

Abstract

The product integration is a particularly critical phase of the software

product development process as many problems originating from earlier

phases become visible in this phase. Problems in product integration result

in delays and rework. One of the measures to decrease the late discovery of

problems is the use of development standards and guidelines that define

practices to ensure correctness of the product integration. However, even if

such standards and reference models exist, they are in not used consistently.

One of the reasons is a lack of a proof that they indeed improve the

integration process, and even more important, that they are sufficient for

performing efficient and correct product integration.

The conclusion of the presented research is that the available descriptions in

standards and reference models taken one by one are insufficient and must

be consolidated to help development organizations improve the product

integration process. The research has resulted in a proposed combination of

the activities included in the different reference models. This combination

has been based on a number of case studies. Through the case studies

performed in seven different product development organizations, a

relationship between problems that are observed and the failure to follow

the recommendations in reference models is identified. The analysis has

indicated which practices are necessary, and how other practices support

these. The goal with the research is to provide product development

organizations with guidelines for how to perform software product

integration.

One additional finding of the research is the existence of relation between

software architecture and the development process. A method for identifying

dependencies between evolvement of software architectures and adaptation

of integration practices has been demonstrated.

ii

 iii

Acknowledgements

Foremost, I would like to express my gratitude towards my supervisor

professor Ivica Crnkovic. Ivica has guided me throughout the years, and has

been there to help me even when schedules have been overloaded. Many

thanks go also to my assistant supervisors Dr. Fredrik Ekdahl, for helping

me to start this journey and keeping me on track, to Dr. Rikard Land for all

cooperation, and to both of them for interesting discussions on everything

from integration and research methods to computer games and langoustes.

Special thanks to Christer Persson, Petri Myllyperkiö, and Stefan Forssander

for collaboration on the case studies and for helping me remember the

realities of product development, and to Per Branger and Clarens Jonsson

for great teamwork and helpful comments. Thanks also to all other

colleagues at ABB and all the participants in the case studies.

A major advantage with conducting research studies is all the people you

meet. I would like to thank my fellow Ph.D. students Jocke, Johan F.,

Johan K., Markus, Micke, Peter, and Stefan for reviews, interesting

meetings, and guidance to great places.

I would also like to thank all my friends and colleagues at Mälardalen

University providing a fruitful environment and giving support when I have

needed it.

The work would not have been possible without the support from ABB

Corporate Research and KKS, providing me with resources for my research.

I have over the last four years been poor in keeping contact with many of my

relatives and friends. Hopefully, I will not start another project like this too

soon again so that there will be time to meet (if you still remember me).

Ultimately, this has been possible only through the understanding and

support from my wife AnnKi and our daughter Camilla. You are my

inspiration and I love you both so much.

Stig Larsson

Shanghai, November, 2007

iv

 v

List of Included Papers

Paper A On the Expected Synergies between Component-Based Software

Engineering and Best Practices in Product Integration, Stig

Larsson, Ivica Crnkovic, Fredrik Ekdahl, Euromicro Conference,

IEEE, Rennes, France, August, 2004

Paper B Case Study: Software Product Integration Practices, Stig Larsson,

Ivica Crnkovic, Product Focused Software Process Improvement:

6th International Conference, PROFES 2005, Springer, Lecture

Notes in Computer Science, Volume 3547 / 2005, Oulu, July, 2005

Paper C Product Integration Improvement Based on Analysis of Build

Statistics, Stig Larsson, Petri Myllyperkiö, Fredrik Ekdahl,

presented in a shorter version at ESEC/FSE Conference 2007,

Dubrovnik, Croatia, September 2007

Paper D How to Improve Software Integration, Stig Larsson, Petri

Myllyperkiö, Fredrik Ekdahl, Ivica Crnkovic, submitted to the

Information & Software Technology journal, Elsevier

Paper E Assessing the Influence on Processes when Evolving the Software

Architecture, Stig Larsson, Anders Wall, Peter Wallin, presented

at IWPSE 2007, Dubrovnik, Croatia, 2007

vi

List of Related Papers

• Component-based Development Process and Component Lifecycle,

Ivica Crnkovic, Michel Chaudron, Stig Larsson, International

Conference on Software Engineering Advances, ICSEA'06, IEEE,

Tahiti, French Polynesia, October, 2006

• Experience Report: Using Internal CMMI Appraisals to

Institutionalize Software Development Performance Improvement,

Fredrik Ekdahl, Stig Larsson, 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications

(EUROMICRO'06), p 216-223, IEEE Computer Society, Cavtat,

Croatia, September, 2006

• Selecting CMMI Appraisal Classes Based on Maturity and

Openness, Stig Larsson, Fredrik Ekdahl, PROFES 2004 - 5th

International Conference on Product Focused Software Process

Improvement, Springer-Verlag Berlin Heidelberg New York, Kansai

Science City, Japan, Editor(s):Frank Bromarius, Hajimu Iida, April,

2004

 vii

Additional Publications

Journals

• Industry Evaluation of the Requirements Abstraction Model, Tony

Gorschek, Per Garre, Stig Larsson, and Claes Wohlin, in print,

Requirements Engineering, 2007.

• A Model for Technology Transfer in Practice, Tony Gorschek,

Claes Wohlin, Per Garre, Stig Larsson, IEEE Software, vol 23, nr 6,

p88-95, IEEE, November, 2006

• Component-based Development Process and Component Lifecycle,

Ivica Crnkovic, Michel Chaudron, Stig Larsson, Journal of

Computing and Information Technology, vol 13, nr 4, p321-327,

University Computer Center, Zagreb, November, 2005

• Integrating Business and Software Development Models, Christina

Wallin, Fredrik Ekdahl, Stig Larsson, IEEE Software, vol 19, nr 6,

p28-33, IEEE Computer Society, November, 2002

Thesis

• Improving Software Product Integration, Stig Larsson, Licentiate

Thesis, Mälardalen University Press, June, 2005

Conferences and workshops

• Software In-House Integration – Quantified Experiences from

Industry, Rikard Land, Stig Larsson, Ivica Crnkovic, Euromicro

Conference, Track on Software Process and Product Improvement

(SPPI), IEEE, Cavtat, Croatia, August, 2006

• Merging In-House Developed Software Systems – A Method for

Exploring Alternatives, Rikard Land, Jan Carlson, Ivica Crnkovic,

Stig Larsson, Quality of Software Architecture (QoSA), University

of Karlsruhe, Västerås, Sweden, June, 2006

viii

• Architectural Concerns When Selecting an In-House Integration

Strategy – Experiences from Industry, Rikard Land, Laurens

Blankers, Stig Larsson, Ivica Crnkovic, 5th Working IEEE/IFIP

Conference on Software architecture, WICSA, p 274-275, IEEE,

Pittsburgh, PA, USA, November, 2005

• Software Systems In-House Integration Strategies: Merge or Retire

- Experiences from Industry, Rikard Land, Laurens Blankers, Stig

Larsson, Ivica Crnkovic, Fifth Conference on Software Engineering

Research and Practice in Sweden (SERPS), p 21-30, Mälardalen

University, Västerås, Sweden, October, 2005

• Architectural Reuse in Software Systems In-house Integration and

Merge – Experiences from Industry, Rikard Land, Ivica Crnkovic,

Stig Larsson, Laurens Blankers, First International Conference on

the Quality of Software Architectures (QoSA 2005), Springer

Verlag, Erfurt, Germany, September, 2005

• Process Patterns for Software Systems In-house Integration and

Merge – Experiences from Industry, Rikard Land, Ivica Crnkovic,

Stig Larsson, 31st Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), Track on Software Process

and Product Improvement (SPPI), IEEE, Porto, Portugal, August,

2005

• Concretizing the Vision of a Future Integrated System - Experiences

from Industry, Rikard Land, Ivica Crnkovic, Stig Larsson, 27th

International Conference Information Technology Interfaces (ITI),

IEEE, Cavtat, Croatia, June, 2005

• Component-based Development Process and Component Lifecycle,

Ivica Crnkovic, Stig Larsson, Michel Chaudron, 27th International

Conference Information Technology Interfaces (ITI), IEEE, Cavtat,

Croatia, June, 2005

• Towards an Efficient and Effective Process for Integration of

Component-Based Software Systems, Stig Larsson, SERPS’03 -

Proceedings of the 3rd Conference on Software Engineering

Research and Practice in Sweden, Lund, Sweden, October, 2003

• Are Limited Non-intrusive CMMI-based Appraisals Enough?, Stig

Larsson, Fredrik Ekdahl, Proceedings of the ESEIW 2003

Workshop on Empirical Studies in Software Engineering WSESE

2003, Fraunhofer IRB Verlag, Stuttgart, Germany, September, 2003

 ix

• Combining Models for Business Decisions and Software

Development, Christina Wallin, Stig Larsson, Fredrik Ekdahl, Ivica

Crnkovic, Euromicro Conference, IEEE, Dortmund, September,

2002

x

 xi

 Table of Contents

Chapter 1. Introduction ...3

1.1 Research Motivation ...4

1.2 Research Questions ...7

1.3 Thesis Overview..9

Chapter 2. Product Integration...13

2.1 Interpretation of “Product Integration” ...13

2.2 Product Integration Problems in the Industry..15

2.3 Applying Reference Models..17

2.4 Product Integration and Related Software Engineering Concepts.............19

2.5 Conclusion ..29

Chapter 3. Research Method...31

3.1 Method ..31

3.2 Validity and Limitations..37

3.3 Conclusion ..39

Chapter 4. Research Results..41

4.1 Results related to questions 1a and 1b ..42

4.2 Results related to question 2 ...50

4.3 Conclusion ..51

Chapter 5. Conclusions and Future Work ...53

References..57

Paper A ..65

Paper B ..81

Paper C ..101

Paper D ..129

Paper E ..173

Part 1

Chapter 1. Introduction

The product integration process is a set of procedures used to combine

components into larger components, subsystems or final products and

systems. Product integration enables the organization to observe all

important attributes that a product will have; functionality, quality and

performance. This is especially true for software systems as the integration

is the first occurrence where the full result of the product development effort

can be observed. Consequently, the integration activities represent a highly

critical part of the product development process.

We refer to the definition of integration for product and system development

found in the glossary of EIA 731.1 (interim standard) [1]:

”Integration: The merger or combining two or more elements (e.g.,

components, parts, or configuration items) into a functioning and

higher level element with the functional and physical interfaces

satisfied. “

This definition describes the product integration process without limiting its

use to an implied product development life-cycle model.

Practices for product and system development are described in a number of

standards and models such as ISO/IEC 12207 [2] and CMMI [3]. It is

noticeable that most standards and reference models deal with product and

system development without distinguishing software as a specific item.

Steve McConnel describes integration in [4] as “the software development

activity in which you combine separate software components into a single

system “. Also with this description, it is easy to use the statement (without

the software) for any type of integration. However, when going more into

detail, there are important differences between the integration of software

and other types of integration.

Product integration is in most organizations performed in an iterative and

incremental manner, and it is a central part of any product development

project. Figure 1 shows a data flow diagram of the product integration

process interaction with other processes as described in the CMMI [3]. The

4 Introduction

results from design and implementation in Technical Solution are

transferred to Product Integration in a controlled manner. The results from

Product Integration are used for Verification and Validation activities.

When a version of the product or system is ready, it is made available for

internal or external customers.

Figure 1. Product integration and related processes

Typical problems in product integration are that the components delivered

for integration are not ready, that interfaces between components are

insufficiently defined or followed, and that the environment needed for the

integration is inappropriately prepared. This leads to the questions if

something can be made to improve the product integration process, and what

the key elements of product integration are.

1.1 Research Motivation

Good practices for product integration are described in different reference

models and standards such as ISO/IEC 12207 [2], CMMI [3], EIA-731.1 [1],

and ISO/IEC 15288 [5]. Problems that have been identified include the

frequent failure to utilize the knowledge available, or that the

recommendations in the reference models are insufficient. This is

demonstrated by Campanella who presents an investigation into costs

related to different phases in [6], and by RTI describing integration in

Validation

Product

Integration

Technical

Solution

Verification

Customer
Product

Product components
Work products

Integrated product

Reports

Reports

ValidationValidation

Product

Integration

Product

Integration

Technical

Solution

Technical

Solution

VerificationVerification

Customer
Product

Customer
Product

Product components
Work products

Integrated product

Product components
Work products

Integrated product

Reports

Reports

Research Motivation 5

relation to testing in [7]. Bajec et al have investigated why available

methods are underused in [8] and conclude that inflexibility, and the

perceived lack of usefulness are among the reasons. My own experience is

that practices described in reference models are too often neglected or

misunderstood. This leads to the absence of, inadequate, or insufficient use

of activities that would ensure efficient and effective product integration.

 There are many examples of how minor mistakes made in an earlier phase

complicate and delay the product integration processes. For example, builds

fail when code which has not been properly compiled is delivered for

integration, or interfaces are changed without checking the impact of that

change, or without checking that the corresponding changes in other parts of

the system have been done. The consequence is that errors and problems are

discovered late in the development process. There are two major negative

results from failing product integration processes:

• Activities which use the result and outputs from the product

integration process are affected and delayed. These activities

include further implementation of functionality, verification, and

validation. As integration is performed throughout the project life-

cycle, each delay of the results from integration will affect the

development effort significantly.

• Work performed in earlier phases must be redone if problems are

discovered late in the development process, adding to the needed

resources, and further delaying the project results.

Examples from our research include a case study using daily builds showing

build statistics that indicate that every fifth build fails due to insufficient use

of good practices for product integration. Combining this with the indication

that every failed build typically delays the development project by half a day

causes a delay in the project of approximately 10% as a direct consequence.

Failure in the integration, which is the result of errors in previous phases can

thus be expensive and should be avoided. Practices described in different

reference models may help in avoiding these problems. The described

practices can be divided into three categories:

• Preparation of product integration. This includes decisions on

strategy, on integration sequence, and on the criteria for integration

• Management of interfaces between components. The integration

processes include checking that interfaces are properly defined, and

that changes to interfaces are controlled, but not the definition and

6 Introduction

design of the interfaces as this is a design issue which is handled in

the design process

• Execution of the product integration. The execution includes

ensuring that the strategy, sequence and criteria are followed, the

assembly of components, and the performance of planned tests to

verify successful integration

Reference models are of value because they are collected experiences from

industry. However, they are not widely used. A question is thus what is

needed to help organizations better follow reference models in different

product integration undertakings. In addition, the specifics of the reference

models differ, and there is a need to understand how these differences may

affect the performance of product integration in product development

projects.

There is a distinction between products containing software and products

that have little or no software: the integration of software products is not

tested repeatedly in production through fabrication and manufacturing. This

repetition helps the organization prevent problems from reaching the market.

This testing is of course most efficient during the development process when

the manufacturing organization is active in the project and in the testing to

ensure that the production will flow smoothly. Things that can reduce the

risk in software product development are the use of continuous or nightly

builds, and automated regression testing.

The purpose of this research is thus to determine what changes are required

to the current body-of-knowledge for the software product integration

process as described in models and standards to be effective.

An additional issue is how the use of the practices described in reference

models can be supported in different ways. Examples include training, the

use of technologies designed to support product integration, and tools that

help engineers define and use components that are well defined are some

examples of support that can improve the use of practices described in

reference models. Observations made indicate that a closer association

between technical and process aspects is needed to ensure the awareness of

engineers of the importance of product integration. This means that it is

necessary to investigate also the connection and relation between

architecture and product integration processes. As a first step, this research

considers the influence of architecture on product development processes

and proposes a method to find this influence. The use of this method creates

Research Questions 7

a better understanding of the importance of certain aspects of product

integration among engineers.

The importance of architecture in this context is that it affects the

possibilities to reach efficient and effective product integration. Product

development organizations often have the focus on technical changes, and a

wider knowledge of the effects of these changes on the process is needed. If

this is developed, we foresee engineers becoming more interested in what

affects their work, and how it can be performed more efficiently.

1.2 Research Questions

As described, product integration is a vital part of product development and

the main focus and research problem is to understand what factors influence

the possibilities to achieve efficient and effective product integration. The

characteristics of efficient product integration are that unnecessary work is

avoided and delays due to integration problems are prevented. Effective

product integration is achieved if problems related to the interaction

between components are captured, and the planned functionality for a

specific integration is achieved. Other important matters related to product

integration include delayed time to market, insufficient quality, and

inefficient use of resources.

A first step towards understanding how reference models can help was

presented in my licentiate thesis [9] and the research presented here is a

continued and a more detailed investigation of the reference models. In

addition, a first step has been taken in understanding the influence of

architecture on processes with emphasis on product integration.

The research questions below make the research topic concrete. The first

two questions are related to the use of standards and models as a vehicle for

improving product integration, and if there is a need to improve the current

reference models. The first question aims to investigate the use of current

reference models:

Are the practices described in available reference models

for product integration necessary and sufficient for visible

reduction of problems in the product integration process? (Q1a)

In answering this question, we can find the practices that are most relevant

for efficient and effective product integration and what is included in the

reference models.

8 Introduction

Different reference models cover different aspects of product integration.

The reference models represent together the current body-of-knowledge for

product integration. Based on the differences and the combined body of

knowledge, the next question is:

What additions and modifications are needed in the

available reference models to take advantage of current

body of knowledge in product integration? (Q1b)

Different types of support can help increase use of the described practices.

This includes training, tool support, and use of technology that simplifies

the product integration.

In addition to the previous question this thesis states a question about

integration in a context of software evolution. The reason for this is a

recurring observation from the case studies – a relation between changes in

the product architecture and a need for changes in the development process.

Based on experiences from the case studies we decided to investigate how

product development organizations can understand how product integration

processes are influenced by changes in the architecture. The evolution of

system or product architectures may change the requirements on the product

integration process. Failing to change the process when altering the

architecture may be one reason why the used product integration practices

are not sufficient. We need therefore to understand the influence on process

from architectural decisions. This leads to an additional question:

How can necessary changes in the integration process

due to changes in the product architecture be identified

and implemented? (Q2)

Thesis Overview 9

1.3 Thesis Overview

The first part of this thesis is an overview of the research, while the second

part is a collection of papers that documents details of the research

questions, methods, and results.

In part one, chapter 2 relates product integration to different aspects of

software product development, including reference models, life-cycles,

architecture, product lines, and component-based software engineering.

The method used and the validity of the presented research are discussed in

chapter 3, focusing on the whole research project.

Chapter 4 includes a summary of the research results, and an expansion on

some of the findings from the papers included.

Chapter 5 wraps up the overview part with conclusions and a look at

possible future work.

Part two of the thesis includes the following papers:

Paper A “On the Expected Synergies between Component-Based Software

Engineering and Best Practices in Product Integration“

This paper describes the product integration practices in one

product development organization. Problems observed are

compared with component-based development practices to

investigate if these can help the organization follow good practices

as described in the CMMI.

Presented at the Euromicro Conference, Rennes, France, August

2004. Authors: Stig Larsson, Ivica Crnkovic, Fredrik Ekdahl.[10]

I was the main author; I contributed with the description of good

practices in product integration, the methodology, the case study,

the analysis and conclusions. The co-authors contributed with

advice regarding methodology, discussions regarding the analysis

and conclusions, and reviews.

Paper B “Case Study: Software Product Integration Practices”

This paper includes case studies from three organizations.

Practices used in the organizations are compared to EIA-731, and

the problems encountered by each of the organizations are

described. Problems are mapped to practices, and the conclusion is

10 Introduction

that the standard includes activities that can help organizations

avoid problems which can appear when integrating components to

systems.

Presented at PROFES 2005 Conference, Oulu, Finland June 2005.

Authors: Stig Larsson, Ivica Crnkovic. [11]

I was the main author; I contributed with the description of good

practices in product integration, the methodology, the case study,

the analysis and conclusions. The co-author contributed with

advice regarding methodology, discussions regarding the analysis

and conclusions, and reviews.

Paper C “Product Integration Improvement Based on Analysis of Build

Statistics”

This paper proposes a method for mapping project data to different

practices and combines this mapping with project appraisal results

to form a basis for focused performance improvement. The product

integration processes in four projects from three organizations

were examined using the proposed method and the findings are

presented. The study demonstrates how the two components,

collected metrics and appraisal results, complement each other in

the effort to develop product integration process improvement

effectiveness.

Presented in a shorter version at ESEC/FSE Conference 2007.

Authors: Stig Larsson, Petri Myllyperkiö, Fredrik Ekdahl. [12]

I contributed with the description of good practices in product

integration, methodology, and two of the case studies and the

analysis for these as well as the conclusions. Petri Myllyperkiö

contributed with two case studies, and for these we made the

analysis together. Both co-authors contributed through discussions

and reviews.

Paper D “How to Improve Software Integration”

This paper consolidates the investigations in paper A, B and C

with chapter 4 of my licentiate thesis [9] to show the possibility to

enhance current reference models. Seven case studies are

compared to five reference models. A combination of the findings

from the cases and the models result in a proposed set of 15

practices for successful product integration.

Thesis Overview 11

Submitted to the Information & Software Technology journal,

Elsevier. Authors: Stig Larsson, Petri Myllyperkiö, Fredrik

Ekdahl, Ivica Crnkovic [13].

I contributed with the description of product integration practices

in reference models, methodology, and five of the seven the case

studies. I also made the analysis which was then discussed with the

co-authors, and prepared the conclusion. All co-authors

contributed through reviewing the paper.

Paper E “Assessing the Influence on Processes when Evolving the

Software Architecture”,

This paper expresses different relationships between architectural

changes, process changes and the underlying business objectives.

As an example of how the understanding of these relationships can

be used, we describe a method for assessing the process changes

needed when refactoring is performed. Details regarding the

consequences for the product integration process are included as

examples.

Presented at the 9th International Workshop on Principles of

Software Evolution, IWPSE, 2007. Authors: Stig Larsson, Anders

Wall, Peter Wallin.[14]

I was the main author and lead the study. I contributed with the

description of the proposed method, while the case description, the

related work, and the conclusions were made in cooperation with

the co-authors.

In addition, the following papers are indirectly related to the thesis. Material

from these papers has been used in the preparation of part 1 of this thesis:

• “Component-based Development Process and Component

Lifecycle”, Ivica Crnkovic, Michel Chaudron, Stig Larsson,

International Conference on Software Engineering Advances,

ICSEA'06, IEEE, Tahiti, French Polynesia, October, 2006 [15]

• “Experience Report: Using Internal CMMI Appraisals to

Institutionalize Software Development Performance Improvement”,

Fredrik Ekdahl, Stig Larsson, 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications

(EUROMICRO'06), p 216-223, IEEE Computer Society, Cavtat,

Croatia, September, 2006 [16]

12

• “Selecting CMMI Appraisal Classes Based on Maturity and

Openness”, Stig Larsson, Fredrik Ekdahl, PROFES 2004 - 5th

International Conference on Product Focused Software Process

Improvement, Springer-Verlag Berlin Heidelberg New York, Kansai

Science City, Japan, Editor(s):Frank Bromarius, Hajimu Iida, April,

2004 [17]

Chapter 2. Product Integration

This chapter describes product integration, beginning with a general

discussion about different interpretations of the nature of product

integration. With this background, the problems found in product

integration, as used in this thesis, are described. In addition, we discuss the

use of reference models, as well as other concepts in software engineering

related to and affecting product integration processes.

2.1 Interpretation of “Product Integration”

The terms “product integration”, “systems integration” and “software

system integration” are used for several different aspects in product and

system development literature. Grady claims that integration is one of the

most misunderstood concepts within systems engineering [18]. Djavanshir

and Khorramshahgol [19] have investigated the importance of different

process areas related to system integration and observe that professionals in

the field relate integration to many areas of systems engineering. This

indicates that there is no clear definition of integration when discussing

system and software engineering. It is consequently necessary to clearly

define the scope of integration, and to be aware of other interpretations of

the term. Sage and Lynch provides an overview in [20], and Land elaborates

on different meanings of the terms in [21]. The main uses of the terms are:

• Product integration processes:

This term describes the process used in product development

projects when parts are combined into more complex parts and

eventually into the product or system to be delivered to the

customer. It includes the activities ensuring that the combinations of

components are functioning as intended and the management of

interfaces between components and between the product and the

environment. As earlier described, this is the focus for this thesis.

14 Product Integration

• Architectural, or technical, product or system integration:

This concerns the technical solutions used to fulfill requirements on

functionality and quality attributes such as reliability and

performance. Different levels of integration include export and

import facilities, the use of wrappers and adapters, integration

through shared databases, and integration on source code level.

Interface design is one important issue for all levels of architectural

integration, and standard interfaces are available for many

applications. Different types of architectural integration is described

by Nilsson et al in [22]. Other examples of the use of integration in

this meaning is found in [23] where Garlan describes trends in

software architecture research, and in [24] where Gorton describes

useful architectural practices .

• Enterprise Application Integration (EAI)

EAI is a specific type of architectural integration where

organizations combine and integrate existing and new systems to

assist the organization in achieving business objectives. This type of

integration is performed to ensure data consistency and to make

information accessible to different types of stakeholders, often

based on the use of a common middleware. Examples of

descriptions of EIA are [25] by Cummins, [26] by Linthicum, and

[27] by Ruh et al.

• Software system in-house integration:

When merging systems with similar purposes, there are both

process, architectural, and technical considerations to be managed.

This has been described by Land in [21].

• Integrated product and process development:

The integration of product and process development aims at having

a focus on collaboration between all stakeholders in the product

development. An emphasis is put on a common vision which is key

to fulfill and exceed customer satisfaction. This includes all

different disciplines needed to work together in a common effort,

often as one project, throughout the project life-cycle. The

development processes proceed in an integrated project in parallel,

which requires tight cooperation between the participants. The use

of integrated product and process development is included in the

CMMI [3], and has for example been described by Parsaei et al in

[28]

Product Integration Problems in the Industry 15

2.2 Product Integration Problems in the Industry

To understand what needs to be improved in descriptions and

implementation of product integration processes, it is important to

understand what types of problems are found in industry.

Problems in product integration have been described by Ramamoorthy in

[29]. According to that study the software system integration problem

includes several issues:

• Inconsistencies in the interfaces between modules in the system lead

to problems at integration time. The inconsistencies result from the

different assumptions made by engineers in earlier phases of the

development

• Insufficient use of strategies and planning for the integration effort.

This leads to unnecessary dependencies in the product integration

for the different modules, and to increased need for interactions

between designers to synchronize deliveries

• Insufficient understanding of the dependency structure of the

product or system leads to cumbersome debugging and fault finding

at integration time

Through the case studies performed in this research project, we have been

able to observe a more detailed view of the problems and the following

types have been found:

• Related to architecture and design

• Architectural decisions are done without considering the full

system, leading to problems at integration time

• Changes are made to interfaces without proper control. This leads to

errors in the builds or initial integration testing

• Changes in common resources (e.g. common include files) are not

controlled. This results in errors appearing in other components

which have not been changed

• New functions are added and errors are corrected without proper

investigation of consequences. The result may be new errors that

influence the functionality and performance of the system more than

the original problem

• Errors appear in other components which have not been changed

due to changes in interfaces, i.e. changes are made in how two

16 Product Integration

components interact, while also other components are using this

interface

• Related to the inadequate establishment or use of the integration

environment

• Problems appear as tests for the components are not run in the same

type of environment as the integration test system. Different

versions of hardware and test platform are used

• The build environment is not prepared for new builds, e.g. results

from earlier builds are not removed before a new generation of the

system is started

• Untested changes are introduced in the integration environment e.g.

build scripts are changed without proper verification

• Related to inadequate delivery of functions

• Inconsistent code, i.e. functions that have only been partly

implemented, is delivered for integration. Files are not included in

the build as planned, resulting in failed builds

• Functions are not always delivered in time for integration or may be

incompletely delivered. This leads to problems in the build process

or in integration and system tests

• Functions are not always fully tested when delivered for integration.

This leads to problems in the build process or in integration and

system tests

The types of problems are not independent. An example of this is that

inadequate coordination of when different components are to be delivered

may lead to pressure to deliver components without proper preparation or

testing. If no agreed criteria have been defined, it will be even easier to

accept this behavior.

To summarize, the problems are in essence related to interaction and

planning for interaction, both between different development teams and

between the components that are to constitute the final product.

Through the studies performed in industry we have seen that the

investigated systems all have some type of legacy. This is an additional

factor that creates limitations for how to perform product integration. The

legacy can be an inherited code base, connections to other systems such as

tools that require certain components to ensure backward compatibility, or

standards that require specific behavior from the system. The result of this is

Applying Reference Models 17

that the product integration depends on a large number of earlier decisions

and resulting strategies. In turn, the consequence of this is reduced freedom

to select strategy for the integration, and may lead to needs for refactoring or

other changes to the architecture before a new strategy can be selected.

2.3 Applying Reference Models

The reference models used in our research describe and propose different

activities that should help in achieving efficient and effective product

integration.

Two types of reference material, standards and models, have been

considered in this study and are referred to as reference models1. Product

integration is treated in different ways in the reference models; in some

models such as ISO/IEC 12207 [2] and CMMI [3], the subject is handled in

a specific part, while in others such as EIA-632 [30], the description of

product integration is found in different sections. In most reference models,

the product (or system) integration is considered to result in aggregations of

components into bigger components. The product integration is repeated

over the project life-cycle until the product or system is available and can be

delivered to the customer.

The activities that are considered part of product integration can be divided

into three areas: preparation, management of interfaces, and execution of the

product integration.

Careful preparation is in the reference models described as the key to

efficient and effective product integration. It includes defining a strategy

based on business needs and targets, and organizing the integration sequence

to be in accordance with the strategy and synchronized with other project

and organization activities. An environment for the integration should be

prepared, and requirements on the components to be delivered to integration

defined.

Many system and product integration problems occur due to incomplete or

misunderstood interfaces. Therefore management of interfaces, i.e. the

identification and definition of what interfaces should be managed, need to

1 The difference between the types is that standards have been approved by a standardization

body, while a model may be issued by any company or organization.

