is schedulable
under EDF if and only if no deadline is violated during the busy period.

Thus, assume that all tasks are released at time 0, and that sub-
sequent instances are released according to the period or the minimum
interarrival time. To ensure schedulability, we must check for each ab-
solute deadline d within the following busy period that the total amount
of computation required to finished before d can be served within the
interval [0, d].

Definition 6.9. Let Γaux = {t1 . . . , tn}, with busy period L, and define

D = {d | d = qTi + Di, d ≤ L, 0 ≤ i ≤ n, q ≥ 0}

Definition 6.10. The processor demand in the first d time units of the
busy period, denoted by h(d), is defined as follows:

h(d) =
∑

Di≤d

(

1 +

⌊

d−Di

Ti

⌋)

Ci

Proposition 6.6. The original task set Γ is schedulable if h(d) ≤ d for
all d ∈ D.

Proof. We provide only an informal line of argumentation, and refer to
Baruah et al. [18] and Spuri [141] for details.

If a deadline violation can occur, it will manifest during the busy
period following the simultaneous release of all tasks. So, consider the
qth instance of ti, with a deadline d = qTi + Di within the busy period,
i.e., d ∈ D. In order for this instance to meet the deadline, all instances
with release time and absolute deadline in the interval [0, d], including
the instance itself, must be finished by the time d. This amount of
computation is represented by h(d). Thus, since there is no idle processor
time during the busy period, the instance will meet the deadline if and
only if h(d) ≤ d.

If h(d) ≤ d for each absolute deadline within the busy period, then
Γaux is schedulable, and according to 6.4, this implies that Γ is schedu-
lable.

6.3 Scheduling with dynamic priorities 99

This schedulability test can be performed more efficiently by reducing
the size of D in different ways that still guarantee that any overload
situation will manifest at one of the remaining absolute deadlines [159,
129]. An overview of these techniques is given by George et al. [63].

Example 6.5. For the auxiliary task set of our example, shown in
Table 6.2, we have a busy period L = 190, and the following absolute
deadlines must be investigated:

D = {30, 80, 100, 130, 160, 170, 180}

For each deadline in this set, we compute h(d) and check that h(d) ≤ d:

h(30) = 10 ≤ 30
h(80) = 20 ≤ 80
h(100) = 75 ≤ 100
h(130) = 85 ≤ 130

h(160) = 90 ≤ 160
h(170) = 115 ≤ 170
h(180) = 125 ≤ 180

Since all the above inequalities hold, the task set is schedulable under
EDF. This should not come as a surprise, since we previously showed
that it is schedulable with fixed priorities, and thus the optimality of
EDF ensures that it is schedulable under EDF as well.

A detailed description of how D and the h(d) values are derived can
be found in Appendix C. �

Chapter 7

Event Pattern Triggered
Components

SaveCCM is a component model intended for development of embedded
software for vehicular systems [6], developed in the SAVE project [134].
The targeted application domain makes resource efficiency a major con-
cern, which means that the run-time framework governing e.g., com-
ponent communication, must be particularly lightweight. Furthermore,
system behaviour should be predictable, both functionally and with re-
spect to timeliness and resource usage. An important characteristic of
SaveCCM is that the transfer of control between a set of components
is handled by explicit trigger ports. The way in which these ports are
connected, determines the order in which components execute.

This chapter presents how the component triggering in SaveCCM
can be extended by means of an event algebra, allowing components
to be triggered by complex event patterns in addition to clock signals
and individual external events. Separating the detection of triggering
conditions from the definition of the triggered services permits more
general components and thus improves component reusability. Providing
event detection mechanisms within the component model means that
triggering conditions are explicitly available for system analysis at design
time. For example, more accurate timing information can be obtained
compared to implicit pattern detection within the components, which
can allow a higher utilisation of computational resources.

The extension has been integrated into an early SaveCCM tool pro-

101

102 Chapter 7. Event Pattern Triggered Components

totype by which a system description in XML format can be synthesised
into code for the real-time operating system RTXC [126]. It is also
possible to run the synthesised code in the simulation environment CC-
SimTech [106], for the purpose of testing and debugging.

7.1 SaveCCM syntax and semantics

The graphical notation of SaveCCM, presented in Figure 7.1, is based
on a modified subset of UML 2.0 component diagrams. The semantics
is formally defined by a two-step transformation, first from the full lan-
guage to a similar but simpler language called SaveCCM Core, and then
into timed automata with tasks. For details on the formal semantics,
see Carlson et al. [33].

Data input port

Trigger input port

Data- and trigger input port

Data output port

Trigger output port

Data- and trigger output port

<<SaveComp>>

Name

<<Switch>>

Name

<<Assembly>>

Name
Delegate

Component

Switch

Assembly

Figure 7.1: The graphical notation of SaveCCM.

In SaveCCM, systems are built from interconnected elements with
well-defined interfaces consisting of input- and output ports. The three
element categories; components, switches and assemblies, are described
below. The model is based on the control flow (pipes-and-filters) para-
digm, and an important feature is the distinction between data transfer
and control flow. The former is captured by connections between data
ports where data of a given type can be written and read, and the latter
by trigger ports that control the activation of components. A port can
also have both triggering and data functionality.

This separation of data and control flow allows components to ex-
change data without handing over the control, which simplifies commu-
nication between sub-systems running at different frequencies, and the

7.1 SaveCCM syntax and semantics 103

construction of feedback loops. Another aspect of explicit control flow is
that the resulting design is sufficiently analysable with respect to tem-
poral behaviour to allow analysis of schedulability, response time, etc.,
which is crucial to ensure correctness of real-time systems.

Components

Components are the main architectural element in SaveCCM. In addition
to input and output ports, the interface of a component contains a series
of quality attributes, such as (worst case) execution time information
for a number of target hardware configurations, reliability estimates,
safety models, etc. The quality attributes are used for analysis, model
extraction and for synthesis.

To achieve predictability and to facilitate analysis, components are
subject to a fairly restricted execution semantics. A component is ini-
tially inactive, and remains in this state until all input trigger ports have
been activated, at which point it switches to the executing state. In a
first phase of its execution, the component reads all input data ports.
It then performs the associated computations on the basis of this input
and possibly an internal state. When the computation phase is over, the
output is written to the output data ports. Finally, the input trigger
ports are reset and all outgoing trigger ports are activated, after which
the component returns to the idle state.

This restricted “read-execute-write” semantics ensures that once a
component is triggered, the execution is functionally independent of any
concurrent activity. In particular, a component produces the same out-
put with preemptive and non-preemptive scheduling, i.e., whether or not
a task may be interrupted by another task during its execution. Hence,
component execution can be abstracted by a single transfer function
from input values and internal state to output values.

Switches

Switches provide the means to change the component interconnection
structure, either statically for pre-runtime configuration, or dynamically,
e.g., to implement modes and mode switches. The switch specifies a num-
ber of connection patterns, i.e., partial mappings from input to output
ports. Each connection pattern is guarded by a logical expression over
the data available at the input ports of the switch, defining the condition

104 Chapter 7. Event Pattern Triggered Components

under which that pattern is active.

Unlike components, switches are not triggered. Instead, they respond
directly to the arrival of data or a trigger signal at an input port and
immediately relay it according to the currently active connection pat-
terns. Switches perform no computation other than the evaluation of
connection pattern guards.

Assemblies

Assemblies are encapsulated sub-systems. The internal components and
interconnections are hidden from the rest of the system, and can be
accessed only indirectly through the ports of the assembly. Like switches,
assemblies are not triggered. Data and trigger signals arriving at a port
of an assembly are immediately relayed via the outgoing connections.

Ports and Connections

Component input ports are one-place buffers with overwrite semantics,
as are switch input ports that occur in some connection pattern guard.
Other ports, in particular component output ports and assembly ports,
are just conceptual interaction points through which data passes.

Most connections are immediate, meaning that they represent loss-
less, atomic migration of data or trigger signals from one port to another,
but there are also complex connections for which characteristics such as
delay, information loss, etc., can be specified by timed automata.

Following UML 2.0, a connection from an assembly input port to an
input port of an internal element, or from an internal output port to an
assembly output port, is denoted by a delegation arrow, but semantically
they are equivalent to ordinary connections from output to input ports.

7.2 Event pattern triggering

On system level, the trigger port connections describe which of the com-
ponents that execute in response to a certain external event or periodic
activation, and restrict the order in which they may be executed. For
an individual component, however, the triggering signal can be seen as
an event to which the component should respond by executing. From
this perspective, the SaveCCM semantics only support the publishing

7.2 Event pattern triggering 105

<<SaveComp>>

<<Switch>>

<<Assembly>>

Figure 7.2: The triggering of this alarm assembly is forwarded to the
output trigger port only when the input data is outside a given range.

of a single event from each component, representing that the compo-
nent has finished its execution. This event is automatically published
by the underlying framework, and can not be explicitly managed by the
component.

Nevertheless, since switches allow dynamic rewiring of trigger port
connections based on values produced by the component, we can con-
struct assemblies that have some control over the output trigger ports.
The assembly is still inactive until triggered, and thus can not freely
activate the output trigger port at any time, but once triggered, it can
decide for each of the output trigger ports if the triggering should be
forwarded or not. For example, Figure 7.2 shows the design of an alarm
assembly with optional outgoing triggering. When triggered, the com-
ponent checks if the input is outside the range of acceptable values and
writes true or false to the output port, accordingly. The switch contains
a single connection from input to output, guarded by the boolean value
at the data port. Thus, the triggering signal is only forwarded from the
assembly if the value at the input data port is outside the range. To
the rest of the system, connecting to this trigger port corresponds to
subscribing to an alarm event.

7.2.1 Event elements

To incorporate event pattern detection into the component model, the
SaveCCM notation is extended with a new element, termed Event. An
event element has a number of named input trigger ports with or without
data capabilities. The input port names act as primitive events in a
collection of event expressions that specify the event patterns of interest,
and each expression is associated with an output trigger port which is
activated when an occurrence of that pattern is detected.

106 Chapter 7. Event Pattern Triggered Components

Pressure
sensor

Button

Temp.
sensor

10 Hz <<Assembly>>

Pressure

alarm

<<Assembly>>

Temperature

alarm

<<Event>>

(B;B)
2s

 - (PvT)

B

P

T

<<SaveComp>>

Response

<<Assembly>>

Control

Figure 7.3: An example of the extended SaveCCM syntax.

Example 7.1. Figure 7.3 shows an example of a system where the
event element is used. Continuing the example from previous chapters,
the desired behaviour is to carry out a particular response when the
button is pressed twice within two seconds, unless either of the alarms
occurs in between.

The two alarm assemblies read sensor values at a fixed frequency,
and signal an alarm via the output port if conditions are unsatisfactory.
The event element specifies the situation we are interested in, and when
this situation is detected, the appropriate response is carried out by the
designated component. �

The semantics of the event element is defined by a transformation
into standard SaveCCM constructs. The major part consists of one
component for each event expression, where the pattern detection is
performed. Code for these components is automatically generated from
the event expressions, following the detection algorithm presented in
Section 5.1. In addition, a number of auxiliary components are needed
to tweak the standard SaveCCM triggering semantics, and switches to
control whether the triggering should be forwarded to the output ports
or not.

Figure 7.4 illustrates this transformation by showing the semantic
equivalence of the event element in Figure 7.3. Formally, the semantics
is specified by Definition 7.1 below.

7.2 Event pattern triggering 107

Definition 7.1. The semantics of an event element with input ports
p1, . . . , pn, and output ports e1, . . . , em associated with event expressions
E1, . . . , Em, is defined to be the same as that of an assembly with the
same input and output ports, and the following internal structure:

• For each 1 ≤ i ≤ n, the assembly contains a component Ai with
one input trigger port ai and an output trigger port bi. In the case
when pi is a combined data and trigger port, Ai also has a data
output port ci. When triggered, Ai copies the data from ai to ci,
and writes the number i and a timestamp to bi.

• For each 1 ≤ j ≤ m, the assembly contains a component Dj with
one input trigger port fj and a data input port dji for each i such
that the name of pi is in prim(Ej). Dj has a single output data
output port gj and a trigger output port hj. When Dj is triggered,
it examines the value of fj to know which of the primitive events
the triggering corresponds to. It executes the detection algorithm
for Ej once. If an occurrence of Ej is detected, the associated
value is written to hj and true is written to gi. If no occurrence
is detected, false is written to gi.

• For each 1 ≤ j ≤ m, the assembly contains a switch Sj with an
input trigger port kj, an input data port sj, an output trigger port
oj, and a single connection pattern kj → oj guarded by sj.

• For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, the assembly contains the
following internal connections:

pi → ai (delegation)

bi → fj if dji exists

ci → dji if dji exists

gj → sj

hj → kj

oj → ej (delegation)

Also, port types are assigned as follows:

type(ai) = type(ci) = type(dji) = type(pi)

type(bi) = type(fj) = int

type(gj) = type(sj) = bool

type(hj) = type(kj) = type(oj) = type(ej)

108 Chapter 7. Event Pattern Triggered Components

<<SaveComp>> <<Switch>>

<<SaveComp>>
A3

<<SaveComp>>
A1

<<SaveComp>>
A2

S1

<<Assembly>>

D1

B

P

T

Figure 7.4: Translation of the event element in Figure 7.3 into ordinary
SaveCCM constructs.

To ensure that all primitive event occurrences are processed by the
detection mechanism, it must be guaranteed that a triggered component
never receives a new triggering signal before it becomes idle again. This
issue is not specific to the event pattern extension, and Åkerholm et
al. [6] describe how TIMES [12], a design and analysis tool for real-time
embedded systems based on the model checking tool Uppaal [88], can
be used to verify that all triggerings are preserved.

7.2.2 Synthesis

The synthesis of executable software from a SaveCCM system description
is performed in four steps: task allocation, attribute assignment, code
generation and compilation [7]. In the task allocation phase, triggering
connections are explored to identify components that can be fixed in a
static execution order without compromising the triggering semantics of
SaveCCM. Allocating such components to the same task can improve
performance, since data transfer between components in the same task
can be efficiently implemented by shared variables, and triggering is
reduced to procedure calls. For components in different tasks, commu-
nication is done via persistent message channels handled by the runtime
framework. Once the allocation of components to tasks is done, task
attributes can be derived from component attributes and connection in-
formation. Task code is generated, consisting of calls to component code,
evaluation of switch guards and additional glue code for communication
within and between tasks. Finally, the code is compiled for the particular

7.2 Event pattern triggering 109

target hardware.
Since the new event element is defined by a transformation into stan-

dard SaveCCM concepts, no changes have to be made to the synthesis
mechanism. In the current prototype, however, specialised code is gen-
erated for event elements to avoid some of the communication overhead
introduced by the transformation. The event detection code is generated
based on the algorithm presented in Section 4.3, optimised for static
event expressions.

