

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 1(30)

A Systematic Comparison of Agile Principles and the
Fundaments of Component-Based Software Development

Iva Krasteva
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd, Sofia 1165, Bulgaria

Iva.krasteva@rila.bg

Per Branger, Rikard Land
Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden

per.branger@mdh.se, rikard.land@mdh.se

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 2(30)

Table of Contents
Introduction... 3
Research Method... 4
Requirements .. 5

System Development with COTS Components.. 7
Component Development ... 8

Design ... 9
System Development with COTS Components.. 10
Component Development ... 11

Development ... 13
System Development with COTS Components.. 14
Component Development ... 15

Verification and Validation... 16
System Development with COTS Components.. 18

System validation and verification.. 18
Component validation and verification... 18

Component Development ... 19
Integration ... 20

System Development with COTS Components.. 21
Component development .. 21

High- level considerations .. 22
Different Assumptions: Relation to Customers .. 26
Test-Driven Development and Component Selection .. 27

Summary ... 28
Acknowledgements... 28

References... 29

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 3(30)

Introduction
This report presents a systematic comparison of the principles of agile software development and the
fundaments of component-based software development with COTS (Commercial Off-the-Shelf)
components. The fundamental assumptions and inherent characteristics of the two fields are compared,
and any theoretical incompatibilities are reported. The study is limited to include only development
activities, which are [31]: requirements, design, development, verification and validation, and
integration. We do not consider activities such as project management, configuration management,
maintenance and evolution, and documentation. Furthermore, the study concerns development with
COTS components, not other types of component-based development, such as [15]: product-line
development (where components are built in-house) or architecture-driven development (i.e. top-down
design decomposition resulting in components to be developed in-house).

This theoretical study should be seen as a first phase, laying the foundation for further empirical studies
in an industrial setting. These two steps are well-defined parts of the research agenda of the established
PROGRESS Centre for Predictable Embedded Software Systems1 and also the ITEA2 FLEXI project2
of which we are part.

1 http://www.mrtc.mdh.se/progress/
2 http://flexi-itea2.org/index.html

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 4(30)

Research Method
When comparing two independently evolved paradigms, one first step is to bridge all gaps between
differences in their respective self-representation, i.e. terminology and concept formation. During this
type of comparison, we also need to identify (or construct) the fundamental set of “facts” of each field
so that the majority of practitioners and researchers in this field would agree with this choice, and make
this choice explicit. At each step of the logical reasoning, we have been careful to document the basis
for our conclusions, to make choices explicit and to motivate them, thus opening up our work for
external scrutiny and criticism.

The research follows the following structure: For each of the listed development activities
(requirements, design, development, verification and validation, and integration [31]), we:

1. List the 12 agile principles according to the Agile Manifesto [8] and describe how they apply to
that development activity. Although a (subjective) step of interpretation and application is
needed, we have made sure to externalize the interpretation of the principles as much as
possible by supporting our conclusions with practices of different agile methods- mainly XP
[5][6] [7], Scrum [30], and Crystal Clear [11].
Some of the principles relates to the whole development process or supportive process activities
such as Project Management and are excluded from the discussions.

2. Describe what makes this activity special for:
- The development of systems with COTS components (compared to system

development without COTS), and
- The development of COTS components (compared to development of any

product).
3. Identify conflicts, and outline possible solutions, between:

- The agile principles and the development of systems with COTS components,
and

- The agile principles and the development of COTS components.
In addition, we note any comments believed to be relevant to consider and give a second
thought when applying the agile principles to COTS-based development. The observations that
we make are summarized in suggestions for application of agile ideas in particular development
activity.

The rest of the report follows a structure where each activity has a heading, under which we first treat
items 1 and 2 above in separate tables, followed by a section each on system development with COTS
components and component development treating item 3.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 5(30)

Requirements
Table1: Applying Agile Principles to Requirements Specification Process Activity

Agile Principles Requirements Specification
Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

P1

Delivery of those items that have greatest value for the customer
[12]. In a number of agile methods the principle is supported by
practices that say that requirements for a release are prioritized by
business value:
XP: Planning Game- Release planning [7]
Scrum: Sprint Backlog

Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer's competitive
advantage.

P2

The way to manage changing requirements during the requirements
phase is to specify the set high-level requirements at the beginning
of the project, which defines the scope and the vision of the project.
Details behind each of the high-level requirements can change
during the project and they are identified as late as possible. During
each delivery cycle some of these high-level requirements are
implemented. The details of the requirements are specified no earlier
that the beginning of each delivery cycle. Existing practices that
support these principles are:
Scrum: Product backlog, sprint backlog, sprint planning meeting
XP: Planning game

Deliver working software
frequently, from a couple of weeks
to a couple of months, with a
preference to the shorter
timescale.

P3

Relevant to the whole process.

Business people and developers
must work together daily
throughout the project.

P4

"Onsite business expertise" [12] should be available. Information to
and from the business should be easily accessible. In Scrum there is
a Product Owner that is constantly collaborating with the team [30].
In XP Whole team practice supports that idea. In XP there is a
customer on-site.

Build projects around motivated
individuals. Give them the
environment and support they
need, and trust them to get the job
done.

P5

People, not process aspect /Project Management consideration.

The most efficient and effective
method of conveying information
to and within a development team
is face-to-face conversation.

P6

The “default" [29] mode of communication is face-to-face
conversation. The specification documents are kept simple and
informal. In XP requirements are described by means of stories. In
Scrum Product Backlog serves as a requirements specification
document. In XP requirements are continuously gathered, clarified
and (re)negotiated with a customer on-site.

Working software is the primary
measure of progress.

P7

Relevant to the whole process.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 6(30)

Agile Principles Requirements Specification
Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely.

P8

People, not process aspect /Project Management consideration.

Continuous attention to technical
excellence and good design
enhances agility.

P9

N/A

Simplicity-the art of maximizing
the amount of work not done-is
essential.

P10

Do not make predictions [29] about the future. In Lean development
this principle is supported by “Eliminate waste” principle, which in this
context is about skipping the unclear and uncertain requirements.

The best architectures,
requirements, and designs
emerge from self-organizing
teams.

P11

People, not process aspect /Project Management consideration.

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts
its behavior accordingly.

P12

Relevant to the whole process.