18 Product Integration

be a part of the product integration. However, the design and

implementation of interfaces should be considered part of the architectural

and detailed design. The target for the management of interfaces is to ensure

compatibility. This means that the practices needed is (i) to review the

interfaces for completeness, and (ii) to manage relationships between

interfaces and components to ensure that any changes to interfaces are dealt

with in affected components.

When using the reference models as a basis for implementing management

of interfaces, it is important that the concept of interfaces is clearly

understood. Interfaces are not only the syntactical description of the

connection point to a software component. An example of how this is

captured in the reference models can be seen in ISO/IEC 15288 [5] where

section 5.5.4.3 includes the following

”g) Define and document the interfaces between system elements

and at the system boundary with external systems

Note Definitions are made with a level of detail and control

appropriate to the creation, use and evolution of the system entity

and with interface documentation from parties responsible for

external interfacing entities. …”

This specific standard covers all types of engineering, and the statement

needs to be complemented with more details of what should be considered

as a part of interfaces to be practically useful when developing software

intensive systems. In addition, each organization needs to determine what is

needed. One view of how to regard software interfaces is given by Parnas in

[31]. He describes how interfaces need to comprise the set of assumptions

that the developers of the different components can make about other

components, e.g. the behavior in normal and error situations, resource needs,

and the need for other components.

The execution takes advantage of the preparations, and includes checks that

the criteria for when components can be delivered are fulfilled, that the

components are delivered as planned, and the integration including

evaluation and test of the assembled components.

A detailed description of where information about the three areas

preparation, management of interfaces, and execution can be found for

different reference models is available in paper D [13].

In [32], Stavridou investigates integration standards for critical software

intensive systems. The examination focuses on military policies and

standards, but includes also ISO/IEC 12207 in the comparison. The

Product Integration and Related Software Engineering Concepts 19

conclusion is that the majority of the examined standards address integration

testing, but that the standardization is not appropriate for many integration

issues. The descriptions of the included activities are insufficient as support

for a project manager running a product development project. An additional

conclusion is that the integration activities should be considered as a

separate phase of system development.

Incorrect use of reference models and software development models is

described by Fitzgerald [33]. The reason for not using the models as

intended is claimed to be the perceived lack of contribution to successful

product development, and inflexibility in the models, not allowing for

customization to specific organizational and project needs. This has also

been highlighted by Bajec et al in [8]. They describe and prescribe a method

for adapting the development model to the specific project. This should of

course also include the product integration part of the process.

One reason for the industry to be slow in adopting useful practices from

reference models may be their format and their content. Reference models in

general cover projects and organizations with a large range of attributes;

projects with significant differences in size, distribution, complexity and

novelty should be covered in the same models. This means that the models

often describe what should be performed, but not necessarily how. The

interpretation of a specific method or practice becomes important, and the

insufficient knowledge in how to implement the practices may prevent the

organizations from adhering to a model.

The extent to which the models describe how a practice should be

implemented differs. However, none of the models used in our research are

explicit and give detailed advice on how the models can be used for

different types of projects and organizations. Most detailed is the CMMI [3]

which describes subpractices and expected work products, while standards

such as ISO/IEC 12207 [2] give only high level direction.

2.4 Product Integration and Related Software

Engineering Concepts

Several areas related to product integration have been identified in literature.

That the areas are related to product integration has been confirmed in the

examination of the organizations and projects that form the basis for the

research presented in this thesis.

20 Product Integration

Two basic topics are how the selection of the project and software lifecycle

influences the product integration, and the effect architectural decisions

have on product integration. Other areas such as distributed development

and the use of the software product line concept are phenomena that make

the product integration more complex.

In this section, a set of these software engineering concepts are discussed

from the perspective of product integration. The selection has been made

based on literature search and investigations of areas covered in major

software engineering conferences.

2.4.1 Project Life-cycle Models
McConnel stresses the importance of selecting the life-cycle model that is

appropriate for a specific type of development and provides a selection

guide in [34]. The selection of the project life-cycle model also determines

what options the project will have from which to select integration strategy.

In [35], Pressman differentiates between three types of models: the waterfall

model, incremental models, and evolutionary models. Each of these types

has an influence on how the product integration processes can be

implemented.

The waterfall model requires that each phase of the development is

concluded before the next is started. A strict use of this model will force the

project to begin the integration when all components are ready and apply a

big-bang approach. However, the strategies and sequences for integration

can be selected on the basis of the needs from the organization if the

schedule permits. This includes incrementally integrating components based

on architectural or other considerations even though all components are

available. There is a risk that errors found in integration requires the project

to modify components or interfaces which will delay the project.

Modifications to the model permit overlapping phases, enabling the

organization to select integration sequence by giving priority to which

components should be ready first. Also, by applying the model separately on

different components and subsystem, a more flexible integration process can

be implemented. The waterfall model used in this way resembles an

incremental model.

Using incremental models increases the number of possible strategies for

product integration. The selection of integration strategy of may determine

what should be developed in each increment. Considerations for the project

planning with regards to increments will resemble the considerations for the

integration selection. Examples of different strategies are to provide the

Product Integration and Related Software Engineering Concepts 21

basic functionality in the first increment, and making more advanced

versions of each feature available as the project proceeds with further

increments, or to develop the most important feature with all functionality

available for the first increment. One important aspect for the product

integration is that a strategy and integration sequence is also needed within

an increment, e.g. a specific order is needed to be able to perform the

integration tests.

Evolutionary models include two major types: spiral models and

evolutionary prototyping. Spiral models have been described by Boehm in

[36] and further developed in [37], and focus on minimizing risk by starting

the project in small scale, addressing the major risks. The project then

iterates a number of steps, including setting a target for the iteration,

identifying risks, evaluating alternatives, developing deliverables as

described for the iteration and evaluating the results, planning the next

iteration and deciding on an approach for the next iteration. The integration

process will in most evolutionary projects differ between the iterations

based on the approach and purpose of the specific iteration. This also gives

the organization and project the option to adapt the product integration as

the project proceeds.

Evolutionary prototyping is also iterative, and focuses on aspects of the

product that can be evaluated by the customer (or a representative for a

customer base). Quick design and implementation lead to early feedback

which can be used for refining the requirements. Later versions of the

product will be designed with more focus on architecture and quality. Here,

the product integration processes will be very important, especially for the

handling of interfaces. Early prototypes tend to be built on existing

components that may have to be replaced in a later iteration, and the

management of interfaces and changes to these is crucial.

Using evolutionary models put higher demands on the project as the focus is

on minimizing risks and as the processes are often adapted as the project

progresses.

Ramamoorthy presents a proposal how to tackle the challenges in product

integration in [29], and relates the activities to different project life-cycle

phases. The proposal resembles the activities described in reference models,

and give additional views on what can be used as design guidelines when

implementing product integration processes. The proposal includes a

preliminary development phase which incorporates specification of

interfaces, establishment of an integration strategy, the implementation of an

22 Product Integration

integration environment, establishment of criteria for integration, and the

development of an integration plan. The second phase is labeled initial

integration and includes primarily management tasks. Examples of activities

are regular feedback on status, improvement of the strategy, and monitoring

the integration process. The final product integration phase is briefly

described. Similar to the reference models, no validation of the proposed

method or the included activities is presented.

The activities in the product integration area have also been the subject of

interest from the agile community where continuous integration is common

and frequent builds is one of the cornerstones. One example is [38] where

Fowler describes the requirements on developers: before committing

components back to the mainline the developer would need to update his

work area with the latest mainline, i.e. build against the latest changes of

other developers. Only after that, integration into the mainline would be

permitted. The use of continuous integration and frequent builds is one of

the strategies that can be selected for product integration, and will also put

requirements on other activities such as the preparation of an integration

environment.

2.4.2 Architecture and Product Integration
Architecture and design are connected to the product integration processes

in several ways. The interface design affects the possibilities to select

different integration strategies, while the chosen integration strategy may

influence and limit the architectural options available. That management of

interfaces is an important aspect of many of the architectural tactics as

described by Bass et al in [39].

Sage and Lynch provides a general description of system and product

integration in [20] and describes a view of how the integration can affected

by architecture. The conclusion is that developing an appropriate

architecture for a system will simplify the integration later in the project’s

lifecycle. It is also stated that the architecture can be the means for

communication and knowledge transfer in a project. This is further

described by Ovaska et al in [40]. The main idea in the description is that a

common understanding of the software architecture between the software

development parties will improve the coordination of different teams. They

also stress the need for both informal communication and formal

descriptions of interfaces.

Eppinger describes in [41] a method to reduced the problems in integration

using an architectural and design structure matrix approach. The method

Product Integration and Related Software Engineering Concepts 23

includes three steps: decomposition, identification of interactions between

the components based on different types of interaction, and clustering of

components based on the analysis of the structure of interactions. The

method is closely related to the management of interfaces as described in

product integration.

Another area that has been well researched is how software can be reused.

One example in the context of architecture and refactoring has been

described by Metha and Heinemann in [42] where an evolution model is

proposed and a methodology that finds code that can be refactored into

components is described. Chioch et al [43] reports on experiences where the

process determine the acceptance for an architecture intended for reuse.

The challenge of integrating large systems is discussed by Schulte in [44],

who proposes methods for modeling system behavior to handle the

uncertainties in resulting system characteristics when integrating

components. According to Schulte, three areas need to evolve to provide

capabilities powerful enough to assist when modeling real-time systems.

These are multi-view modeling, analysis and code generation. Another

example of using models to ensure efficient and effective integration has

been presented by Karsai et al [45]. The point made is that modeling should

be made the central activity when developing systems.

The focus of the research presented here is on embedded industrial systems

with specific requirements on different quality attributes such as timeliness,

reliability, and availability. This is reflected in the need for specific

approaches both regarding the view of computation as described by Lee in

[46], and in the fact that in these systems, physical properties are modeled

and appear as cross-cutting constraints for the whole system as described by

Sztipanovits and Karsai in [47]. To solve these needs and requirements,

appropriate architectural solutions will be necessary.

Also with respect to the binding time2, there are requirements that will

influence the product integration. Svanberg et al describes the concept of

binding time in the context of product lines in [48]. A distinction is made

between pre-delivery binding time which includes product architecture

derivation, compiling and linking, and post-delivery binding time which can

be at start-up, during runtime, or per call. One characteristic of embedded

industrial systems is that most bindings are performed pre-delivery, and that

2 Binding time is the moment when a decision is made for a possible variation in the product.

24 Product Integration

binding at start-up primarily is performed through configuration. Binding

per call, during run-time, is rarely used in this kind of systems.

2.4.3 Software Product Lines
Software product line engineering is a technique used to utilize a common

set of core assets in the development and preparation of a series of products.

This concept requires a different approach than traditional software product

development. Core asset development and their utilization to build products

need planning, and require efforts. This includes strategies that encompass

several products, management that enforces the development and utilization

of common assets, and technologies, methods and processes adapted to

software product line development. Bass et al observes that the use of

product lines will replace design and coding with integration and testing as

the predominant activities in [39].

The software product line concept is described in detail by Clements and

Northrop in [49], and by Pohl et al in [50]. SEI provides additional

information, references and examples on the “Software Product Lines Home

Page” [51].

SEI describes the particular aspects of system and product integration in

[52]. One specific topic which differs from One-off product development is

the pre-integration that is made on the core assets. This pre-integration has

two purposes. The first is a verification to ensure that components that are

part of the core assets can be integrated as intended. The second purpose is

to prepare larger components that can be reused. This is done to reduce the

effort when instantiating products.

Some recent research describes additional advancements. In [53], Krueger

describes three new methods which can increase the usefulness of software

product lines. These are “Software Mass Customization”, “Minimally

Invasive Transitions”, and “Bounded Combinatorics”. The first method can

affect the product integration process and to a large degree reduce the effort

for integration. It builds on the concept that a software product line (SPL)

configurator uses predefined product definitions to create product instances.

Besides reducing the need for application development, the recreation of

products when changing core assets can be automated. Using an SPL

configurator also changes the organizational needs: the development will be

performed on the core assets that will contain all software necessary for all

the product instantiations. However, there is still a need to exercise the

practices for product integration when developing and verifying the core

assets. Additional activities include decisions on variation points, and

Product Integration and Related Software Engineering Concepts 25

verification strategies for these. The third method, “Bounded

Combinatorics”, reduces the variations and resembles the pre-integration

technique described by SEI in [52].

2.4.4 Distributed Development
Distribution of development efforts in a project increases the need for

monitoring communication between the participants in the project, and also

with other stakeholders. The general considerations has for example been

examined by Herbsleb and Mockus in [54], and Paulish et al in [55].

Conclusions from these studies show that distributed development takes

more time and requires more effort that single-site development. The

investigations also provide guidance on how to minimize the negative

effects, emphasizing communication on all aspects of the development.

Paulish et al note that the architectural work primarily was performed in

face-to-face meetings and workshops, focusing on specific topics in each

meeting. Interface design and communication regarding content of builds

were considered very difficult.

This is also described by Vand den Bulte and Moenaert in [56] where they

show that organizational boundaries, and especially physical distance, may

hinder communication between distributed development teams, especially

for technical know-how.

Sosa et al combine the perspectives of product architecture and

organizational structure in [57], and investigate the communication patterns

in organizations based on interfaces described in the product architecture.

The three main findings are that misalignment of interfaces is greater across

organizational and system boundaries, that indirect interaction is important

to achieve coordination, and that modularization may hinder alignment of

interfaces and interactions. All three findings support the need for careful

management of interfaces which is one of the main themes of product

integration.

Komi-Sirivö and Tihinen present an investigation into the factors which

determines the success or otherwise of distributed development in [58] and

lists interfaces as being the most important source of software errors after

misinterpreted, changing, or missing requirements. This highlights the

importance of interface management in distributed environments.

Product integration is affected by distribution of development efforts as the

management of dependencies both between development activities and

between parts of the system becomes more cumbersome. This underlines the

26 Product Integration

importance of the three areas covered in reference models for product

integration: 1) preparation, to get a common vision and agree on plans,

environments, etc, 2) interface management, to ensure that information that

affects components developed in different locations is communicated in an

efficient and effective way, and 3) execution, monitoring the cooperation as

the project proceeds.

2.4.5 Component Based Software Engineering and
Development

Component based software engineering may be one tool in improving the

engineering practices and simplify product integration practices. However,

there are indications described by Crnkovic in [59] that changes are needed

in the established development and life cycle models. The differences

between component-based development and non-component based

development require the use of new patterns, and a distinction between

development of components and development with components. The product

integration process is one area in which we can anticipate changes in current

practices as the use of general-purpose components for product development

of embedded systems is increasing. There are several definitions of a

software component is in this context, and in this section we use the focused

definition by Heineman and Councill found in [60]:

“A software component is a software element that conforms to a

component model and can be independently deployed and composed

with modification according to a composition standard.

A component model defines specific interaction and composition

standards. A component model implementation is the dedicated set

of executable software elements required to support the execution of

components that conform to the model.

A software component infrastructure is a set of interacting software

components designed to ensure that a software system or subsystem

constructed using those components and interfaces will satisfy

clearly defined performance specifications.”

There are several approaches to architecting and implementing component

based development (CBD). Dogru and Tanik describe in [61] a fully

component-oriented approach and contrasts this with modifying object

oriented approaches, stressing that CBD takes no account of inheritance and

capitalizes on composition. Van Ommering describes in [62] a component

model that is used as the basis for development of product families in a

Product Integration and Related Software Engineering Concepts 27

distributed environment. One interesting part of this description is how the

process and organization have been aligned with the new way of developing

products. This example describes specific changes in the organization; the

division into an asset team, handling the basic system, and product teams

that build the applications on top of the system and integrates the final

product. The conclusion arrived at, with respect to process, was the

increased importance of the role of the “quality officers” ensuring that the

standards for the specific development methods were followed.

The differences between the development of component based systems and

non-component based systems are described in [63]. The separation of

component development and development of systems based on components

is highlighted and this description gives input to how integration can be

organized. Morisio et al [64] also describe the difference in the development

of components and system in the context of COTS (commercial off-the-self)

components. The investigation included fifteen projects, and the integration

was, for many of the investigated projects, the activity that consumed most

effort. A solution by means of which decisions regarding requirements and

candidate components are made together is proposed. The method also

includes early analysis of integration issues in the design phase.

The importance of following and performing all process steps is described

by Tran et al in [65]. Their investigation shows an increased risk of failure if

a project omits any of the defined steps: identification, selection, evaluation,

procurement, integration, and evaluation of software components.

de Jonge finds that the goals of reusing building blocks and the goals of

integration are difficult to combine, but proposes techniques of how this can

be done [66]. These include the concept of source code components and

source tree composition that integrates source files, build and configuration

processes.

One area that is related is the use of generic component architectures. In

[67], Lichota et al describes a generic component architecture and proposes

a process for selecting and integrating software products as components.

This process is described as five steps:

• Identification:
Determination if a candidate component can be considered to be

included in the product.

• Screening:
Components to be further investigated are selected on the basis of a

28 Product Integration

review of all available information about the components selected in

the identification phase.

• Stand-Alone Test:
Each component is tested to determine if it fulfills the expectations

described in the documentation. In addition, the components should

be tested to determine its potential reliability, reusability, and

general applicability to component requirements.

• Integration Test:
The integration test is performed to understand how effectively the

component can be integrated into the selected component

architecture. Components that are found suitable are candidates for

inclusion in a library of reusable components.

• Field Test:
To finally determine its usefulness the component should be tested

in a user environment. This will show how effectively the

component fulfills user and inter-operability requirements.

The described process was used for large components in the case described

in [67], but can of course be used also on more granular components.

Crnkovic et al have described the development with component as being

three separate but coordinated processes in [15]. These are

• System development,
in which components are combined into specific products and

systems based on existing or new components,

• Component assessment,
which includes activities to select components that can be a part of a

component repository or being selected from a repository for a

specific system and product,

• Component development,
which describes the activities to develop independent components

and ensuring that they are made available to the intended user of the

component.

On the basis of the references above and the reference models investigated,

we conclude that the practices described in the models will also support

component-based product development. We also see that there is a need to

add specific requirements through the description of more detailed activities

that can be useful, in addition to the ones currently described.

Conclusion 29

An example of how this can be done for one reference model, CMMI, is

found in Table 1. The goals for CMMI related to Product Integration match

the extent of the product integration process in other reference models. The

additions are needed to handle the consequences of separate processes for

system development, component assessment, and component development.

Major parts include handling of the infrastructure for a component model,

availability, and suitability of components, and interdependencies between

components. The effort for performing the described activities will increase

the cost for the development of systems, but the reuse of existing

components in combination with higher quality of components when

delivered to integration should counter and outweigh this.

2.5 Conclusion

My conclusion is that the different aspects of software engineering, such as

project life-cycle models, software architecture, and the organization of the

projects, must be considered and taken into account when performing

product integration. For all these aspects, a careful management of the

interfaces and interaction between both components in the system and the

participants in the development projects is vital for success. I conclude also

that the descriptions available today in different reference models are

insufficiently used and additional effort is needed to make them useful.

30

Table 1. Proposed changes to Product Integration process in the CMMI

Specific Goal 1: Prepare for Product Integration

System development

• Consider component availability when determining the integration

sequence

• Ensure that the chosen component model is supported by the

infrastructure

Component assessment

• Investigate component interdependencies

Component development

• Ensure that the anticipated infrastructure is specified, i.e. component

model and framework

• Describe tests and expected results as a part of component

specifications

SG 2: Ensure Interface Compatibility

System development

• Include checks that the chosen interfaces adhere to the overall

architectural decision on patterns and strategies

Component assessment

• Check the consistency of interfaces

Component development

• Adhering to the component model helps ensure that the definition of

interfaces is complete

• Check that all functions, including built-in-test facilities, can be

accessed, i.e. that the defined interfaces permit the intended

functionality

SG 3: Assemble Product Component and Deliver the Product

System development

• (No additions proposed)

Component assessment

• Prepare assemblies of components at assessment time to ensure that the

components fit the system

Component development

• Assemble test systems to show suitability for different applications

• Test verification procedures that are a part of the component delivery

• Make components available in an internal repository, or on the market

Chapter 3. Research Method

This chapter includes an overview of the research methods used in software

engineering and how these are used in the research presented. Each of the

papers included in the thesis contains the method applied in that part of the

research as well as a discussion about validity, and limitations of the studies.

The general research strategy and the overall validity are discussed here.

3.1 Method

Software engineering research uses a number of methods to ensure progress

in the area. Basili has presented four approaches [68]: 1) the scientific

method, 2) the engineering method, 3) the empirical method, and 4) the

analytical method. The three first are classified as being part of the scientific

paradigm, while the fourth is the analytical paradigm. Understanding these

different methods also help distinguish research from development.

Research aims at understanding a phenomenon, e.g. why and how the use of

a process can help a product development organization improve

performance, while development is performed to implement, e.g. to

describe, and train people in the use of a process.

Software engineering research is in many respects different from other types

of computer science research, and mathematics, as it heavily depends on

human behavior through the people developing the software products and

systems. This is described by Wohlin et al in [69] and is especially true in

the research regarding processes. This makes it difficult to use the analytical

paradigm.

In [70], Shaw describes different aspects of research in the area of software

engineering. One of her conclusions is that initial research may result in

informal and qualitative results, which give incentives for continued

research. As the research in an area matures, more empirical models are

presented, and finally result in formal models which justify larger

32 Research Method

investments to introduce the research outcome on a larger scale. These

different steps require different methods as the expected results differ.

One way to distinguish between different types of results from research is

based on the type of research that has produced them. This has been

expressed for human computer interaction by Brooks and adapted for

software engineering by Shaw in [70]. It is necessary to distinguish between

different types of results because research results based on experiments that

are possible to control, and can show statistical results, are limited in scope,

while broader results that are based on observations are more difficult to

validate. It is necessary to know the background to be able to understand the

implications of the presented research.

The proposed classification of research results includes Findings,

Observations and Rules-of-thumb. Findings are the results from soundly-

designed research, and with clear declaration of the domain for which a

generalization is valid. Observations report on actual phenomena that are

interesting, but may be from under-controlled environments and/or

observations from limited samples. Finally Rules-of-Thumb are

generalizations over a domain that is larger than the tested one. All three

types of results should be judged for freshness, and it should be clear for all

reports to what type the results belong. There is also a need for all three

types; Observations and Rules-of-Thumb will give guidance to practitioners

and help generate basis for further research that eventually could lead to

Findings.

In [71], Redwine and Riddle describe different phases in software

engineering research from the aspect of maturation of software technology.

These are basic research, concept formulation, development and extension,

internal enhancement and exploration, external enhancement and

exploration, and popularization. Each of these phases requires different

methods and tools, and will also bring the knowledge area forward in

different ways. The basic research is used to investigate basic concepts, and

to formulate basic research questions in the area. Concept formulation

comprises the forming of a research community, and a convergence of

different ideas. Solutions to specific problems are also published. The next

phase, development and extension, includes making preliminary use of ideas

and concepts and aim at a generalization of solutions and approaches.

Internal enhancement refines the solutions and broadens the use to other

domains, and the research should in this phase start to show value as it can

be used to solve real problems. External enhancement brings the technology

to other people that have not been involved in the development of the

Method 33

concepts and the use of the research results shows it substantial value.

Finally, the popularization includes a full embracement of the technology,

with commercialization and an expanded user community as a result.

A substantial set of ideas and guidelines is available for product integration,

but the methods are not validated. In order to understand the problems and

how different activities, tools, and methods can help in achieving more

efficient and effective product integration, it is necessary to have empirical

data as a basis. The data in this research has been collected in an industrial

environment with case studies involving project developing commercial

products, which leads to an under-controlled environment. The results are

therefore observations [70]. We have chosen to work in the development

and extension phase as described in [71]. Our aim is thus to make use of

existing ideas to determine if any generalizations can be made, and to clarify

the ideas underlying what is described in the reference models.

The method used in the research presented consists of three steps. The first

two steps have been made in iterations, and step three is the final analysis:

(i) Examination of existing standards and reference models that

includes practices for product integration;

(ii) Based on knowledge from the reference models, case studies

have been performed to obtain an understanding of the

connection between the use of practices and problems found in

product integration;

(iii) Analysis of the combination of the results from the case studies

and the content in the reference models.

The case studies are planned and executed based on methods described by

Yin [72] and Robson [73]. This includes the preparation and the

implementation of the studies through interviews and document reviews,

and the analysis based on the observations. The three iterations that have

been performed are shown in Figure 2.

 3
4

R
esearch

 M
eth

o
d

F
ig

u
re 2

 R
esea

rch
 itera

tio
n

s

CMMI

Case 1

Iteration 1

Case 2

Case 3

Case 4

Time

CMMI

ISO/IEC-12207

EIA-632

EIA-731.1

ISO/IEC-15288

Iteration 2

Case 5

Case 6

Case 7

CMMI

Final analysis

+ metrics

Iteration 3

ISO/IEC-12207

IEEE-1220

EIA-632

EIA-731.1

ISO/IEC-15288

CMMI

Case 5

Case 6

Case 7

Case 2

Case 3

Case 4

Case 1Case 1

Paper B Paper C Paper DPaper A

Licentiate thesis

CMMI

Case 1

Iteration 1

Case 2

Case 3

Case 4

Time

CMMI

ISO/IEC-12207

EIA-632

EIA-731.1

ISO/IEC-15288

Iteration 2

Case 5

Case 6

Case 7

CMMI

Final analysis

+ metrics

Iteration 3

ISO/IEC-12207

IEEE-1220

EIA-632

EIA-731.1

ISO/IEC-15288

CMMI

Case 5

Case 6

Case 7

Case 2

Case 3

Case 4

Case 1Case 1

Paper B Paper C Paper DPaper A

Licentiate thesis

Method 35

The first iteration included an investigation of CMMI [3], and a case study

of one product development organization and is presented in paper A [10].

The case study included two parts; an investigation of the practices used in

the company based on CMMI, and an identification of the problems found

in product integration. The data for the case study was collected through

interviews, document reviews, and reviews of the organizations’ process

documents.

The second iteration began with a study to find additional suitable reference

models. A set of models containing requirements or directions for product

integration were selected. The study to find suitable reference models was

based on information from standardization organizations such as ISO [74],

ANSI [75], and IEEE [76] and organizations such as SEI [77] and INCOSE

[78]. The criterion for selecting a model was that the reference model should

be relevant to product development of products that include substantial part

software.

That a reference model fulfilled the criterion was determined by its purpose

as in the model documentation. The result of the investigation is described

in my licentiate thesis [9]. The selected reference models were:

• ISO/IEC 12207 Information technology - Software life cycle

processes [2]

• EIA-632 Processes for Engineering a System [30]

• CMMI Capability Maturity Model Integration [3]

• EIA-731.1 Systems Engineering Capability Model [1]

• ISO/IEC 15288 Systems Engineering – System life cycle processes

[5]

• IEEE Std 1220 for Application and Management of the Systems

Engineering Process [79]

Also ISO 9001 [80] was initially considered, but was rejected since the

expectations on the product integration process are limited. The standard

describes the requirements on design and development, and the general

requirements such as planning, input, output, review, verification,

validation, and control of design and development changes are all applicable

to product integration. However, as the expectations on the product

integration process are not mentioned explicitly, this standard has not been

analyzed further.

36 Research Method

From among the selected reference models, EIA-731.1 [1] was chosen for

use in the second case study which included three development groups in

two organizations and is described in paper B [11]. The data was collected

in the same way as for the first case study; through interviews, document

reviews, and review of process documents.

Before the third iteration of cases was initiated, the selected set of reference

models was thoroughly investigated. The analysis was performed through

careful examination of the standards, and a compilation of a union of what

was included in the reference models was developed.

The third and final iteration included a case study with four development

organizations, and is described in paper C [12]. In addition to the data

collection based on a reference model (CMMI), data was also collected from

the build activities. The purpose was to see if it is possible to combine the

use of a reference models with existing data from the activities in the

organization. The data was collected was through interviews, document

reviews, and through the collection of data made by the practitioners (e.g.

build failure frequency), either automatically or manually.

Based on the three iterations of step one and two of our research method, the

findings from all case studies and the investigation of reference models were

analyzed as step three. The results are available in paper D [13]. The

analysis was for each of the case studies performed, based on available

reference models. Five reference models were selected as they had explicit

expectations on product or system integration. This was an additional

criterion compared to iteration 2 of the research. One reference model was

excluded at this point, IEEE Std 1220 [79], as most of the references to

product integration in this standard were implicit and not useful for our

purpose.

All original material from the cases was used, but no additional information

was collected. The problems found through the case investigations as well

as the implementation of practices were mapped to all reference models.

One factor in this phase was that the material for each case was collected on

the basis of only one of the reference models. Through the use of the notes

and reference documents collected, it was possible to determine if the

practices were implemented for most cases. The only exception was for the

practice related to the product strategy. Information was missing in three of

the cases, and it was impossible to draw conclusions if that practice was

performed or not.

Validity and Limitations 37

There is an important distinction between insufficient support in the

reference models, and the unsatisfactory implementation of good practices

by the product development organizations. The difference has guided us in

our research; the focus of the case studies being on insufficient use. The

compilation based on all cases studies includes a discussion about the

indications of insufficient support for product integration working well in

the reference models.

As an additional part of the final step of our research, the relationship

between architecture and the product integration process has been

investigated. As architectures are developed and evolve, the implementation

of the product integration process may be affected. There are several related

subjects: i) interface management is an important part of software product

architectures and product integration, ii) the division of subsystems and

components performed in the architectural development influences the

possibilities to select different integration strategies and sequences, iii) and

the product integration strategy may introduce constraints on the

architectural design.