7.2.3 Analysis support

One argument for extending the component model with event pattern
detection is that it facilitates analysis on a system design level, compared
to developing a new ad hoc component for the detection of a particular
triggering condition. Defining the event element in terms of standard
SaveCCM constructs means that the standard analysis techniques can
still be applied, including the triggering preservation property discussed
above, and application specific liveness and safety properties.

In addition to properties that can be investigated by standard analy-
sis methods, some properties of the event element depend on the event
expressions, and thus require special treatment.

Memory and worst case execution time

The memory footprint and execution time of an event element can be
established by analysis of the generated code, using standard techniques.
Alternatively, analysis can be based directly on the event expression and
the types of the input ports, as described in Section 5.5. This alternative
give concrete results for memory footprint, since the underlying repre-
sentation of primitive types is known, but worst case execution time is
given in an abstract form, expressed in terms of the number of assign-
ments, comparisons, arithmetical operations, etc. that are executed in
the worst case.

Triggering frequencies

Straightforward triggering analysis can establish that an output trigger-
ing port with expression Ej is potentially activated in response to the
activation of any individual input triggering port in prim(Ej), but this is
clearly an overapproximation for many expressions. Using the idea from

110 Chapter 7. Event Pattern Triggered Components

<<SaveComp>> <<Switch>>

<<SaveComp>>
A3

<<SaveComp>>
A1

<<SaveComp>>
A2

S1

<<Assembly>>

D1

B

P

T <<SaveComp>>

D'1

Figure 7.5: Alternative translation of the event element in Figure 7.3,
used for temporal analysis.

Chapter 6, we note that only activations of triggering ports in term(Ei)
can in fact result in an activation of the Ei port.

In order to take this into account, a different transformation can be
used to define event elements for the sake of temporal analysis, i.e., for
analyses techniques that do not depend on the functional behaviour of
components, only their execution time. This transformation includes an
additional copy of each Dj component, with the same WCET attribute
but with no output ports. An input port pi is connected to dij at the
original Dj component only if the name of pi is in term(Ej), otherwise
it is connected to the new Dj component with no output ports. Thus,
activations of ports that are in prim(Ej) but not in term(Ej) result
in the execution of the detection mechanism, but the triggering is not
forwarded.

Example 7.2. We consider again the event element from Example 7.1.
Figure 7.5 shows the result of the alternative transformation for temporal
analysis purposes. Since term((B;B)2s−((P∨T)) = {B}, the auxiliary
components for P and T (i.e., A2 and A3) are connected to the copy of
D1 without output trigger ports.

When the whole system (shown in Figure 7.3) is considered, the
analysis can determine that the response component is never triggered by
the periodic 10 Hz clock. If event pattern detection had been performed
by user defined component code, this would have been more difficult to
discover. �

Chapter 8

Conclusions

This chapter summarises the contributions of the thesis, and describes
how they relate to existing work in the area. It also presents a number
of directions in which this work could be extended in the future.

8.1 Summary and contributions

Many computer systems are to some degree influenced by occurrences of
external or internal events. In some applications, individual event occur-
rences are not as important as certain patterns of event occurrences rep-
resenting specific situations that the system should respond to. Having a
dedicated mechanism for detecting event patterns that are of interest to
the system, instead of performing implicit detection locally, means that
the patterns are explicitly available for analysis and optimisation. We
have addressed event pattern detection in the context of embedded real-
time systems, characterised by limited memory and processing resources
and by the need for predictable temporal behaviour.

The thesis presents an event algebra consisting of five operators, by
which the simple events of a system can be combined to express complex
event patterns. The algebra has a simple and intuitive semantics, and
any pattern that can be expressed by the algebra can be efficiently de-
tected with limited resources in terms of time and memory. The thesis
also presents schedulability theory for systems consisting of both peri-
odic activities and activities triggered by event patterns, and shows how
the event algebra can be used within a component model for embedded

111

112 Chapter 8. Conclusions

systems. Below, the summary of contributions given in the introduction
(on page 5), is repeated in a more elaborate form.

• The event algebra provides overlapping detection of event patterns,
meaning that pattern occurrences that overlap in time can be de-
tected. It supports event parameters, allows simultaneous event
occurrences, and can express non-occurrence of complex patterns.

The algebra semantics is interval based, meaning that pattern oc-
currences have duration. This is an important property, since it
permits an operator semantics that complies with the expected,
intuitive meaning of concepts such as “followed by”, to a greater
extent than semantics based on single time points would [55]. The
somewhat presumptuous claim that the algebra operators behave
according to intuition is backed up and formalised by a number of
algebraic laws that are satisfied by the algebra.

In order to deal with resource constraints, a formal restriction pol-
icy is applied, specifying that each time there is one or more occur-
rences of the pattern, one of these occurrences must be detected.

• An imperative detection algorithm is presented for which bounds
on memory footprint and execution time can be statically deter-
mined for any pattern defined by the event algebra. The resource
bound does not depend on the time values used in the specification
of the pattern or the frequency of primitive event occurrences. A
complexity analysis and experiments on randomly generated pat-
terns indicate that the algorithm is sufficiently efficient for the
target domain.

• The notion of pattern triggered tasks is introduced, meaning tasks
that are triggered by occurrences of certain event patterns. This
concept facilitates the design of embedded systems with activities
that should be performed in response to event patterns, by making
pattern definitions explicit and thus available for analysis.

We show how pattern triggered tasks can be realised without sup-
port from the underlying operating system, by means of ordinary
event triggered tasks that perform the pattern detection as a first
step of their execution.

Two schedulability analysis techniques are presented, for fixed pri-
ority scheduling and for scheduling under EDF, respectively, by

8.2 Comparison with related work 113

which a mixed task set consisting of both periodic and pattern
triggered tasks can be analysed to determine if deadlines are met
under all circumstances. The analysis uses information from the
pattern definitions to achieve a more accurate result than what
would be possible if pattern detection was performed implicitly
within the user defined task code, and this improved accuracy al-
lows better utilisation of processor resources.

• The thesis also shows how the event algebra can be used to extend
the component triggering mechanism of SaveCCM, a component
model for embedded vehicular systems. By performing event pat-
tern recognition as a separate activity, components can be made
more general, which improves component reusability. Providing
detection as a part of the underlying framework, instead of letting
the user implement it when needed, means that triggering condi-
tions are explicitly available for system analysis at design time,
which can improve the accuracy when analysing temporal system
properties.

8.2 Comparison with related work

This section relates the contributions described above to related work
in the area. Detailed descriptions of the frameworks and languages dis-
cussed here are presented in Chapter 3.

8.2.1 Active databases

The proposed algebra was originally influenced by work in the area of ac-
tive databases, in particular the event specification language Snoop [35],
which is visible in the choice of operators. Also, the restriction policy
used to achieve bounded-resource detection resembles the concept of pa-
rameter contexts from this domain. An important distinction, however,
is that parameter contexts are applied to the individual operators of an
expression, while our restriction policy is applied once to the expression
as a whole, which we believe makes it easier to understand its impact on
the algebra operators. On a more concrete level, the recent context, as
it is defined for interval based semantics [3, 100], selects the constituent
event with maximum end time, while the restriction policy compares
start times.

114 Chapter 8. Conclusions

None of the work we have considered from this domain present alge-
braic laws for their operators, and most of them have semantics based
on single time points which makes it difficult to achieve the expected be-
haviour for some operator combinations [55]. Approaches with interval
based semantics include Solicitor [100], the work of Roncancio [130], and
the interval semantics for a subset of Snoop developed by Adaikkalavan
and Chakravarthy [3].

The use of interval semantics in our algebra also enables a binary
negation operator, representing non-occurrence of one pattern during an
occurrence of another pattern. This operator is more general than the
ternary negation found in, e.g., Snoop [35], SAMOS [57] and the meta-
model developed by Zimmer and Unland [161], where the non-occurrence
interval must be specified by two patterns that mark the start and end of
the interval. SAMOS [57] and Ode [59], are also different from our work
in that they do not allow simultaneous occurrences of primitive events.

Unlike our work, resource usage is not a main focus of these methods,
with a few exceptions. In Snoop, all operators can be implemented
with bounded memory in the recent context [35], but not in the other
contexts. Solicitor permits bounded-memory detection in all contexts
for patterns that have explicit limitations on occurrence durations [100].
However, the amount of memory required to detect a pattern depends on
the time values used within the pattern specification and the minimum
interarrival times of primitive events, while the resource demands of our
algebra depends on the size of the expression only.

8.2.2 Automata and regular expressions

For event pattern detection mechanisms based on finite automata or
regular expressions, resource usage is bounded by default. The general
drawbacks of these approaches compared to our method are the difficulty
of overlapping detection, and the complexity associated with specifying
non-occurrence of complex patterns and other constructs that require
concurrent detection of subpatterns [109]. Also, simultaneous occur-
rences are not easily supported, as discussed in Section 3.2.

ECL and PAR [131] are similar to regular expressions in style, and
the detection can always be performed with bounded memory. Con-
trasting our algebra, they are procedural in style and support single or
repeated detection, but not overlapping. Moreover, simultaneous prim-
itive occurrences are not supported, and patterns can only refer to the

8.2 Comparison with related work 115

order of constituent occurrences, not to the time between occurrences.
The composite event detection automata framework developed by

Pietzuch [123], focuses on distributed systems where it is not always pos-
sible to determine the correct ordering of primitive event occurrences,
which is not addressed by our algebra. Also, some concepts in the frame-
work lack formal definitions, which prevents a detailed evaluation.

8.2.3 Temporal logic

When temporal logic is used for event pattern detection, not only to
define the semantics but as basis for the concrete detection mechanism
as well, the high expressiveness typically means that not all patterns can
be detected with bounded resources. For example, in the FTL and PTL
approach by Sistla and Wolfson [139], the amount of stored informa-
tion increases over time [38]. The work by Chomicki on past first-order
temporal logic permits detection with bounded memory, but the size is
bounded by the size of the value domains used in the database [38]. Real
time logic also performs detection with limited memory, but the memory
footprint for a particular pattern depends on the time values used within
the pattern specification, and on the occurrence frequency of primitive
events [103]. EAGLE [17], as well as the FTL/PTL framework [139],
does not support detection of partially overlapping occurrences, only
single or repeated detection is addressed.

8.2.4 Additional work on event notification

Chronicle recognition is able to detect overlapping occurrences, but this
comes at the cost that no memory bound can be given in the general case,
only under the restriction that all patterns have duration bounds [47].
In practice, chronicle recognition has proven sufficiently efficient for in-
dustrial real-time systems, e.g., online monitoring of gas turbines [5].

The event notification service READY [65], and the event algebra
developed by Hinze and Voisard [75] do not address resource efficency
or bounded detection. The composite event detection in ECCO [157]
is based on a combined approach of our algebra [157] and the work of
Pietzuch et al. [123], but it unclear what, if any, properties of our algebra
that hold also in their work, since no formal semantics is presented. We
have found no work on composite event notification services that provide
algebraic laws for their event algebra operators.

116 Chapter 8. Conclusions

8.2.5 Real-time scheduling

Schedulability analysis of tasks that are triggered by events with non-
trivial arrival patterns has been addressed in numerous ways (see for
example Buttazzo [30] or Klein et al. [83]). The simplest approach is
to safely approximate such tasks by periodic ones. If a strictly periodic
approximation is not sufficiently precise, more elaborate models can be
used, for example sporadic activation bursts where each burst consists of
a bounded number of triggerings that can be arbitrarily close in time [83].
There are also approaches that allow more detailed models of how trig-
gering events can arrive, for example the analysis tool TIMES, where
the triggering of tasks can be modelled by timed automata [12].

From the point of view of the system, however, such tasks are still
triggered by occurrences of a single event, even though the occurrences
of this event may be modelled in some way based on information about
the environment. The concept of pattern triggered tasks, presented in
this thesis, is different in that it includes event pattern detection as part
of the design of a real-time system.

The work by Berndtsson and Hansson concerns databases that com-
bine active functionality in the form of ECA rules, with real-time con-
straints such as bounded response times [21]. They address how event
detection activities can be mapped onto tasks, and propose that events
are processed based on their respective criticality rather than in the
order of occurrence, to overcome problems such as event bursts and
transient overload. The realisation of pattern triggered tasks in our ap-
proach is based on the same observation that detection activities should
be processed based on the criticality of the response. Their work differ
from ours in that they focus on database applications, and the use of
ECA rules means that they have to address additional issues concerning
the condition part. Also, they assign priority levels to individual events,
both primitive and composite, while we assign priority to whole patterns.

8.2.6 Component models

For general purpose component models, advanced event handling such
as pattern detection can be introduced as additional middleware func-
tionality, as in COBEA [97] which, among other things, provide com-
posite event detection for the CORBA Event Service [113]. Component
models for small embedded systems require lightweight runtime frame-

8.3 Future work 117

works [107], and component deployment and composition are preferably
performed at design time to achieve better performance and more pre-
dictabile behaviour and to simplify verification [43, 44]. This suggests
that a more static approach to event pattern detection is preferable
over advanced, dynamic middleware services. In our proposed exten-
sion of SaveCCM, pattern specifications are formulated at design time
and turned into concrete detection mechanisms for those particular pat-
terns during synthesis, which facilitates static analysis of, e.g., resource
usage and temporal properties.

8.3 Future work

A number of future research directions have been identified. Some of
them concern the algebra as such, and others address the larger per-
spective of how this algebra can be used as a part of a larger system.

8.3.1 Non-instantaneous primitive events

One assumption in the current version of the algebra is that all primitive
event occurrences are instantaneous, but the algebra semantics would
not be affected if this restriction was removed. In order to still en-
sure bounded memory detection for arbitrary expressions, however, the
primitive events would have to be restricted somehow to ensure that the
information about “possible future start times”, which is propagated be-
tween subexpressions in the detection algorithm, is still available in some
form.

Informally, a non-instantaneous primitive event can be handled if the
event source notifies the detection mechanism both when an occurrence
starts and when it ends, and if the number of simultaneously active “pos-
sible start times” is bounded, for example if start and end notifications
are strictly alternating. As future work, this could be investigated fur-
ther to formulate exact criteria under which non-instantaneous primitive
events can be allowed.

8.3.2 Expressiveness

The algebra operators were selected because they, or related constructs,
occur in many other techniques for event pattern specification, but it
remains on open issue how well these operators meet the requirements

118 Chapter 8. Conclusions

of different application domains. To remedy this, it would be good to
investigate the expressiveness of the current algebra, from a theoretical
point of view, but also more pragmatically by performing case studies
in the targeted domain.

As a result of the interval based semantics, there are many ways in
which two occurrences can be related compared with single point seman-
tics (see Figure 2.7 on page 25). This means that there are several “po-
tential operators” between sequence, where the order of the constituent
occurrences is fixed and overlapping is not allowed, to conjunction, with
no restriction on the constituent occurrences. There are also operators
in other methods, such as the simultaneous conjunction in Ode [59] or
the aperiodic construct in Snoop (described in Section 3.3.3), that could
possibly be incorporated in some form in our algebra.