Table2: Requirements Specification Process Activity Characteristics for Agile SD, System
Development with COTS Components and Component Development

Agile Process Activities
Characteristics

System Development with COTS Components
Process Activities Characteristics

Component
Development Process
Activities Characteristics

Business collaboration and
involvement in the process.
Requirements are
prioritized by business
value.
High-level initial
requirements specification
in the beginning and further
refinement during each
development cycle.
Informal, simple
requirements specification.
Only part of the requirement
set is implemented in one
development cycle.
Unclear requirements are
skipped for the next
iterations.
Prototyping (Spikes (XP),
Walking Skeleton(Crystal))

The process of requirements engineering are
combined with component selection and the
evaluation process [14][20]. Requirements are
refined during the selection process
[3][9][10][20][26], although sometimes a complete
set of requirements is assumed [22].
Requirements should cover the whole system, but
not be specified in detail initially, to include many
potential components [31].
System requirements can not easily be translated to
component requirements, and the requirements
definition activity may be closely intertwined with
component selection [3][9][10][13][19][20][24][26].
Requirements are not only functional and non-
functional, but also architectural and (when
selecting components) business considerations [20]
(see also [3][9][10][19][24][26]).

Requirements are unclear,
inconsistent and even
unknown[14].
Requirements accumulate
fast in the early stages of
the component’s life-cycle
[14].
Dependability issues
should be considered
Challenges (necessary
but no immediate benefit in
terms of #features):
backward/forward
compatibility, compliance
with standards.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 7(30)

System Development with COTS Components
Comment: Requirement specification phase in the development process of component-based systems
is quite interlaced with component selection process and high-level design specification. That is why in
the considerations below, the component selection process will be discussed in parallel and as part of
the requirements specification.

Contradiction: The biggest contradiction that exists is about the responsiveness to change and the
possibility to introduce change late in the development process of component-based systems.
Requirements for systems based on components should be pretty well defined in advance. The reason
for this is that changing a COTS component is a very hard task. COTS are delivered to the team as a
black-box, sometimes without source code and often without detailed specification. The way of
changing a component (if possible at all) is to contact the supplier. This includes sending a mail with
the proposed changes, waiting for a response, perform meetings with the supplier, negotiating schedule
and costs, etc., which can significantly disturb the development process. That is why introducing
changes in the requirements of a component-based systems involves either reconfiguration of
components or replacing components. However, both activities are limited to the extent they can meet
changes in the requirements.

By component reconfiguration only a narrow set of requirements changes can be satisfied.
Component replacement is also not a trivial task. During the component selection process architectural
requirements such as component models should be considered. Furthermore, components are evaluated
in composition with other components. Another hindrance is that component itself is a set of functions
and quality properties and there are no two components that cover exactly the same set of functionality
and behavior.
Solution: Although a significant part of the overall requirements specification should be done in
advance, the processes of requirements elicitation and component selection in component-based
systems are very liable to applying agile principles. Initially requirements should not be specified in too
much detail, because it is practically impossible to find a component which fulfils all requirements.
Instead, the requirements are refined in more detail iteratively during component selection and
evaluation. Through “gap analysis” [20][27] along with the customer the component which gives the
most and leaves the least (in terms of effort/cost) is identified.

Consideration: Requirements are not only functional and non-functional, but also architectural and
business oriented. Architectural requirements are important in order to prevent from selecting
components that satisfy the requirements and have high quality but are incompatible. Business
considerations include available component support, vendor reputation and stability etc.

Application: Agile ideas benefit requirements engineering activity for component-based systems in
two directions, which support and complement each other:

- making the customer part of the team
- introducing an iterative requirements elicitation and component selection process

Iterative requirement specification is important for receiving an early feedback from the customer.
Furthermore, during the selection process it is often needed a trade-off between the required
functionality and selected component to be made. It is the customer who has the position to choose one
or another of the alternatives according to business value.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 8(30)

Application: During the requirements specification process for systems based on COTS, the
architectural and business requirements should be considered along with the functional and non-
functional ones [20] (see also [3][9][10][19][24][26]).

Application: An approach that adds additional value in requirements specification of component-based
system is prototyping. Prototyping is a common practice for identification and clarification of customer
requirements. Prototypes of systems that are based on components are easily produced. However, some
policy issues, such as trial versions, should be considered.

Component Development
Comment: The difference between requirements specification of components and particular systems is
that components should meet the requirements of many different customers. Initially, "requirements are
unclear, inconsistent and even unknown" so the process involves additional step of requirements
identification at business level which will be useful in as many different business scenarios as possible.

Contradiction: In component development there are many general users and there can be no specific
customer.
Solution: Customer representatives can be used. They can be some marketing people, domain experts
or one or more real customers/ users.

Consideration: As component interfaces can't be changed very often issues such as backward/forward
compatibility) and compliance with standards, should be decided early in the requirements phase. The
requirement on backward/forward compatibility means that "enough" time should be spent early to
predict future changes, in order to make those changes easier and backwards compatibility easier -
which is in contradiction to agile principles. (Examples: file formats, APIs.)

Consideration: In component development more attention should be paid on non-functional
requirements. This often involves technical experts to identify such requirements as they are not always
visible by business people or is based on prediction of the way component will be used.

Application: In order to benefit from close collaboration with the business, as agile approaches
suggest, some additional steps for identifying a ‘proxy’ customer of a component should be done.
Requirements are identified in enough details so that component interfaces are not changed during
subsequent releases of a component. Non-functional requirements for a component are specified and
addressed along with the functional ones.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 9(30)

Design
Table 3: Applying Agile Principles to Design Process Activity

Agile Principles Design
Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

P1

N/A

Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

P2

Late-changing requirements are supported by continual
attention to architecture [12]. Refactoring is one of the most
common techniques to support the changing architecture and
keeping it the best and the simplest for the present moment.

Deliver working software frequently, from
a couple of weeks to a couple of months,
with a preference to the shorter
timescale.

P3

Relevant to the whole process.

Business people and developers must
work together daily throughout the
project.

P4

A shared vision of the system architecture is created which is
understandable by developers and by the customers as well
[5]. This principle is supported by Metaphor practice in XP.

Build projects around motivated
individuals. Give them the environment
and support they need, and trust them to
get the job done.

P5

People, not process aspect /Project Management
consideration.

The most efficient and effective method
of conveying information to and within a
development team is face-to-face
conversation.

P6

The formal written design is not demanded by agile teams
[29]. In XP the Metaphor, which is a common notion of the
system design, is a representative of system architecture.

Working software is the primary measure
of progress.

P7

Relevant to the whole process.

Agile processes promote sustainable
development. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

P8

People, not process aspect /Project Management
consideration.

Continuous attention to technical
excellence and good design enhances
agility.