This part of the research focuses on the evolution of the architecture for a

system and has proposed and piloted a method to understand what changes

to processes are necessary to achieve the business goals that are the reason

for an architectural change. The results are presented in paper E [14]. The

method was based on existing methods for assessing architectures and

processes, primarily ATAM [81] and CMMI [3, 82]. The investigation in the

pilot study was performed as a participant-observer study with two

researchers participating in the use of the method. After the pilot study, the

method was evaluated based on two criteria as defined before the study.

3.2 Validity and Limitations

Four types for validity based on Robson [73], Yin [72], and Wohlin et al

[69]; construct validity, internal validity, external validity (or

generalizability), and reliability (or conclusion validity) have been

considered in this thesis.

The construct validity relates to the data collected and how this data

represent the phenomenon investigated. This is addressed in the case studies

through multiple sources for the data in the project appraisals. This is

accomplished through more than one interviewee for each case as well as

using document reviews. The use of reference models as a basis for the

38 Research Method

interviews and document reviews secure that the data collected is relevant.

A concern here is that we have used different reference models for the

different cases. However, the collected data also includes information about

other practices than those available in the reference model used for the data

collection. It has been possible to use this additional data in the comparison

with all reference models. If no data is available in the case material for a

specific practice in any of the models this is presented in the research

results. One specific problem that has been observed in the interviews is that

even if an interviewee responds that a practice is performed, we have found

that the activities for that practice may actually not be performed. This is

treated through corroboration of data through several interviews and

document reviews.

The internal validity concerns the connection between the observations and

the proposed explanation for these observations. This has been addressed in

several ways. For the appraisals using reference models, several steps have

been taken to ensure that the mapping and understanding are correct. A

detailed description of the methods used for the appraisal can be found in

[16]. One risk related to the internal validity is that, through the

investigations and through participation in the discussions of product

integration, we affect the processes while collecting data. The results that

we collect are however a combination of the performed practices and the

problems occurring in the organization. Thus, the data we collect reflects the

state in the organizations at the time for the data collection. The results are

valid, and useful for our purposes, even if they might have been different if

we had not influenced the organization through the investigation. For the

case studies that have been performed in the company where I am working,

there is the risk that an internal researcher would get different answers than

an external. This can go both ways: persons responding to questions may be

more open to an external researcher, than to an internal or vice versa. This

has not been investigated specifically. One advantage in the case studies

performed inside the company is that I have better background knowledge

and can understand the responses and ask better clarification questions.

Access to different projects has been easier through the internal case studies,

and this is probably also an advantage.

The possibilities to generalize the results from a study are dealt with by

studying the external validity. This is addressed through the selection of

cases from different domains including telecommunication, power

protection and control, process automation, and industrial robot control. The

investigations cover primarily embedded systems, but workstation software

Conclusion 39

products have also been included. In these applications, the workstations are

a part of a larger industrial system, typically as operator or engineering

stations. The focus is on industrial applications as we see that the

requirements and expectations differ from those associated with consumer

products, ERP systems, and banking applications. We have also limited the

research to products that are delivered to more than one customer, i.e. the

cases we have investigated do not include any bespoke development.

Additional aspects that have been considered to address the external validity

are to ensure that the case studies include different countries and different

types of organizations. One disadvantage is that several cases are from the

same multinational company. However, the investigated organizations are

from different divisions, have distinctly different development processes,

and the products are intended for different application domains. The result is

that a broad spectrum of different types of products and organizations has

been investigated.

High reliability increases the possibilities to reach the same conclusions as

those of another researcher repeating the study. The reliability aspect of the

studies has been addressed through the detailed description of the procedure

used in each case and have been included as a part of the publication for

each case study. Additionally, the method for collecting data from

organizations and projects use techniques described in [16].

3.3 Conclusion

In this chapter, I have described how the research presented in this thesis is

based on current knowledge, theories and guidelines for software

engineering research. I have also described how the planning and execution

of the research as well as the selection of case studies contribute to the

different aspects of validity. The conclusion of the discussions is that the

validity for this research includes industrial software products, intended for

use by more than one customer.

Chapter 4. Research Results

This chapter summarizes the research results and relates the research

questions with the individual papers included in this thesis.

The main question for our research is to understand what factors influence

the possibilities to achieve efficient and effective product integration.

Efficient and effective product integration is manifested through a minimum

delay of the flow of components to larger components or products and

systems.

To investigate the factors, we have used different types of reference models.

We have examined what effect the use of, or failure to use, the practices

described in the reference models have on the performance in product

integration. This was performed by investigating product development

organizations and through examining development projects. We have further

examined how changes in architecture can influence processes, and how this

influence can be captured. The relationship between the areas we have

investigated and the research papers A-E can be seen in Figure 3.

Figure 3. Relationship between the research papers A-E and the

investigated areas

Reference models

Projects in case studies

Product
integration

process
E

D

A BC
Architecture

Reference models

Projects in case studies

Product
integration

process
E

D

A BC
Architecture

42 Research Results

4.1 Results related to questions 1a and 1b

Papers A, B and C present the investigation of product integration processes

in product development projects based on different reference models. Paper

A and C share one of the case studies. Paper D summarizes and expands on

the findings from paper A, B and C. Finally, paper E is the first step in a

new research direction based on our findings intended to determine

additional influences and considerations that need to be taken into account

when defining and improving product development processes in general,

and specifically product integration processes.

The research questions presented in section 1.2 make our research more

concrete, and the response to them is based on papers included in this thesis.

The first question is used to investigate the use of current reference models:

Are the practices described in available reference models

for product integration necessary and sufficient for visible

reduction of problems in the product integration process? (Q1a)

Our investigations (papers A-C) [10-12] compare the performed activities in

different organizations with practices described in different reference

models. The problems related to product integration have also been

captured. The problems in the case studies are associated with practices,

which gives us an understanding of what practices can actually help avoid

product integration problems. The case studies from seven development

organizations in the three papers A-C give at hand that the types of

difficulties encountered in product integration can be reduced through

following the practices described, but the specific practices in each of the

reference models are not sufficient. In particular the different reference

models cover different aspects of product integration and a parallel

investigation has been directed by the question:

What additions and modifications are needed in the

available reference models to take advantage of current

body of knowledge in product integration? (Q1b)

The answer to this question is a combination of an analysis of the selected

reference models, and a compilation of the cases in papers A - C. The results

of these steps are presented in detail in paper D [13], and are summarized

here. The reference model analysis resulted in a union consisting of 15

practices which describes what can be considered the current level of

knowledge in product integration.

Research Results 43

Of the 15 practices, four are concerned with preparation of the product

integration:

1. Define and document an integration strategy

2. Develop a product integration plan based on the strategy

3. Define and establish an environment for integration

4. Define criteria for delivery of components

The following five practices describe design and interface management

5. Identify constraints from the integration strategy on design

6. Define interfaces

7. Review interface descriptions for completeness

8. Ensure coordination of interface changes

9. Review adherence to defined interfaces

One practice defines the preparation of the verification to be performed in

the product integration:

10. Develop and document a set of tests for each requirement of the

assembled components

The actual integration of components is made up of four practices:

11. Verify completeness of components obtained for integration

through checking criteria for delivery

12. Deliver/obtain components as agreed in the schedule

13. Integrate/assemble components as planned

14. Evaluate/test the assembled components

Finally, a single practice ensures that the integration is documented:

15. Record the integration information in an appropriate repository

Note that this division of practices is more detailed than is common in the

reference models that have been used in this research, and may be seen as

addressing the responsibility for different roles in the organization. The

preparation is the responsibility of the project manager with assistance of

the product integrator. The second part, interfaces, is an architectural task,

involving architects and developers. The test preparation as well as the

actual integration is the product integrator’s responsibility, while again the

project manager with the assistance of all the product integration

participants will be responsible for recording the results.

44 Research Results

As a second step to answer research question Q1b, the union of practices

from the different reference models has also been compared to the different

problems found in the case studies to clarify which practices will directly

reduce the number and the effects of problems in product integration. A

detailed description of this analysis is available in paper D [13]. The results

are summarized in Figure 4 and show the product integration problems that

can be related to a practice in each reference model. Our conclusion is that

none of the standards include all necessary practices needed to help the

organizations in avoiding the problems. As an example, for ISO/IEC 15288

we could associate 11 of the 17 problems found in the case studies to any

one of the product integration practices in that standard. The result confirms

the need of a broader approach than is available in any of the examined

reference models. Using a combination of the examined reference models as

we propose will cover activities and procedures that address all the

problems encountered in our case studies. Further analysis is presented in

Table 2. This analysis shows that a combination of CMMI and either

ISO/IEC 15288:2002 or EIA-733.1 would be sufficient to include all needed

practices.

0

5

10

15

ISO/IEC

12207

EIA-632 CMMI EIA-731.1 ISO/IEC

15288

All

problems

Figure 4. # of unique problems related to the practices in each
standard and the total # of unique problems for all cases

Research Results 45

Table 2. Problems from cases related to reference models

Problem identity

IS
O
/
IE
C

 1
2
2
0
7

E
IA
-6
3
2

C
M
M
I

E
IA
-7
3
1
.1

IS
O
/
IE
C

 1
5
2
8
8

Case 1, problem A Covered Covered Covered

Case 1, problem B Covered Covered Covered Covered Covered

Case 1, problem C Covered Covered

Case 2, problem A Covered

Case 2, problem B Covered Covered

Case 2, problem C Covered Covered

Case 3, problem A Covered Covered Covered Covered Covered

Case 4, problem A Covered Covered

Case 5, problem A Covered Covered Covered

Case 5, problem B Covered Covered

Case 6, problem A Covered Covered Covered Covered Covered

Case 6, problem B Covered Covered Covered

Case 6, problem C Covered Covered

Case 6, problem D Covered Covered

Case 7, problem A Covered Covered Covered Covered Covered

Case 7, problem B Covered Covered

Case 7, problem C Covered Covered

Of the 15 Product Integration practices, we have observed that problems are

likely if any of the following five are neglected:

4, Define criteria for delivery of components

7, Review interface descriptions for completeness

8, Ensure coordination of interface changes

11, Verify completeness of components obtained for integration

through checking criteria for delivery

12, Deliver/obtain components as agreed in the schedule

46 Research Results

For PI practice 1, “Define and document an integration strategy”, and PI

Practice 3, “Define and establish an environment for integration” we have

seen that there may be problems even if the practices are performed.

For eight of the practices, we have not seen any problems:

2, Develop a product integration plan based on the strategy

5, Identify constraints from the integration strategy on design

6, Define interfaces

9, Review adherence to defined interfaces

10, Develop and document a set of tests for each requirement of the

assembled components

13, Integrate/assemble components as planned

14, Evaluate/test the assembled components

15, Record the integration information in an appropriate repository

One important additional factor when determining what practices need to be

performed is the dependencies between them. Some of the practices are

necessary as a preparation for others, i.e. support the necessary practices

while additional practices may be more indirectly connected.

Through reasoning about the different practices we have identified the

dependencies, and the result of this analysis is presented in Figure 5.

We claim that for the interface handling, also PI practice 6 “Define

interfaces” is important as PI practice 7 “Review interface descriptions for

completeness” relies on it. A weaker dependency is also identified between

PI practice 6 and PI practice 5 “Identify constraints from the integration

strategy on design”. The same reasoning can be applied on PI practice 2

“Develop an integration plan based on the strategy” which is recognized as a

prerequisite for PI 12. PI practice 11 “Verify completeness of components

obtained for integration through checking criteria for delivery” depends on

the checks done through PI practice 9 which is “Review adherence to

defined interfaces”. Finally, PI practice 1 “Define and document an

integration strategy” can be depending on PI practice 15 “Record the

integration information in an appropriate repository” as the collected data is

important when deciding on changes and improvements in the strategy for

product integration.

A conclusion is that the set of practices that need to be followed is larger

than the set that we have seen causes problems in the development

organizations. The additional practices that support the crucial ones are PI

Research Results 47

practices 2 “Develop a product integration plan based on the strategy”, 6

“Define interfaces”, 9 “Review adherence to defined interfaces”, 15

“Record the integration information in an appropriate repository”, and

indirectly also PI practice 5 “Identify constraints from the integration

strategy on design” as PI practice 6 is depending on it. Note that the

dependency that PI practice 15 has on all other practices has been omitted.

To be able to record the results from the PI activities so that this information

can be used for future improvement, information from all activities should

be included.

The remaining three practices that are not connected to or supporting the

crucial practices are PI practices 10, 13, and 14. PI practice 10, “Develop

and document a set of tests for each requirement of the assembled

components”, is likely to give problems through later discovery of errors,

and resulting problems are not connected to the product integration. Our

interpretation is that this could explain why it is not connected. The same

reasoning is applied to PI practice 13. “Integrate/assemble components as

planned”, and PI practice 14, “Evaluate/test the assembled components”.

These practices include activities that are performed if integration is

performed. Failure in the practices would be that the defined sequences and

procedures are not followed which would give problems in alter phases.

Problems found executing PI practice 13. “Integrate/assemble components

as planned”, and PI practice 14, “Evaluate/test the assembled components”

are normally related to the preparation of product integration or the

environment.

48 Research Results

Figure 5 Dependencies between PI practices.

Research Results 49

For PI practice 1 and 3, we need to understand how the problems occur even

if our investigation indicates that the practices are followed. For PI practice

1, “Define and document an integration strategy”, we have observed that

problems were encountered even when this practice is followed. This may

be explained by the strategy selected being les suitable for the environment

of that project. PI practice 1 sets the stage for the integration process, and

even if a strategy is chosen, it may not fit the specific conditions under

which a project is run. However, we have not been able to determine what

the root cause was, as the rationale for the selection of the strategy has not

been documented. In this context, the difference between deciding on an

integration strategy and the preparation of an integration plan is important.

When selecting a strategy for the product integration in a project or for an

organization, several different factors will determine what will be the best

technique for the sequence. Among important factors are:

• Risk elimination

• Customer needs for functionality

• Availability of components/resources(people/technology/tools)

• Technical infrastructure

• Dependencies between components (anatomy)

• Testing possibilities

McConnel describes different strategies in [4]. The first observation

described is that the incremental strategies are superior to the phased (also

called “big bang” integration). The techniques mentioned for the

incremental integration are top-down integration, bottom-up integration,

sandwich integration, risk-oriented integration, feature-oriented integration,

and T-shaped integration. It is also pointed out that these techniques are to

be tailored to fit each specific project, and not to be dogmatically followed –

in the end, a project need to have its own integration strategy with the

resulting integration sequence. One difficult issue is to measure how well

this practice is followed. One proposal is to use checklists as the one

presented in [4].

PI practice 3, “Define and establish an environment for integration”,

disclosed problems during the appraisals for two cases even when the

practice was considered to be performed. A closer investigation into these

cases show that the effectiveness with which the practice is performed was

not considered, and can be classified as a false positive from the appraisal. It

highlights however an important point: the use of practices need to be

50 Research Results

verified by information about the performance, and an analysis of the

connection between the actual performed practices and the measured results

is key to improving the product integration process.

4.2 Results related to question 2

It was observed in the case studies that the architecture of a product or

system is very often changed without the processes to further develop the

system being altered to reflect this evolvement. One practice described in

ISO/IEC 15288 is related to this and is included as PI practice 5 of the

union: “Identify constraints from the integration strategy on design”.

To ensure that architectural changes are reflected in the process and

strategies for product integration, tools are needed that can provide support

to find the needed changes. As many organizations today start introducing

changes by redefining or evolving the architecture, there is a need to

understand and map the influence on process from architectural decisions.

This leads to an additional research question and corresponding answers:

How can necessary changes in the integration process

due to changes in the product architecture be identified

and implemented? (Q2)

Through an investigation of different models used for supporting

architectural decisions, and appraisal methods for process improvement, a

method has been proposed and piloted (paper E [14]). The method was

successful in helping the organization to understand what process changes

are needed to benefit from the architectural changes. This was especially

true for the product integration process as the architectural changes called

for new strategies. This fact was not identified by all parts of the

organization before the use of the proposed method. The proposed method

has also been updated based on the results from the study. An additional

result from the investigation is that the understanding for needed process

changes, including steps in product integration, has increased in the pilot

organization.

 51

4.3 Conclusion

From our case studies I conclude that the available knowledge regarding the

product integration process is inconsistently used by different product

development organizations.

It can be questioned if the use of the PI Practices is valid for all types of

projects and organizations. As seen in the analysis above, all the practices

described are either crucial in them selves, supporting the crucial ones,

giving problems later in the process, or dependent on other practices and

thus not indicating any problems. My conclusion is that all practices are

needed, but that an adaptation is necessary to get the proper level of

activities in each project. A future research area can be to investigate the

need for a method for the adaptation.

When investigating the product integration area, we have seen that

organizations are aware of practices that are described in reference models.

However, as the information in the models is too limited, the usefulness is

also limited and additional information such as examples and hands-on

methods are needed. Consequently, the models should primarily be used as

guidelines for what to improve, and information about how the practices

should be implemented need to be found elsewhere.

I also conclude the product integration processes may be influenced by

evolvement of the architecture and design of software systems, and that the

method provided, the needed changes of processes can be understood and

implemented.

Chapter 5. Conclusions and Future Work

The goal of the research presented in this thesis has been to understand what

factors are most important when trying to achieve efficient and effective

product integration, and how these factors influence the software product

development processes.

The origin of the research is in the needs identified in organizations

developing products for industrial use with significant software content.

These needs have been confirmed in case studies. Organizations experience

problems in product integration due to insufficient and inconsistent

strategies and plans for integration, lack of understanding of how interface

management and other architectural decisions influence product integration,

and inadequate control of components delivered for integration. The focus

in the research is on industrial software products, with real-time

requirements. This implies specific needs to understand and be able to

manage quality attributes, such as performance, reliability and availability of

the resulting product.

I have through investigations of information available in reference models

regarding product integration practices and a series of case studies identified

the key elements for software product integration practices. These have been

organized in five categories: preparation of the product integration, design

and interface management, preparation of the verification to be performed,

the execution of product integration, and documentation of the product

integration results. The collection includes the practices available today in

relevant reference models, which have been made accessible through the

compilation. The validity of the practices has been examined through case

studies. The work to reach an agreed body-of-knowledge for software

product integration processes should be continued. This can be done through

relevant research in other application domains, and reference models

applicable for these domains.

54 Conclusions and Future Work

Table 3. Collection of Product Integration Practices

Preparation of product integration

Define and document an integration strategy Necessary

Develop a product integration plan based on

the strategy

Supporting

Define and establish an environment for

integration

Necessary

Define criteria for delivery of components Necessary

Design and interface management for product integration

Identify constraints from the integration

strategy on design

Supporting

Define interfaces Supporting

Review interface descriptions for

completeness

Necessary

Ensure coordination of interface changes Necessary

Review adherence to defined interfaces Supporting

Preparation of product integration verification

Develop and document a set of tests for each

requirement of the assembled components

Problems likely related

to other practices or

processes

Integration of components

Verify completeness of components obtained

for integration through checking criteria for

delivery

Necessary

Deliver/obtain components as agreed in the

schedule

Necessary

Integrate/assemble components as planned Problems likely related

to other practices or

processes

Evaluate/test the assembled components Problems likely related

to other practices or

processes

Documentation of the integration

Record the integration information in an

appropriate repository

Supporting

Conclusions and Future Work 55

The collection of practices that I have described provides support for

software product development organizations. The collection is summarized

in Table 3. Of the 15 practices, there are indications in our case studies that

five are necessary, as shown in the rightmost column in Table 3, to avoid

problems in product integration. Two practices have been seen to be

necessary, but that problems arise if the practices are inadequately

performed. An additional five practices support the practices considered

necessary. For the remaining three practices, there are no indications that

organizations will have problems if not implementing them. However, the

nature of these three practices is such that any problems would most likely

be related to other practices such as the preparation of the integration or

integration environment, or verification.

The influence that architectural decisions have on product development

processes is seldom investigated in the industry. Through a case study, we

have demonstrated the usefulness of a method to examine and identify

changes necessary to be made to development processes. When evolving the

architecture of the product in a case study, the processes influenced include

the product integration process. By providing a method to understand how

different changes affect the processes, proposed improvements for better

product integration can be understood and assessed.

The research presented here has been performed based on available theories

and guidelines for research in software engineering, and care has been taken

to address different types of validity. This is done through careful planning

and execution of the studies, and through selecting relevant case study

organizations working with software products in industrial applications. The

conclusion is that the validity for this research includes industrial software

products, intended for use by more than one customer.

Future research includes additional validation of the collection of practices,

also in other application domains. A subject which needs to be investigated

is implementation of proposed practices, to understand why available

practices are not used, and why the implementation sometimes fails.

The impact the presented research will have when applied in industry

remains to be seen and additional investigations are needed to explore this.

Each organization using the practices described in this thesis needs to

implement the practices, adapted to the organizations needs. Further

investigations are needed to understand how an impact can be achieved with

reasonable effort.

56 Conclusions and Future Work

Additional research is also needed to look at other methods, tools, and

technologies to help product development organizations improve product

integration. Through the compilation of practices based on the available

reference models and an understanding how these can help, a foundation is

available for future research. This can also be the starting point to

investigate different types of project and development models to understand

if there are specific requirements that should be taken into account.

References 57

References

[1] EIA-731.1, "Systems Engineering Capability Model," Electronic

Industries Alliance, 2002.

[2] ISO/IEC12207:1995, "Information technology - Software life cycle

processes," ISO/IEC, 1995.

[3] SEI, "CMMI® for Development, Version 1.2.," Pittsburgh, PA, USA,

Technical Report CMU/SEI-2006-TR-008, 2006.

[4] S. McConnel, Code Complete, 2nd ed. Redmond, Wa, USA:

Microsoft Press, 2004.

[5] ISO/IEC15288:2002, "Systems engineering - Systems life cycle

processes," ISO/IEC, 2002.

[6] J. Campanella, Principles of Quality Costs: Principles,

implementation and Use, 3rd ed. Milwaukee, WN, USA,: ASQ Press,

1999.

[7] RTI, "The Economic Impacts of Inadequate Infrastructure for

Software Testing." Gaithersburg, MD, USA,: National Institute of

Standards and Technology, 2002.

[8] M. Bajec, D. Vavpoti, and M. Krisper, "Practice-driven approach for

creating project-specific software development methods," Information

and Software Technology, vol. 49, pp. 345, 2007.

[9] S. Larsson, "Improving software product integration." Västerås: Dept.

of Computer Science and Electronics Mälardalen University, 2005,

pp. xi, 108.

[10] S. Larsson, I. Crnkovic, and F. Ekdahl, "On the expected synergies

between component-based software engineering and best practices in

product integration," presented at Proceedings - 30th EUROMICRO

Conference, Aug 31-Sep 3 2004, Rennes, France, 2004.

[11] S. Larsson and I. Crnkovic, "Case Study: Software Product

Integration Practices," presented at 6th international conference

Profes, June, 2005, Oulu Finland, 2005.

[12] S. Larsson, P. Myllyperkiö, and F. Ekdahl, "Product Integration

Improvement Based on Analysis of Build Statistics," presented at

ESEC/FSE, Dubrovnik, Croatia, 2007.

58 References

[13] S. Larsson, P. Myllyperkiö, F. Ekdahl, and I. Crnkovic, "Examination

of Product Integration Practices in Reference Models," Submitted to

Information & Software Technology, 2007.

[14] S. Larsson, A. Wall, and P. Wallin, "Assessing the Influence on

Processes when Evolving the Software Architecture," presented at

IWPSE 2007, Dubrovnik, Croatia, 2007.

[15] I. Crnkovic, M. Chaudron, and S. Larsson, "Component-Based

Development Process and Component Lifecycle," presented at

Software Engineering Advances, International Conference on, 2006.

[16] F. Ekdahl and S. Larsson, "Experience Report: Using Internal CMMI

Appraisals to Institutionalize Software Development Performance

Improvement," presented at 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications (EUROMICRO

06), 2006.

[17] S. Larsson and F. Ekdahl, "Selecting CMMI Appraisal Classes Based

on Maturity and Openness," presented at Product Focused Software

Process Improvement (PROFES), Kansai Science City, Japan, 2004.

[18] J. O. Grady, System Integration: CRC press, 1994.

[19] G. R. Djavanshir and R. Khorramshahgol, "Key Process Areas in

Systems Integration," in IT Professional, vol. 9, 2007, pp. 24-27.

[20] A. P. Sage, Charles L. Lynch, "Systems integration and architecting:

An overview of principles, practices, and perspectives," Systems

Engineering, vol. 1, pp. 176-227, 1998.

[21] R. Land, "Software Systems In-House integration," in Department of

Computer Science and Electronics: Mälardalen University, 2006.

[22] E. G. Nilsson, E. K. Nordhagen, and G. Oftedal, "Aspects of systems

integration," presented at Systems Integration, 1990. Systems

Integration '90., Proceedings of the First International Conference on,

1990.

[23] D. Garlan, "Software architecture: a roadmap," presented at

Proceedings of the Conference on The Future of Software

Engineering, Limerick, Ireland, 2000.

[24] I. Gorton, Essential Software Architecture: Springer, 2006.

[25] F. A. Cummins, Enterprise Integration: An Architecture for Enterprise

Application and Systems Integration: John Wiley & Sons, 2002.

[26] D. S. Linthicum, Enterprise Application Integration: Addison-Wesley,

1999.

[27] W. A. Ruh, F. X. Maginnis, and W. J. Brown, Enterprise Application

Integration: Addison-Wesley, 2000.

References 59

[28] H. R. Parsaei, J. M. Usher, and U. Roy, Integrated Product and

Process Development: Methods, Tools, and Technologies: Wiley-

IEEE, 1998.

[29] C. V. Ramamoorthy, "Distributed techniques in software system

integration," presented at Workshop on Future Trends of Distributed

Computing Systems, Cheju Island, Korea, 1995.

[30] ANSI/EIA-632-1999, "Processes for Engineering a System."

Government Electronic and Information Technology Association:

Electronic Industries Alliance, 1999.

[31] D. L. Parnas, "Information distribution aspects of design

methodology," presented at Information Processing 71 Proceedings of

the IFIP Congress 1971 Volume 1, 23-28 Aug. 1971, Ljubljana,

Yugoslavia, 1972.

[32] V. Stavridou, "Integration standards for critical software intensive

systems," presented at Software Engineering Standards Symposium

and Forum, 1997. 'Emerging International Standards'. ISESS 97.,

Third IEEE International, 1997.

[33] B. Fitzgerald, "An empirical investigation into the adoption of

systems development methodologies," Information & Management,

vol. 34, pp. 317-328, 1998.

[34] S. McConnel, Rapid development. Redmon, Wa, USA: Microsoft

press, 1996.

[35] R. S. Pressman, Software Engineering, 6th ed: McGraw-Hill, 2005.

[36] B. W. Boehm, "A spiral model of software development and

enhancement," Computer, vol. 21, pp. 61-72, 1988.

[37] B. W. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy,

"Using the WinWin spiral model: a case study," Computer, vol. 31,

pp. 33-44, 1998.

[38] M. Fowler, "Continuous Integration,

http://www.martinfowler.com/articles/continuousIntegration.html,"

2006.

[39] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice: Addison-Wesley Professional, 2003.

[40] P. Ovaska, M. Rossi, and P. Marttiin, "Architecture as a coordination

tool in multi-site software development," Software Process:

Improvement and Practice, vol. 8, pp. 233-247, 2003.

[41] S. D. Eppinger, "A planning method for integration of large-scale

engineering systems," presented at International Conference on

Engineering Design, ICED, Tampere, Finland, 1997.

60 References

[42] A. Mehta and G. T. Heineman, "Evolving legacy system features into

fine-grained components," presented at Software Engineering, 2002.

ICSE 2002. Proceedings of the 24rd International Conference on,

2002.

[43] F. A. Cioch, J. M. Brabbs, and L. Sieh, "The impact of software

architecture reuse on development processes and standards," The

Journal of Systems and Software, vol. 50, pp. 221-236, 2000.

[44] M. Schulte, "Model-based integration of reusable component-based

avionics systems - a case study," pp. 62-71, 2005.

[45] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, "Model-

integrated development of embedded software," Proceedings of the

IEEE, vol. 91, pp. 145-164, 2003.

[46] E. A. Lee, "Embedded Software," in Advances in Computers, vol. 56,

M. Zelkowitz, Ed.: Elsevier, 2002.

[47] J. Sztipanovits and G. Karsai, "Embedded Software: Challenges and

Opportunities," in Embedded Software: First International Workshop,

EMSOFT 2001, Tahoe City, CA, USA, October, 8-10, 2001,

Proceedings, 2001, pp. 403.

[48] M. Svahnberg, J. V. Gurp, and J. Bosch, "On the Notion of

Variability in Software Product Lines," presented at Working

IEEE/IFIP Conference on Software Architecture (WICSA'01),

Amsterdam, The Netherlands, 2001.

[49] P. Clements and L. Northrop, Software product lines: practices and

patterns, 2002.

[50] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line

Engineering: Foundations, Principles and Techniques: Springer, 2005.

[51] SEI, "Software Product Lines,"

http://www.sei.cmu.edu/productlines/index.html, 2007.

[52] SEI, "A Framework for Software Product Line Practice, Version 5.0,"

in Software System Integration. http://www.sei.cmu/productlines,

2007.

[53] C. W. Krueger, "New methods in software product line practice,"

Commun. ACM, vol. 49, pp. 37-40, 2006.

[54] J. D. Herbsleb and A. Mockus, "An empirical study of speed and

communication in globally distributed software development," IEEE

Transactions on Software Engineering, vol. 29, pp. 481, 2003.

[55] D. J. Paulish, M. Bass, and J. D. Herbsleb, "Global software

development at siemens: experience from nine projects," presented at

Software Engineering, 2005. ICSE '05. Proceedings of the 27th

International Conference on, 2005.

References 61

[56] C. Van den Bulte and R. K. Moenaert, "The effects of R&D team co-

location on communication patterns among R&D, marketing, and

manufacturing," Management Science, vol. 44, pp. S1-S18, 1998.