The temporal restriction can be used to specify that some events oc-
cur within a given length of time. However, the current algebra does
not support specification of timeouts, e.g., an occurrence of A not fol-
lowed by B within τ time units. One way to allow this is to add a delay
operation (here denoted by the symbol .) similar to the one used by
Mellin [100]. Informally, for any occurrence of A there is an occurrence
of A.τ with the same start time, but ending τ time units later then the
end time of the A occurrence. Then, the timeout event in the example
above could be defined as (A.τ)−B. It should be possible to implement
this operator with bounded memory, and also to relay the information
about possible start times, which is required by the algorithm. However,
with this extension, the memory footprint of the detection mechanism
would no longer be bounded by the expression size, since it would also
depend on the timeout lengths and on event occurrence frequencies.

8.3.3 Optimisation and more detailed WCET

Section 5.1 describes how the detection algorithm can be optimised when
the expression is static and known at compile time. In addition to this,
it is possible to optimise detection with respect to what primitive events
that occurred in the current tick. In particular, when the algorithm
is executed once for each primitive occurrence, rather than once each
tick, it can be very efficient to have dedicated variants of the algorithm
for different primitive events. Persistent variables are shared among the
algorithm variants, and each variant is optimised based on the knowledge
of which primitive that occurred.

8.3 Future work 119

A consequence of this optimisation is that the execution time of the
detection algorithm can differ significantly depending on what primitive
event occurrence that triggered the detection. This information could be
captured by replacing the single WCET value wcet(E) with one value
for each primitive event, i.e. wcet(E,A) defined for each A ∈ prim(E).
It should be possible to modify the analysis described in Section 5.5 to
produce this information. To take advantage of this information in the
schedulability analysis, wcet(Ei, A) can be used instead of wcet(Ei) in
the definition of parameters for the tasks in the auxiliary task set.

In addition to staticly optimising the algorithm by identifying parts
of the expression that can be ignored when detection is triggered by a
particular primitive event, it is also possible to do something similar dy-
namically, based on the successful detection of subpatterns. Rather than
processing all parts of the tree that are potentially affected by the cur-
rent occurrence, the bottom-up traversal can stop when a subexpression
is processed that does not result in a full detection. Although this would
not improve the worst case performance, it might have a significant im-
pact on the average performance.

Further optimisations include investigating if certain operator com-
binations can be given dedicated, optimised implementations, and to
experiment with optimising expression transformations based on the al-
gebraic laws, which was done for an earlier version on the algebra [32].

8.3.4 Specification of triggering patterns

The idea of pattern triggered tasks could be further investigated outside
the context of this event algebra. For example, one could consider other
ways of specifying triggering patterns, and compare the usability of dif-
ferent approaches. The schedulability analysis is based on the fact that
the triggering pattern can be approximated by a disjunction of a subset
of the primitive events that occur in the pattern, which allows the task
to be approximated by a collection of sporadic tasks. This idea could
be reused for other techniques as well, but there might also be other
analysis approaches that give more precise approximations.

8.3.5 Optional triggering in SaveCCM

The triggering semantics in SaveCCM specifies that a component always
activates its output trigger ports after execution. When triggering sig-

120 Chapter 8. Conclusions

nals are seen as events, this corresponds to allowing just a single event
to be published from each component, and this event is controlled by the
underlying framework. As described in Section 7.2, switches can be used
to construct assemblies that control which of its output trigger ports to
activate, which strengthens the analogy between triggering and events.

As future work, the SaveCCM language could be extended so that
components can have additional output trigger ports that are not con-
trolled by the framework. This would allow SaveCCM to be used in a
more event oriented style, which is interesting to us since it increases
the usefulness of pattern detection, but it might also add strength to
SaveCCM and possibly broaden the application domain. The main ques-
tion is whether this change would have a negative impact on the desired
properties of SaveCCM, but if mandatory and optional trigger ports are
distinguished syntactically, it should still be possible to achieve the same
level of predictability for applications where this is required.

Appendix A

Proofs

Theorem 4.1 If res(S, S′) and res(T, T ′) hold, than for any event
stream U and τ ∈ T the following implications hold:

• res(dis(S′, T ′), U) ⇒ res(dis(S, T), U)

• res(con(S′, T ′), U) ⇒ res(con(S, T), U)

• res(neg(S′, T ′), U) ⇒ res(neg(S, T), U)

• res(seq(S′, T ′), U) ⇒ res(seq(S, T), U)

• res(tim(S′, τ), U) ⇒ res(tim(S, τ), U)

Proof. We prove each implication in a separate case:
Disjunction case: Assume res(dis(S′, T ′), U). Then, for any u∈U

we have u∈dis(S′, T ′) and thus u∈S′ ∪ T ′. Since S′ ⊆ S and T ′ ⊆ T ,
we have u ∈ S ∪ T , implying u ∈ dis(S, T). Thus U ⊆ dis(S, T), which
satisfies the first constraint in the definition of res.

Next, take an arbitrary u ∈ dis(S, T). Then u ∈ S∪T and accord-
ing to the definition of res there must exist an u′ ∈ S′ ∪ T ′ such that
start(u) ≤ start(u′) and end(u′) = end(u). We have u′ ∈ dis(S′, T ′)
and thus res(dis(S′, T ′), U) implies that there exists an u′′ ∈ U with
start(u′) ≤ start(u′′) and end(u′′) = end(u′). Since this means that
start(u)≤ start(u′′) and end(u′′) = end(u), the second constraint in the
definition of res is satisfied.

Finally, res(dis(S′, T ′), U) ensures that all instances in U have differ-
ent end times. Together, this gives res(dis(S, T), U).

121

122 Chapter A. Proofs

Conjunction case: Assume res(con(S′, T ′), U). Then, for any u∈U
we have u ∈ con(S′, T ′) and thus u = s ⊕ t with s ∈ S′ and t ∈ T ′. By
the subset requirement in the definition of res, s ∈ S and t ∈ T . So
u∈con(S, T) and thus U ⊆ con(S, T).

Next, take an arbitrary u∈con(S, T). Then u=s⊕ t with s∈S and
t ∈ T , and by the definition of res there exists s′ ∈ S′ and t′ ∈ T ′ with
start(s) ≤ start(s′), end(s′) = end(s), start(t) ≤ start(t′) and end(t′) =
end(t). Let u′ = s′ ⊕ t′. Now u′ ∈ con(S′, T ′) with start(u)≤ start(u′)
and end(u′) = end(u). This means that there exists some u′′ ∈ U with
start(u) ≤ start(u′′) and end(u′′) = end(u), which satisfies the second
constraint in the definition of res.

Finally, res(con(S′, T ′), U) ensures that all instances in U have dif-
ferent end times. Together, this gives res(con(S, T), U).

Negation case: Assume res(neg(S′, T ′), U). Then, for any u ∈ U
we have u ∈ neg(S′, T ′) and thus u ∈ S′. By the subset requirement
in the definition of res, u ∈ S. If there exists a t ∈ T with start(u) ≤
start(t) and end(t)≤end(u), then there must exist some t′∈T ′ such that
start(t)≤ start(t′) and end(t′) = end(t) which contradicts the fact that
u∈neg(S′, T ′). Since no such t can exist, we have u∈neg(S, T) and thus
U ⊆ neg(S, T).

Next, take an arbitrary u ∈ neg(S, T). Since u ∈ S there exists an
u′ ∈ S′ with start(u) ≤ start(u′), end(u′) = end(u). If there exists a
t∈ T ′ with start(u′)≤ start(t) and end(t)≤ end(u′), then the fact that
t ∈ T contradicts u ∈ neg(S, T). Since no such t can exist, we have
that u′ ∈ neg(S′, T ′). This means that there exists some u′′ ∈ U with
start(u′)≤start(u′′) and end(u′′)=end(u′), and thus start(u)≤start(u′′)
and end(u′′)=end(u), which satisfies the second constraint in the defin-
ition of res.

Finally, res(neg(S′, T ′), U) ensures that all instances in U have dif-
ferent end times. Together, this gives res(neg(S, T), U).

Sequence case: Assume res(seq(S′, T ′), U). Then, for any u ∈ U
we have u ∈ seq(S′, T ′) and thus u = s ⊕ t with s ∈ S′, t ∈ T ′ and
end(s) < start(t). By the subset requirement in the definition of res,
s∈S and t∈T , so u∈seq(S, T) and thus U ⊆ seq(S, T).

Next, take an arbitrary u∈seq(S, T). Then u=s⊕ t such that s∈S,
t∈T and end(s)<start(t). By the definition of res there exists s′∈S′ and
t∈ T ′ with start(s)≤ start(s′), end(s′) = end(s), start(t)≤ start(t′) and
end(t′)=end(t). Let u′=s′ ⊕ t′. Now, since end(s′)=end(s)<start(t)≤
start(t′), we have u′ ∈ seq(S′, T ′) and start(u)≤ start(u′) and end(u′)=

123

end(u). This means that there exists some u′′ ∈ U with start(u) ≤
start(u′′) and end(u′′)=end(u), which satisfies the second constraint in
the definition of res.

Finally, res(seq(S′, T ′), U) ensures that all instances in U have dif-
ferent end times. Together, this gives res(seq(S, T), U).

Temporal restriction case: Assume res(tim(S′, τ), U). For any
u∈U we have u∈ tim(S′, τ) and thus u∈S′ and end(u) − start(u)≤ τ .
From the subset requirement in the definition of res, we know that u∈S,
which means that u∈tim(S, τ) and thus U ⊆ tim(S, τ).

Next, take an arbitrary u ∈ tim(S, τ). Then u ∈ S and there exists
an u′ ∈ S′ with start(u) ≤ start(u′), end(u′) = end(u). Since end(u) −
start(u) ≤ τ , we have end(u′) − start(u′) ≤ τ and thus u′ ∈ tim(S′, τ).
According to the def of res, this means that there exists some u′′∈U with
start(u′)≤start(u′′), end(u′′)=end(u′). Since this means that start(u)≤
start(u′′), end(u′′)=end(u) the second constraint in the definition of res
is satisfied.

Finally, res(tim(S′, τ), U) ensures that all instances in U have differ-
ent end times. Together, this gives res(tim(S, τ), U).

To simplify the proofs for negation, we introduce the following pred-
icate.

Definition A.1. For an event stream S, and time instants τ, τ ′ ∈ T ,
define empty(S, τ, τ ′) to hold if ¬∃s(s∈S ∧ τ≤start(s) ∧ end(s)≤τ ′).

Proposition A.1.

i. a∈ [[A−B]] ⇔ (a∈ [[A]] ∧ empty([[B]], start(a), end(a))).

ii. empty(S∪S′, τ, τ ′) ⇔ (empty(S, τ, τ ′) ∧ empty(S′, τ, τ ′))

iii. (τ1 ≤ τ ′
1 ≤ τ ′

2 ≤ τ2 ∧ empty(S, τ1, τ2)) ⇒ empty(S, τ ′
1, τ

′
2)

Proof. The properties follow straightforwardly from the definition and
the operator semantics.

In the proofs below, ≡23 denotes that the equivalence follows from
law number 23, etc. Similarly, =i or ⇔ii denotes that the equivalence
is based on the corresponding property in Proposition A.1, and =⊕ is
based on the properties of ⊕ from Definition 4.4.

124 Chapter A. Proofs

Theorem 4.6 For event expressions A, B and C, the following laws
hold:

1. A∨A ≡ A

2. A∨B ≡ B∨A

3. A+B ≡ B+A

4. A∨(B∨C) ≡ (A∨B)∨C

5. A+(B+C) ≡ (A+B)+C

6. A;(B;C) ≡ (A;B);C

7. (A∨B)+C ≡ (A+C)∨(B+C)

∗8. A+(B∨C) ≡ (A+B)∨(A+C)

9. (A∨B);C ≡ (A;C)∨(B;C)

10. A;(B∨C) ≡ (A;B)∨(A;C)

Proof.

1. [[A∨A]] = dis([[A]], [[A]]) = [[A]] ∪ [[A]] = [[A]]

2. [[A∨B]] = dis([[A]], [[B]]) = dis([[B]], [[A]]) = [[B∨A]]

3. [[A+B]] = con([[A]], [[B]]) =⊕ con([[B]], [[A]]) = [[B+A]]

4. [[A∨(B∨C)]] = [[A]] ∪ [[B]] ∪ [[C]] = [[(A∨B)∨C]]

5. [[A+(B+C)]] = con([[A]], con([[B]], [[C]])) =
{a⊕ (b⊕ c) | a ∈ [[A]] ∧ b ∈ [[B]] ∧ c ∈ [[C]]) =⊕

{(a⊕ b)⊕ c | a ∈ [[A]] ∧ b ∈ [[B]] ∧ c ∈ [[C]]) = [[(A+B)+C]]

6. [[A;(B;C)]] = {a⊕ e | a∈ [[A]] ∧ end(a)<start(e) ∧
e∈{b⊕ c | b∈ [[B]] ∧ c∈ [[C]] ∧ end(b)<start(c)}} =
{a⊕ (b⊕ c) | a∈ [[A]] ∧ b∈ [[B]] ∧ c∈ [[C]] ∧ end(a)<start(b) ∧

end(b)<start(c)} =⊕

{(a⊕ b)⊕ c) | a∈ [[A]] ∧ b∈ [[B]] ∧ c∈ [[C]] ∧ end(a)<start(b) ∧
end(b)<start(c)} =

{e⊕ c | e∈{a⊕ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)} ∧
c∈ [[C]] ∧ end(e)<start(c)} = [[(A;B);C]]

7. [[(A∨B)+C]] = con(dis([[A]], [[B]]), [[C]]) = con(([[A]] ∪ [[B]]), [[C]]) =
{e⊕ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]]} =
{a⊕ c | a∈ [[A]] ∧ c∈ [[C]]} ∪ {b⊕ c | b∈ [[A]] ∧ c∈ [[C]]} =
con([[A]], [[C]]) ∪ con([[B]], [[C]]) = [[(A+C)∨(B+C)]]

8. A+(B∨C) ≡3 (B∨C)+A ≡7 (B+A)∨(C+A) ≡3 (A+B)∨(A+C)

125

9. [[(A∨B);C]] = {e∪ c | e∈ [[A]]∪ [[B]]∧ c∈ [[C]]∧ end(e)<start(c)} =
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} ∪
{b ∪ c | b∈ [[B]] ∧ c∈ [[C]] ∧ end(b)<start(c)} = [[(A;C)∨(B;C)]]

10. [[A;(B∨C)]] = {a⊕e | a∈ [[A]]∧e∈ [[B]]∪ [[C]]∧ end(a)<start(e)} =
{a⊕ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)} ∪
{a⊕ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} = [[(A;B)∨(A;C)]]

Theorem 4.7 For event expressions A, B and C, the following laws
hold:

11. (A∨B)−C ≡ (A−C)∨(B−C)

12. (A+B)−C ≡ ((A−C)+B)−C

∗13. (A+B)−C ≡ (A+(B−C))−C

14. (A−B)−C ≡ A−(B∨C)

∗15. (A−B)−B ≡ A−B

∗16. (A−B)−C ≡ (A−C)−B

17. (A;B)−C ≡ ((A−C);B)−C

18. (A;B)−C ≡ (A;(B−C))−C

Proof.