P9

The good design should be produced in the beginning and be
continuously reviewed and improved during the project [12].
The continuous attention to good design is done by
Refactoring practice.

Simplicity-the art of maximizing the
amount of work not done-is essential.

P10

The simple design is considered those design that is just
enough for today's code [5]. It has the fewest possible classes
and methods and contains no duplications [6]. In XP Simple
Design practice supports these ideas.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 10(30)

Agile Principles Design
The best architectures, requirements,
and designs emerge from self-organizing
teams.

P11

People, not process aspect /Project Management
consideration.

At regular intervals, the team reflects on
how to become more effective, then
tunes and adjusts its behavior
accordingly.

P12

Relevant to the whole process.

Table 4: Design Process Activity Characteristics for Agile SD, System Development with COTS
Components and Component development

Agile Process Activity
Characteristics

System Development with COTS
Components Process Activity
Characteristics

Component Development Process
Activity Characteristics

The developers and the
customer share common
notion of the design
Attention on good design
is paid at the beginning
of and during the whole
project
System architecture is
informal based more on
conversations than on
documents
The simplest design for
today's code is produced

The architecture is determined by the
requirements, the component model (in a
broad sense) and by the component
selection procedure [14][20].
An important goal for the design is to
minimize architectural mismatch [14],
which can be done by considering
compatible sets of components as
candidates [9][20][25].
There is less need for low-level design
activities (since much is embedded in
black-box components); instead there is a
higher focus on interfaces between
components and the mediating ‘glue
code’.
Defining a robust (few changes over time)
architecture is critical for successful reuse
[31]

Components are more general
designed to allow for reuse in various
contexts [31], which however increases
their size and complexity [14].
Component design should be concrete
and simple enough to be efficient [14].
Integrateability is a very important
feature of a component and may
include documentation of its interface,
and the extent to which it supports
applicable standards (and
documentation thereof).

System Development with COTS Components
Comment: The agile and system development with components design support and complement each
other. The architecture specified by means of components, which are “providers of business services at
a higher level of abstraction and granularity than traditional objects” [32] is enough simple and
understandable for all involved project stakeholders. Furthermore the component architecture helps to
decrease the complexity as the system is decomposed on smaller units of business functionality. Both
development approaches pay considerable attention on good system architecture.

Comment: The architecture is determined by the requirements, the component model (in a broad
sense) and by the components selected [14]. An important goal for the design is to minimize
architectural mismatch [14], which can be done by considering compatible sets of components as
candidates [9][20][25]. The design activity is focused on interfaces between components and the
mediating ‘glue code’

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 11(30)

Consideration: Similar consideration as for requirements, i.e. replacement of components comes with
a high cost in terms of required redesign and reimplementation. As a consequence, developers must
predict “enough” of future changes to select “future-proof” components, which is in contradiction with
agile principles and practices. (There is a possible exception: if only a standardized interface is used,
replacement will be easier; an example is to replace a database component if you use only the
standardized and commonly supported part of SQL.)

Application: The design process in system development with components is somewhat dynamic and
exploratory, with much feedback between architectural design and component evaluation/selection
[20]. This suggests for highly iterative and incremental design process bound with component
evaluation process

Component Development
Contradiction: The biggest contradiction between component design and agile design activities is
about the simplicity and generality. In component design additional decisions should be made and
considered during design specification. One such decision (1) is about component interfaces- how to
specify and design the interfaces that provide functionality to be as efficient for reuse as possible, how
to make the component as independent as possible by minimizing the number of interfaces that requires
functionality, to add configuration interfaces to support the adaptability. Furthermore, the component
interfaces should change as little as possible from one version to another so they are usually specified
in the very first versions of the component. Extending the interface without breaking the old one is
acceptable from the point of view of existing component users, but is practical only to some extent –
after a while the interface will look awkward if it is continuously extended without anything being
removed. However, these constraints do not apply to the underlying implementation. Another thing (2)
that should be considered during the component design is the component technology and supported
standards. You probably have to support some standard(s) (including de facto standards and “what
everyone expects nowadays”) to get any customers at all, but it cost much to implement and maintain
support for (evolving) standards and component technologies.
No solution: The overall component design should be specified in advance, so that all the interfaces
are kept the same during subsequent versions of the component. Furthermore, additional considerations
about reusability should be done when designing a component.

Contradiction: Complexity and additional non-functional requirements for COTS involve a more
formal approach to design and architecture than agile methods suggest. However, semi-formal
approach for design specification of COTS exist [28]. In order to support component integrateability, a
part of the design specification (namely the description of the component’s interface) has to be
provided with the component so that the component user knows how to use it. However, this
documentation may in fact be written (or at least completed) in late stages (after testing), so it is not
necessarily part of the design activity.

Application: Involving business people in design activity for COTS-based systems is easily achievable
as the architecture specified by means of components, is enough simple and understandable for all
involved project stakeholders [32]. An important goal for the design is to minimize architectural
mismatch [14], which can be done by considering compatible sets of components as candidates. Similar
to requirements, replacement of components comes with a high cost in terms of required redesign and

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 12(30)

reimplementation. So developers must predict enough of future changes to select future-proof
components.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 13(30)

Development
Table 5: Applying Agile Principles to Development Process Activity

Agile Principles Implementation
Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

P1

N/A

Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer's competitive
advantage.

P2

N/A

Deliver working software
frequently, from a couple of
weeks to a couple of months, with
a preference to the shorter
timescale.

P3

Relevant to the whole process.

Business people and developers
must work together daily
throughout the project.

P4

N/A

Build projects around motivated
individuals. Give them the
environment and support they
need, and trust them to get the
job done.

P5

People, not process aspect /Project Management consideration.

The most efficient and effective
method of conveying information
to and within a development team
is face-to-face conversation.

P6

Communication and collaboration is involved in the development
process as a means for exchanging knowledge. XP practices, e.g.
Pair Programming and Collective Code Ownership support the idea.
Side-by-side Programming practice introduced by Crystal is an
alternative to Pair Programming and also suggests for intense
communication between developers in a project.

Working software is the primary
measure of progress.

P7

Relevant to the whole process.

Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely.

P8

People, not process aspect /Project Management consideration.

Continuous attention to technical
excellence and good design
enhances agility.

P9

Code is kept good and clean throughout the project. A common
practice used in agile methods is Coding Standards.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 14(30)

Agile Principles Implementation
Simplicity-the art of maximizing
the amount of work not done-is
essential.