[57] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, "The Misalignment of

Product Architecture and Organizational Structure in Complex

Product Development," Management Science, vol. 50, pp. 1674-1689,

2004.

[58] S. Komi-Sirvio and M. Tihinen, "Lessons learned by participants of

distributed software development," Knowledge and Process

Management, vol. 12, pp. 108-122, 2005.

[59] I. Crnkovic, "Component-based software engineering - new

challenges in software development," Software Focus, vol. 2, pp. 127-

133, 2001.

[60] G. T. Heineman and W. T. Councill, Component-based Software

Engineering, Putting the Pieces Together: Prentice-Hall, 2001.

[61] A. H. Dogru and M. M. Tanik, "A process model for component-

oriented software engineering," IEEE Software, vol. 20, pp. 34-41,

2003.

[62] R. van Ommering, "Building product populations with software

components," presented at Software Engineering, 2002. ICSE 2002.

Proceedings of the 24rd International Conference on, 2002.

[63] I. Crnkovic, S. Larsson, and M. Chaudron, "Component-based

development process and component lifecycle," presented at 27th

International Conference on Information Technology Interfaces,

2005., 2005.

[64] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and

S. E. Condon, "COTS-based software development: Processes and

open issues," Journal of Systems and Software, vol. 61, pp. 189-199,

2002.

[65] V. Tran, L. Dar-Biau, and B. Hummel, "Component-based systems

development: challenges and lessons learned," presented at Eighth

IEEE International Workshop on Incorporating Computer Aided

Software Engineering, 1997.

[66] M. de Jonge, "Package-based software development," presented at

Euromicro Conference, 2003. Proceedings. 29th, 2003.

[67] R. W. Lichota, R. L. Vesprini, and B. Swanson, "PRISM Product

Examination Process for component based development," presented at

Assessment of Software Tools and Technologies, 1997., Proceedings

Fifth International Symposium on, 1997.

62 References

[68] V. R. Basili, "The Experimental Paradigm in Software Engineering,"

2000.

[69] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in software engineering; an introduction.

Norwell, Massachusetts, U.S.A.: Kluwer Academic Publishers, 1999.

[70] M. Shaw, "What makes good research in software engineering?,"

STTT - International Journal on Software Tools for Technology

Transfer, vol. 4, pp. 1-7, 2002.

[71] S. T. Redwine and W. E. Riddle, "Software technology maturation,"

in Proceedings of the 8th international conference on Software

engineering. London, England: IEEE Computer Society Press, 1985,

pp. 189-200.

[72] R. K. Yin, Case Study Research: Design and Methods, 3rd ed: Sage

Publications, 2003.

[73] C. Robson, Real World Research, 2nd ed: Blackwell Publishers,

2002.

[74] ISO, "International Standardization Organization,"

http://www.iso.org, 2007.

[75] ANSI, "American National Standards Institute," http://www.ansi.org/,

2007.

[76] IEEE, "The Institute of Electrical and Electronics Engineers,"

http://www.ieee.org/, 2007.

[77] SEI, "Software Engineering Institute," http://www.sei.cmu.edu/, 2007.

[78] INCOSE, "International Counsil on Systems Engineering,"

http://www.incose.org/, 2007.

[79] IEEE1220-2005, "IEEE Standard for Application and Management of

the Systems Engineering Process," Institute of Electrical and

Electronics Engineers, 2005.

[80] ISO9001:2000, "Quality management systems -- Requirements," ISO,

2000.

[81] R. Kazman, M. Klein, and P. Clements., "ATAM: Method for

architecture evaluation. CMU/SEI-2000-TR-004," Carnegie Mellon

University, Software Engineering Institute, Technical Report

CMU/SEI-2000-TR-004, 2000.

[82] SEI, "Standard CMMI® Appraisal Method for Process Improvement

(SCAMPISM) A, Version 1.2: Method Definition Document,"

Carnegie Mellon University, Software Engineering Institute,

Handbook CMU/SEI-2006-HB-002, 2006.

Part 2

Paper A

ON THE EXPECTED SYNERGIES BETWEEN

COMPONENT-BASED SOFTWARE

ENGINEERING AND BEST PRACTICES IN

PRODUCT INTEGRATION

Stig Larsson, Ivica Crnkovic, Fredrik Ekdahl

Presented at the Euromicro Conference,

Rennes, France, August 2004

Abstract

The expectations for a well working integration process are described in the

Capability Maturity Model Integration (CMMI). Often during the

integration process, weaknesses of the entire development process become

visible. This is usually too late and too costly. Particular development

processes and use of particular technologies may help to improve the

performance of the integration process by providing proper input to it. For

example, by the use of a component-based approach, the development

process changes. Some of these changes may help in performing according

to the process expectations. In this paper, examples of problems that have

been observed in the integration process are described. Through a case

study we describe a number of practical problems in current development

projects. Based on this case study, we analyze how a component-based

approach could help and lead to a more effective integration process.

1. Introduction

Product integration is a specific activity in the software development

process. Very often this is also the activity where most of problems become

visible and when it is either too late or at least very expensive to solve the

problems. This is especially true for large and complex software products

and systems which parts are developed and tested separately and when

different mismatches are invisible until the products are integrated. The

problems of integration usually have roots in previous phases, and most

often in the lack of coordination between these phases. There are several

reasons for this. First, it can be a communication problem and differences in

goals between engineers conducting requirements analysis and specification,

68 Paper A

development, integration, testing and delivery of the products. Further there

can be differences in the project goals (personified by project managers) and

long-term goals (personified by system architects and domain experts).

Second, a source of the problem is inadequate preparation of parts for the

final integration. While being tested and verified on a part level, the product

parts do not fit together. The reason for this problem can be inadequate test

environments that are sufficient for testing particular functions of each part

in isolation, but which do not reflect the impact of a particular part on the

entire product. A third source of problems is inadequate information

provided from parts. Very often there are many unwritten rules and

“default” assumptions known on the part level that are invalid for the whole

product. A fourth type of problems is features added into particular parts

that are unknown to other parts and the entire product. By adding new

features (such as improvement of particular functions or protocols) the

architecture of the entire system can degrade or even break down.

Many of these problems originate from the ambiguity of separations of

activities in the development process. While a separation of the different

parts of the development processes exists in practice, this separation is often

not well defined and formalized.

In component-based software engineering (CBSE), a separation of the

development of components from the product integration is one of the main

characteristics [1]. This raises several questions as described in [2]: What is

a component, what is included into a component specification, what are the

possibilities of predicting the product properties from component properties,

how does a component interact with other components and its environment

and similar.

So far the research focus for component-based engineering has primarily

been on technical issues, and considerably less on process issues. It is

however very important to know if the development process and CBSE are

synergistic; will it be more efficient and effective or will it meet new

challenges and maybe unsolved problems?

In this paper our aim is to investigate what the opportunities for

improvement of the integration process and the development process in

general by introducing a component-based development. Can the problems

described be (at least partially) solved?

To investigate this possibility our research approach is the following. From

a case study of a development process that has many similarities to a

component-based approach, but still is not explicitly designed so, we

Paper A 69

highlight to the main challenges and problems that become visible in the

integration phase. Further we analyze these challenges and discuss the

possible changes and improvements in the process by introduction of a

component-based development process.

The definition of a software component used in a product follows in this

paper is broad, and the term is used to describe a part of a software system.

However, in the discussions regarding CBSE, the notion of a component

follows to a large extent [1], i.e. software components are binary units of

independent production, acquisition, and deployment that interact to form a

functioning system. We also use the definition of a product as an application

that can be sold and distributed independently, and has a clear customer

value on its own.

The remainder of the paper is organized as follows. Section two describes

the main characteristics of the integration phase of a development process,

the main characteristics of a component-based development process, the

changes in the integration process implied by component-based software

engineering and related work. In section three, a case study is presented to

show examples of how the integration process is performed today. Section

four analyzes how the use of component-based software engineering would

resolve today’s challenges. Finally section five contains the conclusion and

proposed future work.

2. Product Integration in relation to CBSE

The product integration process for software products addresses the

assembly of software components. The target is to integrate components into

a product and to ensure that the product works appropriately so that it can be

delivered to customers. An integration process that is working well is

expected to increase the probability that a development project delivers

quality products in a timely manner. Component-based software engineering

is targeting similar goals; to improve the productivity through use of high-

quality components with predictable behavior. This section describes these

two independent methods for improving the performance in development

projects, and lists possible synergies.

2.1 Product Integration Best Practices

The Capability Maturity Model Integration, CMMI, [3] defines three goals

for the product integration process. These are that (i) the product integration

70 Paper A

should be prepared, (ii) interface compatibility should be ensured and that

(iii) the product components should be assembled and delivered.

 The preparation for product integration typically includes preparation of an

integration sequence. Different integration sequences should be examined

and also include test components and equipment. The established sequence

should be periodically reviewed to accommodate changes in the

development project. The preparation also includes the establishment of the

environment needed for product integration. One important decision in the

preparation of the integration environment is if it should be developed in-

house or bought from outside. In practice, the system will include both

components that are bought and that are developed in-house.

A prerequisite for the possibility to ensure the interface compatibility is that

the interface descriptions are complete. The design of the interfaces is

important for the design of the components, but may also affect the design

of the verification and validation environments. The interfaces need also to

be managed throughout the project. Note that this is valid also for interfaces

with the environment that the product is operating in.

The actual assembly of components should be done in accordance with the

selected integration sequence. However, before a component is included in

the product, the readiness for integration should be confirmed. The identity

of the component needs to be established and the conformance to the

specifications and established criteria should be confirmed. This

confirmation can include a check of the status of the component, e.g. that

the design of the component is reviewed, that the component is tested and

that the interface descriptions are followed. Once assembled, the

components should be evaluated. This is done based on the integration

sequence and the verification specified. Based on the systems created in the

product integration process, the system is verified and validated. When all

product components have been integrated, the product should be delivered

to the appropriate customer. This can be made in an iterative fashion, with

part deliveries, internal deliveries and of course as a final delivery for

production.

2.2. Developing systems with CBSE

When developing a system based on components, the focus is on the system

requirements, the overall system functionality and the mapping these

requirements to components. However, the implementation of individual

components is not in the focus of the process. The components used in the

Paper A 71

solutions are thus considered to be developed or acquired independently of

the development of the system.

The activities performed when developing a system are similar to those for

any non-component-based development; they include requirement analysis,

architectural specification, component selection and evaluation, system

design, implementation, integration, verification and validation. A specific

activity here is component selection, but also other activities have specific

parts that are influenced by the component-based approach. As the

dependencies between these activities are strong, it is important to note that

they are usually performed in an iterative fashion, and that these iterations

should be taken into account when planning the system development.

The requirement analysis is done to transform the collected needs into

system requirements. The task is also to define the scope for the system.

Based on the system requirements, it is possible to define the system

architecture and to derive the component requirements. As the definition of

components to be used and the resulting system properties are investigated,

it may be necessary to reexamine the system requirements and prioritize

what is most important. The reasons may, for example, be that requirements

are found to be contradictory, that the selected solution is too expensive or

that the time-to-market requirements cannot be met.

When an initial architecture has been created, a decision how to obtain the

needed components is taken. If the decision is to develop a new component,

specific for the system, the development will be based entirely on

component requirements derived from the system requirements. This

decision will also make sure that the component fits to the architecture.

Preexisting components developed in-house may be used as-is, but may also

require modifications. As this reduces the possibilities for reuse, it is more

likely that interactions between the components are modified, that adapters

are created, or that the architecture is modified to fit the selected

components. This is also likely when using commercial components, as

these normally require a specific architecture. Both types of pre-existing

components may influence the architecture, especially if a specific

component framework is required. To find and select components based on

the component requirements is a challenge. One reason is that it is difficult

to derive these requirements from the system requirements. If the component

is not created specifically for the developed system, it is unlikely that a

component exactly matching the requirements can be found. In addition to

fulfilling the requirements, the components must also coexist in the system,

which leads to the need to investigate compatibility issues between the

72 Paper A

components and also with the selected component framework. It is worth to

mention that already in the selection process, integration activities can be

performed. Often when validating components they must be composed with

other components and integrated in the system environment.

The system construction depends on the chosen architecture and on the

selected component technology and framework. The design also depends on

what types of components will be used in the system. More reuse and

commercial components will reduce the freedom to select different design

solutions.

The implementation activities should be limited to adaptations of the

components and connections between the components. This should be a

minor task, but if the components are not properly selected, the work may be

substantial. Also verification of the component behavior in the selected

environment should be a part of the implementation. This may lead to

additional development of code to handle the components in- and outputs or

changes in the way the component is set up.

To ensure that the quality requirements on the system can be met, the

integration of the system is crucial and should be started as soon as possible

in the development cycle. The activities include determination of integration

sequence, verification that the components adhere to the interface

description, and provision of systems appropriate for verification and

validation. Additional tasks are to identify the need for additional

implementation and to monitor the system properties as these emerge when

the system is integrated. The integration will depend on the architectural

solution, as the possibility to build systems is determined by the selected

architecture as well as the component model and framework. The

verification that the requirements are met can start as soon as the first

integration has been made, while the validation that the customer

expectations are met can only be made when the final assembly has been

made.

In component-based software systems, components may exist also in

runtime. The result of this is that it is possible to change the system while in

operation, or at least without replacing the entire system, by replacing

components. This simplifies the maintenance and error correction and also

makes enhancements possible. A well-designed architecture is however

necessary as the dependencies between different parts and components in

the system make such changes dangerous if the consequences are not well

Paper A 73

understood. Special care must be taken when a component is used by several

other components.

There are many reasons why component-based approach can improve the

integration process. We list here the most important.

• Component specification. The basic principle in component-based

approach is a separation of component specification from its

implementation through its interface. This separation is stronger than

in object-oriented approach since all interaction is supposed to be

performed through interfaces. This principle drastically decreases the

risks for introduction of unknown properties and architectural

mismatches. Though it should be noted that many component models

do not follow this principle, in particular for required interface, which

may cause many unpredictable problems.

• Early integration requirements. For component validation usually a

kind of integration procedure must be made. An early integration

process can show problems that might remain hidden until the final

integration.

• Standardized interoperation. Component models define the standards

for interconnection between the components. This eliminates a

number of potential errors due to architectural mismatches.

• Integration tool support. Integration is an inherent part of a basic

approach of CBSE. For this reason the component-based technologies

focus on this process and usually provide powerful integration tools.

2.3. Related work

This section describes some of the work that has been done related to

integration in component based software systems. In the related work, the

integration process partly includes what is often described as the

composition process.

The notion that all development phases, including the integration activities,

need to be reconsidered when working with component-based software is

pointed out in [4]. It is also mentioned that the current component models do

not take enough of the needs of the system developer into account. A part of

the information that is mentioned as underdeveloped is the specific

collaboration rules for interfaces and component behavior. This influences

the ease with which a developer can determine if the chosen components

fulfill the requirements of the system.

74 Paper A

The PECOS project [5] [6] describes an approach and a software process to

be used for basing embedded systems on component-based technology. The

composition process is examined and described. It is, however, not

compared to the overall expectations on the integration process.

The OOSPICE project [7] was targeted at overcoming the shortcomings

experienced when applying software process improvement approaches to

component-based development. In [8], the observation that component-

based development is integration-centric is elaborated.

In [9], the risks in the composition phase for component-based software

development are listed. Several of the risks are related to the integration

process, and a method for how to deal with these risks is outlined.

3. Case study

The case study was performed at an ABB unit developing industrial control

systems. The system has evolved through several generations, and a new

generation of the system is currently being developed. Compared to the first

generation, where the effort was three man months, the effort for software

development in the current development is estimated to about 100 man

years.

In essence, the controller has layered architecture and within layers,

component-based design. The implementation consists of approximately

2500 KLOC of C language source code divided in 400-500 components,

organized in 8 technical domains. The software platform defines

infrastructure that provides basic services like: a broker for message-based

inter-task communication, configuration support, persistent storage handling

and system startup and shutdown.

3.1. Research method for the case study

The methods for the case study include interviews, document reviews and an

observation. The interviews have been based on a set of open questions, and

have been conducted as discussions about the integration process. The

document review was performed on the documentation describing the

integration process, the training material for the organization as well as the

files used for and as a result from the build process. As the purpose of the

observation was to identify challenges, it was designed to obtain as much

information as possible, i.e. the decision was to perform an unstructured

observation.

Paper A 75

3.2. Product Integration

The development of the system is conducted in different development

groups, and there are separate groups for the integration, verification and

validation activities. As the system has evolved over several years and parts

of it have been replaced with new solutions, the development environment

as also been changed. For example two different configuration management

systems are used. Unique tools are used for the integration group that also

handles the build process. Developers have their own set of tools for

building on local systems. Training of the developers is done as part of the

general information about the system given to the staff. The developers also

get hands-on training in the projects.

The system evolution is performed in an incremental way. The

implementation of a functionality described in the requirement specification

is distributed to different integration points (IP), as shown in figure 1.

Figure 1. Distribution of functions and error corrections

The changes may occur in a project where the intended functionality for IPn

is redistributed to IPn (1) and to IPn+1 (2). This redistribution is based on

the progress in the project, the priorities for the different functions as

Functions

Problem reports

10-12 weeksIP n IP n+1

��

�

�Functions

Problem reports

10-12 weeksIP n IP n+1

Functions

Problem reports

10-12 weeksIP n IP n+1

��

�

�

76 Paper A

determined by product management and the possibilities to alter the decided

integration strategy. Also the problem reports and the error corrections

related to them are assigned to the different integration points (3 and 4).

Product and technology management decides what errors should be

corrected for a specific integration point.

The procedure used when reaching an integration point is shown in figure 2.

The width of the arrows in the figure (4) represents the amount of new

functions or error corrections that are accepted for integration. As an

integration point is approached, the possibility to add new functionality is

reduced and increasingly monitored. This is illustrated by the narrowing

towards the point of the arrow (1). As the “beta drop” is reached, the version

is branched to a release track. All release tracks are made available to the

organization for use in testing and further development. Errors that are

found in the verification and validation are considered for correction for the

new integration point (2). After the release “beta drop”, the development

groups have the possibility to add new functionality again (3).

Figure 2. Integration point activities

An important prerequisite for a working product integration process is an

appropriate build process. It is also in the build process that many of the

problems with the product integration process appear. For our case study

system, the current build process has been in place for four years and is

continuously updated and improved. Each day, the full system is built and

�

�

�
�

Ver Val

�

�

�
�

Ver Val

Paper A 77

generated for several target systems with a total of more than 15 versions. A

separate build machine is used, and each build takes seven hours. As soon as

a build is started, it is possible to start delivering to the next one. New code

to be included in a system build is put on a build queue. Once put in the

queue, the component cannot be deleted from the queue. The two different

software configuration management (SCM) systems used give different

protection against mistakes. One prevents mistakes, as there are no

possibilities to check code directly into the build directories. The other SCM

system makes a direct merge into the release directory without the delivery

through the queue.

The build is normally done during night, so the result of the build is known

in the morning. The person responsible for execution of the build process

examines the log files. In case of problems, the responsible persons are

notified and asked to correct the problem. The result of a severe problem is

normally that the build will be delayed one day. However, as the deliveries

in the new build queue can be included, the setback may be different for

different parts of the project. Today, no metrics or statistics are captured

how often the problems occur or to see what causes the problems in the

integration process. The error reports from the findings are however tagged

with the build identity to make error correction easier.

The problems identified in the case study relate to three main areas. The

first issue is the delivery of code to the build process. The code may be

delivered late, or a function is not fully delivered. Also, the two different

ways to deliver the code for integration is a concern. One system handles

this automatically, while the other requires manual checking that the right

things are included. The second issue is the low quality, e.g. errors that

cause the builds or initial integration tests (“smoke tests”) to go wrong. This

can be due to insufficient tests and system generation by the developers.

They normally test only a few of the possible combinations. The result may

be that the system generated works for the tested configurations but fails in

the others. The final issue relates to components that influence other parts of

the system. It may be that changes in include-files affect other components.

This is possible as no routine or mechanism for how to handle the

communication of changes has been established. This and the second issue

may be discovered in the smoke test following the system generation.

78 Paper A

4. Analysis

When we compare the problems discovered in the case study to the product

integration expectations as described in [3], we see several activities that

can be put in place to improve the process. The improvements of course can

be made without the introduction of CBSE. However, our analysis of three

main problem areas supports the idea that a CBSE solution would reduce the

difficulties.

A first improvement is related to the checks at integration time and deals

with the first two problems, delivery of incomplete functions and code with

low quality. The rules for including a component at an integration point

should be appropriate so that they can be followed both for major additions

of functionality and for minor error corrections. This means that the rules

should be suitable for different types of changes, but need to be followed for

all inclusions at an integration point. To enable this, additional power must

be given to the integration team. The development groups will through this

lose some control but in return less often get unstable systems or broken

builds. The improved check at integration time would be supported by

CBSE as the delivery of code to integration would be done as ready-made

components. This would also reduce the problem of functions delivered

before they are ready. Through the use of CBSE, the poor quality can be

reduced, as components should be tested in all environments they are

envisioned to be used in.

The third and maybe most important problem area is the need to handle

dependencies, i.e. interfaces, between different components more strictly.

Changes to interfaces should be controlled and communicated. To achieve

this, the interfaces must be sufficiently documented. Also, any changes to

the interfaces must be controlled at integration time to ensure that they have

been approved and communicated. In CBSE, the separation of the processes

for developing components and for building systems into two separate

processes helps in better defining the interfaces for the components. A

component without a clearly defined interface cannot be used unless the

developers of the system have full knowledge about the component.

Introducing a clear separation in this manner would also increase the clarity

in the dependencies between the components. It would also make it possible

to have a more thorough, or strict, procedure for accepting a new version of

a component for a specific integration point. Using CBSE, improved

descriptions of interfaces would diminish the influence from one component

to another, or at least make these dependencies visible.

Paper A 79

For all three main problems, we predict that CBSE would help in reducing

the problems. The cost is however that the system, processes and

organization need to be changed to accommodate CBSE.

A first step would be the introduction of a complete component model.

There are experiences that by introduction of component models have

significantly improved the development process [2]. Of course introduction

of a component model would require additional efforts. First the existing

code and basic architecture should be reused as much as possible. This

implies that widely used components models such as .NET or EJB are not

appropriate. Rather a simple, probably in-house developed component

model should be deployed. This component model could be built

incrementally, starting with basic principles such as interface specification

and automation of integration of components.

A second effort required would be a componentization of the existing code.

Since today many of the dependencies between the components are implicit,

their separation might be a tedious work. However such a work would pay

off in the long run, since errors made today depending on hidden

connections between components would be reduced. Efforts to describe the

dependencies explicitly are being made in the case study system today, with

promising results. A continued work in this direction would result in an

architecture that is properly documented and better cohesiveness of

components which are the basic prerequisites for efficient system

development and evolution.

Finally, the organization of projects and departments to clearly divide the

work into development of components and development of the system is

needed.

5. Conclusions and future work

A case study has been compared to the generic requirements on a best

practice product integration process [3]. In addition to this, we have

analyzed what support the current process may get from using component-

based software engineering. Our conclusion is that several of the

requirements for a well working integration process can get substantial

support through skilled use of well defined components. The support comes

from the fact that components should be well documented, tested in the

environment they are intended for and that any dependencies to other

components (or the environment) should be explicitly highlighted.

80 Paper A

Future work should include additional case studies in industry. Both

development units working with components and with traditional software

need to be further examined. These investigations need to include

measurements on the problems caused by an insufficient integration process

as well as root cause analysis. The purpose of these investigations would be

to confirm or refute the conclusions in this paper that CBSE helps in

providing a platform for efficient and effective software product integration.

Further additional analysis should be done on a feasibility of full

componentization of the systems. The efforts and return-on-investments for

re-architecting and for development and introduction of a component model

should be estimated.

6. References

[1] Szyperski, C., Component Software -- Beyond Object-Oriented Programming,

Addison-Wesley, Reading, MA, 1998.

[2] Crnkovic, I., and M Larsson, Building reliable component-based software

systems, Artech House, Boston, 2002.

[3] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA,

2003.

[4] Zeidler, C., “Componentware Glory and Crux for early industrial adopters”,

Object Oriented Programming conference OOP 2000, Munich, Germany, 2000.

[5] Winter, M., C. Zeidler and C. Stich, "The PECOS Software Process", Workshop

on Components-based Software Development Processes, ICSR 7, Austin, TX

USA, 2002.

[6] Müller, P., C. Zeidler, C. Stich and A. Stelter, "PECOS — Pervasive

Component Systems", Workshop on ”Open Source Technologie in der

Automatisierungstechnik”, GMA Kongress, Baden-Baden, Germany, 2001.

[7] The OOSPICE project, http://www.oospice.com. (Link valid April 2005.)

[8] Stallinger, F., B. Henderson-Sellers and J. Torgensson, ”The OOSPICE

Assessment Component: Cusomizing Process Assessment to CBD”, in Business

Component-Based Software Engineering, edited by F. Barbier, Kluwer

Academic Publishers, Boston, USA, 2002.

[9] Kotonoya, G., A. Rashid, “A strategy for Managing Risk in Component-based

Software Development”, Euromicro 2001 CBSE workshop, Warsaw, Poland,

2001.

Paper B

CASE STUDY:

SOFTWARE PRODUCT INTEGRATION

PRACTICES

Stig Larsson, Ivica Crnkovic

Presented at the PROFES 2005 Conference,

Oulu, Finland, June 2005

Abstract

Organizations often encounter problems in the Product Integration process.

The difficulties include finding errors at integration related to mismatch

between the different components and problems in other parts of the system

than the one that was changed. The question is if these problems can be

decreased if the awareness of the integration process is increased in other

activities. To get better understanding of this problem we have analyzed the

integration process in two product development organizations. One of the

organizations has two different groups with slightly different integration

routines while the other is basing the development on well defined

components. The obstacles found in product integration are highlighted

and related to best practices as described in the interim standard EIA-

731.1. Our conclusion from this study is that the current descriptions for

best practices in product integration are available in standards and models,

but are insufficiently used and can be supported by technology to be

accepted and utilized by the product developers.

1. Introduction

Through investigations of many development organizations developing

products with software as an important part, we have seen that the product

integration is one of the processes where many of the problems in product

development become visible. The origin of the problems is often in other

processes performed early in the development cycle. These problems can be

reduced through an increased understanding of the needs from an integration

standpoint. Today, not enough care is taken to ensure that the system

requirements are considered when components and parts developed. Proper

preparation, understanding and performance of the product integration are

believed to resolve part of this problem.

84 Paper B

Integration of products that include software is described in several

standards and collections of best practices. These best practices are

collected from different companies and organization and include areas that

are considered to be of good use for the development organizations in

different application areas. There is however a lack of independent research

which shows whether the practices described in these collections give the

intended result when implemented in different organizations; a systematic

validation of the practices is needed.

There are different perspectives from which the use of descriptions found in

standards and models can be investigated and different questions to be

answered. The first question is how it can be determined that the processes

described in the standards and models are suitable for different types of

development and the use of different life cycle models; are the generic

principles of the descriptions valid for all types of product development?

Another question is if an organization may run into problems even if the

principles and descriptions are followed in a proper way. Are there ways to

fulfill the principles described but not achieve the intended results? A third

question is how to determine if the reason for an organization having

problems is the fact that the principles are described as the prescribed

working method, but are still not followed. Our approach to these different

perspectives is to look at the performance of the process in the investigated

organizations and compare the activities with the ones prescribed in the

standards and models regardless of the development model used. We also

look at the problems in the organizations and analyze these with respect to

the practices that are not followed by the organization.

We claim that we by investigating a number of organizations and the

practices in use can obtain support for the practices described in standards

and models or determine a need for revisions of the standards and models.

This leads to the following research questions for this paper: (i) How well

can the practices described in a specific standard be expected to reduce

problems encountered in the integration of products? and (ii) What

deficiencies or incompleteness can we observe in the proposed practice?

We have in this paper selected to use the interim standard EIA-731.1 [1] as

the reference model. The rational for this is that the interim standard model

has been used as one of the inputs to CMMI [2], and is specifically intended

to be used for internal process improvement, not for qualification of

suppliers. In addition to this, the development of this interim standard has

been carried out in cooperation between a number of national and

international organizations such as EIA[3] and INCOSE [4] involving a

Paper B 85

large number of organizations and companies with substantial experience in

software and system product development.

Our proposition in this paper is that the problems encountered in the

investigated units relate to the lack of execution of practices that are

described in the interim standard. We also propose that successful execution

of the product integration can be mapped to specific implementation of

practices described in the interim standard.

This case study is a continuation of the work described in [5], where a

different case has been compared to CMMI. The purpose of this paper is to

investigate one additional source for best practices, compare it to current

industrial problems and to establish if there are connections between the

problems and the lack of execution of proposed activities.

The remainder of the paper is organized as follows. Section two describes

general structure of the interim standard EIA-731.1 as well as the main

characteristics of the integration processes of a development process. In

section three, the case study design is described with explanations about the

data collection method, the analysis method and the threats of validity of the

study. Section four includes a description of the findings from the case

study. Section five analyzes how the findings relate to best practices. Finally

section six contains the conclusion and proposed future work and is

followed by the references list.

2. Product Integration in EIA-731.1

The interim standard EIA-731.1 describes a number of focus areas useful for

organizations developing products and systems. The focus areas described

are organized in three categories; technical, management and environment.

For each focus area, a number of themes describe the suggested activities.

All themes include a description, typical work products and specific

practices for the focus area. For some of the focus areas there are comments

that normally contain clarifications or suggested implementation details. In

addition to the specific practices, there are a number of generic practices

applicable for all specific practices with the different focus areas. The

generic practices include tasks such as planning of the activities to perform

the process, monitoring and checking that the activities performed are

according to plan and the execution of corrective measures when these are

identified and needed.