11. [[(A∨B)−C]] =i {e | e ∈ [[A]]∪ [[B]]∧empty([[C]], start(e), end(e))} =
{a | a∈ [[A]] ∧ empty([[C]], start(a), end(a))} ∪
{b | b∈ [[B]] ∧ empty([[C]], start(b), end(b))} =i

[[(A−C)]] ∪ [[(B−C)]] = [[(A−C)∨(B−C)]]

12. e∈ [[((A−C)+B)−C]]⇔i e∈ [[(A−C)+B]]∧empty([[C]], start(e), end(e))⇔
e=a⊕ b ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e))⇔i

e=a⊕ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ∧
empty([[C]], start(a), end(a))⇔iii

e=a⊕ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e))⇔
e∈ [[A+B]] ∧ empty([[C]], start(e), end(e))⇔i e∈ [[(A+B)−C]]

13. (A+B)−C ≡3 (B+A)−C ≡12 ((B−C)+A)−C ≡3 (A+(B−C))−C

14. a∈ [[(A−B)−C]]⇔i a∈ [[A−B]] ∧ empty([[C]], start(a), end(a))⇔i

a∈ [[A]]∧empty([[B]], start(a), end(a))∧empty([[C]], start(a), end(a))⇔ii

a∈ [[A]] ∧ empty([[B]] ∪ [[C]], start(a), end(a))⇔i a∈ [[A−(B∨C)]]

126 Chapter A. Proofs

15. (A−B)−B ≡14 A−(B∨B) ≡1 A−B

16. (A−B)−C ≡14 A−(B∨C) ≡2 A−(C∨B) ≡14 (A−C)−B

17. e∈ [[((A−C);B)−C]]⇔i e∈ [[(A−C);B]]∧empty([[C]], start(e), end(e))⇔
e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧

empty([[C]], start(a), end(b))⇔i

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(a), end(a))⇔iii

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b))⇔

e∈ [[A;B]] ∧ empty([[C]], start(e), end(e))⇔i e∈ [[(A;B)−C]]

18. e∈ [[(A;(B−C))−C]]⇔i e∈ [[A;(B−C)]]∧empty([[C]], start(e), end(e))⇔
e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B−C]] ∧

empty([[C]], start(a), end(b))⇔i

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(b), end(b))⇔iii

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b))⇔

e∈ [[A;B]] ∧ empty([[C]], start(e), end(e))⇔i e∈ [[(A;B)−C]]

Theorem 4.8 For event expressions A and B, and τ ∈ T , the
following laws hold:

19. (A∨B)τ ≡ Aτ∨Bτ

20. (A+B)τ ≡ (Aτ +B)τ

∗21. (A+B)τ ≡ (A+Bτ)τ

22. (A−B)τ ≡ Aτ−B

23. (A−B)τ ≡ (A−Bτ)τ

24. (A;B)τ ≡ (Aτ ;B)τ

25. (A;B)τ ≡ (A;Bτ)τ

26. A ≡ Aτ if A ∈ P

27. (Aτ)τ ′ ≡ Amin(τ,τ ′)

∗28. (Aτ)τ ′ ≡ (Aτ ′)τ

Proof.

19. [[(A∨B)τ]] = {e | e ∈ A ∪B ∧ end(e)−start(e) ≤ τ} =
{a | a ∈ A∧ end(a)−start(a) ≤ τ}∪{b | b ∈ B ∧ end(b)−start(b) ≤
τ} = [[Aτ]] ∪ [[Bτ]] = [[Aτ∨Bτ]]

127

20. e∈ [[(Aτ +B)τ]]⇔ e∈ [[Aτ +B]] ∧ end(e)−start(e) ≤ τ ⇔
e=a⊕ b ∧ a∈ [[Aτ]] ∧ b∈ [[B]] ∧ end(e)−start(e) ≤ τ ⇔
e=a⊕b∧a∈ [[A]]∧end(a)−start(a) ≤ τ∧b∈ [[B]]∧end(e)−start(e) ≤
τ .
Since end(a) ≤ end(e) and start(e) ≤ start(a), we have end(a)−
start(a) ≤ end(e)−start(e), so end(e)−start(e) ≤ τ ⇒ end(a)−
start(a) ≤ τ . Thus, the last formula above is equivalent to:
e=a⊕ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ end(e)−start(e) ≤ τ ⇔
e∈ [[Aτ +B]] ∧ end(e)−start(e) ≤ τ ⇔ e∈ [[(A+B)τ]].

21. (A+B)τ ≡
3 (B+A)τ ≡

20 (Bτ +A)τ ≡
3 (A+Bτ)τ

22. [[(A−B)τ]] = {a | a∈ [[A−B]] ∧ end(a)−start(a) ≤ τ} =
{a | a∈ [[A]]∧empty([[B]], start(a), end(a))∧end(a)−start(a) ≤ τ} =
{a | a∈ [[Aτ]] ∧ empty([[B]], start(a), end(a))} = [[Aτ−B]]

23. [[(A−Bτ)τ]] = {a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
¬∃b(b∈ [[Bτ]] ∧ start(a)≤start(b) ∧ end(b)≤end(a))} =

{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ ¬∃b(b∈ [[B]] ∧
start(a)≤start(b) ∧ end(b)≤end(a) ∧ end(b)−start(b) ≤ τ)}

Since end(a)−start(a) ≤ τ , start(a)≤start(b) and end(b)≤end(a)
implies end(b)−start(b) ≤ τ , that constraint can be removed with-
out affecting the set. Thus, the set above is equivalent to:
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
¬∃b(b∈ [[B]]∧start(a)≤start(b)∧end(b)≤end(a))} = [[(A−B)τ]].

24. [[(A;Bτ)τ]] =
{a⊕b | a∈ [[A]]∧b∈ [[Bτ]]∧end(a)<start(b)∧end(b)−start(a) ≤ τ} =
{a⊕ b | a∈ [[A]]∧ b∈ [[B]]∧ end(b)−start(b) ≤ τ ∧ end(a)<start(b)∧

end(b)−start(a) ≤ τ}
Since end(a) < start(b) and end(b)−start(a) ≤ τ implies end(b)−
start(b) ≤ τ , this constraint can be dropped without changing the
set. Thus, the set above is equivalent to {a ⊕ b | a ∈ [[A]] ∧ b ∈
[[B]] ∧ end(a)<start(b) ∧ end(b)−start(a) ≤ τ} = [[(A;B)τ]]

25. [[(Aτ ;B)τ]] =
{a ⊕ b | a∈ [[Aτ]] ∧ b∈ [[B]] ∧ end(a)< start(b) ∧ end(b)−start(a) ≤
τ} =
{a ⊕ b | a ∈ [[A]] ∧ end(a)− start(a) ≤ τ ∧ b ∈ [[B]] ∧ end(a) <
start(b) ∧ end(b)−start(a) ≤ τ}
Since end(a)< start(b) and end(b)−start(a) ≤ τ implies end(a)−

128 Chapter A. Proofs

start(a) ≤ τ , this constraint can be dropped without changing the
set. Thus, the set above is equivalent to {a ⊕ b | a ∈ [[A]] ∧ b ∈
[[B]] ∧ end(a)<start(b) ∧ end(b)−start(a) ≤ τ} = [[(A;B)τ]]

26. A ∈ P implies that end(a)−start(a) = 0 for any a ∈ [[A]], which
means that [[A]] = [[Aτ]].

27. [[(Aτ)τ ′]] = {a | a∈ [[A]]∧ end(a)−start(a) ≤ τ ∧ end(a)−start(a) ≤
τ ′} = {a | a∈ [[A]] ∧ end(a)−start(a) ≤ min(τ, τ ′)} = [[Amin(τ,τ ′)]]

28. (Aτ)τ ′ ≡23 Amin(τ,τ ′) ≡ Amin(τ,τ ′) ≡
23 (Aτ ′)τ

Lemma 5.2 Assume that state(i, τ) held at the start of the current
tick and that pcorr(n, τ) and acorr(n, τ) hold for all 1 ≤ n < i. Then
state(i, τ + 1), pcorr(i, τ) and acorr(i, τ) hold after executing the loop
body once.

Proof. The proof is organised in four parts. First, we consider state, then
the two criteria that are required for pcorr to hold (see Definition 5.2),
and finally acorr is addressed.

For state, we see that state(i, τ + 1) holds trivially if Ei is primitive,
a disjunction or a temporal restriction (Definition 5.3), and thus we
consider the remaining operators:

Case Ei = Ej +Ek: In the case aj = ε the li variable remains
unchanged, which is consistent with state(i, τ + 1). If aj 6= ε then
end(aj) = τ according to the assumption acorr(j, τ). Then, the first
conditional in the conjunction part ensures that li contains an instance
consistent with state(i, τ +1). Similarly, the second conditional ensures
the correctness of ri.

Case Ei = Ej−Ek: The first conditional in the negation part ensures
that ti contains the value specified by state(i, τ +1).

Case Ei = Ej ;Ek: The li variable is updated by the last conditional
in the sequence part, and the proof is identical to that in the conjunction
case above. For the second criterion in the definition of state, let t be
an arbitrary element in Sk such that {e | e ∈ A(j) ∧ end(e) < t} is
non-empty. We consider two cases: If t was in Sk at the start of the
current tick, then state(i, τ) ensures that Qi contained an element from
{e | e ∈ A(j)∧ end(e) < t} with maximum start time at the start of this
tick. If t was not in Sk at the start of the current tick, then pcorr(k, τ)

129

implies that t = τ , and then state(i, τ) ensures that li contained an
element from {e | e ∈ A(j) ∧ end(e) < t} with maximum start time
at the start of this tick. Thus, in both cases, Qi ∪ li contained such
an element at the start of this tick. We can see that the inner foreach
construct in the sequence part assigns an element from this set to e′, and
thus it is added to Q′ and finally to Qi.

For pcorr, let S denote the content of Si at the start of the current
time tick. We focus first on the first criterion in the definition of pcorr,
which requires that we have ai = ε, start(ai) = τ or start(ai) ∈ S.
For Ei ∈ P, we know that ai is a primitive event instance, and thus
start(ai) = end(ai) = τ . For the operators, we note that the first cri-
terion of pcorr(i, τ) holds trivially when ai = ε or start(ai) = τ , so we
consider only the case when ai 6= ε and start(ai) 6= τ .

Case Ei = Ej ∨Ek: If ai = aj , we know according to pcorr(j, τ)
that start(ai) was in Sj at the start of this tick. Since Sj ⊆ Si must
hold at the start of each tick (at initialisation, and after each subsequent
assignment of Si), this implies start(ai) ∈ S. If ai = ak, the same result
is implied by pcorr(k, τ) and Sk ⊆ Si.

Case Ei = Ej+Ek: From the two assignments of ai in the conjunc-
tion part where ai 6= ε, we can see that the start time of ai must be
equal to the start time of aj , ri, li or ak. For aj and ak we can reuse
the disjunction proof above. If start(ai) = start(li), we have to consider
two subcases: If li was updated in this tick, we have li = aj and we can
reuse the proof above. If li remained unchanged, then li 6= ε ensures
that the current tick is not the first, and the assignment of Si in the
previous step implies that start(li) ∈ S. The proof for the final case
start(ai) = start(ri) is analogous.

Case Ei = Ej−Ek: Analogous to the ai = aj case in the disjunction
proof.

Case Ei = Ej ;Ek: Since ai 6= ε, we have ai = ak ⊕ e′ where
start(ai) = start(e′) and e′ was in Qi or li at the start of this tick.
This implies that the current tick is not the first, and the assignment of
Si in the previous step ensures that start(e′) ∈ S.

Case Ei = Ej
τ ′ : Analogous to the ai = aj case in the disjunction

proof.
Next, we consider the second criterion in the definition of pcorr,

namely that ∀t (t ∈ Si ⇒ (t = τ ∨ t ∈ S)). As previously, S denotes the
content of Si at the start of the current time tick. The property trivially
holds for Ei ∈ P, since this implies S = ∅. For the operators, consider

130 Chapter A. Proofs

an arbitrary t ∈ Si such that t 6= τ .
Case Ei = Ej∨Ek: Since Si = Sj ∪ Sk, we must have t ∈ Sj or

t ∈ Sk. If t ∈ Sj , then pcorr(j, τ) implies that t was in Sj at the start
of this tick. Since Sj ⊆ Si holds at the start of each tick, this implies
t ∈ S. If t ∈ Sk, the same result follows from pcorr(k, τ) and Sk ⊆ Si.

Case Ei = Ej +Ek: The assignment of Si in the conjunction part
implies that t ∈ Sj∪Sk∪{start(li), start(ri)}. If t ∈ Sj∪Sk, we can reuse
the disjunction proof above. If t = start(li) we consider two subcases:
If li remained unchanged in this tick, then the assignment of Si in the
previous tick ensures than t ∈ S. If li was updated, we have li = aj ,
and then pcorr(j, τ) ensures that t was in Sj at the start of this tick. As
shown above, this implies t ∈ S. The proof for the final case t = start(ri)
is analogous.

Case Ei = Ej−Ek: Analogous to the t ∈ Sj case in the disjunction
proof.

Case Ei = Ej ;Ek: The assignment of Si in the sequence part implies
that t ∈ Sj , t = start(li) or t ∈ {start(e) | e ∈ Qi}. For the two first cases
we can reuse the proof for conjunction. If t = start(e) where e ∈ Qi,
then e was added to Q′ in the nested foreach constructs, which means
that e was in Qi ∪ li at the start of this tick (so this is not the first tick).
Then, the assignment of Si in the previous tick ensures than t ∈ S.

Case Ei = Ej
τ ′ : Analogous to the t ∈ Sj case in the disjunction

proof.
Finally, for acorr, we consider the following six cases:
Case Ei ∈ P: If ai = ε, then there is no e ∈ [[Ei]] with end(e) = τ ,

and thus valid(ai, [[E
i]], τ) holds. If ai 6= ε, we have ai ∈ [[Ei]] and

end(ai) = τ , and since the elements of [[Ei]] have distinct end times
according to Definition 4.5, valid(ai, [[E

i]], τ) holds.
Case Ei = Ej∨Ek: The detection algorithm ensures that start(aj) ≤

start(ai) and start(ak) ≤ start(ai). If ai = ε, we have start(ai) = −1
which implies that ak = aj = ε so there is no e ∈ dis(A(j),A(k)) with
end(e) = τ . If ai 6= ε, we clearly have ai ∈ dis(A(j),A(k)) and there
can be no element in this set with end time τ and start time later than
start(ai).