P10

Code should be as simple as possible and just fulfill what is
needed for the moment. In XP implementation is connected to
producing the simplest code that makes the tests pass. [4]

The best architectures,
requirements, and designs
emerge from self-organizing
teams.

P11

People, not process aspect /Project Management consideration.

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts
its behavior accordingly.

P12

Relevant to the whole process.

Table 6: Development Process Activity Characteristics for Agile SD, System Development with
COTS Components and Component development

Agile Process Activity
Characteristics

System Development with COTS Components Process
Activity Characteristics

Component
Development
Process Activity
Characteristics

Code is kept clean and
simple throughout the
project.
Test-driven development
is an important aspect of
the implementation
activity in agile methods.

To a large extent reduced to the creation of ‘glue code’ and
component integration and adaptation [14], but also
complemented with more complex implementation of unique
system features (however utilizing the components).
Component integration is part of the component selection
and evaluation process because some of the effects of using
a component can be only discovered when components are
integrated; compatibility cannot be evaluated in isolation but
is always a property on the relation between (at least) two
components [9][14][20][25].
Integration could at least in principle be a part of system
maintenance because some components could be
integrated dynamically during run-time [14].
The ability to integrate a component (its "integrateability") is
a very important feature of a component, and must be
evaluated during component selection, by e.g. considering
how well its interface is documented and to what extent it
supports applicable standards.

Nothing specific to
the component-
based paradigm.

System Development with COTS Components
Comment: The coding activity involves adapting components and writing wrappers and ‘glue code’,
thus building component assemblies to provide system functionality. The development time of system
with components is reduced by almost 50% [14]. It involves creation of ‘glue code’ and component
adaptation [14]. Although the time for development is shortened the effort for ‘glue code’ creation is
about three times the effort per line of application's code.

Comment: The integration process is central when a system is developed out of components [21]. We
should distinguish the general system integration process from component integration process specific

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 15(30)

for component-based systems. Because in component-based systems the parts that are integrated within
the system are mostly components we will study the component integration process in this section.

Comment: The integration process is central when a system is developed out of components [21] and
should be an integral part of the component selection process. The largest part of system
implementation involves adapting components and writing wrappers and ‘glue code’, thus gluing
components together (building component assemblies) to provide system functionality. It is possible
that components need to be reconfigured when a new component is added to the integrated system.
Issues with component integration exist even in run-time, when components are added dynamically to
the system.

Consideration: Since some of component properties become obvious after component integration, test
suites created for a component should be updated and/or enlarged with new tests after component
integration. (See also our discussion on Test-Driven Development in section High-level
Considerations)

Consideration: The ability to integrate a component (its "integrateability") is a very important feature
of a component, and must be evaluated during component selection, by e.g. considering how well its
interface is documented and to what extent it supports applicable standards.

Application: Agile principles for early and continuous delivery of working software are supported to a
great extent of the characteristics of implementation activity of COTS-based systems. Part of
component integration is performed during component selection process. The ability to integrate a
component (its "integrateability") should be evaluated during component selection Reduced coding
time allows for receiving timely feedback. Such implementation process supported by automated tests
can be very beneficial and problems to be discovered early and reconfiguration to be done.

Component Development
Comment: No particular constraints and limitations exist.

Consideration: There could be some prohibitive overhead involved in each release which makes too
frequent releases impractical, such as the printing of boxes and manuals, component certification [1].
However it must be remembered that an iteration is not the same as a release, it is entirely possible to
have frequent iterations internally.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 16(30)

Verification and Validation
In Verification and Validation, we also include testing, which is an important type of verification in
agile development. (See also the discussion on test-driven development in the section “Test-Driven
Development and Component Selection” on page 27.)

Table 7: Applying Agile Principles to Verification and Validation Process Activity

Agile Principles Verification and Validation (including testing)
Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

P1

Welcome changing
requirements, even late in
development. Agile processes
harness change for the
customer's competitive
advantage.

P2

The preference towards test automation in most agile methods
support to the highest extent the possibility for introducing changes at
a later stage.

Deliver working software
frequently, from a couple of
weeks to a couple of months,
with a preference to the shorter
timescale.

P3

Constant testing reduces delivery time [18].
Verification of requirements (have we built it right) can be performed
using the product backlog after each sprint, i.e. to see that the
software after an iteration fulfills the intended scope in the beginning
of the iteration. To demonstrate the application to the customer at the
end of the iteration can be considered as validation (have we built the
right thing), i.e. is the software fulfilling the customer needs.

Business people and developers
must work together daily
throughout the project.

P4

Acceptance testing is the area where business people are usually
involved in software validation. In XP developers help customers to
specify automated acceptance tests for the system [5].

Build projects around motivated
individuals. Give them the
environment and support they
need, and trust them to get the
job done.

P5

People, not process aspect /Project Management consideration.

The most efficient and effective
method of conveying information
to and within a development
team is face-to-face
conversation.

P6

The formality of verification and test documentation can be relaxed.
Validation can be performed face-to-face in a demo together with the
customer.

Working software is the primary
measure of progress.

P7

Relevant to the whole process

Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely.

P8

People, not process aspect /Project Management consideration.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 17(30)

Agile Principles Verification and Validation (including testing)
Continuous attention to technical
excellence and good design
enhances agility.

P9

Quality assurance is integrated throughout the lifecycle of most of
agile methods [11][16]. In test-driven development, which has been
introduced in XP, testing drives the design and development activities.
Unit tests are written before the code so the implementation is driven
by tests. Tests also help since design decisions are considered and
further refined [12].
In most of the agile methods reviews or inspections are held as a
mean for sharing knowledge and enhance quality. Pair Programming
in XP involves continuous review of code during the whole
implementation cycle. "Pair programming can be viewed as the
equivalent of instantaneous code inspections. Code inspections are a
key part of FDD (Feature Driven Development) and are advocated by
other Agile approaches." [18]

Simplicity-the art of maximizing
the amount of work not done-is
essential.

P10

Testing is done only as much as required by the customer. Usually
functional requirements are covered by functional tests written by the
customer (and developer). Any particular non-functional requirements
that may exist are captured as requirements. The test-driven
development approach supports simplicity since it implies that the
code to be written should be just enough to make the test pass.

The best architectures,
requirements, and designs
emerge from self-organizing
teams.

P11

People, not process aspect /Project Management consideration.

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts
its behavior accordingly.