86 Paper B

Figure 1. Structure of EIA-731.1

Themes

Systems Engineering

Technical Category

Management Category

Environment Category

Four Focus Areas

Eight Focus Areas

(Totally Seven
Focus Areas)

Integrate System

Integration Strategy

Interface Coordination

System Element
Integration

Integration Preparation

Three Specific Practices

Systems Engineering

Technical Category

Management Category

Environment Category

Four Focus Areas

Eight Focus Areas

(Totally Seven
Focus Areas)

Integrate System

Integration Strategy

Interface Coordination

System Element
Integration

Integration Preparation

Three Specific Practices

Paper B 87

The interim standard includes a possibility to determine the capability level

of an organization in a specific area. This is based on the observation that

organizations typically take observable distinct steps in the effort to improve

the performance. In EIA-731.1 these levels are intended to be used as means

to help the organization in the planning and implementation of the

improvement efforts. Six different capability levels have been defined.

Level 0 indicates that the specific practices are not performed. Level 1

indicates that the specific practices on level one are performed. For level 2

to 5 both the specific and generic practices on these levels are performed.

Note that no effort has in this study been made to determine the capability

level of the organizations investigated as the target is to understand if the

specific practices for product integration give the intended result.

The rest of this section summarizes the product integration process as it is

described in EIA-731.1. The standard prescribes a set of specific practices

that are considered to be essential for accomplishing the purpose of the

focus area designated Integrate System (Focus Area 1.5).

The purpose of the Integrate System focus area is to ensure that the product

and system works as a whole based on the components that have been

integrated. Interfaces between components and functions that extend over

many components in the system are in the center of attention. It is also noted

that the integration activities should start early and are typically iteratively

performed.

Four themes have been identified for the focus area. An Integration Strategy

(1) is considered to be the basis for the integration process. This theme

includes the development of a strategy that contains an integration sequence

and a plan for the integration tests to be performed. The Interface

Coordination (2) is the second theme and includes handling of the

requirements on the interfaces as well as specifications and detailed

descriptions. As a third theme, the Integration Preparation (3) describes how

components are received for integration and the checking that the

components are in accordance with the strategy and interface

documentation. The final theme is the actual integration: System Element

Integration (4). The components are integrated according to the plan and the

inter-operations between the components are checked. It should be noted

that the actual verification is described in a different focus area in the

interim standard EIA-731.1, FA 1.6 – Verify System.

The different specific practices on capability level 1, 2 and 3 for all themes

can be found in Table 4. The descriptions in the interim standard are short

88 Paper B

and need to be interpreted with the description of the theme as a basis. Some

guidance can be found in EIA-731.2 [6] that describes an appraisal method

for EAI-731.1. However, the sample questions in this guide are also on a

high level and require substantial expertise to be used.

3. Case Study Design

The case study was performed on three different product development

groups in two different organizations. As the development methods are

different in all three groups, the case study has been designed as a multiple-

case holistic study as described by Yin [7]. The units of analysis are the

processes for integration as perceived by members of the development

groups in the three different cases. The focus of the study was on processes

used at the time for the investigation, not described in quality systems or

handbooks and not on processes that were under development.

3.1 Research Method

The interviews made with members of the development groups are the main

sources of data in this investigation. Additional information was obtained

from descriptions and examples of how the integration was planned and

performed. For each case at least two persons were interviewed. The

selection of subjects for the interview was based on two criteria. The first

was that for each organization, both a manager and a developer should be

interviewed. The second criterion was that the subjects should have

extensive experience spanning over several years from the development in

the investigated group.

The interviews were performed as open-ended discussions and all interviews

were made by the same researcher. The researcher was guided by a

discussion guide to ensure that different aspects of product integration were

covered in the discussion. The guide was developed by two researchers and

included questions related to three different areas; organization,

implementation, and effectiveness of the product integration. The questions

included in the discussion guide were not taken from the standard, but were

designed to give an understanding of the used processes independent from

descriptions in standards and models. During the interviews, the guide was

used to ensure that the interesting topics were covered, and the specific

questions asked were depending on how much information was obtained

through the explanations from the interviewees. The use of open-ended

questions allowed the researcher to follow up interesting statements that

Paper B 89

lead to more information and a deeper understanding of the used process.

Each interview was between one and two hours. The documentation from

the data collection consists of notes taken during the interviews

complemented with information from the written documentation.

The data collected can be divided into two types. The first type was

descriptions of how the integration process was performed for each case and

what activities were carried out. The second was descriptions of the

problems that the units perceived in the integration process.

3.2 Analysis Method

After the interview sessions, the data collected was analyzed in several

ways. This was done as a separate activity and without the involvement of

the development organizations. For each case in the case study, the activities

captured during the data collection were compared and mapped to the

practices described in EIA-731.1. The result from the mapping showed if the

development in the different cases were performed in accordance with the

interim standard. As a second step, the problems identified were mapped to

the specific practices in EIA-731.1 that are intended to ensure that the

problems should not occur. Finally, the relations between activities

performed and the problems were investigated. This resulted in Table 4 that

indicates the relation between practices from EIA-731.1, activities

performed and identified problems. A second phase of the analysis was to

propose how the practices in EIA-731.1 should possibly solve the

encountered problems. The results from this analysis in found in Table 5.

The analysis was made by one researcher and reviewed by two other

researchers.

3.3 Validity

Four types of validity threats are of interest for case studies [7]. In this

section, we discuss these and the preventive measures to reduce them.

Construct validity relates to the data collected and how this data represent

the investigated phenomenon. Internal validity concerns the connection

between the observed behavior and the proposed explanation for this

behavior. The possibilities to generalize the results from a study are dealt

with through looking at the external validity. Finally, the reliability covers

the possibilities to reach the same conclusions if the study was repeated by

another researcher.

90 Paper B

The construct validity is dealt with through multiple sources for the data

through more than one interview for each case. Additional interviews with

other stakeholders as well as additional document investigations would have

increased the construct validity. However, this would have required more

intrusive investigations and would limit the availability to the organizations.

The design of the discussion guide was based on available standards and

methods and involved more than one researcher to ensure that the questions

to be discussed were relevant. The researchers experience in software

product development provided a basis for relevant discussions under the

interview sessions.

The internal validity was secured in three ways. First, the connection

between the behavior and the interim standard was done in several steps to

avoid predetermined connections. Secondly, rival explanations have been

listed and examined to exclude other causes to the findings. Finally, the

analysis of the data and the connection to the interim standard has been

reviewed by two additional researchers to avoid personal bias.

The external validity is dealt with through the use and description of three

cases in two different application domains and through the use of several

different standards and methods when defining the investigation area.

The reliability of the study has been secured through the description of the

procedure used in the study and the documentation of the discussion guide.

4. Case Descriptions

Two product development organizations have been investigated, both

developing systems for monitoring and control of different types of

networks, but in different application domains. The systems operate in

industrial settings with real-time requirements as well as high demands on

availability and reliability. One of the units is developing products for two

different environments. This has lead to the use of different processes and in

this study they are treated as two cases resulting in a total of three cases. For

each case the following sections contain a brief description of the product

and the product development process. The descriptions also include the

problems that were identified and described in the interviews. The problems

are presented in tables where each problem is labeled with a P, the case

number and a reference character.

Paper B 91

4.1 Case One

The product in case one is a stand-alone product that is connected to a real-

time data collection system. The development is done in one group with less

than 20 developers and follows a clearly defined process. The product

development of a specific release is based on a definition of the product that

contains what should be included in each release. The first step in the

development is the implementation of requirements on the functions for the

release. Based on this, the unit and system verifications to be performed are

defined. Development of the functions is done in units called components.

The Rational Unified Process is used, and a document list defines the

development process. The planning is made so the development is done in

increments. The unit verification is performed by software developers. The

strategy is that tests should not be done by the developer producing the

software. The unit tests are often done through automatic testing.

Specifications and protocols from the tests are reviewed by peers and system

integrators. The tests are performed in the developer’s environment and

consist of basic tests. Functional tests are performed before the system tests.

The product integration is not defined as a separate process, but the product

is integrated by the developers before the system verification. Before a

component is checked in, it should be included in a system build to ensure

proper quality. Delivery to the system test is done of the whole system. The

test protocols and error reports from the unit verifications are reviewed with

the system integrator before the system test. The system tests are performed

by a core of system testers and temporary additional personnel. This strategy

builds on well defined and detailed tests. The tests are focusing on functions

and performance and are performed on different hardware combinations.

This includes different variants of the product and different versions of the

operating system. The test period takes approximately 12 weeks, with new

versions of the assembled components received to system test every week.

Although the development builds on increments, no integration plan is used

for the product. The integration plan used is one for the whole system where

this product is included. Typical time for the development of a release is less

than one year.

The three most serious problems were captured for case one as described in

Table 1. The routines are mainly followed, but due to tight deadlines,

shortcuts may be taken. Sometimes uncontrolled changes are introduced in

the software. This is typically done when a part of the system is changed due

to an existing error that is uncritical and not planned to be corrected. Due to

92 Paper B

the dependencies in the system, new errors may appear in parts that have not

been changed. Also other connections between components that are not

explicit generate this problem.

Table 1. Problems captured for case one

Label

Problem description

P1-A Functions are not always fully tested when delivered for

integration. This leads to problems in the build process or in

integration and system tests

P1-B Errors are corrected that should not be. This results in new

errors with higher influence on functionality and performance

P1-C Errors appear in other components which have not been

changed

4.2 Case Two

The second case is a product that includes software close to the hardware.

The development group is small and follows a common development

process. This process includes rules for what should be checked and tested

before a component is integrated. The tests include running the application

in simulators and target systems before the integration. A specification for

what should be ready before start of functional and system test are available.

The architect is responsible for implementation decisions. The target system

includes a complex hardware solution with the application divided on two

target systems. Typical time for the development of a release is 1.5 year.

This includes the full development cycle from defining the requirements to

system testing.

Most of the problems appear because of the incapability and version

mismatch of the test system, the final product and the test and final

hardware platform (Table 2). Efforts are now made to go towards

incremental development, and to increase the formalism in the testing. The

tests will be made in three stages with basic tests performed by the designer,

functional tests performed by a specific functional tester and system tests

with delivery protocol.

Paper B 93

Table 2. Problem captured for case two

Label Problem description

P2-A Problems appear as a consequence that tests for the components

are not run in the same environment as the test system. Different

versions of hardware and test platform are used.

4.3 Case Three

The development organization in this case is responsible for the design of a

user interface that acts as a client to a database server. The organization is

small, around 15 developers.

The current architecture has been recently improved. The old version of the

system suffered from problems with many common include files. Through

global variables and similar solutions permitted by the selected technology,

unintended side-effects made debugging and error correction tedious.

Different attempts to reduce the problems within the available technology

lead to the insight that a design that was built on isolation of interfaces

should be beneficial. The solution was to start building a new system.

Included in this decision was a strategy to design interfaces carefully and to

use technologies that permitted isolated components to be used.

The system is built up of components that primarily implements different

parts of the user interface. Each component handles the communication with

the server. This design was used to allow the development of services that

are independent and dedicated for each component. The component

framework defines the required interface for each component and provides a

number of services, such as capturing of key strokes. The technology used

permits the developers to easily isolate problems and to minimize the

uncontrolled interference and dependencies between the components.

 The development is organized with frequent builds and continuous

integration of new functions. The integration is handled by the integration

responsible. However, the checks before the inclusion of new functions are

done by the developers. There are no specific routines in place for handling

the interfaces. Changes are in practice always checked by the system

architect.

The new system design has reduced the implementation time for a function

with 2/3. The turn-around time for a system release has been reduced from

six months to between one and three months. At the same time, a need for

94 Paper B

maintaining the base platform has emerged. Also, some of the technical

solutions have been questioned and may increase the need for maintenance

(Table 3).

Table 3. Problem captured for case three

Label Problem description

P3-A Scattered architecture on the server side as a result of the

decision to handle communication in each component

5. Collected Data and Analysis Results

In these three cases we found may similarities: size of the development

groups, similar concerns, requirements of the products, similar product life

cycle. What we have seen are the differences in the development processes

and in used technologies and approaches. Our intention is to analyze what

are the sources of the main problems and if they could have cause in

deviation or absence of the activities pointed out in the best practices.

This section contains two parts. The first includes a table containing the

analyzed data from the case study, while the second lists the problems found

in the cases with a suggested implementation of the practices that could

improve the performance.

5.1 Analyzed Case Study Data

The three steps of the analysis have been summarized and presented in

Table 4. The table includes two parts for each practice. The first two

columns show the description from EIA-731.1 for the specific practices for

the focus area Integrate System. The first number in column one shows what

theme the practice belongs to, and the second number is the capability level

(i.e., 1-2 shows that the practice belongs to theme one and is placed on

capability level 2). Finally, if two or more practices exist on a capability

level for a theme, these are distinguished by a character. The following three

columns include data from each of the cases. These columns include two

things: (i) an indication for each case if the practice has been observed as

performed (+) or not observed (-), and (ii) if there are indications of

problems connected to the practice (*). The indicated problems are further

described and analyzed in section 5.2.

Paper B 95

Table 4. Specific practices for Integrate System compared to data from

case 1, 2 and 3

Case
SP Description

1 2 3

1-1 Develop an integration strategy + * + +

1-2
Document the integration strategy as part of

an integration plan
- + -

1-3a
Develop the integration plan early in the

program
- + -

1-3b

When multiple teams are involved with

system development, establish and follow a

formal procedure for coordinating integration

activities

- - -

2-1a

Coordinate interface definition, design, and

changes between affected groups and

individuals throughout the life cycle

- *
-

+

2-1b Identify interface requirement baselines - * + +

2-2a Review interface data - - -

2-2b Ensure complete coverage of all interfaces - - -

2-3a
Capture all interface designs in a common

interface control format
- - -

2-3b Capture interface design rationale - - - *

2-3c
Store interface data in a commonly

accessible repository
- - -

3-1a

Verify the receipt of each system element

(component) required to assemble the system

in accordance with the physical architecture

- *

- * +

3-1b

Verify that the system element interfaces

comply with the interface documentation

prior to assembly

- * + +

3-2

Coordinate the receipt of system elements for

system integration according to the planned

integration strategy

- + -

4-1a
Assemble aggregates of system elements in

accordance with the integration plan
+ + +

4-1b
Checkout assembled aggregates of system

elements
+ + +

96 Paper B

5.2 Analysis of Observed Problems

In each of the cases, problems encountered in the performed product

integration process were captured and discussed. The problems are in Table

5 cross-referenced by the researcher to the specific practices for the

Integrate System focus area of EIA-731.1. Each problem has a label

composed of a P, the case number and a reference character as in the tables

in section 4. In addition to the description and the reference, a proposed

action based on the specific practice has been included in the table.

Based on the data, we have made two observations regarding the perceived

problem situation. The first is that all the problems for case one and two are

related to capability level 1 specific practices. This may indicate that

additional problems may be observed once all capability level one practices

are performed, or it may indicate that higher capability level practices have

less influence on the actual product integration results. The second

observation is that case three had a similar culture for process adherence as

case one, but the developers were forced by the technology to perform the

specific practices.

5.3 Analysis of Propositions

As a summary of the analysis, we conclude that case two is performing the

product integration most in line with the specific practices described in EIA-

731.1 It is also clear that case two and three follow almost all the

recommendations from capability level 1 specific practices. We see that case

one has the most problems, and that all these problems are related to

capability level 1 specific practices and we have noticed that in case three,

the technology may help the development team in following the capability

level 1 practices. The results are displayed in Table 6.

Paper B 97

Table 5. Cross-reference between observed problems and relevant

specific practices

Label Problem description Relevant specific practices and

proposed actions

P1-A Functions are not always

fully tested when delivered

for integration. This leads to

problems in the build process

or in integration and system

tests

3-1a

Ensure a handover to a dedicated

integration responsible

P1-B Errors are corrected that

should not be. This results

that new errors are

introduced, with higher

influence on functionality

and performance

1-1

Ensure that the strategy and

decision are followed through a

handover procedure

P1-C Errors appear in other

components than the changed

2-1a, 2-1b, 3-1b

Specify and enforce interface

descriptions for all dependencies

between the components

P2-A Problems appear as a

consequence that tests for the

components are not run in

the same environment as the

test system. Different

versions of hardware and test

platform are used.

3-1a

Ensure that the proper test

equipment as described in the

integration strategy is made

available to the developers. Check

that proper tests are performed

through a clear handover to an

integration responsible

P3-A Scattered architecture on the

server side as a result of the

decision to handle

communication in each

component

2-3b

Ensure that the rationale for

design decisions are documented

and communicated

98 Paper B

Table 6. Summary of analysis

of specific practices performed of total number

of problems found

Capability level 1 Capability level
2

Capability level
3

Case 1 3 /7

5 problems

0/4

No problem

0/5

No problem

Case 2 5/7

1 problem

2/4

No problem

15

No problem

Case 3 7/7

No problem

0/4

No problem

0/5

1 problem

The first of our two propositions was that the problems encountered in the

investigated units relate to the lack of execution of practices that are

described in the interim standard EIA-731.1. In the analysis of the data and

the comparison, we conclude that the problems found can be mapped to

specific practices which support our proposition. We have also observed

that it is primarily the inability to perform capability level 1 specific

practices that have lead to observable problems.

The second proposition was that successful execution of the product

integration can be mapped to specific implementation of practices described

in the interim standard. For many of the practices on capability level 2 and

3, no observations have been made that they were performed, but only one

problem has been reported that could be related to level 2 or 3 practices.

Based on this and the observations regarding capability level 1 practices, an

additional proposition has evolved and should be tested in future studies.

This can be formulated as follows: A successful execution of the product

integration can be mapped to specific implementation of practices described

in the interim standard for capability level 1.

5.4 Rival Explanations

The conclusion regarding the propositions above can be challenged and in

this section we examine rival explanations and analyze the possibility that

these give better reasons to the data found in the study.

Paper B 99

The first explanation examined is that there is no real connection between

the performance and the specific practices described and that the data match

only is coincidental. We consider this explanation to be unlikely due to two

facts. The first is that the interim standard build on long industrial

experience from companies and organizations from a wide set of areas and

applications. The second fact is that the pattern shown in this study is clear

and builds on three cases from two different organizations.

The second alternative explanation could be that the organizations due to

other factors succeed in the product integration process. However, if there

are other factors involved, these may also help in following the proposed

practices. This is also the situation in case three where the selected

technology has imposed a way of working on the product developers.

6. Conclusions and Future Work

Data regarding the product integration process from two development

organizations have been collected and compared to the requirements

described in a standard description of the product integration process. The

problems observed in the case study have been compared to practices that

describe activities that should improve the performance in the product

integration.

We can from the observations conclude that the basic level of practices

described in the interim standard EIA-731.1 includes activities that can help

the organizations to avoid problems which can appear when integrating

components to systems. Basic activities include (i) development and a clear

specification of the strategy for the integration, (ii) keeping well defined

interface descriptions up to date throughout the life cycle, (iii) that the

integration of components follow the strategy and (iv) that the assembly is

verified as planned.

We have also observed that there are indications that skilled use of

component technologies as described in [8] facilitates the integration

process. The factors contributing to this support are well described

interfaces, the need to test components before integration and the explicit

definition of the environment required by the components.

Through this investigation, partial answers have been found to our research

questions, but additional research is needed. Future work should include

steps to strengthen and further investigate the propositions made in this

paper. They are (i) improvement of validation of the results by providing the

feedback to the case participants in a form of discussions of accuracy of

100 Paper B

collected data and the results at a common workshop, and (ii) additional

case studies in industry. Additional descriptions of practices in standards

and models need to be investigated in relation to industry practices. There is

also a need to analyze the similarities and differences in the different

standards and models. One additional research direction has been indicated

with the purpose to confirm or refute the indications in this paper and in [5]

that component technologies assist in the implementation of successful

software product integration. Of specific interest may the integration

problems related to COTS be.

References

[1] EIA/IS-731.1, Systems Engineering Capability Model, Electronic Industries

Alliance (Interim Standard), (01 Aug 2002)

[2] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA,

(2003).

[3] http://www.eia.org/. (Link valid April 2005.)

[4] http://www.incose.org/. (Link valid April 2005.)

[5] Larsson, S., I. Crnkovic, F. Ekdahl, “On the Expected Synergies between

Component Based Software Engineering and Best Practices in Product

Integration”, Euromicro Conference, France, August 2004, IEEE

[6] EIA/IS 731.2, Systems Engineering Capability Model Appraisal Method,

Electronic Industries Alliance (Interim Standard), (01 Aug 2002)

[7] Yin R. K., Case Study Research: Design and Methods (3rd edition), ISBN 0-

7619-2553-8, Sage Publications, 2003

[8] Szyperski, C. et al, Component Software -- Beyond Object-Oriented

Programming, (2nd edition), ISBN 0-201-74572-0, ACM Press, New York,

(2002)

Paper C

PRODUCT INTEGRATION IMPROVEMENT

BASED ON ANALYSIS OF BUILD STATISTICS

Stig Larsson, Petri Myllyperkiö, Fredrik Ekdahl

Presented in a shorter version at the ESEC/FSE Conference,

Cavtat, Croatia, August 2007

Avaiable from ACM: http://doi.acm.org/10.1145/1287624.1287696

Abstract

Process improvement efforts based on best practices and standards such as

CMMI use appraisal results as input and focus on implementing processes

as described in reference models. Since these models are of general

character the conclusions from the assessments could easily overlook

problems experienced in the daily work. In addition, process improvement

programs often fail to engage practitioners. To improve this, data that can

be related to the daily work can help. This paper reports on the results from

a study performed to understand how data based on measurements can

complement project appraisals in finding improvement possibilities. The

effect is that conclusions from appraisals can be corroborated by metrics,

and also that additional areas for improvement can be identified. A method

for mapping project data to different practices and combine this with

project appraisals to form a basis for focused performance improvement is

proposed. In our study the product integration processes in four projects

from three organizations have been examined using the proposed method

and the findings are presented. The study demonstrates how the two

components, the collected metrics and appraisal results, complement each

other in the effort to develop product integration process improvement

effectiveness.

1. Introduction

In industrial software projects, it is common that product integration

becomes a bottleneck as many problems are first revealed in this process

[1][5]. Industrial standards and models include practices that describe what

is considered to be useful practices for product integration [3][6][8][14][15].

Main themes in these descriptions are; preparation of the environment,

handling of interfaces to ensure that different parts of the system can

interact, preparation of parts that are to be integrated, and the actual

integration including the initial verification of the resulting system. The

practices can be used as a basis for appraisals to provide guidance for

104 Paper C

improving the process. One risk organizations using this method face is that

it typically involves managers and high-profile developers as these are

knowledgeable in the processes [2].

An additional way that is used to identify improvement activities is to define

a metrics program for the organization. This is often part of the models and

standards for product development; the implementation of a full metrics

program is often a challenging task [4]. However, data is often collected

from parts of the processes. This gives a possibility to use this data for

identifying improvements. For product integration, statistics from build

activities are examples of data that are often collected or easily obtained.

When already existing metrics are used, there is a risk that these to not result

in improvement activities where the biggest gains can be made.

We propose that already existing data from the development projects can be

used in combination with appraisal results when selecting and prioritizing

improvement activities. This paper describes a method that combines the use

of process data and appraisal results for identifying and prioritizing

improvement activities.

Our hypothesis is that the method we propose can increase the accuracy and

extend the findings and results from existing appraisal methods in the

identification and prioritization of improvement activities. We also propose

that this can be achieved with an effort that is substantially smaller than

what can be gained.

The method has been tested on four different projects in three organizations

with focus on the product integration process. All these organizations are

developing industrial control systems, with real time requirements. This

makes the integration very important as many of the resulting performance

characteristics are determined by how well the parts of the product or

system work together.

The study presented in this paper is a continuation and extension of the

research presented in [16][17][18] which investigates the use of project and

organization appraisals for identifying improvement activities, and what

support can be found in standards and models regarding product integration.

The remainder of this paper is organized as follows. Section 2 gives an

introduction to the product integration process area and section 3 describes

related work. Section 4 explains the research method, including a

description of the proposed method for identifying improvement activities.

Section 5 includes a brief description of the organizations and projects that

have been investigated. Section 6 contains the results from the data

Paper C 105

collection and the appraisals performed, and a discussion of the results. A

discussion on the limitations of the results and the threats to their validity

are found in section 7. Finally, conclusions and future work is presented in

section 8.

2. Product integration

This section describes product integration and the relation between build

activities and product integration. The main purpose of product integration

is to assemble the product from product components, and ensure that the

result of the integration functions properly. For software products, the

integration may be made in several steps, building components from other

components. A component is in this context used with a broad definition as

in [11], describing “a recognizable ‘chunk’ of software”.

In software product development the concepts of integration and build are

closely related. Each component needs to be built, and included in builds

together with other components as one of the activities of the integration.

However, not all builds lead to integration. In concurrent software

engineering, the development of components often takes place in an

independent development environment, in which the developer creates,

debugs, and tests the component. In order to execute the component for

debugging or unit testing purposes it needs to be built together with other

components. The integration takes place when the separately developed and

tested components are checked back to the development mainline and built

together with the other separately developed components. This process is

depicted in the Figure 1.

Figure 1. Example of build and integration timeline in a project

106 Paper C

Product integration is included in different ways in standards and models

used for describing product development. When selecting a reference model

as a guideline for the activities, it is important to use one that fits the

organization and the intended use. In this paper we use the definition and

description of product integration from the Capability Maturity Model

Integrated (CMMI) from the Software Engineering Institute at Carnegie

Mellon University [6]. The motivation to use CMMI is that the model

separates the product integration process from other processes explicitly

which simplifies the reasoning about the integration activities.

3. Related research

This section describes research related to process improvements based on

metrics and reference models.

Using metrics as a basis for improvements have been extensively described.

One important reference is [4] where practical guidelines for basing process

improvements on measurements are described. The authors define practical

guidelines based on the Goal Question Metrics paradigm, and propose that

explicit modeling of the process help in structuring the measurement plan.

They also acknowledge that setting up a measurement program is

challenging. How software process improvement can be based on

measurements is described in [7], where the combination of using metrics

and process appraisal is stressed. However, in neither of these papers, the

direct mapping between the measurements and practices as described in the

used reference models is used.

In [12], an example of an implementation of a metrics program for small

projects is described. Here, one of the conclusions is that a metrics

collection program should start with a small set of metrics that will show the

benefits of collecting data. This is in line with our proposal that already

existing measurements should be used to as a starting point. Also, that the

measurements are directly connected to the activities performed by

practitioners is supported as this will encourage software personnel to

collect data.

Houston [13] studied the integration problems occurring in an avionics

system. Types of integration problems were identified based on the

functionality where the problem occurred. By classifying the integration

problem reports and estimating the expected handling time through

simulations of the report types several possible SPI activities were

Paper C 107

identified. The study complements our research as one alternative route to

find improvement activities.

Product integration processes are included in different reference models for

product development [3][6][8][14][15]. These can be used as a source for

improvements, and are a part of the method described in this paper. One

concern with reference models is the inadequate validation of them; it is

difficult to find research looking into the validity of the content of these

reference models. However, the reference models are developed based on

experience from a large number of organizations, ensuring that important

considerations are taken into account. The activities in the product

integration area have also been the subject of interest from the agile

community where frequent builds is one of the cornerstones. One example is

[10] where Fowler describes the requirements on developers: before

committing back to mainline the developer would need to update his work

area with the latest mainline, i.e. build against the latest changes of other

developers. Only after that, integration into the mainline would be

permitted. However, the connection between metrics and changes in the

procedures has not been investigated.

The conclusion from reviewing related research is that the combination of

using metrics and appraisals is described, but that mapping the metrics

directly to the practices and activities appears to be novel.

4. Research method

This section describes the three steps performed to investigate the proposed

working method. The aim of this research study is to understand how

problems in product integration in an industrial setting can be identified and

reduced through combining appraisals and metrics collection. It has been

conducted as a multiple-case study, with the units of analysis being the

methods for process improvements for product integration processes.

In this research we have identified two research questions based on our

hypothesis: 1) Can the additional activities in the proposed method increase

the accuracy and extend the results from appraisals?, and 2) Is the effort

needed to perform the additional activities significantly less than the gains

achieved through avoiding unnecessary work by implementing the identified

improvement activities?

The research has been performed in three steps. First, a method which

combines project appraisals and data collection was described. The proposal

was based on our observations indicating that project appraisals do not take

108 Paper C

full advantage of data already available in the organizations, and that

additional support for making use of available data in a structured way was

needed.

The second step was to use the method in an industrial environment. Four

projects in three different organizations have been examined.

Finally, the method was evaluated, and improvement proposals were

discussed.

4.1 Proposed working method

The proposed method for using appraisals in combination with project data

is presented in this section as laid out in Figure 2.

According to the proposed method a project appraisal is conducted and

process data collection is performed independently of each other. The

project appraisal requires an established appraisal methodology based on an

appropriate reference model that will provide valid and repeatable results

over time.

The data collection requires an agreement on which data to be collected and

on the procedures for collecting, storing, analyzing and maintaining the data.

To ensure that the available data is relevant for the use with the appraisal

results, we propose conducting a workshop as Step 1 where the data

collection routines are examined. The purpose is to ensure that the collected

data can be used for the mapping to the chosen reference model.

Step 2 of the method is the actual data collection. This is done by

practitioners and should as much as possible be automated, based on tool

support.

Step 3 contains an identification of the direct cause of the data. The

collected data is classified to ensure proper use of the domain knowledge

held by the practitioners. The identification terms are depending on the

process area and the terminology used by the practitioners. Note that this

identification should describe the direct event resulting in the data. An

example of the events identified for the build and integration process can be

found in Table 3.