Case Ei = Ej+Ek: After executing the first two conditionals in the
conjunction part start(aj) ≤ start(li) and start(ak) ≤ start(ri) hold. If
ai = ε, then the guard of the third conditional was satisfied, and there
can be no instance in con(A(j),A(k)) with end time τ , which concludes
the proof. If ai 6= ε, then the guard of the third conditional failed,

131

and the inner conditional ensures that ai ∈ con(A(j),A(k)). For an
arbitrary e ∈ con(A(j),A(k)) with end(e) = τ , we must have e = e′⊕ak

or e = aj ⊕ e′ where e′ ∈ A(j) ∪ A(k) and end(e′) ≤ τ . However,
the inner conditional ensures that start(aj) ≤ start(ai) and start(ak) ≤
start(ai) which implies start(e) ≤ start(ai), and thus there is no e ∈
con(A(j),A(k)) with end(e) = τ and start(ai) < start(e).

Case Ei = Ej−Ek: Reusing the proof for state above, we know that
state(i, τ+1) holds after the first conditional in the negation part. If ai =
ε, then the guard of the second conditional failed, implying that either
aj = ε or there exists an e in A(k) with start(aj) ≤ start(e) and end(e) ≤
end(aj). In either case, there is no element in neg(A(j),A(k)) with end
time τ . If ai 6= ε, then ai = aj so we have ai ∈ A(j). Furthermore, the
guard of the second conditional holds and then according to state(i, τ+1)
there is no e in A(k) with start(ai) ≤ start(e) and end(e) ≤ end(ai), and
thus ai ∈ neg(A(j),A(k)). Since aj is the only instance in A(j) with
end time τ , we have valid(ai,neg(A(j),A(k), τ).

Case Ei = Ej ;Ek: If ak = ε then e′ = ε after the first foreach
construct, and thus ai = ε. It also means that there can be no e ∈
seq(A(j),A(k)) with end(e) = τ , which concludes the proof. If ak 6=
ε then pcorr(k, τ) implies that either start(ak) = τ or start(ak) was
in Sk at the start of this tick. According to state(i, τ), this implies
that (at the start of this tick) Qi ∪ {li} contained an element in {e |
e ∈ A(j) ∧ end(e) < start(ak)} with maximum start time if that set is
non-empty. We consider two subcases: If e′ = ε after the first foreach
contruct, the set was empty, meaning that there can be no element in e ∈
seq(A(j),A(k)) with end(e) = τ . If e′ 6= ε after the first foreach contruct,
then ai = ak ⊕ e′ ensures that ai ∈ seq(A(j),A(k)). Furthermore, we
know that there is no e ∈ A(j) with end(e) < start(ak) and start(e′) <
start(e). Thus, there can be no e ∈ seq(A(j),A(k)) with start(ai) <
start(e) and end(e) = τ .

Case Ei = Ej
τ ′ : If the conditional holds, we have aj ∈ tim(A(j), τ ′).

Since aj is the only instance in A(j) that has end time τ , we have
valid(aj , tim(A(j), τ ′), τ). If the conditional fails, then there is no e in
tim(A(j), τ ′) with end(e) = τ .

Appendix B

Memory and Time
Analysis Algorithm

Section 5.5 described how abstract notions of memory footprint and
worst case execution time can be derived directly from a given event ex-
pression and the instance framework. Here, the whole analysis algorithm
is presented.

If analyse(E) returns 〈m, t〉, this means that the detection of E re-
quires m units of memory and takes t units of time to execute. The
auxiliary function analyse aux(E, sn) includes the boolean parameter sn
to indicate whether or not the Si variable is needed for the principal op-
erator of E (they are only needed within the right-hand subexpression of
a sequence operator). The first two elements of the four-tuple 〈s, i,m, t〉
returned from the auxiliary function capture properties related to the
principal operator of E, namely the size of Si and the instance size. The
other two represent the memory usage and execution time of the whole
expression E.

133

134 Chapter B. Memory and Time Analysis Algorithm

analyse(E) = 〈m + 1, t + 2〉
where
〈s, i,m, t〉 = analyse aux(E, false)

analyse aux(E, sn) = 〈0, i, 1 + i, 4 + i〉
when E ∈ P
where
i = primsize(Ei)

analyse aux(Ej∨Ek, sn) = 〈s, i,m, t〉
where
〈sj , ij ,mj , tj〉 = analyse aux(Ej , sn)
〈sk, ik,mk, tk〉 = analyse aux(Ek, sn)
if sn then s = sj + sk else s = 0
i = unionsize(ij , ik)
m = mj + mk + 1 + s + i
t = tj + tk + 5 + s + i

analyse aux(Ej +Ek, sn) = 〈s, i,m, t〉
where
〈sj , ij ,mj , tj〉 = analyse aux(Ej , sn)
〈sk, ik,mk, tk〉 = analyse aux(Ek, sn)
if sn then s = sj + sk + 2 else s = 0
i = compsize(ij , ik)
m = mj + mk + 1 + s + i + ij + ik
t = tj + tk + 14 + s + i + ij + ik

analyse aux(Ej−Ek, sn) = 〈s, i,m, t〉
where
〈sj , ij ,mj , tj〉 = analyse aux(Ej , sn)
〈sk, ik,mk, tk〉 = analyse aux(Ek, sn)
if sn then s = sj else s = 0
i = ij
m = mj + mk + 1 + s + i
t = tj + tk + 7 + s + i

135

analyse aux(Ej ;Ek, sn) = 〈s, i,m, t〉
where
〈sj , ij ,mj , tj〉 = analyse aux(Ej , sn)
〈sk, ik,mk, tk〉 = analyse aux(Ek, true)
if sn then s = sj + sk + 1 else s = 0
i = compsize(ij , ik)
m = mj + mk + 4 + s + i + (4 + 2 ∗ sk) ∗ ij
t = tj + tk + 20 + 19 ∗ sk + s + i + (2 + 5 ∗ sk) ∗ ij

analyse aux((Ej)τ , sn) = 〈s, i,m, t〉
where
〈sj , ij ,mj , tj〉 = analyse aux(Ej , sn)
if sn then s = sj else s = 0
i = ij
m = mj + 1 + s + i
t = tj + 6 + s + i

Appendix C

Schedulability Analysis
Examples

This appendix presents the schedulability examples from Chapter 6 (i.e.,
Examples 6.3 and 6.5) in more detail. We consider a system with three
tasks, two of which are periodic, and one which is triggered by the event
expression (A;B)+C.

Task ID Ci Ti Di Ei

T1 10 50 30 –

P2 20 – 100 (A;B)+C

T3 30 200 200 –

The schedulability analysis, also requires information about the mini-
mum interarrival time of the primitive events, as well as the worst case
execution time associated with detecting the pattern. We assume that
mint(A) = 60, mint(B) = 70, mint(C) = 200 and wcet((A;B)+C) = 5.

Following Definition 6.4, an auxiliary task set is generated from the
original task set and the additional information.

137

138 Chapter C. Schedulability Analysis Examples

From task ti Ci Ti Di

T1 t1 10 50 30
t2 5 60 100

P2 t3 25 70 100
t4 25 200 100

T3 t5 30 200 200

The original task set can not demand more computational resources over
time than this auxiliary task set, and since the latter consists only of
periodic and sporadic tasks, it can be analysed with standard techniques.
If the auxiliary task set is schedulable, then so is the original task set.

Response time analysis

For the fixed priority schedulability analysis, we modified the response
time analysis from Tindell et al. [147] to take into account that tasks do
not have unique priorities.

wi(q) =
∑

∀j∈ep(i)

(⌊

qTi

Tj

⌋

+ 1

)

Cj +
∑

∀j∈hp(i)

⌈

wi(q)

Tj

⌉

Cj

ri = max
q=0,1,...,

⌊

L(Pi)

Ti

⌋

(wi(q)− qTi)

To determine the smallest value of wi(q) that satisfies the equation above,
a sequence of values is generated as follows:

w1
i (q) =

∑

∀j∈ep(i)

(⌊

qTi

Tj

⌋

+ 1

)

Cj

wn+1
i (q) = w1

i (q) +
∑

∀j∈hp(i)

⌈

wn
i (q)

Tj

⌉

Cj

The iteration ends when a fixed point is found, or when a value greater
than qTi + Di is encountered, which indicates that the response time
exceeds the deadline.

For the example task set, we assume that T1 has highest priority,
followed by P2 and finally T3. These priorities propagate to the auxiliary
task set:

139

From task i Pi Ci Ti Di ri

T1 1 High 10 50 30 10

2 Mid 5 60 100 75

P2 3 Mid 25 70 100 75

4 Mid 25 200 100 75

T3 5 Low 30 200 200 190

Since ri ≤ Di for all tasks, the original task set is schedulable. The
remaining section describes how the response times are derived.

Task t1

For t1, we have L(P1) = 10 and b10/50c = 0, meaning that only one
instance of t1 can arrive during a high priority busy period. Since no
other task instance can interfer with this instance, the response time of
task t1 is r1 = w1(0) = Cj = 10.

Task t2

For t2 we have L(P2) = 115, and b115/60c = 1, which means that at
most two instances can arrive during a middle priority busy period. The
latest start time for instance q is given by

w1
2(q) = (q + 1)5 +

(⌊

60q

70

⌋

+ 1
)

25 +
(⌊

60q

200

⌋

+ 1
)

25

wn+1
2 (q) = w1

2(q) +
⌈

wn

2 (q)
50

⌉

10

Fixpoint iteration for q = 0:

w1
2(0) = 5 + 25 + 25 = 55

w2
2(0) = 55 + d55/50e10 = 75

w3
2(0) = 55 + d75/50e10 = 75

Fixpoint iteration for q = 1:

w1
2(1) = 10 + 25 + 25 = 60

w2
2(1) = 60 + d60/50e10 = 80

w3
2(1) = 60 + d80/50e10 = 80

140 Chapter C. Schedulability Analysis Examples

The response time is r2 = max(w2(0), w2(1)− 60) = max(75, 20) = 75.

Task t3

For t3 we have L(P3) = L(P2) = 115 and
⌊

115/70
⌋

= 1, which means
that at most two instances can arrive during a middle priority busy
period. The latest start time for instance q is given by

w1
3(q) = (q + 1)25 +

(⌊

70q

60

⌋

+ 1
)

5 +
(⌊

70q

200

⌋

+ 1
)

25

wn+1
3 (q) = w1

3(q) +
⌈

wn

3 (q)
50

⌉

10

The latest finish time for instance q = 0 is the same for all tasks with
the same priority. Thus, we have w3(0) = w2(0) = 75.
Fixpoint iteration for q = 1:

w1
3(1) = 50 + 10 + 25 = 85

w2
3(1) = 85 + d85/50e10 = 105

w3
3(1) = 85 + d105/50e10 = 115

w4
3(1) = 85 + d115/50e10 = 115

The response time is r3 = max(w3(0), w3(1)− 70) = max(75, 45) = 75.

Task t4

For t4 we have L(P4) = L(P2) = 115 and
⌊

115/200
⌋

= 0, which means
that at most one instance can arrive during a middle priority busy period.
The latest finish time for instance q = 0 is the same for all tasks with
the same priority. Thus, w4(0) = w2(0) = 75, and since there is only
one instance of t4 to investigate, we have r4 = w4(0) = 75.

Task t5

For t5 we have L(P5) = 190 and
⌊

190/200
⌋

= 0, which means that at
most one instance can arrive during a low priority busy period. The
latest start time for instance q is given by

w1
5(q) = (q + 1)30

wn+1
5 (q) = w1

5(q) +
⌈

wn

5 (q)
50

⌉

10 +
⌈

wn

5 (q)
60

⌉

5 +
⌈

wn

5 (q)
70

⌉

25 +
⌈

wn

5 (q)
200

⌉

25

141

Fixpoint iteration for q = 0:

w1
5(0) = 30

w2
5(0) = 30 + d 3050e10 + d 3060e5 + d 3070e25 + d 30

200e25

= 30 + 10 + 5 + 25 + 25 = 95

w3
5(0) = 30 + d 9550e10 + d 9560e5 + d 9570e25 + d 95

200e25

= 30 + 20 + 10 + 50 + 25 = 135

w4
5(0) = 30 + d 13550 e10 + d 13560 e5 + d 13570 e25 + d 135200e25

= 30 + 30 + 15 + 50 + 25 = 150

w5
5(0) = 30 + d 15050 e10 + d 15060 e5 + d 15070 e25 + d 150200e25

= 30 + 30 + 15 + 75 + 25 = 175

w6
5(0) = 30 + d 17550 e10 + d 17560 e5 + d 17570 e25 + d 175200e25

= 30 + 40 + 15 + 75 + 25 = 185

w7
5(0) = 30 + d 18550 e10 + d 18560 e5 + d 18570 e25 + d 185200e25

= 30 + 40 + 20 + 75 + 25 = 190

w8
5(0) = 30 + d 19050 e10 + d 19060 e5 + d 19070 e25 + d 190200e25

= 30 + 40 + 20 + 75 + 25 = 190

The response time is r5 = w5(0) = 190.

Processor demand analysis

Under EDF, the auxiliary task set can be analysed by exisiting tech-
niques without modification. Following Buttazzo [30] and George et
al. [63], we use the following definitions:

D = {d | d = qTi + Di, d ≤ L, 0 ≤ i ≤ n, q ≥ 0}

h(d) =
∑

Di≤d

(

1 +

⌊

d−Di

Ti

⌋)

Ci

142 Chapter C. Schedulability Analysis Examples

where D represents the absolute deadlines within the busy period, and
h(d) denotes the processor demand in the interval of length d following
the critical instant.