P12

Relevant to the whole process.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 18(30)

Table 8: Verification and Validation Process Activity Characteristics for Agile SD, System
Development with COTS Components and Component development
Agile Process
Activity
Characteristics

System Development with COTS
Components Process Activity
Characteristics

Component Development Process
Activity Characteristics

Tests are automated
and provide test
coverage to a highest
possible extent.
Both unit and
functional tests are
commonly used.
Other types of testing
are used if needed
Testing is integrated
and done constantly
throughout software
lifecycle.
Code inspections and
reviews are still held
Lightweight test
documentation.
The test-driven
development
approach is used (or
suggested) in many
of methods.

When building a system from
components, it is possible to distinguish
two separate processes of verification and
validation [14].
Verification and validation of the system,
with respect to system requirements.
Verification and validation of the
constituent components (to be selected).
You are restricted to black-box testing.
Evaluation and testing of components is
an essential activity done during the
component selection process.
[2][20]. Once a component is selected and
used in a system, the tests would be
stored and re-executed for new versions
of the component, to verify that no (bad)
changes has been made (at least you
discover the changes).

Component development involves more
formal verification process to assure good
component quality. Bug fixing in
maintenance phase is not trivial as far as
components are concerned.
Component certification by an independent
third party is one possibility outlined for the
future [1].
There are certain fundamental limitations of
component evaluation without a system
context [2][17].
One important part of component
verification (in absence of a system
context) is verification of its
"integrateability", i.e. the accompanying
documentation of interfaces, its standard
compliance and related documentation,
and supplied code and applications which
illustrate the possibilities of the component
(while also teaching how to use it).

System Development with COTS Components
When building a system from components, it is possible to distinguish two separate processes of
verification and validation [14] :

- Verification and validation of the system, with respect to system requirements
- Verification and validation of the constituent components (to be selected)

System validation and verification
Comment: There are no constraints particular to the usage of components.

Comment: The combination of components in a system needs to be verified and validated. Even if the
verification and validation is performed in every iteration, the final verification and validation
(acceptance test) before shipment can reveal gaps in expectations. It is sometimes not possible to
verify non-functional requirements (e.g. performance) until all components have been integrated in the
system.

Component validation and verification
Comment: No contradictions between the agile principles and component validation and verification
have been identified. One limitation is that verification and validation is restricted to observations of
the external behavior of components, i.e. you cannot apply white-box testing techniques.

Consideration: Since component behavior is known by its specification which is not always
sufficiently detailed, comprehensive test coverage is not possible for an acquired component. The

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 19(30)

system developer should focus its test suites on the component features desired and/or used in a system,
and in practice extensive test coverage will be achieved only for these features. Since components are
constructed to be general and to suit different situations and environments, there will be many features
which are thus only partly tested by the system developer.

Consideration: Experimentation, formal testing and prototyping would be an excellent way to learn
about the component behavior (especially for non-functional properties), and the tests would then be
stored to verify that no (bad) changes has been made when a new version of the component is released
(or at least it becomes apparent what the changes are, and you have the choice to adapt your system and
use the new version anyway). In this way, the automated tests of component features would be used
and re-executed many times during the whole system development process: first created and executed
during the selection process, then as part of integration testing and system testing, and then during
subsequent iterations (if any) as regression testing.

Application (of agile ideas during the validation and verification of systems based on COTS
components): When creating systems made of COTS components component validation and
verification process is executed early in the development during the selection process. In most cases,
only black-box testing of the desired functionality is performed. Test automation can be beneficial not
only to assure quality during subsequent iterations of component selection and system development but
also to test emergent properties on system integration. Final system testing of the whole system is
needed as not all requirements can be verified before components are integrated.

Component Development
There seem to be no particular contradictions; however some specific aspects of component
development should be considered, as discussed in the following.

Consideration: An additional complexity is the verification of the component in the absence of a
context [2][17], which is fundamental for the idea of certification of components by independent third
parties [1].

Consideration: One important part of component verification (in absence of a system context) is
verification of its "integrateability", i.e. the accompanying documentation of interfaces, its
(documentation of its) standard compliance, and perhaps illustrating its possible usage by shipping it
with code and applications which illustrate the possibilities by using the component (while
also teaching how to use it).

Consideration: Component development involves more formal verification process to assure good
component quality. Bug fixing in maintenance phase is not trivial as far as components are concerned

Application: More formal approach for component validation and verification combined with
component certification should be introduced when applying agile ideas to development of COTS
components.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 20(30)

Integration
Table 9: Applying Agile Principles to Integration Process Activity

Agile Principles Integration
Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

P1

Principle is supported by the XP
practice Continuous Integration

Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

P2

 -

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

P3

 Relevant to the whole process.

Business people and developers must work together daily
throughout the project.

P4

Principle is supported by XP
practice Continuous Integration

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

P5

 People, not process aspect
/Project Management
consideration.

The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

P6

 -

Working software is the primary measure of progress.

P7

Relevant to the whole process.

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

P8

People, not process aspect
/Project Management
consideration.

Continuous attention to technical excellence and good design
enhances agility.

P9

 -

Simplicity-the art of maximizing the amount of work not done-is
essential.

P10

 -

The best architectures, requirements, and designs emerge from
self-organizing teams.

P11

People, not process aspect
/Project Management
consideration.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

P12

Relevant to the whole process.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 21(30)

Table 10: Integration Process Activity Characteristics for Agile SD, System Development with
COTS Components and Component development

Agile Process Activity
Characteristics

System Development with COTS
Components Process Activity
Characteristics

Component Development
Process Activity
Characteristics

Integration is done continuously
so that the system is kept
integrated and running most of
the time
Automated testing supports
frequent integration
Regular builds are produced
which enables quick feedback
from the customer

The integration of COTS components into
a system is a main part of development
activity. General system integration
happens during the building process.

Component development
involves stricter quality control
and a more formal integration
process is needed.

System Development with COTS Components
Comment: There are two distinct meanings of "integration" in component-based systems: first, the
actual system development means integration of components through the writing of ‘glue code’ and
configuration of components (which is treated in the section Development). Second, there is a build
process involved, as in any system development, and this includes a large element of integration. The
second meaning is what is treated in this section, although these two types of integration may be
difficult to discuss in isolation of each other for component-based systems.

Application: No particular contradictions or constraints exist for applying frequent build process and
system integration.

Component development
Comment: No particular contradictions or constraints seem to exist since component development is
not significantly different from common application development as far as integration is concerned.
With this we mean that whether you develop a "component" or a "system" in-house, you clearly need
mature configuration management processes and tools to keep track of changes to your modules etc.,
but there is nothing particular for the component-based approach.