As a fourth step, a mapping based on the chosen model or standard is made

by process experts to ensure that the root cause is targeted in the

improvement activities. One important aspect is the criteria used for the

mapping in relation to the selected model. In this investigation, the mapping

has been based on the experience of the researchers knowledgeable in

Paper C 109

process development and improvement, and the definition of general criteria

needs to be performed for a large number of process areas and remains a

subject for further research.

Figure 2. Proposed method for finding improvement activities

The invention in this method is the activities leading to the mapping

between the collected data and the reference model used as a basis for

improvement planning. The added value is that indications from the

appraisals can be substantiated through supporting data, but also that new

areas for improvement needs can be identified.

4.2 Method implementation

This section describes how the method has been used to find improvement

activities for the Product Integration process area to test our hypothesis.

Information has been compiled through appraisals in the four projects

involved and through collection of data from the corresponding build

processes. The appraisals were based on CMMI and performed in

accordance with the requirements for Class C appraisals as defined in by the

Step 1:

Identification,
evaluation and

adaptation of

metrics

Step 2:

Metrics

collection

Step 4:

Model

mapping

Done by

practitioner

Step 3:

Event

identification

Done by

process experts

Project

appraisal

Improvement

planning

Done by

process experts

Done by

process experts
and practitioners

Step 1:

Identification,
evaluation and

adaptation of

metrics

Step 2:

Metrics

collection

Step 4:

Model

mapping

Done by

practitioner

Step 3:

Event

identification

Done by

process experts

Project

appraisal

Improvement

planning

Done by

process experts

Step 1:

Identification,
evaluation and

adaptation of

metrics

Step 2:

Metrics

collection

Step 4:

Model

mapping

Done by

practitioner

Step 3:

Event

identification

Done by

process experts

Project

appraisal

Improvement

planning

Done by

process experts

Done by

process experts
and practitioners

110 Paper C

Software Engineering Institute [19]. The build process data was collected by

the practitioners who also made a first identification of the cause of build

failure. A further mapping of the build failures was then done by the

researcher based on the Product Integration process area as defined in the

CMMI.

Project appraisals were conducted for all projects as a means to understand

how the product integration was performed and what problems could be

expected. In our study, the appraisals were performed by one researcher for

each of the cases. To ensure consistent appraisal findings, a standardized

appraisal method is used [9]. Interviews and document reviews were carried

out, and evidence was collected on the execution of Product Integration

practices. The CMMI describes goals for all process areas included, and for

Product Integration, three goals are defined: Prepare for Product Integration,

Ensure Interface Compatibility, and Assemble Product Component and

Deliver the Product. Each of the goals is supported by specific practices that

are used as guidance for organizations that would like to achieve the goals.

The specific practices are listed in Table 1 together with the goals they

support. Note that Specific Practice 3.4 has not been considered further in

this study as the activities are not directly related to the integration

activities.

The interviews were performed in groups with at least two representatives

for the organization with good knowledge about the practices used. The

discussion was lead by researchers using the description of the different

practices from the reference model as a discussion guide. Notes where

captured on observation forms, structured in accordance with the Product

Integration specific practices. The document reviews included investigations

of the process descriptions for each organization as well as project

documents such as project plans and configuration management plans. Also

for the document reviews, the observation forms based on specific practices

were used. An example of the observations compiled based on the

interviews and document reviews and the results of the analysis can be

found in Table 2.

Paper C 111

Table 1. Product Integration Specific Goals (SG) and Specific Practices

(SP) in CMMI

SG 1: Prepare for Product Integration

SP 1.1: Determine Integration Sequence

SP 1.2: Establish the Product Integration Environment

SP 1.3: Establish Product Integration Procedures and

Criteria

SG 2: Ensure Interface Compatibility

SP 2.1: Review Interface Descriptions for Completeness

SP 2.2: Manage Interfaces

SG 3: Assemble Product Component and Deliver the Product

SP 3.1: Confirm Readiness of Product Components for

Integration

SP 3.2: Assemble Product Components

SP 3.3: Evaluate Assembled Product Components

(SP 3.4: Package and Deliver the Product or Product

Component)

The inclusion of additional process areas in the investigation was also

considered and analyzed. The related process areas as described in [6] that

were judged to be of interest are Technical Solution, Verification,

Validation, and Configuration Management. However, as the collected

statistics from build activities are less direct as a basis for the examination

of the performance for practices in these process areas than in Product

Integration, a decision was made to focus only on Product Integration.

112 Paper C

Table 2. Example Observation

SP 1.1 Determine the product-component integration

sequence.

Observation:

Project manager plans the

integration points and

communicates to the

development team.

The plan contains the high level

description of functionality of

components intended to be in

the integration.

Integration sequence doesn’t

define the expected functionality

in detail; usually all that is

available is taken into build.

Some exceptions exist.

Analysis

+ Integration points

planned in advance and

coordinated with the

relevant stakeholders

 - Integration sequence

defines functionality

on a too high level to

be useful for the

developers, and ad-

hoc deliveries are done

Conclusion

SP 1.1 is not performed

as intended.

In parallel to the appraisals, the data collection method was implemented.

The described working method includes four steps. The first is to identify

and decide on what metrics is useful. After discussions and preliminary data

collection, it was decided to use statistics from build activities for each of

the projects in the study. The second step, data collection, was made either

automatically by tools or performed by practitioners. For each build, the

result was recorded to be a successful build or a failure. For failing builds,

the immediate cause was recorded, which is the third step in the method.

Examples of immediate cause include; files not delivered for integration as

decided, faulty include files specified in the build script, insufficient space

for result files in the build environment and errors in linking due to changes

in interfaces. Each of these types of errors can depend on missing practices

and working methods, insufficient tools or a combination of them. Also the

delay in making a planned build available for the project was recorded. This

information can be used in the prioritization of the changes in working

methods and procedures. The period over which the data was collected

ranges from two to nine months for the different projects.

Paper C 113

After the build data collection and an initial fault categorization in the

projects, a mapping to the used reference model was made as the final and

fourth step in the method. This mapping was based on the experience of the

researchers through reasoning about each of the errors, linking them to a

specific practice as specified for Product Integration in [6]. Through the

investigation, we have collected a number of typical cases of mappings

between the errors and the specific practices. The set of connections

obtained from this study can be found in Table 3. This table can be seen as a

first step towards formulating a set of criteria for the mapping the

relationships. To verify the mapping, the results were reviewed by

representatives for the participating organizations.

To implement this method in an organization, three prerequisites are

necessary. First, the organization needs to have or decide on a reference

model that can be used for appraisals. Secondly, sufficient knowledge of the

selected method must be available in the organization; relying on external

resources for the implementation will lead to problems when these are not

longer available. Finally, the organization must have data from the process

areas of interest, or have the means to easily define and implement data

collection.

4.3 Evaluation of the Method

The evaluation of the proposed method has been performed through an

assessment based on the collected data. It was performed as workshops, both

by the research team and in separate workshops together with

representatives for the development organizations. Two criteria were

formulated to support the evaluation of the model and were based on our

research questions and our hypothesis. The first criterion was to understand

if different results are obtained from the appraisals and the mapping based

on data, giving additional information when selecting and prioritizing

improvement activities. The second was that the additional effort needed

using the proposed working method should be smaller that what can be

saved.

114 Paper C

Table 3. Relating errors to specific practices

Error and/or immediate cause for error Specific practice

Syntax error in build script

Build computer crash

Problem in configuration management
system, delivery not included in build

Problems overwriting files from earlier
files due to errors in scripts

Error to clean build area

1.2 Establish the Product Integration
Environment

Build area too small, build fails, no
routine to check this

1.3 Establish Product Integration
Procedures and Criteria

Compile error due to changed type in
common interface

2.1 Review interface Descriptions for
Completeness

Compile error in one unit due to changes
in another

Compile error due to “old” changes of
interface

2.2 Manage Interfaces

Undefined identifier, code obviously not
compiled

Functional error in code resulted in new
build

Component not compiled in all
environments before delivery

Linker error, identifier conflict

Error at smoke test

3.1 Confirm Readiness of Product
Components for Integration

Unidentified identifiers, definition not
checked in

Component included in library, but not in
build

New component not checked in

Component depending on changes in
other module not included in the build

Failed to synchronize delivery with other
subproject

3.2 Assemble Product Components

Paper C 115

5. Description of cases

This section includes a description of each of the four case projects. Three

product development organizations have been investigated. For two

organizations one project has been investigated, Case 1 and 2. For both of

these organizations, the project investigated is the integration project which

mainly serves to integrate functionality developed in several other separate

projects. This way of integrating enables the organization to run function

development in parallel, but puts high demands on the integration process.

For the third organization, two product development projects have been

incorporated in the study, Case 3 and 4. In these, the product integration is

performed in the same project as the functional development.

All products developed in the case organizations are used for industrial

purposes and have high real-time, availability and reliability requirements.

For each of the cases, characteristics such as size of software product and

organization, and project organization are described.

Case 1 The study was performed at a unit developing industrial control

systems. The system has evolved through several generations, and a new

generation of the system is currently being developed. Compared to the first

generation, where the effort was three man months, the effort for software

development in the current development is estimated to about 100 man

years.

In essence, the controller has layered architecture and within layers,

component-based design. The implementation consists of approximately

2500 KLOC of C language source code divided in 400-500 components,

organized in 8 technical domains. The software platform defines an

infrastructure that provides basic services like: a broker for message-based

inter-task communication, configuration support, persistent storage handling

and system startup and shutdown.

Case 2 The organization in Case 2 is the largest in the study. The product

consists of more than three MLOC and the number of developers involved is

close to 80. The organization develops a complex real time control product

including event, trend and error handling, data collection, communication,

and operator interface. The product is part of a suite of about 30 products,

forming a system that is used in process industries. The development is

tightly coordinated with the development of these other products. The

development process varies between different groups in the organization,

but all parts are delivered to the build and integration process. The build

team delivers the results from the builds to the group performing automated

116 Paper C

regression tests. These two teams have possibilities to capture integration

problems and to analyze background problems. The builds are performed as

daily builds, weekly builds and baseline builds. The daily builds are

performed to ensure the stability of the code base, and have the build

environment adapted to additions in functionality. Weekly and baseline

builds are made available to other parts of the organization for verification

purposes. Development cycles are between 12 and 18 months.

Case 3 The project develops embedded software for new generation of

protection relays for electrical network. The product architecture consists of

base software, application components, and higher level services, such as

communication services. The base software is a platform that provides the

running environment for the application components and services, and

separates them from the hardware. The software is built of source-code level

components that are compiled and linked to a single executable binary. Most

of the components are developed by the organization but also some 3rd

party components are used. The project is responsible of developing the

base software and integrating it with the service and application

components, which are partly developed in separate projects. The outcome

of the project is a reference configuration which will be the baseline for the

actual productization projects, including base software, service components

and reduced subset of application components. Thus, the studied

integrations include all types of the components used in the product.

The development organization is small with around 15 developers. The main

development team is located in one site, but few persons from other sites

have participated in the development partially. At the time of the study the

project size was around 500 KLOC, however the final products built on

technology will be larger than that.

Case 4 The project develops embedded software for new generation of

protection relays for electrical network. The product architecture resembles

that of Case 3, i.e. it consists of base software, application components, and

higher level services. The product has some common components with Case

3, but it is based in other hardware than Case 3. In addition some

components have a longer history, being released in the existing products.

However there is remarkable development work ongoing in the project. As

in Case 3, the software is built of source-code level components, either

developed by the organization or 3rd party, that are compiled and linked to

single executable binary. The project is responsible of further development

of the base software and integrating it with the service and application

Paper C 117

components, which are partly developed in separate projects. The outcome

of the project is a new product.

The development organization is small with around 15 developers. The main

development team is located in two sites in two different time zones. At the

time of the study the integrations were performed only to the components of

base software and service components, while as the application components

were not yet included in the integration. The project size was over 500

KLOC, but when integrated with the application components, it is expected

to be >1000 KLOC.

6. Results and discussion

This section includes the results from the data collection and appraisals, and

a discussion about the results. The data is presented in four tables to show

the different types of data that have been collected. These are the percentage

of failed builds, the portion of failed builds related to the specific practices

in CMMI combined with the results from the project appraisals, the delays

that the failed builds have caused, and the extra effort needed to use the

working method proposed in this paper. Each of these tables gives feedback

to the organizations and can be used as a basis for process improvement

activities.

In Table 4, the basic statistics from build activities for each of the projects

are listed. The table includes the number of builds investigated and the

portion of the builds that have failed (including results from builds not

passing startup tests).

Table 4. Statistics from build activities

Number of

builds

% builds

with errors

Case 1 240 28

Case 2 126 19

Case 3 776 16

Case 4 107 32

The projects in Cases 1 and 2 are typically performing daily builds. For the

project in Cases 3 and 4, the builds are performed continuously, and occur

several times every day. In Case 4, the developers did not have the process

118 Paper C

to do frequent check-ins. This was done for Case 3 and we note that this

seems to reduce the portion of failing builds, which needs further research.

In Table 5, the errors have been divided on the different specific practices of

the process area Product Integration as described in the CMMI. The

numbers indicates the ratio of errors that can be related to a particular

practice as classified according to our proposed method. The table also

includes the results from the appraisals in the development units. If the

conclusion from the appraisal is that a practice is performed by the project,

this is indicated with a plus sign (+). If the results are that the practice is not

performed, this is indicated with a minus sign (-).

It is noticeable that for some of the specific practices no build problems

have been found. In the mapping of erroneous builds, no problems were

attributed to specific practice “1.1 Determine Integration Sequence” and

“3.3 Evaluate Assembled Product Components”. As the statistics from build

activities do not match any of these practices, this is in line with the

expectations. However, it is important to remember that these practices have

been included in the model as they are considered as important parts of the

product integration process. Also, the practices depend on each other and

the root cause for some of the problems linked to specific practice “3.2

Assemble Product Components” could for example be in the area of the

integration sequence. However, this needs to be further investigated in each

improvement activity.

An additional interesting observation is that for two practices, errors were

found even if the appraisal results showed that the practices are performed.

Three possible reasons for this have been found. The first is that the

practices may not be fully followed even if the appraisal results indicate that

they are implemented. This can be the result of an inadequate appraisal

method, or the perception in the organization that a practice is made even if

it is not. The second is that the mapping is incorrectly made. However, this

explanation has been abandoned after discussions with practitioners

indicating that the mapping is correct, whereas the adherence to practices is

perceived to vary between individuals. A third possible reason is that the

chosen reference model does not fully describe the requirements on

activities needed to ensure a successful implementation of the processes. To

understand if this is the case, a validation of the model is needed which in

the case of CMMI is subject for further research.

Paper C 119

It should be noted that a number of the erroneous builds in Case 2 were not

possible to classify and link to a practice. The reason for this is the lack of

complete data. In this case, the direct cause of the failure has not been

recorded in a way that makes it possible to do the analysis. These fault

instances occurred early in the collection of data, and through a discussion

with the practitioners, better quality of the data for later builds was obtained.

This led to an additional step in the proposed method; the evaluation and

enhancements of existing data collection is needed as the first step. Even if

data is already collected in the projects, small changes can enhance the

usefulness both for the organization and for research purposes. It can also be

noted from all cases in the study that the interest for the results from the

investigation increased over time as results became available.

One important factor for product development projects is to avoid or reduce

delays. This is especially important for activities that are providing results

for many project members and other stakeholders. Typically, results from

the product integration are used as a basis for further development, and for

verification and validation activities. This means that a delay of an expected

build with a specific functionality may affect the project progress

substantially. This makes it important to understand and measure the delays

in the integrations made available through builds. By linking the errors and

the corresponding delays to specific practices, it will be possible to

determine what is causing the most severe delays. Table 6 shows the delay

times as measured in the build process in the four case projects divided on

specific practices, based on the mapping presented in Table 5.

The information in Tables 5 and 6 can be used to prioritize the improvement

activities. An example of this is in Case 1 where more than half of the

problems are due to practice “3.1 Confirm Readiness of Product

Components for Integration” and where the average time for correcting the

error is more than 3 hours. Even if the “3.2 Assemble Product Components”

also is a frequent source for problems, the average delay is less than half.

This gives the organization input for actions to ensure that components are

ready for integration. It is also interesting to see that this is also one practice

that was not considered to be performed in the appraisal of Case 1.

120 Paper C

Table 5. Portion of build errors and performed activities related to

CMMI Specific Practices for Product Integration

Specific Practice Case 1 Case 2 Case 3 Case 4

1.1 Determine

Integration

Sequence

0%

+

0%

-

0%

-

0%

-

1.2 Establish the

Product Integration

Environment

6%

+

29%

-

11%

+

11%

+

1.3 Establish Product

Integration

Procedures and

Criteria

2%

-

0%

+

0%

-

0%

-

2.1 Review Interface

Descriptions for

Completeness

2%

-

0%

-

0%

+

0%

+

2.2 Manage Interfaces 8%

-

8%

-

9%

-

26%

-

3.1 Confirm Readiness

of Product

Components for

Integration

53%

-

17%

-

45%

-

63%

-

3.2 Assemble Product

Components

30%

+

29%

+

35%

-

0%

-

3.3 Evaluate

Assembled Product

Components

0%

+

0%

+

0%

-

0%

-

Errors not possible to

classify (no detailed

enough cause for error

recorded

0% 17% 0% 0%

Paper C 121

Table 6. Maximum and average time in hours between failed build and

correct build classified per practice

Specific Practice Case 1 Case 2 Case 3 Case 4

1.1 Determine

Integration

Sequence

- - - -

1.2 Establish the

Product Integration

Environment

8

2.9

1.3

0.3

6.5

2.5

6.4

3.3

1.3 Establish Product

Integration

Procedures and

Criteria

8

8

- - -

2.1 Review Interface

Descriptions for

Completeness

2.5

2.5

- - -

2.2 Manage Interfaces 8

5.5

2

2

2.4

0.8

34

11.5

3.1 Confirm

Readiness of

Product

Components for

Integration

8

3.3

14

7.25

6

0.8

15

6.75

3.2 Assemble Product

Components

8

1.8

7

2.5

14

1.4

-

3.3 Evaluate

Assembled Product

Components

- - - -

Errors not possible to

classify (no cause for

error recorded or not

detailed enough for

mapping)

- 5

5

- -

122 Paper C

The first criterion for evaluation of the proposed method is to understand if

we get additional information through using a combination of appraisals and

collection of data that is linked to practices. Our conclusion from the data in

this section is that additional information is obtained. Through the proposed

method, the problem areas with regards to product integration for each of

the organizations were identified. Improvement activities based on this

evaluation method can address problems that are experienced by the

practitioners in the organization and where improvements can be measured.

The second criterion used to evaluate if the proposed method is helpful is to

look at spent versus reduced effort in the projects. To examine this, we have

estimated the additional effort used to execute the method. Unfortunately,

for the data collection step in the method it is difficult to make a distinction

between the additions and what would have been performed anyway.

However, Table 7 includes an estimate for the total effort.

This effort should be compared to the delays in the projects due to erroneous

builds. For the most frequent reasons for erroneous builds, the delay is more

than 2 hours for case 1, 2 and 4. If the project can avoid one erroneous build

which would have delayed five persons for two hours, this is equal to the

additional effort in case 1 and 4. As projects in these organizations are big,

the organizations judge that more than five people normally are delayed

until an erroneous build is corrected. The indication we get from comparing

the extra effort for the proposed method with the reduction of delays in the

projects is that the benefits are substantial, but depends on how successful

the resulting improvement activities are.

To summarize, we examine the two criteria that have been used to evaluate

the method and to investigate our two research questions. The first criterion

concerns the additional information that can be gained. We have seen in the

case studies that observations from the appraisals can be supported by data,

but also that additional improvement activities can be identified. The data

expose deficiencies not perceived by the organization as problems.

The second criterion used is to understand if the additional effort spent

using the method is considerable less than what can be gained in a project

by avoiding unnecessary work. The collected data is partly based on

estimations, but indicate that the savings from implementing improvement

activities based on the findings from using the method are substantial.

Paper C 123

Table 7. Additional effort spent implementing the proposed method

Average effort in person-hours

Activity Case1 Case2 Case 3 Case 4

Workshop for changing data

collection method per

project

(measured by researchers)

0 5 0 0

Additional data collection

effort (estimation by

development organizations)

0 0 0 0

Description of errors

per build

(estimation by development

organizations)

0 0,1 0,1 0,1

Mapping errors to practices

per failed build

(estimated by researchers)

0.1 0.1 0.1 0.1

Summarizing data for

improvement activity

proposal per project

(measured by researchers)

3 2 4 2

Total extra effort per project

WS+DC*NoB+(DE+ME)*NoFB+SD

WS: Workshop

DC: Additional data collection

NoB: Number of builds

DE: Build error description

ME: Mapping errors to practice

NoFB: Number of faulty builds

SD: Summarize data

10 18 27 9

124 Paper C

7. Limitations and validity threats

This section examines the threats to validity in this paper, and through this

also describes the limitations of the study

As proposed in [20], four types for validity have been considered in this

study; construct, internal, external, and reliability.

Construct validity relates to the data collected and how this data represent

the investigated phenomenon. Internal validity concerns the connection

between the observations and the proposed explanation for these

observations. The possibilities to generalize the results from a study are

dealt with through looking at the external validity. Finally, the reliability

covers the possibilities to reach the same conclusions if the study was

repeated by another researcher.

The construct validity is addressed through multiple sources for the data in

the project appraisals through more than one interviewee for each case as

well as using document reviews. Additional interviews with other

stakeholders would have increased the construct validity. However, this

would have required more intrusive investigations and would limit the

access to the organizations. The use of a model as a basis for the interviews

and document reviews ensures that the data collected is relevant. For the

build data, discussions were held with the practitioners in all cases to ensure

that the data was relevant, and adjustments where done to reflect the way of

working. One example from case 2 is that intermediate builds are used to

verify that the build environment is working. This data was included in the

first analysis, but after discussions with the integration team, this was

clarified. These considerations are clearly indicated in the underlying data.

The internal validity was addressed in several ways. For the statistics from

build activities, the mapping to the process practices was done as described

in several steps to avoid predetermined connections. Also, through involving

practitioners in the direct identification and review of the mapping to the

practices reduces the risk regarding the internal validity. Also for the

appraisals several steps are taken to ensure that the mapping and

understanding is correct. A detailed description of the methods used can be

found in [9]. One risk related to the internal validity is that we through the

investigations and through participation in the discussions of product

integration affect the processes while collecting data. This is specifically

relevant as the data collection is done over a long period of time.

Paper C 125

The external validity is addressed through the use of our proposed method in

four cases in three different application domains. One threat is that all cases

are from the same multinational company. However, the investigated

organizations are from different divisions, have distinctly different

development processes, and the products are intended for different

application domains.

The reliability of the study has been addressed through the detailed

description of the procedure in this paper as well as using a procedure for

appraisal based on [9] used in the study.

8. Conclusion and future work

This paper proposes and validates a method in which appraisals and data

collection are combined to more efficiently and accurately identify

improvement activities. The method has been examined through use in four

cases. The results from the case studies support our hypothesis that the

proposed method can increase the accuracy and extend the findings from the

existing appraisal methods in the identification and prioritization of

improvement activities. The study indicates that this can be achieved with

an additional effort that is significantly smaller than what can be gained in

one project through implementing the resulting additional improvement

activities.

The proposed method combines project appraisals with a structured way of

mapping data from the process to practices described in a selected reference

model. The steps in the method are to identify and define what metrics are

to be collected, to collect the data, to identify the direct cause for the

metrics, and finally to map the direct causes to the practices. The third and

the fourth step are additions to current used practices and add value as

results from appraisals and also extend the results by the identification of

additional areas needing improvements.

There are four main reasons why this method can enhance the effectiveness

of improvement activities in the area of build and product integration

activities. First, the focus in the development projects is normally on getting

the build through. This method gives possibilities with small means to look

for the underlying problems avoiding the repetition of problems. The second

reason is that it helps in using proven good practices as a model for finding

root causes in a structured way. A third effect is that areas that are

considered to be performed in the organization are exposed as not being

effective. Finally, the method gives an increased focus on the big picture,

126 Paper C

and will help establishing deeper understanding in the organization of the

importance of product integration.

There are several pointers for further investigations. The current study only

looks at the erroneous builds. Additional information can be gained from

investigating integration problem reports similar to what has been performed

in [13]. The collected data also indicates that continuous integration reduces

the total “down-time”, i.e. the average time to fix a build: does continuous

integration affect that if used properly. However, to draw any conclusions

we think that a dedicated study on this topic would be valuable. Finally,

additional investigations into practices that were not connected to any

erroneous builds are interesting as a means to find root causes.

Acknowledgements

The authors wish to thank ABB and all participants in the study for all

support. This work is partly funded by the Swedish Knowledge Foundation

(KKS).

References

[1] The Economic Impacts of Inadequate Infrastructure for Software Testing, RTI,

National Institute of Standards and Technology, Gaithersburg, MD, USA, May

2002

[2] Aaen, I. Software Process Improvement: Blueprints versus Recipes, IEEE

Software, Volume 20, Issue 5 (September/October 2003), 86-93

[3] ANSI/EIA-632-1999, Processes for Engineering a System, Government

Electronic and Information Technology Association, Electronic Industries

Alliance, 1999.

[4] Briand, L.C., Differding, C.M:, Rombach, H.D. Practical Guidelines for

Measurement-Based Process Improvement, Software Process: Improvement and

Practice, Volume 20, Issue 5, (1996), 253-280

[5] Campanella, J., editor, Principles of Quality Costs: Principles, Implementation,

and Use, 3rd edition, ASQ Press, ISBN 0-87389-443-X, Milwaukee, WN, USA,

1999

[6] CMMI® Product Development Team, CMMI® for Development, Version 1.2.

Technical Report CMU/SEI-2006-TR-008, Pittsburgh, PA, USA, 2006

[7] Dybå, T., Skogstad, O. Measurement-based software process improvement,

Telektronikk, Volume. 93, Issue. 1, (1997), 73-82

Paper C 127

[8] EIA-731.1, Systems Engineering Capability Model, Electronic Industries

Alliance, 2002.

[9] Ekdahl, F. and Larsson S. Experience Report: Using Internal CMMI Appraisals

to Institutionalize Software Development Performance Improvement. In

Proceedings of 32nd EUROMICRO Conference on Software Engineering and

Advanced Applications (Euromicro’06) (Cavtat, Croatia, August 29-September

1, 2006). IEEE, Los Alamitos, CA, USA, 2006, 216-223.

[10] Fowler, M., Continuous Integration,

http://www.martinfowler.com/articles/continuousIntegration.html, (2006)

[11] Gorton, I. Essential Software Architecture. Springer, Berlin Heidelberg

NewYork, 2006

[12] Grable, R. et al., Metrics for Small Project: Experiences at the SED, IEEE

Software, Volume 16, Issue 2, (March/April 1999), 21-29

[13] Houston, D. An Experience in Facilitating Process Improvement with an

Integration Problem Reporting Process Simulation. Software Process

Improvement and Practice 11,4 (Jul 2006), 361 – 371.

[14] ISO/IEC 12207:1995, Information technology – Software life cycle processes,

ISO/IEC 1995.

[15] ISO/IEC 15288:2002, International Standard, Systems engineering – Systems

life cycle processes, ISO/IEC 2002.

[16] Larsson, S., Crnkovic I. and Ekdahl F. On the Expected Synergies between

Component Based Software Engineering and Best Practices in Product

Integration, Euromicro Conference, France, (2004), 430-436

[17] Larsson, S. and Crnkovic, I. Case Study: Software Product Integration

Practices, PROFES 2005 Conference, Oulu, Finland, (June 2005), 272-285

[18] Larsson, S. Improving Software Product Integration. Licentiate Thesis,

Mälardalen University, Västerås, Sweden, 2005

[19] SCAMPI Upgrade Team, Appraisal Requirements for CMMI, Version 1.2

(ARC, V1.2). Technical report CMU/SEI-2006-TR-011, Pittsburgh, PA, USA,

2006

[20] Yin R. K., Case Study Research: Design and Methods (3rd edition), Sage

Publications, Thousand Oaks, CA, USA, 2003

Paper D

HOW TO IMPROVE SOFTWARE INTEGRATION

Stig Larsson, Petri Myllyperkiö, Fredrik Ekdahl, Ivica Crnkovic

Submitted to Information & Software Technology Journal

Abstract

In software-intensive systems the integration becomes complex since both

software and hardware components are integrated and run in the execution

environment for the first time. Support for this stage is thus essential.

Practices for Product Integration are described in different reference

models. We have investigated these and compared them with activities

performed in seven product development projects.

Our conclusion is that current descriptions of best practices in product

integration are available in reference models, but need to be merged.

Through case studies we see that the described practices are insufficiently

used, and that organizations would benefit from adhering to them.

1 Introduction

Integration of software products, as well as products that include software,

is described in several standards and other collections of best practices, i.e.

reference models. Even if product integration process is a part of many

development process models and included in the iterations, the process is in

many cases an isolated and recognizable process. In particular, the

development of complex systems in a distributed environment where

components are developed in different locations and even companies

requires a coherent, comprehensive and distinguished description of that

phase.

These best practices are compiled from experiences from different

companies and organizations. Practices are selected as they are considered

to increase the effectiveness and efficiency as well as contributing to the

quality of the product. The source for the described practices is collective

experiences and the resulting documents are rarely validated through

independent research. This article is an attempt to investigate product

integration practices, compare the reference models with experiences from

different development projects, and to aim at a first step of validation.

In order to define the context and scope for this paper, we use the definition

of integration for product and system development found in the glossary of

EIA 731.1 (interim standard) [7]:

132 Paper D

”Integration: The merger or combining two or more elements (e.g.,

components, parts, or configuration items) into a functioning and higher

level element with the functional and physical interfaces satisfied. “

In spite of the existence of many reference models the problems in

integration persists. Experiences from many organizations developing

products tell us that product integration often is where problems occur [3].

This is especially true for software which is a part of a larger system [24].