For the auxiliary task, we have the busy period L = 190, which gives
the following D:

D = {d | d = kTi + Di, d ≤ 190, 1 ≤ i ≤ n, k ≥ 0}

= {d | d = 50k + 30, d ≤ 190, k ≥ 0} ∪

{d | d = 60k + 100, d ≤ 190, k ≥ 0} ∪

{d | d = 70k + 100, d ≤ 190, k ≥ 0} ∪

{d | d = 200k + 100, d ≤ 190, k ≥ 0} ∪

{d | d = 200k + 200, d ≤ 190, k ≥ 0}

= {30, 80, 130, 180} ∪ {100, 160} ∪ {100, 170} ∪ {100} ∪ {}

= {30, 80, 100, 130, 160, 170, 180}

Next, we compute h(d) for each d ∈ D:

h(30) =
∑

Di≤30

(

1 +
⌊

30−Di

Ti

⌋)

Ci

=
(

1 +
⌊

30−D1

T1

⌋)

C1 =
(

1 +
⌊

0
50

⌋)

10 = 10

h(80) =
∑

Di≤80

(

1 +
⌊

80−Di

Ti

⌋)

Ci

=
(

1 +
⌊

80−D1

T1

⌋)

C1 =
(

1 +
⌊

50
50

⌋)

10 = 20

h(100) =
∑

Di≤100

(

1 +
⌊

100−Di

Ti

⌋)

Ci

=
(

1 +
⌊

100−D1

T1

⌋)

C1 +
(

1 +
⌊

100−D2

T2

⌋)

C2 +
(

1 +
⌊

100−D3

T3

⌋)

C3 +
(

1 +
⌊

100−D4

T4

⌋)

C4

=
(

1 +
⌊

70
50

⌋)

10 +
(

1 +
⌊

0
60

⌋)

5 +
(

1 +
⌊

0
70

⌋)

25 +
(

1 +
⌊

0
200

⌋)

25

= 20 + 5 + 25 + 25 = 75

143

h(130) =
∑

Di≤130

(

1 +
⌊

130−Di

Ti

⌋)

Ci

=
(

1 +
⌊

130−D1

T1

⌋)

C1 +
(

1 +
⌊

130−D2

T2

⌋)

C2 +
(

1 +
⌊

130−D3

T3

⌋)

C3 +
(

1 +
⌊

130−D4

T4

⌋)

C4

=
(

1 +
⌊

100
50

⌋)

10 +
(

1 +
⌊

30
60

⌋)

5 +
(

1 +
⌊

30
70

⌋)

25 +
(

1 +
⌊

30
200

⌋)

25

= 30 + 5 + 25 + 25 = 85

h(160) =
∑

Di≤160

(

1 +
⌊

160−Di

Ti

⌋)

Ci

=
(

1 +
⌊

160−D1

T1

⌋)

C1 +
(

1 +
⌊

160−D2

T2

⌋)

C2 +
(

1 +
⌊

160−D3

T3

⌋)

C3 +
(

1 +
⌊

160−D4

T4

⌋)

C4

=
(

1 +
⌊

130
50

⌋)

10 +
(

1 +
⌊

60
60

⌋)

5 +
(

1 +
⌊

60
70

⌋)

25 +
(

1 +
⌊

60
200

⌋)

25

= 30 + 10 + 25 + 25 = 90

h(170) =
∑

Di≤170

(

1 +
⌊

170−Di

Ti

⌋)

Ci

=
(

1 +
⌊

170−D1

T1

⌋)

C1 +
(

1 +
⌊

170−D2

T2

⌋)

C2 +
(

1 +
⌊

170−D3

T3

⌋)

C3 +
(

1 +
⌊

170−D4

T4

⌋)

C4

=
(

1 +
⌊

140
50

⌋)

10 +
(

1 +
⌊

70
60

⌋)

5 +
(

1 +
⌊

70
70

⌋)

25 +
(

1 +
⌊

70
200

⌋)

25

= 30 + 10 + 50 + 25 = 115

144 Chapter C. Schedulability Analysis Examples

h(180) =
∑

Di≤180

(

1 +
⌊

180−Di

Ti

⌋)

Ci

=
(

1 +
⌊

180−D1

T1

⌋)

C1 +
(

1 +
⌊

180−D2

T2

⌋)

C2 +
(

1 +
⌊

180−D3

T3

⌋)

C3 +
(

1 +
⌊

180−D4

T4

⌋)

C4

=
(

1 +
⌊

150
50

⌋)

10 +
(

1 +
⌊

80
60

⌋)

5 +
(

1 +
⌊

80
70

⌋)

25 +
(

1 +
⌊

80
200

⌋)

25

= 40 + 10 + 50 + 25 = 125

Finally, for each of the computed h(d) values we check that h(d) ≤ d, :

h(30) = 10 ≤ 30
h(80) = 20 ≤ 80
h(100) = 75 ≤ 100
h(130) = 85 ≤ 130

h(160) = 90 ≤ 160
h(170) = 115 ≤ 170
h(180) = 125 ≤ 180

Since all the above inequalities hold, the task set is schedulable under
EDF.

Appendix D

Publication List

These publications have been (co-)authored by the author of this thesis.

Journal publications

• The SAVE Approach to Component-Based Development
of Vehicular Systems. Mikael Åkerholm, Jan Carlson, Johan
Fredriksson, Hans Hansson, John H̊akansson, Anders Möller, Paul
Pettersson and Massimo Tivoli. Journal of Systems and Software,
vol 80, nr 5, p655–667. Elsevier, May 2007.

Theses

• An Intuitive and Resource-Efficient Event Detection Alge-
bra. Jan Carlson. Mälardalen University, Licentiate thesis No. 29.
ISBN 91-88834-49-2. June 2004.

Conference publications

• Determining Maximum Stack Usage in Preemptive Shared
Stack Systems. Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin,
Jan Carlson and Mikael Nolin. In Proceedings of the 27th IEEE
Real-Time Systems Symposium, Rio de Janeiro, Brazil. December
2006.

145

146 Chapter D. Publication List

• Merging In-House Developed Software Systems – A Method
for Exploring Alternatives. Rikard Land, Jan Carlson, Ivica
Crnkovic and Stig Larsson. In Proceedings of the 2nd International
Conference on Quality of Software Architecture, Väster̊as, Sweden.
June 2006.

• An Event Detection Algebra for Reactive Systems. Jan
Carlson and Björn Lisper. In Proceedings of the fourth ACM Inter-
national Conference on Embedded Software (EMSOFT’04), Pisa,
Italy. September 2004.

• Enhancing Time Triggered Scheduling with Value Based
Overload Handling and Task Migration. Jan Carlson, Tomas
Lennvall and Gerhard Fohler. In Proceedings of the 6th IEEE
International Symposium on Object-oriented Real-time distributed
Computing, Hakodate, Japan. May 2003.

• Value Based Overload Handling of Aperiodic Tasks in Of-
fline Scheduled Real-Time Systems. Jan Carlson, Tomas
Lennvall and Gerhard Fohler. In Proceedings of the 13th Euromi-
cro Conference on Real-Time Systems (Work-in-progress Session),
Delft, The Netherlands. June 2001.

Workshop publications

• Handling Subsystems using the SaveComp Component
Technology. Mikael Åkerholm, Jan Carlson, Johan Fredriksson,
Hans Hansson, Mikael Nolin, Thomas Nolte, John H̊akansson and
Paul Pettersson. In Proceedings of the 1st Workshop on Models and
Analysis for Automotive Systems (WMAAS’06), Rio de Janeiro,
Brazil. December 2006.

• SaveCCM: An Analysable Component Model for Real-
Time Systems. Jan Carlson, John H̊akansson and Paul Petters-
son. In Proceedings of the 2nd International Workshop on Formal
Aspects of Component Software (FACS05), Macao. Elsevier, Oc-
tober 2005

• An Event Algebra Extension of the Triggering Mechanism
in a Component Model for Embedded Systems. Jan Carlson
and Mikael Åkerholm. In Proceedings of the Workshop on Formal

147

Foundations of Embedded Software and Component-Based Software
Architectures (FESCA), Edinburgh, Scotland. April 2005.

• An Interval-Based Algebra for Restricted Event Detec-
tion. Jan Carlson and Björn Lisper, In Proceedings of the First In-
ternational Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS 2003), Marseille, France. September 2003.

Appendix E

Notation List

Notation Description Page

; sequence operator 52

⊕ instance constructor function 53

[[]]I algebra semantics 55

|X| the maximum size of a set variable X 73

+ conjunction operator 52

− negation operator 52

∨ disjunction operator 52

ε a non-occurrence 65

≡ expression equivalence 59

0 empty event 61

A(i) the event stream detected for Ei 67

acorr output correctness property 70

ai auxiliary instance variable 65

Aτ temporal restriction 52

(continued on next page)

149

150 Chapter E. Notation List

(continued from previous page)

Notation Description Page

Ci worst case execution time of task ti 85

compsize the size of a composite instance 78

con conjunction operator semantics function 55

D event instance domain 53

D absolute deadlines within the busy period 98

Di relative deadline of task ti 85

dis disjunction operator semantics function 55

E the expression to be detected 65

e, e′ temporary instance variable 65

Ei the ith subexpression of E 65

Ei event expression of task ti 85

empty empty stream interval 123

end end time of an instance 53

ep(i) tasks of the same priority as ti 94

Γ original taskset 90

Γaux auxiliary taskset 90

h(d) processor demand 98

hp(i) tasks of higher priority than ti 94

I interpretation 54

i instance size (analysis algorithm) 77

L busy period 98

li persistent instance variable 65

L(Pi) level Pi busy period 92

(continued on next page)

151

(continued from previous page)

Notation Description Page

m abstract memory usage (analysis algorithm) 76

m the number of subexpressions in E 65

mint(A) minimum interarrival time of A 88

neg negation operator semantics function 55

P primitive events (identifiers) 52

pcorr Si correctness property 68

Pi priority of task ti 92

prim(E) the primitive events of E 89

primsize maximum instance size of a primitive event 78

Q′ temporary instance set variable 65

Qi persistent instance set variable 65

res restriction policy 57

ri persistent instance variable 65

ri worst case response time of ti 94

s size of Si (analysis algorithm) 77

seq sequence operator semantics function 55

Si auxiliary time set variable 65

sn is Si needed (analysis algorithm) 77

start start time of an instance 53

state state information correctness property 68

subexp(A) the number of subexpressions in A 73

T temporal domain 51

t abstract execution time (analysis algorithm) 76

(continued on next page)

152 Chapter E. Notation List

(continued from previous page)

Notation Description Page

t temporary time variable 65

term(E) the terminating primitive events of E 89

Ti period of task ti 85

ti persistent time variable 65

tim temporal restriction semantics function 55

type(p) the type of port p 107

U processor utilisation 97

unionsize disjunction instance size 78

valid “pointwise restriction predicate” 69

ω maximum instance size 74

wcet(E) the WCET associated with the detection of E 89

wi(q) latest finishing time of the qth instance of ti 94

Bibliography

[1] Jonathon Abbott, Jim Bell, Andrew Clark, Olivier De Vel, and
George Mohay. Automated recognition of event scenarios for digi-
tal forensics. In SAC’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 293–300. ACM Press, 2006.

[2] AbsInt company homepage. Accessed Mar 20, 2007. http://www.
absint.com.

[3] Raman Adaikkalavan and Sharma Chakravarthy. Formaliza-
tion and detection of events using interval-based semantics. In
Jayant R. Haritsa and T. M. Vijayaraman, editors, Advances in
Data Management 2005, Proceedings of the Eleventh International
Conference on Management of Data, January 6, 7, and 8, 2005,
Goa, India, pages 58–69. Computer Society of India, 2005.

[4] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB:
Interval-based event specification and detection for active data-
bases. Data & Knowledge Engineering, 59(1):139–165, 2006.

[5] Jose Aguilar, Kouamana Bousson, Christophe Dousson, Malik
Ghallab, Antony Guasch, Rob Milne, Charlie Nicol, Jose Quevedo,
and Louise Travé-Massuyès. TIGER: Real-time situation assess-
ment of dynamic systems. Intelligent Systems Engineering, pages
103–124, October 1994.

[6] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson,
John H̊akansson, Anders Möller, Paul Pettersson, and Massimo
Tivoli. The SAVE approach to component-based development of
vehicular systems. Journal of Systems and Software, 80(5):655–
667, 2007.

153

154 Bibliography

[7] Mikael Åkerholm, Anders Möller, Hans Hansson, and Mikael Nolin.
Towards a dependable component technology for embedded system
applications. In 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2005). IEEE,
January 2005.

[8] James F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[9] James F. Allen and George Ferguson. Actions and events in inter-
val temporal logic. Journal of Logic and Computation, 4(5):531–
579, October 1994.

[10] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[11] Rajeev Alur and Thomas A. Henzinger. Logics and models of real
time: A survey. In J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg, editors, Proceedings of Real-Time: Theory in
Practice, volume 600 of LNCS, pages 74–106, Berlin, Germany,
June 1992. Springer.

[12] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Petters-
son, and Wang Yi. Times: a tool for schedulability analysis and
code generation of real-time systems. In Proc. of 1st International
Workshop on Formal Modeling and Analysis of Timed Systems,
Lecture Notes in Computer Science. Springer, 2003.

[13] James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. An
edf-based scheduling algorithm for multiprocessor soft real-time
systems. In ECRTS ’05: Proceedings of the 17th Euromicro Con-
ference on Real-Time Systems (ECRTS’05), pages 199–208. IEEE
Computer Society, 2005.

[14] Edward Angel. Interactive Computer Graphics. Addison-Wesley,
2002.

[15] Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell,
and Andy J. Wellings. Fixed priority pre-emptive scheduling: An
historical perspective. Real-Time Syst., 8(2-3):173–198, 1995.

Bibliography 155

[16] James Bailey and Szabolcs Mikulás. Expressiveness issues and
decision problems for active database event queries. In Database
Theory - ICDT 2001, 8th International Conference, volume 1973
of Lecture Notes in Computer Science, pages 68–82, London, UK,
4–6 January 2001. Springer.

[17] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik
Sen. Rule-based runtime verification. In 5th International Confer-
ence on Verification, Model Checking and Abstract Interpretation
(VMCAI’04), volume 2937 of Lecture Notes in Computer Science,
pages 44–57. Springer, 2004.

[18] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Al-
gorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time Systems,
2(4):301–324, 1990.

[19] Pierfrancesco Bellini, Riccardo Mattolini, and Paolo Nesi. Tem-
poral logics for real-time system specification. ACM Computing
Surveys, 32(1):12–42, March 2000.

[20] Martin Bernauer, Gerti Kappel, and Gerhard Kramler. Composite
events for XML. In Proceedings of WWW2004, New York, USA,
May 17–22 2004. ACM.

[21] Mikael Berndtsson and Jörgen Hansson. Issues in active real-time
databases. In Active and Real-Time Database Systems, pages 142–
157, 1995.

[22] Karthikeyan Bhargavan and Carl A. Gunter. Network event recog-
nition. Form. Methods Syst. Des., 27(3):213–251, 2005.

[23] Karthikeyan Bhargavan and Carl A. Gunter. Network event recog-
nition. Formal Methods in System Design, 27(3):213–251, 2005.

[24] Bound-T homepage. Accessed Mar 20, 2007. http://www.

tidorum.fi/bound-t/.

[25] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, and P. Up-
puluri. Building survivable systems: An integrated approach based
on intrusion detection and damage containment. In Proceedings of
the DARPA Information Survivability Conference and Exposition

156 Bibliography

(DISCEX 2000), pages 1084–1099. IEEE Computer Society Press,
January 2000.

[26] Don Box. Essential COM. Addison-Wesley, 1997.