Consideration: In agile methods integration happens continuously. However, when dependability
issues are addressed (such as availability, reliability and performance), the integration process should
be controlled, i.e. some explicit integration procedure may be explicitly needed which includes e.g.
running performance tests, formal bug reporting etc.

Application: No particular contradictions or constraints exist for applying frequent build process and
system integration. However, it can be not so appropriate in cases when some formal integration
process is required.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 22(30)

High- level considerations
This section describes common ideas behind some of the agile principles that have relevance to the
whole process rather than to particular activities, and which have not been discussed in the previous
sections.

Table 11: High-level considerations on applying Agile Principles to COTS-based Development

Agile Principles

System Development with COTS
Components

Component development

Our highest priority is
to satisfy the
customer through
early and continuous
delivery of valuable
software.

P1

Early delivery can be achieved very
efficiently, since prototypes can be
built very fast by integrating the
existing components.
Continuous delivery is feasible,
since component-based
development enables fast
integration and achievement of
functions by integration of new
components.
Greatest value for the customer can
be achieved by requirements
prioritization by business value.

Early delivery could be problematical; for
the component users it is important that
the interface does not have to change too
often, which is a risk if released (too)
early.
Continuous delivery is feasible, since in
principle the implementation can be
changed often while keeping the interface.
Continuous delivery could be very smooth
for the system developer; depending on
the technology used, it could be very
simple to replace an old component
version with a new without rebuilding (e.g.
compiling) the system.
There is no straightforward way to achieve
the greatest value for the customer as
there is usually no single customer(s).

Welcome changing
requirements, even
late in development.
Agile processes
harness change for
the customer's
competitive
advantage.

P2

Changing requirements in a system
made of components will often
affect (the selection and/or
implementation of) components. To
implement a change there are
several alternatives in theory: 1) if
there is a straightforward mapping
from a system requirement to
component features, these
requirements are easily
implemented by some more ‘glue
code’, 2) one or more components
need to be replaced by some
other(s), or 3) some components
need to be improved to
accommodate the new requirement.
Alternatives 2 and 3 are however
often non-trivial, costly and time-
consuming in practice.

Late changes to COTS component are
limited to ‘upgrading’ the existing
functionality by keeping the old interfaces
so that old version of the product doesn’t
become obsolete.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 23(30)

Agile Principles

System Development with COTS
Components

Component development

Deliver working
software frequently,
from a couple of
weeks to a couple of
months, with a
preference to the
shorter timescale.

P3

If we refer to the discussion below
the principle is connected to short
iterations and feedback which both
are very easily achievable.

Short iterations and feedback is not so
feasible here as it depends on how the
customer is emulated. If we have to gather
a lot of customer representatives regularly
each month or so it can be very difficult
task...

Business people and
developers must work
together daily
throughout the
project.

P4

This principle is independent of
whether components are used or
not, and can be applied easily.

This principle is independent of the
component-based paradigm, and can be
applied easily. This principle is particularly
important with business people aiming for
reusability.
However, for the special case of COTS
components, i.e. components offered to a
market, there is no clear customer who
would specify the requirements. This
becomes especially problematic when it
comes to the reusability aspect of the
component, since it requires that the
developer know how the component will
be used (customized, adapted etc.). This
can be solved e.g. by someone internally
who knows the market acting as
customer, or involve one or a few
important customers during the
development process. These customers
could represent either some special type
of customers (interesting for reusability),
or the largest customers, or the average
customers.

Build projects around
motivated individuals.
Give them the
environment and
support they need,
and trust them to get
the job done.

P5

This principle is independent of
whether components are used or
not, and can be applied easily.
There is however a risk that the
individuals would prefer to develop
(implement) functionality rather than
glue components together (the "not
invented here" syndrome), which
need to be addressed with
education and organizational
culture.

This principle is independent of the
component-based paradigm, and can be
applied easily. The reusability should be
the continuous challenge.

The most efficient
and effective method
of conveying
information to and
within a development
team is face-to-face
conversation.

P6

This principle is independent of
whether components are used or
not, and can be applied easily.
Since the results can be visible very
fast, the discussion becomes very
concrete and any assumptions can
be easily validated.

This can be a problem if components are
assumed to be used by as many as
possible customers. See P2.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 24(30)

Agile Principles

System Development with COTS
Components

Component development

Working software is
the primary measure
of progress.

P7

(Similar to P3) Working software:
This principle is supported by the
component-based paradigm itself;
by assembling already working
components, the first working
system can be rapidly built and new
functions added by utilizing more
features in the existing components,
and/or adding new components,
and/or extending the ‘glue code’.

(Similar to P3) Working software: This
principle is important but more complex to
apply to a software component. To
present working software, the component
developer must ensure there is a system
that can demonstrate the component
capabilities. Such a system could range
from being a real, large, complex system
developed by a real customer, to a fairly
simple system used only for
demonstration purposes. Such a system
requires additional effort, and introduces
additional complexities into the
development since synchronization
between component development and
system development is needed.

Agile processes
promote sustainable
development. The
sponsors,
developers, and
users should be able
to maintain a
constant pace
indefinitely.

P8

This principle is independent of
whether components are used or
not.

This principle is independent of the
component-based paradigm.

Continuous attention
to technical
excellence and good
design enhances
agility.

P9

Independent of the component-
based paradigm, can be in line,
there are also risks.
Component technologies are
advanced and are able to guarantee
(to some extent) a high quality.
There is a risk however that a
person without high quality skills can
integrate a system and incorporate
– and hide – some quality problems
into the system.

This principle requires particular skills
from developers, to achieve component
reusability and usability, and adherence to
standards. An important goal for the
component developers is that systems
built using the component can achieve a
good and clean design.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 25(30)

Agile Principles

System Development with COTS
Components

Component development

Simplicity – the art of
maximizing the
amount of work not
done – is essential.

P10

Using components (large black
boxes of functionality) can result in a
clean and simple design; however it
is also possible that components
have a fairly high lowest level of
usage complexity, so that it need to
be properly initialized, adapted, its
methods called in a certain order
etc. even though a very simple
functionality is desired. To a certain
extent, this may be inherent in the
component-based paradigm, but to
a large extent this is a challenge for
the component developers.
This principle is also applicable in
component selection process [20]:
select the component that has the
desired functionality for the moment.
However, since component
replacement is non-trivial (see
discussion in section Requirements)
this may be a point where more
planning for future requirements is
needed, i.e. contrary to the agile
principle.