The difficulties found during integration includes mismatch between the

different components, problems with properties of the system (e.g.

performance, response time) that are observable first after integration, and

problems in other parts of the system than the one that was changed or

added. To better understand of this problem we have analyzed the

integration processes in two companies and a total of seven product

development projects from different organizations within the companies. As

a starting point for our study we have stated the following questions:

• How are the practices described in reference models useful for

product development units for improving product integration?

• What is the core set of practices that can be identified to reduce

problems in product integration?

• Is it appropriate to combine reference models to provide better

support to product development units, and how can this be

done?

Our approach to these different perspectives is to study the performance of

the process in the investigated organizations and compare the activities with

the ones prescribed in the reference models regardless of the development

model used. We also look at the problems in the organizations and analyze

these with respect to the practices that are not followed by the organization.

We claim that we by investigating a number of projects and the practices in

use have been able to determine to which extent the practices described in

reference models are useful as a support for development units. We also

claim that we through the investigation can identify needs for revisions of

the reference models.

Our proposition in this paper is that the problems encountered in the

investigated cases relate to the lack of execution of practices that are

described in the reference models. We also propose that successful

execution of the product integration can be mapped to specific

implementation of practices described in the reference models.

Paper D 133

However we find that no reference model provides a full support for the

product integration, although by combining them a significant improvement

can be made. For this reason we propose a more complete, consistent and

integrated combination that the reference models should be updated to

include the union of practices described.

The remainder of this paper is outlined as follows: Section two refer to

related work. Section three describes the research method used in the

studies. Section four provides an analysis of product integration included in

different reference models. Section five describes the case studies and

presents the data from these. Finally in section six we discuss the results of

the studies, give conclusions, and propose further research based on the

found results.

2 Related Work

Product integration processes are included in different established reference

models for product development such as ANSI/EIA -632 [2], EIA-731.1 [7],

ISO/IEC 12207 [15], ISO/IEC 15288 [16], and CMMI [27]. The can be used

as a source for assessments and process improvement planning. Reference

models are normally articulated as a set of requirements on the development,

and not as a set of activities to be performed, giving the organization

possibility to implement the process as suitable. One concern with reference

models is the inadequate validation of them; it is difficult to find research

looking into the validity of the content of these reference models. However,

the reference models are developed based on experience from a large

number of organizations, making it likely that important considerations are

taken into account.

Stavridou has examined product integration from two different perspectives.

In [29], integration standards for critical software intensive systems are

investigated. The examination focuses on military policies and standards,

but includes ISO/IEC 12207 in the comparison. The conclusion is that the

majority of the examined standards address integration testing, but that the

standardization is not appropriate for many integration issues, and that

additional guidance for the project manager is needed. A more technical

approach is selected in [30] where the integration is proposed to be

considered as a design activity.

The activities in the product integration area have also been the subject of

interest from the agile community where frequent builds is one of the

cornerstones. One example is Fowler [9] who describes the requirements on

134 Paper D

developers: before committing back to mainline the developer would need to

update his work area with the latest mainline, i.e. build against the latest

changes of other developers. Only after that, integration into the mainline

would be permitted.

Schulte [26] describes the integration of large systems as a challenge and

proposes a method for handling uncertainties in the resulting system

characteristics when integrating components. De Jonge [5] identifies that the

integration of components is more difficult when reusable building blocks

are applied and propose techniques that promote fine-grained software

reuse. In [4], Chittister and Haimes argues that the system integration

process is additionally complicated as software is included, and proposes

that the risk factors along the software development life-cycle must be

identified and through measurements understood and ultimately mitigated.

A more general description of system and product integration has been made

by Sage and Lynch [25]. The paper describes various views including

lifecycle, architecture, process, interfaces, and enterprise integration. The

role of architectures and integration in different reference models are also

described. One conclusion is that methodologies and tools for system

integration and integration architectures are not well described in literature

at that point in time.

In addition to use reference models to improve product integration, metrics

can be used. Houston [13] studied the integration problems occurring in an

avionics system. Types of integration problems were identified based on the

functionality where the problem occurred. By classifying the integration

problem reports and estimating the expected handling time through

simulations of the report types several possible SPI activities were

identified. The study complements our research as one alternative route to

find improvement activities.

The term Product Integration can also be used for the combination of

systems from an architectural standpoint. The approaches have been

outlined by Land and Crnkovic [18] and include component-based software,

open standards, and Enterprise Application Integration.

Four different aspects of systems integration is described by Nilsson et al in

[23]. The paper addresses the technical characteristics of integration and

address integration technology, integration architecture, semantic integration

and user integration. The main message from this standpoint is that systems

integration is difficult and complicated and that there are no obvious

shortcuts.

Paper D 135

Kuhn concentrate in [17] on effective use of standards for interfaces when

integrating systems, and describes a methodology to application

development that focus on an architectural approach.

Component-base software engineering is also considered to simplify the

integration if taken to the extreme. In [6], Dogru describes a fully

component-oriented approach and put this in contrast with modifying object

oriented approaches, stressing that CDB leaves out inheritance and

capitalizes on composition. However, the lack of tools and experience is

currently preventing full use of the presented ideas.

This research in this article build on the work published as separate case

studies. Case 1 is described in [21] and as case 1 in [22], Case 2, 3 and 4 in

are described as case 1, 2 and 3 in [20], and Case 6, 7 and 8 as case 2, 3 and

4 in [22]. An early version of the summary of the reference models

described in section three can be found in [19].

3 Research methods

Our study includes experiences in seven product development projects from

five organizations in two companies. The products developed in these

organizations include applications such as manufacturing industries, process

industries, telecommunication, power distribution, and power transmission.

Both companies are multinational with development in many countries. The

experiences from the investigated product development organizations are

compared to and classified according to a set of standards and models, i.e.

reference models. This is done through three activities: investigation of

reference models, data collection, and a mapping between the reference

models and the data.

Two types of reference material, standards and models, have been

considered in this study and are referred to as reference models. The

difference between the types is that standards have been approved by a

standardization body, while a model may be issued by any company or

organization. The included reference models are typically used by product

development organizations to obtain a common language, to ensure that the

development performed covers necessary activities, to guide improvement

activities, and to show compliance. The selection of reference models is

based on available information from standardization organizations such as

ISO[14], ANSI[1] and IEEE[11] and references from organizations such as

SEI[28] and INCOSE[12]. Based on the focus of our research, product

136 Paper D

integration in product development of products that include software, two

specific selection criteria have been used in the choice of reference models:

(i) The reference model should be relevant to product

development of products that include software.

(ii) The reference model should include requirements on

product integration, implicitly or explicitly, as this is our

research area.

The standards provided by the listed organizations have been evaluated

based on both. The reference models that have been selected are:

- ISO/IEC 12207 Information technology - Software life cycle

processes [15]

- EIA-632 Processes for Engineering a System [2]

- CMMI Capability Maturity Model Integration [27]

- EIA-731.1 Systems Engineering Capability Model [7]

- ISO/IEC 15288 Systems Engineering – System life cycle processes

[16].

Also ISO 9001 [13] and IEEE Std 1220-2005 [10] were considered, but for

both these standards the expectations on the product integration process are

limited, and hence, they have not been further analyzed. It should also be

noted that efforts are made within the standardization bodies to harmonize

several of these reference models such as IEEE Std 1220-2005 [10], EIA-

632 [2], ISO/IEC 15288 [16] and ISO/IEC 12207 [15]. New versions of

ISO/IEC 15288 and ISO/IEC 12207 are planned to be published third

quarter 2007.

To accommodate the comparisons between the different reference models

practices related to product integration has been extracted and listed in

Table 2. This is done through a detailed review of the reference models

based on the following definition of product integration found in CMMI

[27]:

“The scope of this process area is to achieve complete

product integration through progressive assembly of

product components, in one stage or in incremental stages,

according to a defined integration sequence and

procedures. Throughout the process area, where we use

the terms product and product component, their intended

meanings also encompass services and their components.

Paper D 137

A critical aspect of product integration is the management

of internal and external interfaces of the products and

product components to ensure compatibility among the

interfaces. Attention should be paid to interface

management throughout the project.”

The definition in CMMI has been selected as it explicitly defines the scope

of product integration. In the table, the practices described in all reference

models have been combined and expressed in a generic way.

For the data collection, four main questions have been formulated. Based on

these the questions for the interviews have been expressed. The four main

questions are

• How is the preparation for product integration performed?

• How are interfaces to and in the product managed?

• How is the actual integration of the product performed?

• What types of problems have been observed in relation to the

product integration?

The data collection is based on interviews and document reviews. The

method used for the data collection is described by Ekdahl and Larsson in

[8] where also examples of types of observations can be found. For three of

the cases (cases 5, 6, and 7), data from the execution of the process has also

been collected from the production integration process.

The interviews have been based on a set of questions derived from one or

several of the reference models selected for this study. The format of the

interviews has been a discussion about the integration process. During this

discussion, the researchers have monitored that all questions are covered.

Document reviews were performed on the documentation describing the

integration process, the training material for the organization as well as the

files used for and as a result from the product integration process. Besides

an understanding of how the process is performed, information about the

documented as well as perceived problems related to the product integration

process was captured. The information collected from the product

integration process in Case 5, 6, and 7 are problems and failures in the build,

smoke test and regression test activities, and is further described in [22]. The

primary data from builds and tests has been collected by the practitioners

and compiled by the researchers.

The final activity in our research has been to map the findings from the

interviews to different reference models. A first mapping from the cases to

138 Paper D

the reference models was made to find out what practices were performed in

each organization. This was done for each practice through searching the

collected material for evidence that the practice was performed. This way,

all the practices were covered and additional information about the

organization besides the practices were captured.

A second mapping was made to understand how the problems found in each

case relate to the practices. This was made for each problem through

searching the collection of practices for a match. Problems that could not be

related to any product integration practices were noted and discussed, but

are not used further in this study.

Care has been taken to ensure that all classification is determined by two

different researchers. In cases where the researchers have had different

conclusions, a discussion has been held to clarify the different opinions, and

an agreement is sought. If impossible, this has been clearly indicated in the

presentation of results as being undetermined.

4 Practices in standards and models

Each of the selected reference models is in this section described starting

with its purpose and intention and continued with details on the description

regarding product and software integration processes. The actions and tasks

considered to be related to product integration are summarized. Note that

these summaries are for information purposes only, and that the original text

in the reference models should be used for any implementation.

Based on the acquired knowledge regarding the reference models, a

summary of practices and a comparison between the models has been made.

The purpose has been to see if there is a set of practices consisting if the

union of the used reference models.

The first step was to combine the extracted information from all investigated

reference models into a set of practices. After that, all reference models

were investigated based on the set of practices. Both explicit and implicit

instances of the practices were noted. This classification is relying on the

experience and knowledge of the researchers. However, through the

stepwise approach, the risk for missing information is less as each reference

model is examined twice.

Paper D 139

4.1 ISO/IEC 12207, Information technology – Software life

cycle process

The purpose of ISO/IEC 12207 is to provide the software industry with a

well-defined terminology for software life cycle processes [15]. It contains

the different processes, activities and tasks that make up a software life

cycle, and applies to the development, operation and maintenance of

software products as well as to acquisition and supply of software products,

systems and services.

ISO/IEC 12207 includes two parts related to product integration. The first is

covering the integration of software units or components into software items

that can be integrated into a system. The tasks described are: to develop and

document an integration plan for each software item that has been identified

in the system architectural design, to integrate and test the aggregates as

described in the plan, to update the user documentation and to develop and

document a set of tests for each requirement of the software items. The

standard also lists a number of criteria that should be used for evaluation of

each work product developed in the software integration process as well as a

requirement to conduct joint reviews. Note that the update of user

documentation is omitted in this investigation as it is not considered to be a

part of product integration.

The second part describes the system integration tasks. These are: to

integrate the software into the system and to test the requirement of the

system. There is also a list of criteria for evaluation of the integrated system.

4.2 EIA-632

The purpose of the EIA-632 standard [2] is to provide developers with

fundamental processes that assist in engineering a system. In this context, a

developer can be an enterprise or an organization. The use of the standard

should help developers to develop requirements that enable delivery of

system solutions in a cost-effective way, delivering within cost, schedule

and risk constraints and to provide a system that satisfies the different

stakeholders over the life-cycle of the products that make up the system.

The integration of parts into products is included in the requirement for

implementation. The implementation practices include expectations, that the

developers should plan for and execute tasks such as validating the

subsystems received for assembling and assembling validated subsystem

products into the test items or end products to be verified.

140 Paper D

4.3 Capability Maturity Model Integration (CMMI), Version

1.1

The Capability Maturity Model Integration (CMMI) from the Software

Engineering Institute describes what is considered as best practices for

product and systems engineering [27]. The model includes process areas

covering the full product life cycle for the development and maintenance of

products and services. The purpose of the model is to provide a basis for

process improvement, and includes guidelines for how to select

improvement areas.

For each of the process areas described in CMMI, a purpose is described.

For Product Integration it is “to assemble the product from the product

components, ensure that the product, as integrated, functions properly, and

deliver the product”. It is detailed in three goals which are supported by a

total of nine practices that are specific for product integration. The goals

are: Prepare for product integration, Ensure interface compatibility and

Assemble product components and deliver the product.

4.4 EAI-731.1

The purpose of EIA-731.1 (interim standard) is to support the development

and improvement of systems engineering capability [7]. It is structured to

support different activities performed to improve the performance in a

development organization such as appraisals, process improvement, and

process design.

Product integration is described in the section Integrate System which

describes practices connected to product integration strategy, interface

coordination, integration preparation and system element integration.

4.5 ISO/IEC 15288, Systems engineering – system life cycle

processes

ISO/IEC 15288:2002 is intended to describe the life cycle of systems [16].

The standard is to be applied to the full life cycle of systems from inception,

development, production, utilization, and support to retirement of the

system. It is noted in the standard that the implementation typically involves

a selection of a set of processes applicable for the project or organization.

Product integration is described in the section Integration Process. The

purpose with this process is to assemble a system that is consistent with the

Paper D 141

architectural design. System elements should be combined to form partial or

complete products. The activities includes definition of a strategy for

integration, identification of design constraints based on the strategy,

preparation of facilities that enable the integration, reception of validated

system elements in accordance with a schedule and the actual integration. In

addition, there is a requirement to store information about the integration

into an appropriate database.

ISO/IEC 15288:2002 introduces a requirement that the constraints from the

integration strategy on design should be identified. This requirement is not

represented in any of the other standards, and is not investigated in the case

studies. However, we believe this is an important area that needs to be

further investigated as it is closely related to the requirements on how

interfaces are handled.

4.6 Summary of reference model practices

Table 2 summarizes the product integration process as described in different

reference models and provides a basis for comparison. In this section, we

have extracted practices described in each reference model and combined

each of these practices. The combination of the selected reference models

has given us 15 different practices that have been expressed in a generic

way. These have been selected as they are directly related to product

integration. Other practices mentioned in the context of product integration

in the different reference models have been excluded. Examples of this are

CMMI, Specific Practice 3.4, “Package the assembled product or product

components and deliver it to the appropriate customer”, and ISO/IEC 12207,

Section 5.3.8.3 “The developer shall update the user documentation as

necessary”. The excluded practices are important, but have been considered

to be only tangentially related to product integration as defined for this

paper.

The proposed practices for each of the activities are described below, and

further guidance can be found through pointers to the reference models in

Table 2. Note that the practices are not ordered in the sequence that they are

expected to be performed. Most of the activities described should be carried

out in an iterative manner. However, our advice is to ensure that Product

Integration (PI) Practice 1 is performed early in any product development

project to set the expectations on the remaining practices.

142 Paper D

PI Practice 1. Define and document an integration strategy

Develop an integration strategy and supporting documentation that help in

identifying a sequence for the product integration satisfying the

requirements while minimizing risks. The documentation should include

different considered strategies, and the rational selecting one. The strategy

should be based on factors important for the product development such as

the need for partial systems, verification and validation strategies,

organizational arrangements and selected architectural solutions. As the

development proceeds, the strategy should be reviewed periodically to

ensure that the basis for the decision is still valid.

Examples of strategies are to start with platform functions to simplify the

addition of many applications in parallel, to ensure early customer

functionality to be added early enabling demonstrations, or to have

continuous integration of product components as they become available.

Each of these strategies has advantages and drawbacks that must be

understood. The strategy will affect the planning for the whole project, and

is essential for the understanding, planning and preparation for product

integration.

PI Practice 2. Develop a product integration plan based on the strategy

The product integration plan should define the integration steps as an

assembly sequence, the procedures to be used for integration, the integration

verification to be performed, resources, and responsibilities. Based on the

selected strategy, the plan may include alternate sequences to minimize risks

and prepare for different scenarios. The plan should be reviewed

periodically and updated based on new information and risks as needed.

PI Practice 3. Define and establish an environment for integration

The product integration plan will together with the product requirements

provide requirements on an integration environment. The definition and

establishment of the environment can be reused from organizational

resources, developed, or acquired. In either case, the requirements and plans

for the environment need to be considered in parallel with the development

and integration plans.

The integration environment typically consists of simulators, stubs, test

equipment, parts of existing components and products, software and

hardware tools, and measurement equipment.

Paper D 143

PI Practice 4. Define criteria for delivery of components

The criteria defined for delivery of components should be selected so that

they can indicate the readiness of a component for integration. The criteria

should address what type and level of verification should be performed on

the component and interfaces as well as thresholds of the verification results

for acceptance.

PI Practice 5. Identify constraints from the integration strategy on

design

Several factors can be considered when identifying the constraints that a

specific integration strategy may impose on the design. These include rules

for what types of interfaces should be available to enable interconnection

between components at different stages of the integration. Also the necessity

to use simulation, stubs and need to be considered as this may require

specific solutions. The environment used for the integration may require that

the design is constrained.

Typically, the constraints on architecture and design due to a specific

integration strategy require a revision of the architectural and design

documentation.

PI Practice 6. Define interfaces

The efficient and effective execution is depending on interfaces that are

agreed and used for the different components. This includes physical,

functional, and logical interfaces. When interfaces are determined and

defined, an agreed set of criteria should be followed. The criteria typically

expose attributes important for a specific application, and may include

parameters reflecting the requirements on dependability, performance,

safety, evolvability and other quality attributes. Once determined based on

the evaluation of different criteria based on criteria, the interfaces should be

documented and put under configuration management. This documentation

should include the rational for the selected definition and design. The

interfaces are typically characterized through the source, destination, control

and data characteristics for software, and electrical and mechanical

characteristics for hardware. Also human interfaces and environmental

parameters should be addressed and documented.

Early definition of interfaces reduces the risk for mismatch between product

components that are developed in parallel. The drawback is that knowledge

is acquired as the implementation of the product components progresses;

additional interfaces may be needed, as well as modifications to existing

ones.

144 Paper D

PI Practice 7. Review interface descriptions for completeness

When interfaces are defined and revised, appropriate stakeholders need to

perform a review to ensure that each interface description is complete and

fulfill the intentions as described in the requirements. This is however not

sufficient. As the product components are developed, there is a need to

review the interface descriptions periodically to ensure that they are

sufficient and understood by all stakeholders. These reviews should also

provide input to proposed interface changes.

To facilitate proper reviews, interfaces categories can be defined. The

definition of the categories can be used to decide on what needs to be

document for each category. Once established, the categories can be used to

organize the interfaces, and made available to relevant stakeholders.

PI Practice 8. Ensure coordination of interface changes

Interfaces affect different stakeholders, and the changes must be controlled

to reduce the misunderstanding as well as late discovery of mismatch.

Changes should be controlled for different types of interfaces, e.g. between

product components, to the environment, to users, and verification

equipment.

Change Control Boards can be set up to control changes to interfaces. This

is critical for projects that have external suppliers, or depend on other parts

of the organization. The responsibility of the CCB goes beyond deciding on

changes; consequences should be investigated before decisions are made,

relevant stakeholders should be involved, and information regarding

decision on changes should be communicated, and the interface

documentation updated as appropriate.

PI Practice 9. Review adherence to defined interfaces

As the product component is to be delivered, compliance to the interface

documentation should be reviewed and verified. The criteria used for

definition of the interfaces can be used as support for the review.

A review of interface adherence may be done in a common session for

product components using a specific interface. This enables the

development teams to agree on any mismatch and decide on changes to one

or several of the components, or a proposal to change the interface.

Paper D 145

PI Practice 10. Develop and document a set of tests for each

requirement of the assembled components

The requirements considered for the integration tests are the ones related to

interfaces and interaction with other components and the consistency with

the architectural design.

PI Practice 11. Verify completeness of components obtained for

integration through checking criteria for delivery

Each product component to be integrated must be identified as being the

intended one in the right version. The completeness of a component can

only be confirmed through checking defined criteria. If a component does

not fulfill the criteria appropriate measures should be taken; changes may

have to be made to the component, or the deficiency can be accepted

temporarily or

The responsibility to ensure that a product component meets the defined

criteria can be decided in the strategy for product integration. Typically, the

developer or development team is responsible to develop the product

component in accordance with all requirements, including the criteria for

integration. However, it is also common that the integration team is

responsible to check are that the criteria are met, and to reject the delivery of

components not adhering to the requirements.

PI Practice 12. Deliver/obtain components as agreed in the schedule

As the product components are verified as complete as defined by the

product integration delivery criteria, they can be delivered for integration. It

is of utmost importance that any slippage in the agreed schedule for the

delivery of a component is communicated as soon as it is know, or even as

soon as the risk for late delivery is identified. Any delays may affect the

integration sequence, and the possibility to provide different stakeholders

with intermediate integrations, and with the final product.

The acknowledgement of reception for integration is important, and can be

made through an informal or formal handshake procedure. An example of

this is to use the configuration management status information to set the

product components in different states. This enables relevant stakeholders to

get an understanding of the status, and bottlenecks can be identified.

146 Paper D

PI Practice 13. Integrate/assemble components as planned

The integration and assembly of the components should be performed as

described in the product integration plan. The integration can be made in

steps, with aggregates of components being built consecutively, and it may

be necessary to perform evaluation activities on the intermediated results.

The result of the assembly should be made available to all relevant

stakeholders.

PI Practice 14. Evaluate/test the assembled components

The focus when evaluating the assembled components is on interface

verification. The defined and described procedures and environments are

used to ensure that the product components work as intended when

combined. The results from the verification should be recorded and

appropriate action taken to handle any issues that may occur.

PI Practice 15. Record the integration information in an appropriate

repository

When the integration is performed, it is necessary to record information

regarding problems in the product, product components, integration

environment, and in procedures for integration. The information can,

besides a control of necessary changes to the product and product

components, be used to further improve strategies, practices, environment,

and process improvements for product development processes that are

delivering to the product integration.

Examples of information that can be collected are problems in the

integration related to different practices, e.g. build statistics [22].

The list of activities can be used as a guideline for the definition of a

product integration process and process improvement in the area. Note that

if a reference model is implemented, the original text for that specific

reference model should be used. Three different types of indications have

been used in Table 2. E is used if the practice is explicitly described in the

reference model, I if it is implicitly described and a – if it is not described.

Implicit descriptions are identified if there is a generic statement that the

type of activity, such as reviews, should be performed. If a practice is

covered both explicitly and implicitly, only the explicit occurrence is

mentioned in the table. A pointer to the reference model is given for each

explicit or implicit description of the practice. The references in the table

are numbers of sections, practices, or requirements as defined in Table 1.

Paper D 147

Table 1. References for the different reference models

Reference model Reference

ISO/IEC 12207 Section

EIA-632 Requirement

CMMI Specific Practice in the Product

Integration process area

EIA-731.1 Specific Practice

ISO/IEC 15288 Section

Table 2. Product integration process in selected reference models

Reference models

IS
O
/
IE
C

 1
2
2
0
7

E
IA
-6
3
2

C
M
M
I

E
IA
-7
3
1
.1

IS
O
/
IE
C

 1
5
2
8
8

Publication date

Generic activity description

Aug
1995

Jan
1999

Mar
2002

Aug
2002

Nov
2002

1. Define and document an
integration strategy

- I

Req
32 a

I
PI
SP
1.1

E
SP
1.5-1-
1

SP
1.5-1-
2

E
5.5.6.3a

2. Develop an integration
plan based on the strategy

E

5.3.6
5.3.7
5.3.8

E

Req
32 a

E
PI
SP
1.1

E
SP
1.5-1-
3a

E
5.5.6.3a

3. Define and establish an
environment for integration

- I

Req
32 a

E

PI
SP
1.2

- E
5.5.6.3c

148 Paper D

Reference models

IS
O
/
IE
C

 1
2
2
0
7

E
IA
-6
3
2

C
M
M
I

E
IA
-7
3
1
.1

IS
O
/
IE
C

 1
5
2
8
8

Publication date

Generic activity description

Aug
1995

Jan
1999

Mar
2002

Aug
2002

Nov
2002

4. Define criteria for
delivery of components

I
5.3.8

I

Req
32 a

E
PI
SP
1.3

I
1.5-3

I
5.5.6.3e

5. Identify constraints from
the integration strategy on
design

- - - - E
5.5.6.3b

6. Define interfaces E
5.3.4
5.3.5
5.3.6

E

Req
16 b

Req
17 b

E

TS
SP
2.3

E
SP
1.3-1-
1c

SP
1.3-1-
3a

SP
1.5-2-
3a,
3b, 3c

I
5.5.4.3g

7. Review interface
descriptions for
completeness

I
5.3.5

I
Req
12 d

E
PI
SP
2.1

E

SP
1.5-2-
2a, 2b

I
5.5.4.3g

8. Ensure coordination of
interface changes

- I
Req
12 d

E
PI
SP
2.2

E

SP
1.5-2-
1a

I
5.5.4.3i

9. Review adherence to
defined interfaces

- I
Req
12 d

E
PI
SP
2.2

E
SP
1.5-3-
1a

E
5.5.6.3f

Paper D 149

Reference models

IS
O
/
IE
C

 1
2
2
0
7

E
IA
-6
3
2

C
M
M
I

E
IA
-7
3
1
.1

IS
O
/
IE
C

 1
5
2
8
8

Publication date

Generic activity description

Aug
1995

Jan
1999

Mar
2002

Aug
2002

Nov
2002

10. Develop and document a
set of tests for each
requirement of the
assembled components

E
5.3.6
5.3.7

E

Req
32 a

I
PI
SP
1.3

I

1.6-2

I
5.5.7.3e

11. Verify completeness of
components obtained for
integration through
checking criteria for
delivery

E
5.3.8

E
Req 3
b Req
20 b

E
PI
SP
3.1

E

SP
1.5-3-
1a

E
5.5.6.3e

12. Deliver/obtain
components as agreed in the
schedule

E
5.3.8

I

Req
20 a

I
PI
SP
3.1

E
SP
1.5-3-
2

E
5.5.6.3d

13. Integrate/assemble
components as planned

E
5.3.8
5.23.10

6.4.2

E
Req
20 c

E
PI
SP
3.2

E

SP
1.5-4-
1a

E
5.5.6.3f

14. Evaluate/test the
assembled components

E

5.3.9

6.4.2

E
Req
20 d

Req
32 b

E

PI
SP
3.3

E
SP
1.5-4-
1b

E
5.5.7.3e

15. Record the integration
information in an
appropriate repository

I

5.3.9
5.3.10

- I

PI
SP
3.3

I
1.5-4

E
5.5.6.3g

150 Paper D

4.7 Similarities and difference between the reference models.

A comparison of the standards based on the PI practices show that there is

an on-going development of the area and an increased agreement over time

on what can be considered to be best practices. The following observations

have been made:

• Integration planning is expected in all reference models

• Only ISO/IEC 15288:2002 mention the aspect that the integration

strategy may imply constraints on the system or product design

• Interface definition is explicitly specified in all reference models

except ISO/IEC 15288:2002, but other aspects of interface

management such as review and control of changes are only

specified in CMMI and EIA 731.1

• The verification of completeness as well as the actual integration

and verification of the assembled components are included in all

reference models.

The comparison between the different reference models indicates that

expectations on the preparation for integration and the handling of interfaces

have been made more explicit over time; additional practices are added and

already existing practices are made more precise for reference models

released at later dates.

Older standards are less explicit regarding product integration, while newer

focus on different aspects. As EIA has been used as an input to the

development of CMMI, there is no surprise that they are handling product

integration in a similar way. ISO/IEC 15288 has the best coverage of

product integration except for management of interfaces.

Our conclusion is that additional investigations and comparisons are needed

to understand how the area evolves, what factors are determining what is

added to the reference models and if there are specific considerations that

should be made for different types of products and systems. There is also a

need to validate the changes that are made through case studies in different

types of product development organizations.

Paper D 151

5 CASE STUDIES

In order to understand if the reference models can help organizations reduce

the problems in product integration as executed in an industrial

environment, we have examined seven different projects. All of the projects

had the task to develop products used in the manufacturing, process,

telecommunication, or power domains. This section describes the projects

and products for each case. One notable characteristic is that the projects in

both companies are to a certain extent independent in their selection of work

processes and supporting tools. This is a strategic decision based on the

diverse needs from different types of development and products.

 In each of the cases we have captured the problems appearing in product

integration. A problem is a reoccurring reason for failure in the integration

process. This includes problems in the build, smoke test, and regression

testing. For all cases problems have been captured in the interviews and

document reviews. In cases five through seven, measurements from the

build and integration test phases have been added as a source for finding

problems and their causes.

5.1 Case 1

This study was performed at a unit developing industrial control systems.

The system has evolved through several generations, and a new generation

of the system is currently being developed. Compared to the first generation,

where the effort was three man months, the effort for software development

in the current development is estimated to about 100 man years.

The implementation consists of approximately 2500 KLOC of C language

source code divided in 400-500 components, organized in 8 technical

domains. In essence, the system has a layered architecture and component-

based design within the layers. The software platform defines an

infrastructure that provides basic services like a broker for message-based

inter-task communication, configuration support, persistent storage handling

and system startup, and shutdown.