[27] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis
for engineering real-time fixed priority schedulers. IEEE Trans.
Softw. Eng., 21(5):475–480, 1995.

[28] Alan Burns and Andy Wellings. Real-time systems and their pro-
gramming languages. Addison-Wesley, 1990.

[29] Stanley Burris and Hanamantagouda P. Sankappanavar. A Course
in Universal Algebra. Springer-Verlag, New York, 1981.

[30] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer Academic
Publishers, 1997.

[31] Giorgio C. Buttazzo and John A. Stankovic. Adding robust-
ness in dynamic preemptive scheduling. In Donald Fussell and
Miroslaw Malek, editors, Responsive Computer Systems: Steps To-
ward Fault-Tolerant Real-Time Systems. Kluwer Academic Pub-
lishers, 1995.

[32] Jan Carlson. An intuitive and resource-efficient event detection al-
gebra. Licentiate thesis No. 29, June 2004. Mälardalen University,
Sweden.

[33] Jan Carlson, John H̊akansson, and Paul Pettersson. SaveCCM:
An analysable component model for real-time systems. In Z. Liu
and L. Barbosa, editors, Proceedings of the 2nd Workshop on For-
mal Aspects of Components Software (FACS 2005), volume 160 of
Electronic Notes in Theoretical Computer Science, pages 127–140.
Elsevier, 2006.

[34] Sharma Chakravarthy, Vidhya Krishnaprasad, Eman Anwar, and
Seung-Kyum Kim. Composite events for active databases: Seman-
tics, contexts and detection. In 20th International Conference on
Very Large Data Bases, pages 606–617, Santiago, Chile, 12–15 Sep-
tember 1994. Morgan Kaufmann Publishers.

Bibliography 157

[35] Sharma Chakravarthy and D. Mishra. Snoop: An expressive event
specification language for active databases. Data Knowledge En-
gineering, 14(1):1–26, 1994.

[36] Sharma Chakravathy and Jae Dong Yang. A recursion-based
framework for detecting composite events in active databases, Jan-
uary 1998.

[37] Houssine Chetto, Maryline Silly, and T. Bouchentouf. Dynamic
scheduling of real-time tasks under precedence constraints. Real-
Time Systems, 2(3):181–194, 1990.

[38] Jan Chomicki. Efficient checking of temporal integrity constraints
using bounded history encoding. ACM Trans. Database Syst.,
20(2):149–186, 1995.

[39] Georgio Chrysanthakopoulos and Satnam Singh. An asynchro-
nous messaging library for C#. In OOPSLA 2005 Workshop on
Synchronization and Concurrency in Object-Oriented Languages
(SCOOL), October 2005.

[40] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,
1986.

[41] James Conard, Patrick Dengler, Brian Francis, Jay Glynn, Burton
Harvey, Billy Hollis, Rama Ramachandran, John Schenken, Scott
Short, and Chris Ullman. Introducing .NET. Wrox Press, 2001.

[42] Ivica Crnkovic. Component-based approach for embedded sys-
tems. In Ninth International Workshop on Component-Oriented
Programming, June 2004.

[43] Ivica Crnkovic. Component-based approach for embedded sys-
tems. In Ninth International Workshop on Component-Oriented
Programming, June 2004.

[44] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems. Artech House, 2002.

[45] Michael L. Dertouzos. Control robotics: The procedural control of
physical processes. In IFIP Congress, pages 807–813, 1974.

158 Bibliography

[46] Radu Dobrin. Combining Off-line Schedule Construction and
Fixed Priority Scheduling in Real-Time Computer Systems. PhD
thesis, Mälardalen University, September 2005.

[47] C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition:
Representation and algorithms. In Proceedings of 13th Interna-
tional Joint Conference on Artificial Intelligence, pages 166–172,
Chambery, France, 1993.

[48] Christophe Dousson. Alarm driven supervision for telecommu-
nication networks: II- On-line chronicle recognition. Annals of
Telecommunications, pages 501–508, October 1996. CNET, France
Telecom.

[49] Dan Egnor. liboop home page. Accessed Jan 12, 2007. http:

//liboop.ofb.net/.

[50] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and
Anne-Marie Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[51] Pascal Fenkam. A Systematic Approach to the Development of
Event-Based Applications. PhD thesis, Technical University of Vi-
enna, October 2003.

[52] David Flanagan. Java in a Nutshell (2nd ed.). O’Reilly & Asso-
ciates, Inc., 1997.

[53] Gerhard Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems. In IEEE
Real-Time Systems Symposium, December 1995.

[54] P. Frohlich, W. Nejdl, K. Jobmann, and H. Wietgrefe. Model-based
alarm correlation in cellular phone networks, 1997.

[55] Antony Galton and Juan Carlos Augusto. Two approaches to event
definition. In Proc. of Database and Expert Systems Applications
13th Int. Conference (DEXA’02), volume 2453 of Lecture Notes in
Computer Science. Springer-Verlag, September 2002.

[56] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

Bibliography 159

[57] S. Gatziu and K. R. Dittrich. Events in an active object-oriented
database system. In Proc. 1st Intl. Workshop on Rules in Data-
base Systems (RIDS), Edinburgh, UK, September 1993. Springer-
Verlag.

[58] S. Gatziu and K. R. Dittrich. Detecting composite events in ac-
tive database systems using petri nets. In Research Issues in Data
Engineering (RIDE ’94), pages 2–9, Los Alamitos, Ca., USA, Feb-
ruary 1994. IEEE Computer Society Press.

[59] N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A sys-
tem for composite specification and detection. In Advanced Data-
base Systems, volume 759 of Lecture Notes in Computer Science.
Springer, 1993.

[60] N. H. Gehani and H. V. Jagadish. Ode as an active database:
Constraints and triggers. In Proceedings of the 17th Conference
on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA),
Barcelona, 1991.

[61] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification
in an Active Object–Oriented Database. In Proc. Intl. Conf. on
Management of Data (SIGMOD), pages 81–90, 1992.

[62] Narain H. Gehani and Daniel F. Lieuwen. Ode triggers: Mon-
itoring the stock market. Software — Practice and Experience,
27(8):905–927, 1997.

[63] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive
and non-preemptive real-time uniprocessor scheduling. Technical
Report RR-2966, Institut National de Recherche et Informatique
et en Automatique, 1996.

[64] Rodolfo Gómez and Juan Carlos Augusto. Durative events in ac-
tive databases. In ICEIS 2004, Proceedings of the 6th Interna-
tional Conference on Enterprise Information Systems, pages 306–
311, Porto, Portugal, April 2004.

[65] R. E. Gruber, B. Krishnamurthy, and E. Panagos. The architec-
ture of the READY event notification service. In P. Dasgupta,
editor, Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, Middleware Workshop, Austin,
TX, USA, May 1999.

160 Bibliography

[66] Joshua Haines, Dorene Kewley Ryder, Laura Tinnel, and Stephen
Taylor. Validation of sensor alert correlators. IEEE Security and
Privacy, 1(1):46–56, 2003.

[67] Jeri R. Hanly and Elliot B. Koffman. Problem Solving and Program
Design in C. Addison-Wesley, 1995.

[68] Jörgen Hansson and Mikael Berndtsson. Active real-time database
systems. In Active Rules in Database Systems, pages 405–426.
Springer, 1999.

[69] Lilian Harada and Yuuji Hotta. Order checking in a CPOE using
event analyzer. In CIKM’05: Proceedings of the 14th ACM inter-
national conference on Information and knowledge management,
pages 549–555. ACM Press, 2005.

[70] Lilian Harada, Yuuji Hotta, and Tadashi Ohmori. Detection of
sequential patterns of events for supporting business intelligence
solutions. In IDEAS ’04: Proceedings of the International Database
Engineering and Applications Symposium (IDEAS’04), pages 475–
479, Washington, DC, USA, 2004. IEEE Computer Society.

[71] Michael González Harbour, Mark H. Klein, and John P. Lehoczky.
Fixed priority scheduling of periodic tasks with varying execution
priority. In Robert Werner, editor, Proceedings of the Real-Time
Systems Symposium - 1991, pages 116–128. IEEE Computer Soci-
ety Press, December 1991.

[72] Richard Hayton, Jean Bacon, John Bates, and Ken Moody. Using
events to build large scale distributed applications. In Proceedings
of the 7th workshop on ACM SIGOPS European workshop, pages
9–16, New York, NY, USA, 1996. ACM Press.

[73] George T. Heineman and William T. Councill, editors.
Component-based software engineering: Putting the pieces to-
gether. Addison-Wesley, 2001.

[74] David M. Hilbert and David F. Redmiles. Agents for collecting
application usage data over the Internet. In Katia P. Sycara and
Michael Wooldridge, editors, Proceedings of the 2nd International
Conference on Autonomous Agents (Agents’98), pages 149–156.
ACM Press, 9–13, 1998.

Bibliography 161

[75] A. Hinze and A. Voisard. A flexible parameter-dependent algebra
for event notification services. Technical Report TR-B-02-10, Freie
Universität Berlin, 2002.

[76] A. Hinze and A. Voisard. A parameterized algebra for event no-
tification services. In Proceedings of the 9th International Sym-
posium on Temporal Representation and Reasoning (TIME 2002),
Manchester, UK, July 2002. Springer-Verlag.

[77] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley Publishing
Company, 1979.

[78] G. Jakobson and M. Weissman. Alarm correlation. IEEE Network
Magazine, 6(7):52–59, 1993.

[79] K. Jeffay and D. L. Stone. Accounting for interrupt handling costs
in dynamic priority task systems. In Susan Davidson and Insup
Lee, editors, Proceedings of the Real-Time Systems Symposium,
pages 212–221. IEEE Computer Society Press, December 1993.

[80] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Meth-
ods, and Practical Use, vol 1. EATCS Monographs in Computer
Science. Springer-Verlag, 1992.

[81] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal (British Computer Society),
29(5):390–395, Oct 1986.

[82] Iluju Kiringa. Specifying event logics for active databases. In
Proceedings of the 2002 International Workshop on Description
Logics (DL2002), Toulouse, France, volume 53 of CEUR Workshop
Proceedings, 2002.

[83] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and
Michael González Harbour. A Practitioner’s Handbook for Real-
Time Analysis : Guide to Rate Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers, 1993.

[84] Hermann Kopetz. Should responsive systems be event-triggered or
time-triggered? IEICE Transactions on Information and Systems,
E76-D(11):1325–1332, 1993.

162 Bibliography

[85] R. Kowalski. Database updates in the event calculus. The Journal
of Logic Programming, 12:121, January 1992.

[86] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events.
New Generation Computing, 4:67–95, 1986.

[87] S. Krakowiak. What is middleware, 2003. http://middleware.

objectweb.org.

[88] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology Transfer,
1(1–2):134–152, October 1997.

[89] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks. Performance Eval-
uation, 2(4):237–250, Dec 1982.

[90] Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In 6th International
Middleware Conference, Grenoble, France, volume 3790 of Lecture
Notes in Computer Science, pages 249–269. Springer, 2005.

[91] C. Liebig, B. Boesling, and A. Buchmann. A notification service for
next-generation it systems in air traffic control. In GI-Workshop:
Multicast-Protokolle und Anwendungen, Braunschweig, Germany,
May 1999.

[92] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-
dependent distributed systems. In Proceedings of the 4th Intl. Con-
ference on Cooperative Information Systems (CoopIS ’99), Sep-
tember 1999.

[93] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[94] G. Liu, A. Mok, and P. Konana. A unified approach for specifying
timing constraints and composite events in active real-time data-
base systems. In 4th IEEE Real-Time Technology and Applications
Symposium (RTAS ’98), pages 199–209, Washington - Brussels -
Tokyo, June 1998. IEEE.

Bibliography 163

[95] G. Liu, A. K. Mok, and E. J. Yang. Composite events for net-
work event correlation. In Proceedings of the 6th IFIP/IEEE In-
ternational Symposium on Integrated Network Management, pages
247–260. IEEE, 1999.

[96] C. Douglas Locke. Software architecture for hard real-time appli-
cations: Cyclic executives vs. fixed priority executives. Real-Time
Systems, 4(1):37–53, 1992.

[97] Chaoying Ma and Jean Bacon. COBEA: A CORBA-based event
architecture. In Proceedings of the USENIX Conference on Object-
Oriented Technologies and Systems, pages 117–131, June 1998.

[98] Masoud Mansouri-Samani and Morris Sloman. GEM: A general-
ized event monitoring language for distributed systems. Distributed
Systems Engineering, 4(2):96–108, June 1997.

[99] K. Meinke and J. V. Tucker. Universal algebra. In Handbook
of Logic in Computer Science, volume 1, pages 189–368. Oxford
University Press, 1992.

[100] Jonas Mellin. Resource-Predictable and Efficient Monitoring of
Events. PhD thesis, Department of Computer and Information
Science, Linköping University, June 2004. Dissertation No 876.

[101] Jonas Mellin and Sten F. Andler. A formalized schema for event
composition. In Proc. 8th Int. Conf on Real-Time Computing
Systems and Applications (RTCSA 2002), pages 201–210, Tokyo,
Japan, 18–20 March 2002.

[102] Microsoft Corporation. Microsoft Robotics Studio. Accessed Mar
9, 2007. http://msdn.microsoft.com/robotics/.

[103] A. Mok and G. Liu. Early detection of timing constraint violation
at runtime. In The 18th IEEE Real-Time Systems Symposium
(RTSS ’97), pages 176–186, Washington - Brussels - Tokyo, De-
cember 1997. IEEE.

[104] A. Mok and G. Liu. Efficient run-time monitoring of timing con-
straints. In Proceedings of the Third IEEE Real-Time Technology
and Applications Symposium (RTAS ’97), pages 252–262, Wash-
ington - Brussels - Tokyo, June 1997. IEEE.

164 Bibliography

[105] Aloysius K. Mok, Prabhudev Konana, Guangtian Liu, Chan-Gun
Lee, and Honguk Woo. Specifying timing constraints and com-
posite events: An application in the design of electronic broker-
ages. IEEE Transactions on Software Engineering, 30(12):841–858,
2004.

[106] Anders Möller, Jakob Engblom, and Mikael Nolin. Developing and
testing distributed CAN-based real-time control-systems using a
single PC. In 10th International CAN Conference, Roma, Italy.
CAN in Automation, March 2005.

[107] Anders Möller, Joakim Fröberg, and Mikael Nolin. Industrial re-
quirements on component technologies for embedded systems. In
International Symposium on Component-based Software Engineer-
ing (CBSE7), Edinburgh, Scotland, May 2004. Springer Verlag.

[108] Richard Monson-Haefel. Enterprise JavaBeans. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 1999.

[109] Iakovos Motakis and Carlo Zaniolo. Formal semantics for compos-
ite temporal events in active database rules. Journal of Systems
Integration, 7(3/4):291–325, 1997.