Making components as simple as possible
internally is independent of the
component-based paradigm. A big
challenge is to create a component which
is as simple to use as possible, i.e. its
interface (in a broad sense) should be as
simple as possible. As components and
their interfaces evolve, this becomes even
more challenging, since there is a difficult
tradeoff between strictly extending an
interface and breaking or replacing it. By
strictly extending an interface, it will be
backward compatible, however this
typically comes with additional complexity
both to build it and to understand and use
it (i.e. both internally and externally). By
breaking or replacing an interface, all
systems using the component need to be
modified to be able to use the new
component version; the option of
supporting both an old and a new
interface introduces additional
complexities (both externally and
internally) and costs (internally) but could
be an option for a limited time period.

The best
architectures,
requirements, and
designs emerge from
self-organizing
teams.

P11

This principle is independent of
whether components are used or
not.

This principle is independent of the
component-based paradigm.

At regular intervals,
the team reflects on
how to become more
effective, then tunes
and adjusts its
behavior accordingly.

P12

This principle is independent of
whether components are used or
not.

This principle is independent of the
component-based paradigm.

Principle 1 (P1) has 3 dimensions:

• Early delivery- early feedback, quick wins [12].
• Continuous delivery- continued wins, visibility of where the project goes.
• Delivery of those items that have greatest value for the customer [12].

The first two dimensions are applicable at process level, not process activity level. They mean that
software should be developed in short timescales and continuously incrementing the functionality that
is released. The first cycle has to be kept as small as possible to allow for early feedback. Several
practices support this approach:

• ASD: Adaptive life cycle
• DSDM: Iterative and incremental development is necessary to converge on an accurate business

solution.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 26(30)

• FDD: Developing by feature
• XP: Small Releases
• XP: Planning Game- Release planning

Principle 3 (P3) is related to the P1 but focuses on iteration length and feedback. “Early and
continuous” in the first principle is more about releases and doesn’t specify exactly the length of
release cycles. The release cycles should be kept small but because this is not always possible [12].
More frequently on certain points the software should be reviewed and feedback should be provided.
For example in XP releases are planned separately from iterations- the iterations are kept as small as
possible to produce a working software and to assure early feedback from the user. A single release can
be implemented by several iterations. Also in Scrum the iteration length is fixed to 1 month which is
not possible to do for a release. The following practices support frequent delivery of working software:

• ASD: Adaptive life cycle
• DSDM: The focus is on frequent delivery of products
• FDD: Regular build schedule
• Scrum: Sprint

Principle 7 (P7) is connected to P3. It can also mean that there is no formal acceptance or status
reporting on phase level.

Principle 12 (P12) focuses on the importance of receiving feedback from the team as a way to improve
the efficiency of the process. The team should reflect on its “working habits every other week” [12] and
continuously adjust itself to be more effective. There are several techniques that are used in agile
methods to support the idea:

• Scrum: post-sprint review meeting after each Sprint.
• Crystal Clear: Reflection Workshops.
• ASD (Adaptive System Development): Quality Review: Postmortems

Different Assumptions: Relation to Customers
A fundamental difference in assumptions between agile methods and the usage of COTS is the relation
to the customer(s). The agile principles assume that there are one or more customers that initiate the
project and for whom the product is created, while COTS products are developed and then offered to an
open market with many potential customers. This fundamental difference in the assumptions is the
cause of many of the contradictions mentioned earlier, and this need to be addressed. There are two
ways, which can be combined, to alleviate the problem outlined earlier:

• Someone internally, who knows the market well, such as marketing people or domain experts,
would act as customer in an agile project.

• The component development organization could involve real customers for e.g. requirements
gathering and evaluation of various alternatives early during development.

When developing components for a larger market it is the component vendor who finally defines and
prioritizes requirements. The goals are not decided ultimately by the customers (or their
representatives) but by the one that develops the component. The component developer should of
course listen to the customer but it is not the customer who makes the decision. This also means that
the contract between component vendor and customer representatives has to be different. Some open

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 27(30)

questions that have to be answered are: Can a component developer require an on-site customer? What
is the business model for this (i.e. who pays who)? etc.

Test-Driven Development and Component Selection
The general idea of test-drive development (TDD) applied to system development with components
would mean that functional tests are specified before implementing a function, after which the ‘glue
code’ for the function is created, followed by test execution. When changes are made, these tests are
used for regression testing. The TDD approach can easily be extended to also include component
selection: functional tests are specified together with the customer, in parallel with a search for suitable
components. There are some established component selection methods where the selection is closely
intertwined with requirements specification [3][10][20][23][24][26]. Selection and design also
influence each other in both directions: components must be selected which fit the specified
architecture, but the availability of components will influence the design; components can for similar
reasons with advantage be evaluated and selected in compatible sets simultaneously [9][20][25]. The
evaluation of components need to start with some exploration and experimentation to learn the
component, but should then mainly consist of the implementation of the features specified by the
functional tests. This ensures that the development efforts are kept focused and that the evaluation is
relevant. This applies not only to functional testing but also to quality tests. Performance tests would by
construction accurately reflect the usage expected in the real system and it is possible to find the
relevant limitations and bottlenecks.

The component evaluation can thus be seen as a verification of the suitability of certain components
and a certain design as well as the suitability for implementing the system requirements. Verification of
the design includes architectural properties and “integrateability”, i.e. how well the components
integrate in practice. In this way, it is possible to show something to the customer very early in the
process. It also becomes possible to involve the customer in the selection decision, if we have, say,
three alternative implementations of the same function to show, which is very much in line with agile
principles.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 28(30)

Summary
We have provided a systematic, theoretical comparison of agile principles and the fundaments of
component-based software development. These two approaches to software development are
complementary in several ways, but we have also identified issues which must be carefully considered
when applying the agile principles to the development of systems using COTS components, as well as
the development of COTS components themselves. More detailed analyses of this data will follow in
other publications.

This research should be extended in several ways. First, the same type of analysis can be done for other
activities not treated in this report, such as project management, configuration management
maintenance and evolution, and documentation. Second, the same kind of analysis can be done for
other types of component-based development, such as product line development and architecture-
driven development [15]. Third, we believe empirical research is needed to validate, and provide more
insight into how serious the issues identified in this study are for organizations in practice, and also
identify additional issues and complicating factors. In our own research, we will mainly pursue the
third track.

Acknowledgements
We would like to thank Ivica Crnkovic for fruitful discussions during the preparation of this report.
This work is partly funded by the Swedish Foundation for Strategic Research.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 29(30)

References
[1] A. Alvaro, E.S. Almeida and S.R.L. Meira, “Software Component Certification: A Survey”, In The
31st IEEE EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA),
Component-Based Software Engineering (CBSE) Track, Porto, Portugal, 2005.
[2] A. Alvaro, R. Land and I. Crnkovic, Software Component Evaluation: A Theoretical Study on
Component Selection and Certification, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-217/2007-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University, 2007.
[3] Carina Alves and Jaelson Castro, “CRE: a systematic method for COTS components Selection”,
Proceedings of the XV Brazilian Symposium on Software Engineering (SBES), Rio de Janeiro, 2001.
[4] Astels D., Test-Driven Development: A Practical Guide , ISBN 0131016490, Prentice Hall, 2003.
[5] Beck K., EXtreme Programming EXplained: Embrace Change, ISBN 0201616416, Addison
Wesley, 1999.
[6] Beck K., Embracing Change with Extreme Programming, Computer, vol.32, no.10, pp. 70-77,
Oct., 1999.
[7] Beck K. and Fowler M., Planning Extreme Programming, ISBN 0201710919, Addison
Wesley, 2000.
[8] Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham W., Fowler M., Grenning J.,
Highsmith J., Hunt A., Jeffries R., Kern J., Marick B., Martin R. C., Mellor S., Schwaber K.,
Sutherland J., and Thomas D., Manifesto for Agile Software Development, URL:
http://agilemanifesto.org/
[9] Jesal Bhuta and Barry Boehm, “A Method for Compatible COTS Component Selection”,
Proceedings of the 4th International Conference on COTS-Based Software Systems, Spain, LNCS, Vol.
3412, Springer, 2005.
[10] L. Chung and K. Cooper, “Defining Goals in a COTS-Aware Requirements Engineering
Approach”, Systems Engineering, Volume 7, Issue 1, pp. 61-83, Wiley, 2004.
[11] Cockburn A., Crystal Clear: A Human-Powered Methodology for Small Teams, ISBN
0201699478, Addison-Wesley Professional, 2004
[12] Cockburn A., Agile Software Development: The Cooperative Game (2nd Edition), ISBN
0321482751, Addison-Wesley Professional, 2006.
[13] Santiago Comella-Dorda, John Dean, Edwin Morris, and Patricia Oberndorf, “A Process for
COTS Software Product Evaluation”, Proceedings of the 1st International Conference on COTS-Based
Software System, Orlando, Florida, Vol. 2255, pp. 86-96, Springer, 2002.
[14] Crnkovic, I., Larsson, M. Building Reliable Component-Based Systems, ISBN 1-58053-327-2,
Artech House, 2002.
[15] Crnkovic, I., Larsson, S., Chaudron, M., “Component-based Development Process and Component
Lifecycle”, In 27th International Conference Information Technology Interfaces (ITI), IEEE Computer
Society, 2006.
[16] DSDM Specification, http://dsdm.com/products/dsdm_version_4_2.asp
[17] J. Fredriksson, R. Land, “Reusable Component Analysis for Component-Based Embedded Real-
Time Systems”, 29th International Conference on Information Technology Interfaces (ITI), Cavtat,
Croatia, IEEE, 2007.
[18] Highsmith J., Agile Software Development Ecosystems, ISBN 978-0201760439, Addison Wesley
Professional, 2002.

MRTC report ISSN ISSN 1404-3041 ISRN MDH-MRTC-220/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, December 2007 30(30)

[19] Jyrki Kontio, “OTSO: A Systematic Process for Reusable Software Component Selection”,
University of Maryland report CS-TR-3478, UMIACS-TR-95-63, December 1995
[20] Land R., Blankers L., Classifying and Consolidating Software Component Selection Methods,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-218/2007-1-SE, 2007.
[21] Stig Larsson, Improving Software Product Integration, Licentiate Thesis, Mälardalen University
Press, 2005.
[22] Lawlis, Patricia K., Mark, Kathryn E., Thomas, Deborah A., Courtheyn, Terry, “A Formal Process
for Evaluating COTS Software Products”, IEEE Computer, Volume 34, Issue 5, 2001.
[23] Anna Liu and Ian Gorton, “Accelerating COTS Middleware Acquisition: The i-Mate Process”,
IEEE Software, Volume 20, Issue 2, pp. 72-79, March 2003.
[24] Neil A. Maiden and Cornelius Ncube, “Acquiring COTS Software Selection Requirements”, IEEE
Software, Volume 15, Issue 2, pp. 46-56, March 1998.
[25] Maurizio Morisio, Carolyn B. Seaman, Victor R. Basili, Amy T. Parra, Steve E. Kraft, and Steven
E. Condon, “COTS-based software development: Processes and open issues”, Journal of Systems and
Software, Volume 61, Issue 3, pp. 189-199, Elsevier, 2002.
[26] Cornelius Ncube and Neil A. Maiden, “PORE: Procurement-Oriented Requirements Engineering
Method for the Component-Based Systems Engineering Development Paradigm”, Second International
Workshop on Component-Based Software Engineering, Los Angeles, CA, USA, 1999.
[27] Cornelius Ncube, John C. Dean, “The Limitations of Current Decision-Making Techniques in the
Procurement of COTS Software Components”, In Proceedings of the First International Conference on
COTS-Based Software Systems, LNCS 2255, p176 - 187, Springer-Verlag, 2002.
[28] Perry D., Grishman P., Architecture and Design Intent in Components & COTS Based Systems”,
In Proceedings of the Fifth International Conference on COTS-Based Software Systems (ICCBSS),
2006.
[29] Robert Martin C., Micah, Martin, Agile Principles, Patterns, and Practices in C#, ISBN 978-0-13-
185725-4, Prentice Hall, 2006.
[30] Schwaber K., Agile Project Management with Scrum, ISBN 9780735619937, Microsoft Press,
2004.
[31] Sommerville I., Software Engineering, 8th edition, Addison Wesley / Pearson Education, 2007.
[32] Stojanovic, Z., Dahanayake, A.N.W., “Component-Oriented Agile Software Development”, In
Fourth International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Genova, Italy, 2003.

	Table of Contents
	Introduction
	Research Method
	Requirements
	System Development with COTS Components
	Component Development

	Design
	System Development with COTS Components
	Component Development

	Development
	System Development with COTS Components
	Component Development

	Verification and Validation
	System Development with COTS Components
	System validation and verification
	Component validation and verification

	Component Development

	Integration
	System Development with COTS Components
	Component development

	High- level considerations
	Different Assumptions: Relation to Customers
	Test-Driven Development and Component Selection

	Summary
	Acknowledgements

	References