[110] Mozilla Developer Center. JavaScript. Accessed Mar 13, 2007.
http://developer.mozilla.org/en/docs/JavaScript.

[111] Prasad Naldurg, Koushik Sen, and Prasanna Thati. A temporal
logic based framework for intrusion detection. In David de Frutos-
Escrig and Manuel Núñez, editors, Formal Techniques for Net-
worked and Distributed Systems (FORTE 2004), 24th IFIP WG
6.1 International Conference, Madrid Spain, volume 3235 of Lec-
ture Notes in Computer Science, pages 359–376. Springer, 2004.

[112] O. Nierstrass, G. Arevalo, S. Ducasse, R. Wuyts, A. Black,
P. Müller, C. Zeidler, T. Genssler, and R. van den Born. A com-
ponent model for field devices. In Proceedings of the First Inter-
national IFIP/ACM Working Conference on Component Deploy-
ment, June 2002.

[113] Object Management Group. Event Service Specification, May
1997. http://www.omg.org.

Bibliography 165

[114] Object Management Group. Minimum CORBA Specification,
v1.0, August 2002. http://www.omg.org.

[115] Object Management Group. Real-Time CORBA Specification,
v1.2, January 2005. http://www.omg.org.

[116] Object Management Group. CORBA Component Model Specifi-
cation, v4.0, April 2006. http://www.omg.org.

[117] Balaji Padmanabhan and Alexander Tuzhilin. On characterization
and discovery of minimal unexpected patterns in rule discovery.
IEEE Trans. Knowl. Data Eng., 18(2):202–216, 2006.

[118] Satyaraj Pantham. Pure JFC Swing. Sams, 1999.

[119] N. W. Paton, J. Campin, A. A. A. Fernandes, and M. H. Williams.
Formal specification of active database functionality: A survey. In
T. Sellis, editor, Proceedings of the 2nd International Workshop
on Rules in Database Systems, volume 985, pages 21–35. Springer,
1995.

[120] Norman W. Paton and Oscar Dı́az. Active database systems. ACM
Comput. Surv., 31(1):63–103, 1999.

[121] Monika Pfau-Wagenbauer and Wolfgang Nejdl. Integrating model-
based and heuristic features in a real-time expert system. IEEE
Expert: Intelligent Systems and Their Applications, 8(4):12–18,
1993.

[122] Peter R. Pietzuch. Hermes: A Scalable Event-Based Middleware.
PhD thesis, University of Cambridge, February 2004.

[123] Peter R. Pietzuch, Brian Shand, and Jean Bacon. Composite
event detection as a generic middleware extension. IEEE Network,
18(1):44–55, 2004.

[124] Niels Provos. libevent – an event notification library. Accessed
Jan 12, 2007. Last modified Apr 7, 2004. http://monkey.org/
∼provos/libevent/.

[125] Peter Puschner and Christian Koza. Calculating the maximum
execution time of real-time programs. In John A. Stankovic and
Krithi Ramamritham, editors, Advances in Real-Time Systems,
pages 322–339. IEEE Computer Society Press, 1993.

166 Bibliography

[126] Quadros Systems, Inc. RTXC Quadros Overview. Ac-
cessed May 14, 2007. http://www.quadros.com/products/

operating-systems/rtxc-quadros/.

[127] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. But-
ler. Fault-tolerant clock synchronization in distributed systems.
Computer, 23(10):33–42, 1990.

[128] Ismael Ripoll, Alfons Crespo, and Aloysius K. Mok. Improve-
ment in feasibility testing for real-time tasks. Real-Time Systems,
11(1):19–39, 1996.

[129] Ismael Ripoll, Alfons Crespo, and Aloysius K. Mok. Improvement
in feasibility testing for real-time tasks. Real-Time Syst., 11(1):19–
39, 1996.

[130] Claudia L. Roncancio. Toward duration-based, constrained and
dynamic event types. In Sten Andler and Jörgen Hansson, editors,
Proceedings of the 2nd International Workshop on Active, Real-
Time, and Temporal Database Systems, volume 1553 of Lecture
Notes in Computer Science, pages 176–193. Springer, 1998.

[131] C. Sánchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. Dill,
and Z. Manna. Event correlation: Language and semantics. In Em-
bedded Software, Third International Conference, EMSOFT 2003,
volume 2855 of Lecture Notes in Computer Science, pages 323–33.
Springer, 2003.

[132] César Sánchez, Henny B. Sipma, Matteo Slanina, and Zohar
Manna. Final semantics for Event-Pattern Reactive Programs. In
First International Conference in Algebra and Coalgebra in Com-
puter Science (CALCO’05), volume 3629 of LNCS, pages 364–378.
Springer-Verlag, September 2005.

[133] César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar
Manna. Expressive completeness of an event-pattern reactive pro-
gramming language. In Farn Wang, editor, FORTE, volume 3731
of Lecture Notes in Computer Science, pages 529–532. Springer,
2005.

[134] SAVE project homepage. Accessed Mar 31, 2007. http://www.
mrtc.mdh.se/SAVE/.

Bibliography 167

[135] Herbert Schildt. C#: A Beginners Guide. McGraw-Hill Compa-
nies, 2001.

[136] Scarlet Schwiderski. Monitoring the behaviour of distributed sys-
tems. PhD thesis, University of Cambridge, April 1996.

[137] Koushik Sen, Grigore Roşu, and Gul Agha. Generating optimal
linear temporal logic monitors by coinduction. In 8th Asian Com-
puting Science Conference (ASIAN’03), volume 2896 of Lecture
Notes in Computer Science, pages 260–75. Springer, 2003.

[138] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE rans-
action on Computers, 39(9):1175–1185, 1990.

[139] A. Prasad Sistla and Ouri Wolfson. Temporal triggers in active
databases. Knowledge and Data Engineering, 7(3):471–486, 1995.

[140] Rajendran M. Sivasankaran, John A. Stankovic, Donald F.
Towsley, Bhaskar Purimetla, and Krithi Ramamritham. Priority
assignment in real-time active databases. VLDB Journal: Very
Large Data Bases, 5(1):19–34, 1996.

[141] Marco Spuri. Analysis of deadline scheduled real-time systems.
Technical Report RR-2772, Institut National de Recherche et In-
formatique et en Automatique, 1996.

[142] Utkarsh Srivastava and Jennifer Widom. Flexible time manage-
ment in data stream systems. In PODS ’04: Proceedings of the
23rd symposium on Principles of database systems, pages 263–274.
ACM Press, 2004.

[143] Judith A. Stafford and Kurt Wallnau. Component composition
and integration. In Ivica Crnkovic and Magnus Larsson, editors,
Building reliable component-based software systems, pages 179–
191. Artech House Publishers, 2002.

[144] Neil R. Storey. Safety Critical Computer Systems. Addison-Wesley,
1996.

[145] Sun Microsystems. JavaBeans, 8 August 1997. http://java.sun.
com/products/javabeans/docs/spec.html.

168 Bibliography

[146] Andrew S. Tanenbaum. Distributed operating systems. Prentice-
Hall, Inc., 1995.

[147] Ken W. Tindell, Alan Burns, and Andy J. Wellings. An extendible
approach for analyzing fixed priority hard real-time tasks. Real-
Time Systems, 6(2):133–151, 1994.

[148] Frank Vahid and Tony Givargis. Embedded System Design: A
Unified Hardware/Software Introduction. Wiley, 2001.

[149] Rob van Ommering, Frank van der Linden, Kramer Kramer, and
Jeff Magee. The Koala component model for consumer electronics
software. IEEE Computer, 33(3):78–85, March 2000.

[150] Moshe Y. Vardi. Linear vs. branching time: A complexity-theoretic
perspective. In Vaughan Pratt, editor, Proceedings of the Thir-
teenth Annual IEEE Symp. on Logic in Computer Science, LICS
1998, pages 394–405. IEEE Computer Society Press, June 1998.

[151] Shengquan Wang, Sangig Rho, Zhibin Mai, Riccardo Bettati, and
Wei Zhao. Real-time component-based systems. In Proceedings of
the 11th IEEE Real Time and Embedded Technology and Applica-
tions Symposium, pages 428–437. IEEE Computer Society, 2005.

[152] Brent Welch, Ken Jones, and Jeffrey Hobbs. Practical Program-
ming in Tcl and Tk. Prentice Hall, 2003.

[153] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Sten-
ström. The worst-case execution time problem – Overview of meth-
ods and survey of tools. Technical report, Mälardalen Real-Time
Research Centre, Mälardalen University, March 2007.

[154] Worst case execution times (WCET) project homepage. Accessed
Mar 20, 2007. http://www.mrtc.mdh.se/projects/wcet.

[155] Peter Wright. Beginning Visual Basic 5. Wrox Press Ltd., 1996.

[156] Jia Xu and David Lorge Parnas. Priority scheduling versus pre-
run-time scheduling. Real-Time Syst., 18(1):7–23, 2000.

[157] Eiko Yoneki. ECCO: Data centric asynchronous communication.
PhD thesis, University of Cambridge, Computer Laboratory, De-
cember 2006.

[158] R. Zhang and E. Unger. Event specification and detection. Tech-
nical Report TR CS-96-8, Department of Computing and Infor-
mation Sciences, Kansas State University, June 1996.

[159] Q. Zheng and K. G. Shin. On the ability of establishing real-
time channels in point-to-point packet-switched networks. IEEE
Transactions on Communications, 42:1096–1105, February 1994.

[160] Dong Zhu and Adarshpal S. Sethi. SEL, A new event pattern
specification language for event correlation. In Proceeding of the
10th International Conference on Computer Communications and
Networks (ICCCN), pages 586–589. IEEE, October 2001.

[161] D. Zimmer and R. Unland. On the semantics of complex events
in active database management systems. In Proceedings of the
15th International Conference on Data Engineering, pages 392–
399. IEEE Computer Society Press, 1999.

Index

active database, 11, 42
algebra, 19
algebra semantics, 55
aperiodic task, 30
application domains, 10

data mining, 13
event-based communication,

12
monitoring, 13
reactive systems, 11

assembly, 104
auxiliary task set, 90

branching time, 34
left, 34
right, 34

bursty aperiodic task, 89
busy period, 92

chronicle recognition, 48, 115
clock synchronisation, 15
complexevent, 9
complexity analysis, 72
component, 30, 103
component based development,

30
COMPOSE, 43
composite event, 2, 9
composite event detection automata,

40, 115

composite event expression, 52
compositional specification, 18
compound event, 9
computational tree logic, 34
conjunction, 55
connection, 104
content based subscription, 12
contributions, 5, 111
CORBA, 32
correctness properties, 68
CTL, 34
CTL*, 34

data mining, 13
data port, 102
deadline monotonic, 91
declarative specification, 21
detection algorithm, 64

correctness, 68
experiments, 78
improved version, 72
memory complexity, 74
memory usage, 75
time complexity, 74
WCET analysis, 75

detection semantics, 23
disjunction, 55
distributed system, 15
domain, 53
durative event, 24

171

172 Index

dynamic detection, 18
dynamic priority scheduling, 96

EAGLE, 38, 115
earliest deadline first, 96
ECA rules, 11
ECCO, 47, 115
ECL, 41, 114
EDF (earliest deadline first), 96
embedded system, 28
empty event, 61
EPL, 42
event algebra, 19
event burst, 27
event calculus, 36
event context, 26
event correlation, 27
event element, 107
event expression, 52
event history, 14
event instance, 9, 52
event occurrence, 9
event parameters, 15
event pattern, 9
event pattern detection

dynamic, 18
offline, 17
online, 17
overlapping, 22
repeated, 22
single, 22
static, 18

event pattern language, 42
event pattern specification

compositional, 18
declarative, 21
procedural, 21

event stream, 54
event triggered system, 29

event-based communication, 12
event-condition-action rules, 11
experiments, 78
expression equivalence, 59
expressiveness, 117

FIFO, 93
fixed priority scheduling, 30, 91
FPS (fixed priority scheduling),

30
freeze quantifier, 37
FTL (future time logic), 37, 115
future time logic, 37

GEM, 48

hard deadline, 85
HERMES, 13
hierarchical event structure, 15

independent tasks, 85
instance, 9, 52
instance consumption, 27
instance framework, 53
instance selection, 26
interpretation, 54
interrupt handler, 86
interval algebra, 36
interval semantics, 24
interval temporal logic, 36
intrusion detection, 38

JavaBeans, 32

kernel overhead, 85

left branching time, 34
linear temporal logic, 34
linear time, 34
LTL, 34

Index 173

memory analysis, 75
memory complexity, 74
Microsoft Robotics Studio, 32
middleware, 13
minimum interarrival time, 30,

88
MINT (minimum interarrival time),

30
monitoring, 13
MSRS, 32

negation, 55
non-determinism, 39

occurrence, 9
occurrence semantics, 24
Ode, 43
offline detection, 17
online detection, 17
optimisation, 67, 118
original task set, 90
overlapping detection, 22

PAR, 41, 114
parameter

pattern, 21
primitive event, 15

parameter context, 26
past first-order temporal logic,

37, 115
past time logic, 37
pattern parameters, 21
pattern triggered task, 83
period, 85
periodic task, 30
port, 104
preemptive system, 85
primitive event, 13

hierarchically structured, 15
non-instantaneous, 117

parameters, 15
timestamping, 14

primitive event expression, 52
primitive event stream, 54
procedural specification, 21
processor demand, 98
processor utilisation, 97
PTL (past time logic), 37, 115
publications, 5, 145
publish/subscribe, 12

rate monotonic, 91
reactive systems, 11
read-execute-write semantics, 103
READY, 13, 47, 115
real time logic, 46, 115
real-time system, 28

event triggered, 29
time triggered, 29

relative deadline, 85
repeated detection, 22
response time, 94
response time analysis, 92
restriction policy, 57
right branching time, 34
RTL (real time logic), 46

safety-critical application, 28
SAMOS, 43, 114
SaveCCM, 101

elements
assembly, 104
component, 103
connection, 104
event, 105
port, 104
switch, 103

semantics, 102
syntax, 102

174 Index

schedulability, 88
scheduling, 88
self-subspention, 85
sequence, 55
single detection, 22
single point semantics, 23
Snoop, 44, 113
Solicitor, 47, 114
sporadic task, 30
static detection, 18
subscription

content based, 12
topic based, 12

switch, 103

task, 28
aperiodic, 30
bursty aperiodic, 89
pattern triggered, 83
periodic, 30
sporadic, 30

temporal domain, 51
temporal logic, 33
temporal restriction, 55
terminating primitive event, 89
termination semantics, 23
time complexity, 74
time triggered system, 29
timeout, 118
timestamping

pattern occurrences, 20
primtive events, 14

topic based subscription, 12
trigger port, 102

WCET, 75, 118
worst case execution time, 75,

85, 118
worst case response time, 94