Table 3 describes the three problems found in case 1. All are related to the

coordination: functions are not delivered as promised, functions are not

tested before delivered, and changes of common resources are not

controlled. This organization is now putting more effort in place to ensure

that functions are tested before delivered and to control interface changes.

152 Paper D

Table 3 Problems captured for Case 1

Label Problem description

1A Functions are not always delivered in time for integration or

may be incompletely delivered. In addition to this, delivery is

complicated through two different ways to deliver code. This

leads to problems in the build process or in integration and

system tests

1B Functions are not tested as required by the developers. This

leads to problems in the builds and in initial integration testing.

1C Changes in common resources (e.g. common include files) are

not controlled. This results in errors appearing in other

components which have not been changed

5.2 Case 2

The product in case one is a stand-alone product that is connected to a real-

time data collection system. The development is done in one group with less

than 20 developers and follows a clearly defined process.

The product development of a specific release is based on a definition of the

product that contains what should be included in each release. The first step

in the development is the implementation of requirements on the functions

for the release. Based on this, the unit and system verifications to be

performed are defined. Development of the functions is done in units called

components. The Rational Unified Process is used, and a document list

defines the development process. The planning is made so the development

is done in increments. The unit verification is performed by software

developers. The strategy is that tests should not be done by the developer

producing the software. The unit tests are often done through automatic

testing. Specifications and protocols from the tests are reviewed by peers

and system integrators. The tests are performed in the developer’s

environment and consist of basic tests. Functional tests are performed before

the system tests.

The product integration is not defined as a separate process, but the product

is integrated by the developers before the system verification. Before a

component is checked in, it should be included in a system build to ensure

proper quality. Delivery to the system test is done of the whole system. The

test protocols and error reports from the unit verifications are reviewed with

the system integrator before the system test. The system tests are performed

Paper D 153

by a core of system testers and temporary additional personnel. This strategy

builds on well defined and detailed tests. The tests are focusing on functions

and performance and are performed on different hardware combinations.

This includes different variants of the product and different versions of the

operating system. The test period takes approximately 12 weeks, with new

versions of the assembled components received to system test every week.

Although the development builds on increments, no integration plan is used

for the product. The integration plan used is one for the whole system where

this product is included. Typical time for the development of a release is less

than one year.

The three problems captured for Case 2 are described in Table 4. The

routines are mainly followed, but due to tight deadlines, shortcuts may be

taken. Sometimes uncontrolled changes are introduced in the software. This

is typically done when a part of the system is changed due to an existing

error that is uncritical and not planned to be corrected. Due to the

dependencies in the system, new errors may appear in parts that have not

been changed. Also other connections between components that are not

explicit generate this problem.

Table 4 Problems captured for Case 2

Label Problem description

2A Functions are not always fully tested when delivered for

integration. This leads to problems in the build process or in

integration and system tests

2B Errors are corrected that should not be. This results in new

errors with higher influence on functionality and performance

2C Errors appear in other components which have not been

changed

5.3 Case 3

The third case is a product that includes software close to the hardware. The

target system includes a complex hardware solution with the application

divided on two target systems.

The development group is small and follows a common development

process. This process includes rules for what should be checked and tested

before a component is integrated. The tests include running the application

in simulators and target systems before the integration. A specification for

154 Paper D

what should be ready before start of functional and system test are available.

The architect is responsible for implementation decisions. Typical time for

the development of a release is 1.5 years. This includes the full development

cycle from defining the requirements to system testing.

Most of the problems appear because of the incapability and version

mismatch of the test system, the final product and the test and final

hardware platform (Table 5). Efforts are now made to go towards

incremental development, and to increase the formalism in the testing. The

tests will be made in three stages with basic tests performed by the designer,

functional tests performed by a specific functional tester and system tests

with delivery protocol.

Table 5. Problems captured for Case 3

Label Problem description

3A Problems appear as a consequence that tests for the components

are not run in the same environment as the test system. Different

versions of hardware and test platform are used.

5.4 Case 4

The development organization in this case is responsible for the design of a

user interface that acts as a client to a database server. The organization is

small, around 15 developers, and most developers participated in the

investigated project.

The current architecture has in recent years been improved. The old version

of the system suffered from problems with many common includes files.

Through global variables and similar solutions permitted by the selected

technology, unintended side-effects made debugging and error correction

tedious. Different attempts to reduce the problems within the available

technology lead to the insight that a design that was built on isolation of

interfaces should be beneficial. The solution was to start building a new

system. Included in this decision was a strategy to design interfaces

carefully and to use technologies that permitted isolated components to be

used.

The system is built up of components that primarily implement different

parts of the user interface. Each component handles the communication with

the server. This design was used to allow the development of services that

are independent and dedicated for each component. The component

framework defines the required interface for each component and provides a

Paper D 155

number of services, such as capturing of key strokes. The technology used

permits the developers to easily isolate problems and to minimize the

uncontrolled interference and dependencies between the components.

 The development is organized with frequent builds and continuous

integration of new functions. The integration is handled by the integration

responsible. However, the checks before the inclusion of new functions are

done by the developers. There are no specific routines in place for handling

the interfaces. Changes are in practice always checked by the system

architect.

The new system design has reduced the implementation time for a function

with 2/3. The turn-around time for a system release has been reduced from

six months to between one and three months. At the same time, a need for

maintaining the base platform has emerged. Also, some of the technical

solutions have been questioned and may increase the need for maintenance

(Table 6).

Table 6. Problems captured for Case 4

Label Problem description

4A Scattered architecture on the server side as a result of the

decision to handle communication in each component

5.5 Case 5

The organization in case 5 develops a complex real time control product

including event, trend and error handling, data collection, communication,

and operator interface. The product is part of a suite of about 30 products,

forming a system that is used in process industries. The development is

tightly coordinated with the development of these other products. The

organization is the largest in the investigation and the number of developers

involved is close to 80. The development process varies between different

groups in the organization, but all parts are delivered to the build and

integration process.

The product consists of more than three MLOC and consists of applications

on a workstation. The architecture is distributed and care has been taken to

define different layers to achieve separation-of-concerns.

 The project that has been investigated is the integration project for a major

release program. The integration project consists of a build team and a team

responsible for the automated regression tests. These two teams have

possibilities to capture integration problems and to analyze background

156 Paper D

problems. The builds are performed as daily builds, weekly builds and

baseline builds. The daily builds are performed to ensure the stability of the

code base, and have the build environment adapted to additions in

functionality. Weekly and baseline builds are made available to other parts

of the organization for verification purposes. Development cycles are

between 12 and 18 months.

A primary problem for this organization has been the complex build and

integration environment, which is reflected in the identified problems as

described in Table 7.

Table 7. Problems captured for Case 5

Label Problem description

5A Inconsistent code is delivered, and files are not included in the

build as planned. The result is failed builds.

5B The build environment sometimes contain traces of earlier

builds or fail due to unstable applications used, resulting in

failing builds.

5.6 Case 6

The project develops embedded software for new generation of protection

relays for electrical network. The development organization is small with

around 15 developers. The main development team is located in one site, but

few persons from other sites have participated in the development partially.

At the time of the study the project size was around 500 KLOC, however the

final products built on the technology will be larger than that.

The product architecture consists of base software, application components

and higher level services, such as communication services. The base

software is a platform that provides the running environment for the

application components and services, and separates them from the hardware.

The software is built of source-code level components that are compiled and

linked to a single executable binary. Most of the components are developed

by the organization but also some 3rd party components are used. The

project is responsible of developing the base software and integrating it with

the service and application components, which are partly developed in

separate projects. The outcome of the project is a reference configuration

which will be the baseline for the actual productization projects, including

base software, service components and reduced subset of application

Paper D 157

components. Thus, the studied integrations include all types of the

components used in the product.

Table 8 summarizes the problems for the organization in Case 6. A major

problem for this organization is that changes are introduced without proper

testing. Also late deliveries of functions are a problem as the functions often

consists of sub-functions that are combined in the integration.

Table 8. Problems captured for Case 6

Label Problem description

6A Changes are sometimes untested before integration, resulting in

errors in initial integration testing.

6B Files are not delivered to integration as planned and required,

resulting in errors in the build process.

6C The build environment contains sometimes traces of earlier

builds, resulting in failing builds.

6D Changes are made to interfaces without proper control. This

leads to errors in the builds or initial integration testing.

5.7 Case 7

The project develops embedded software for a new generation of protection

relays for electrical network. The development organization is small with

around 15 developers. The main development team is located in two sites in

two different time zones.

At the time of the study the integrations were performed only to the

components of base software and service components, while as the

application components were not yet included in the integration. The project

size was over 500 KLOC, but when integrated with the application

components, is expected to be >1000 KLOC.

The product architecture resembles that of Case 6, i.e. it consists of base

software, application components and higher level services. The product has

some common components with Case 6, but it is based in other hardware. In

addition some components have a longer history, being released in the

existing products. The software is built of source-code level components,

either developed by the organization or 3rd party, compiled and linked to

single executable binary. The project is responsible of further development

of the base software and integrating it with the service and application

158 Paper D

components, which are partly developed in separate projects. The outcome

of the project is a new product.

For this case, three problems were found as described in Table 9. These are

problems in the build environment, problems appearing in parts of the

system that has not been changed, and that functions sometimes are untested

when delivered for integration.

Table 9. Problems captured for Case 7

Label Problem description

7A Functions are not always fully tested when delivered for

integration. This leads to problems in the build process or in

integration and system tests

7B Untested changes to build scripts

7C Errors appear in other components which have not been

changed

5.8 Problems in relation to reference models

The problems found in the cases have in this section been related to the

reference models. This gives an indication on how the reference models can

help in avoiding the types of problems found. If a problem can be related to

a practice that is not performed, but is described in the reference model,

there is a possibility that the practice could help if implemented. However, if

there are problems that we can relate to product integration, but cannot be

related to the practices for a specific reference model, following that

specific reference model does not support the organization in preventing that

type of problem. The purpose of this analysis is thus to understand if there

are problems in product integration that are possible to avoid if each of the

reference models are expanded with the practices that are not explicitly

described today.

For each reference model, a table summarizes the described product

integration practices and the adherence to the tasks as observed in the cases.

The seven columns describing the results from the case studies include: an

indication for each case if the practice has been observed as performed (+),

observed as not performed (-), not investigated or not possible to determine

(?), and if there are indications of problems connected to the practice

(indicated with the problem label). Only the explicitly described practices

Paper D 159

have been included in the tables as this leaves less interpretation to the user

of the reference model.

Two issues limit the value of this analysis. The first is that explicit coverage

of all the practices described in all reference models was not made in all

cases. This means that practices may be performed even if no evidence can

be found in the material from the interviews and document reviews. This has

been indicated with a questions mark (?) in the tables. The second issue is

that problems may exist in the organization without indications in the table,

based on the fact that not all practices where explicitly covered in the case

studies. However, all problems that have been captured have been possible

to relate to practices that have been investigated.

160 Paper D

ISO/IEC 12207:1995 compared to cases

The practices in ISO/IEC 12207:1995 cover 7 of the 17 unique

problems found in the case studies. These are related to the practices

used to ensure that the integrated software is ready for verification.

This standard has no requirements on the handling of interfaces,

which represents the cause of many of the problems found in the

case studies

Table 10. ISO/IEC 12207:1995 compared to cases

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

2. Develop an integration
plan based on the
strategy

+ - + - - - -

6. Define interfaces - - - + - - -

10. Develop and
document a set of tests
for each requirement of
the assembled
components

+ - + - + - -

11. Verify completeness
of components obtained
for integration through
checking criteria for
delivery

-

1B

- -

3A

+ -

-

6A

-

7A

12. Deliver/obtain
components as agreed in
the schedule

-

1A

- + - -

5A

-

6B

-

13. Integrate/assemble
components as planned

+ + + + + - -

14. Evaluate/test the
assembled components

+ + + + + - -

Paper D 161

EIA-632

The requirements in EIA-632 are concrete, but do not include

requirements in all the areas where we have found problems in the

case studies. 4 of the 17 unique problems are related to practices

described.

Table 11. EIA-632 compared to cases

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

2. Develop an integration
plan based on the
strategy

+ - + - - - -

6. Define interfaces - - - + - - -

10. Develop and
document a set of tests
for each requirement of
the assembled
components

+ - + - + - -

11. Verify completeness
of components obtained
for integration through
checking criteria for
delivery

-

1B

- -

3A

+ -

-

6A

-

7A

13. Integrate/assemble
components as planned

+ + + + + - -

14. Evaluate/test the
assembled components

+ + + + + - -

162 Paper D

Capability Maturity Model Integration (CMMI), Version 1.1

13 of the 17 problems encountered in the case studies regarding

product integration can be related to practices that are described in

the CMMI. Of the four that are not covered are three related to late

delivery of components to integration, and one is related to the

strategy regarding error correction.

Table 12. CMMI compared to cases

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

2. Develop an integration
plan based on the
strategy

+ - + - - - -

3. Define and establish
an environment for
integration

+ + + + -

5B

+

6C

+
7B

4. Define criteria for
delivery of components

-

1B

-

2A

+ - + - -

6. Define interfaces - - - + - - -

7. Review interface
descriptions for
completeness

-

1C

-

2C

- -

4A

- + +

8. Ensure coordination of
interface changes

-

1C

-

2C

- - - -

6D

-

7C

9. Review adherence to
defined interfaces

- - + + - - -

11. Verify completeness
of components obtained
for integration through
checking criteria for
delivery

-

1B

- -

3A

+ -

-

6A

-

7A

13. Integrate/assemble
components as planned

+ + + + + - -

14. Evaluate/test the
assembled components

+ + + + + - -

Paper D 163

EAI-731.1

As with CMMI, many problems found in the case studies can be

related to practices in EIA-731.1. Of the 17 unique errors found in

the cases, 13 are covered by the practices. The remaining four errors

are related to the build environment and the criteria for integration.

Table 13. EIA-731.1 compared to cases

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

1. Define and document
an integration strategy

? +

2B

+ + + ? ?

2. Develop an integration
plan based on the
strategy

+ - + - - - -

6. Define interfaces - - - + - - -

7. Review interface
descriptions for
completeness

-

1C

-

2C

- -

4A

- + +

8. Ensure coordination of
interface changes

-

1C

-

2C

- - - -

6D

-

7C

9. Review adherence to
defined interfaces

- - + + - - -

11. Verify completeness
of components obtained
for integration through
checking criteria for
delivery

-

1B

- -

3A

+ -

-

6A

-

7A

12. Deliver/obtain
components as agreed in
the schedule

-

1A

- + - -

5A

-

6B

-

13. Integrate/assemble
components as planned

+ + + + + - -

14. Evaluate/test the
assembled components

+ + + + + - -

164 Paper D

ISO/IEC 15288, Systems engineering – system life cycle processes

The standard covers 11 of the 17 problems found in the case studies,

and most of the other errors are related to the interface handling

which is not explicitly covered.

Table 14. ISO/IEC 15288:2002 compared to cases

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

1. Define and document
an integration strategy

? +

2B

+ + + ? ?

2. Develop an integration
plan based on the
strategy

+ - + - - - -

3. Define and establish
an environment for
integration

+ + + + -

5B

+

6C

+
7B

5. Identify constraints
from the integration
strategy on design

? ? ? ? ? ? ?

9. Review adherence to
defined interfaces

- - + + - - -

11. Verify completeness
of components obtained
for integration through
checking criteria for
delivery

-

1B

- -

3A

+ -

-

6A

-

7A

12. Deliver/obtain
components as agreed in
the schedule

-

1A

- + - -

5A

-

6B

-

13. Integrate/assemble
components as planned

+ + + + + - -

14. Evaluate/test the
assembled components

+ + + + + - -

15. Record the
integration information
in an appropriate
repository

- - - - - - -

Paper D 165

Table 15 summarizes the use of practices derived from the reference models,

and the problems identified in the case studies. Through our case studies and

the investigation of different reference models, we have found the

following:

• Five of the practices (PI Practice 4, 7, 8, 11, and 12) indicate that

problems may appear when the practice is not followed.

• In three instances, identified problem areas can be related to

practices that are performed in the organizations. Two of these are

related to the strategy definition (PI Practice 1), and are in fact

referring to the lack of rules for corrections of errors. Hence, it may

be that the integration strategy is available, but does not cover the

rules for error corrections. The final problem is related to the build

environment definition (PI practice 3) and is also an indication that

the descriptions of practices do not cover the quality of the

implementation.

• Table 16 illustrates also that the problems related to product

integration could not all be related to a practice in the reference

model for any model, e.g. for ISO/IEC 15288 we could associate 11

of the 17 problems found in the case studies to the product

integration practices in that standard. The results confirm the need

of a broader approach than is available in any of the examined

reference models

Table 15. Performed activities and problems identified in the case

studies

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

1. Define and document
an integration strategy

? +

2B

+ + + ? ?

2. Develop an integration
plan based on the
strategy

+ - + - - - -

3. Define and establish
an environment for
integration

+ + + + -

5B

+

6C

+
7B

166 Paper D

Generic activity
description

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

4. Define criteria for
delivery of components

-

1B

-

2A

+ - + - -

5. Identify constraints
from the integration
strategy on design

? ? ? ? ? ? ?

6. Define interfaces - - - + - - -

7. Review interface
descriptions for
completeness

-

1C

-

2C

- -

4A

- + +

8. Ensure coordination of
interface changes

-

1C

-

2C

- - - -

6D

-

7C

9. Review adherence to
defined interfaces

- - + + - - -

10. Develop and
document a set of tests
for each requirement of
the assembled
components

+ - + - + - -

11. Verify completeness
of components obtained
for integration through
checking criteria for
delivery

-

1B

- -

3A

+ -

-

6A

-

7A

12. Deliver/obtain
components as agreed in
the schedule

-

1A

- + - -

5A

-

6B

-

13. Integrate/assemble
components as planned

+ + + + + - -

14. Evaluate/test the
assembled components

+ + + + + - -

15. Record the
integration information
in an appropriate
repository

- - - - - - -

Paper D 167

Our finding is that there is a small set of practices that need to be

implemented to have working product integration. However, they are not

sufficient, which is indicated by the larger set of practices described in

different reference models.

Table 16. Number of errors for each case related to practices in the

reference models

 ISO/IEC

12207

EIA-632 CMMI EIA-731.1 ISO/IEC

15288

Case 1
3 problems

2 1 2 3 2

Case 2
3 problems

0 0 2 2 1

Case 3
1 problem

1 1 1 1 1

Case 4
1 problem

0 0 1 1 0

Case 5
2 problems

1 0 1 1 2

Case 6
4 problems

2 1 3 3 3

Case 7
3 problems

1 1 3 2 2

Total
17
problems

7 4 13 13 11

168 Paper D

6. Discussion

The difficulties for product development organization found during

integration are disrupting the progress of development projects, and

increases time-to-market. Problems origin for example in the lack of

integration planning, insufficient management of interfaces, and inadequate

preparation of components delivered for integration.

Our intent with this research has been to examine to which extent the

practices described in reference models are useful as a support for

development units. Five reference models have been analyzed and practices

as well as problems from seven development projects have been captured.

We have based the investigation on the following questions and summarize

here the results:

• How are the practices described in reference models useful for

product development units for improving product integration?

The reference models can be used as a tool for identifying weak areas in the

product integration processes. Care must however be taken when selecting

the reference model so that sufficient coverage is obtained.

• What is the core set of practices that can be identified to reduce

problems in product integration?

Through the case studies, five Product Integration practices have been

identified to be necessary to perform to have successful product integration.

These are PI 4 Define criteria for delivery of components, PI 7 Review

interface descriptions for completeness, PI 8 Ensure coordination of

interfaces changes, PI 11 Verify completeness pf components obtained for

integration through checking criteria for delivery, and PI 12 Deliver/obtain

components as agreed in the schedule. For the interface handling, also PI 6

Define interfaces is important as PI 7 relies on that practice. The same

reasoning can be applied on PI 2 Develop an integration plan based on the

strategy which is a prerequisite for PI 12.

• Is it appropriate to combine reference models to provide better

support to product development units, and how can this be done?

The analysis of existing reference models show that none of the investigated

models cover the problem situations for the investigated product

development organizations regarding product integration. This leads to our

conclusion that a combination of the content in the reference models can be

Paper D 169

helpful for development organizations when designing and improving the

product integration process.

Our suggestion to companies that would like to improve the product

integration processes is to use the set of 15 practices described in section 4.6

and perform an assessment on the current practices. In addition to this, the

problem areas should be captured, and together with the assessment result

be the basis for any improvement effort.

One additional conclusion is that a continued development towards an

agreed body-of-knowledge for the product integration area is needed. This

can be achieved through consolidation and further validation of existing

reference models. Finally, as a result of our studies, we see the need to

perform additional investigations to understand the reasons for the lack of

use of proven good practices, and to understand why the implementation of

product integration practices sometimes fails.

Several different additional directions for future research have been

identified. Additional organizations using different technologies should be

investigated and compared to clarify if there are dependencies between the

type of application and the needed practices. A related direction is to look at

the influence architectural decisions have on product integration. Also,

methods for how to determine the best improvement proposals for product

integration for different types of organizations should be investigated,

enhanced, and possibly developed. This probably requires an agreed body-

of-knowledge for product integration that supports different types of

organizations, and the use of different development models. The reference

models investigated in this article do not prescribe specific development

models, but the selection is likely to influence the ability to follow the

practices and to be successful in the product integration.

170 Paper D

References

[1] ANSI, American National Standards Institute, http://www.ansi.org/, 2007.

[2] ANSI/EIA-632-1999, Processes for Engineering a System, Electronic Industries

Alliance, Government Electronic and Information Technology Association,

1999.

[3] J. Campanella, Principles of Quality Costs: Principles, implementation and Use,

ASQ Press, Milwaukee, WN, USA,, 1999.

[4] C.G. Chittister, and Y.Y. Haimes, Systems integration via software risk

management. Systems, Man and Cybernetics, Part A, IEEE Transactions on 26

(1996) 521-532.

[5] M. de Jonge, Package-based software development. Euromicro Conference,

2003. Proceedings. 29th (2003) 76-85.

[6] A.H. Dogru, and M.M. Tanik, A process model for component-oriented

software engineering. IEEE Software 20 (2003) 34-41.

[7] EIA-731.1, Systems Engineering Capability Model, Electronic Industries

Alliance, 2002.

[8] F. Ekdahl, and S. Larsson, Experience Report: Using Internal CMMI Appraisals

to Institutionalize Software Development Performance Improvement. 32nd

EUROMICRO Conference on Software Engineering and Advanced

Applications (EUROMICRO'06) (2006) 216-223.

[9] M. Fowler, Continuous Integration,

http://www.martinfowler.com/articles/continuousIntegration.html, 2006.

[10] IEEE1220-2005, IEEE Standard for Application and Management of the

Systems Engineering Process, Institute of Electrical and Electronics Engineers,

2005.

[11] IEEE, The Institute of Electrical and Electronics Engineers,

http://www.ieee.org/, 2007.

[12] INCOSE, International Counsil on Systems Engineering,

http://www.incose.org/, 2007.

[13] ISO9001:2000, Quality management systems -- Requirements, ISO, 2000.

[14] ISO, International Standardization Organization, http://www.iso.org, 2007.

[15] ISO/IEC12207:1995, Information technology - Software life cycle processes,

ISO/IEC, 1995.

[16] ISO/IEC15288:2002, Systems engineering - Systems life cycle processes,

ISO/IEC, 2002.

Paper D 171

[17] D.R. Kuhn, On the effective use of software standards in systems integration.

Systems Integration, 1990. Systems Integration '90., Proceedings of the First

International Conference on (1990) 455-461.

[18] R. Land, and i. Crnkovic, Existing Approaches to Software Integration - and a

Challenge for the Future, Fourth Conference on Software Engineering Research

and Practice in Sweden, Linköping, Sweden, 2004.

[19] S. Larsson, Improving software product integration, Dept. of Computer Science

and Electronics Mälardalen University, Västerås, 2005, pp. xi, 108.

[20] S. Larsson, and I. Crnkovic, Case Study: Software Product Integration Practices,

6th international conference Profes, June, 2005, Oulu Finland, 2005, pp. 272-

285.

[21] S. Larsson, I. Crnkovic, and F. Ekdahl, On the expected synergies between

component-based software engineering and best practices in product integration,

Proceedings - 30th EUROMICRO Conference, Aug 31-Sep 3 2004, IEEE

Computer Society, Los Alamitos;Massey University, Palmerston, CA 90720-

1314, United States;New Zealand, Rennes, France, 2004, pp. 430-436.

[22] S. Larsson, P. Myllyperkiö, and F. Ekdahl, Product Integration Improvement

Based on Analysis of Build Statistics, To be presented at ESEC/FSE,

Dubrovnik, Croatia, 2007.

[23] E.G. Nilsson, E.K. Nordhagen, and G. Oftedal, Aspects of systems integration.

Systems Integration, 1990. Systems Integration '90., Proceedings of the First

International Conference on (1990) 434-443.

[24] RTI, The Economic Impacts of Inadequate Infrastructure for Software Testing,

National Institute of Standards and Technology, Gaithersburg, MD, USA,, 2002.

[25] A.P. Sage, Charles L. Lynch, Systems integration and architecting: An overview

of principles, practices, and perspectives. Systems Engineering 1 (1998) 176-

227.

[26] M. Schulte, Model-based integration of reusable component-based avionics

systems - a case study. (2005) 62-71.

[27] SEI, CMMI® for Development, Version 1.2., Pittsburgh, PA, USA,, 2006.

[28] SEI, Software Engineering Institute, http://www.sei.cmu.edu/, 2007.

[29] V. Stavridou, Integration standards for critical software intensive systems.

Software Engineering Standards Symposium and Forum, 1997. 'Emerging

International Standards'. ISESS 97., Third IEEE International (1997) 99-109.

[30] V. Stavridou, Integration in software intensive systems. Journal of Systems and

Software 48 (1999) 91-104.

Paper E

ASSESSING THE INFLUENCE ON PROCESSES

WHEN EVOLVING THE SOFTWARE

ARCHITECTURE

Stig Larsson, Anders Wall, Peter Wallin

Presented at IWPSE,

Cavtat, Croatia, August 2007

Abstract

Software intensive products and systems evolve over the life-cycle.

Changing business objectives may drive architectural or process changes.

Altering either architecture or process might influence the other. Also the

organization may influence and be influenced. This paper describes these

relationships and proposes a method for assessing the influence on process

that a proposed architectural change can have. The method includes the use

of scenarios and process reference models. A case study where the method

has been used is described, identifying the need for changes in the processes

to be able to utilize the advantages made possible due to the architectural

evolution. The case study supports our proposal that a structured method to

assess the impacts on process when changing the architecture of a system

helps to reduce risks and to facilitate the envisioned business benefits. This

also identifies the need to devise methods for other types of changes, e.g.

how a process change may influence architecture or organization.

1. INTRODUCTION

As the architecture of a system or product changes, the processes used for

the development may change, and vice versa. One example on this is when a

system is modularized and new ways of ensuring the integrity of interfaces

are needed. Another example is when new business requirements based on

possibilities for distributed development require the organization to

structure the software into a platform and applications but also to define

new processes of how these parts of systems are to be integrated before sent

to an end customer.

Moreover, we have observed that changes in business drivers, organization,

and technology are common during the life-cycle of a long-lived industrial

176 Paper E

system. Examples of changes are commercial components that get obsolete

and need to be replaced, distribution of development is initiated, companies

merge, organizations targets new markets, or gets changed customer focus. It

is consequently necessary to have a continuous evolution in all three

dimensions: architecture, processes, and organization.

Still, there is a lack of a thorough analysis of interdependences of these

factors. While there are many methods for analysis of software evolution

based on software architecture, or methods for process improvements, it is

practically unknown how they are dependent of each other. We see that

there is a clear need for building knowledge of interdependencies between

evolution of architectures, development processes, and changes in the

development organizations. Our experience is that this is in particular

important for long-life products. Examples of such systems are industrial

products and systems.

Development of industrial control products and systems is often performed

as an evolution rather than frequently developing new products from

scratch. The reason is that these products are complex, requirements from

customer forces focus on time-to-market, and that a substantial investment is

needed before the functionality of a new product matches or exceeds earlier

generations of the product [4]. The focus on evolving systems combined

with the complexity in today’s industrial systems requires that the integrity

of the architecture of the system is kept intact. If system architecture

integrity degrades, or enters the servicing stage as described by Bennet and

Rajlich in [1], it is no longer possible to add substantial functionality to the

system. To protect the investments in the development of the product, this

should be avoided as long as possible.

In this paper different relationships between changes in architecture and the

effects on product development processes as well as changes in process and

the effects on architecture are discussed. A method for assessing one type of

change is proposed, and is illustrated on an industrial case.

The remainder of this paper is organized as follows. Section 2 describes the

relationships between changes in architecture, organization, and process as

well as the proposed investigation method. The case where the use of the

proposed method has been illustrated is described in section 3. Section 4

describes related work while conclusions and further work are found in

Section 5.

Paper E 177

2. Method Description

This section describes the relationships between architecture, organization,

or development processes when changes occur due to changed business

objectives. In addition, a method is proposed for assessing the requirements

on changes in processes when an architectural change is initiated.

2.1 Types of Relationships

The reasons for changing the development processes or the architecture

should always be motivated from a business perspective. Our experience is

that a change in the architecture should never be driven by technology

without a specific business motivation. Examples of such motivations are

changes in customer focus or introducing distributed development. Also

seemingly architecturally driven changes should only be done based on

business needs, e.g. a complex architecture that needs refactoring should be

changed only if a business benefit can be identified. For example, reduced

cost for maintenance or easier evolution of the system may be the original

business reason. The business-drivers for our case-study are described in

Section 3.1.

Since processes, organization, and architecture all must be synchronized in

order to support a cost-effective product development, a change along one of

these dimensions will require a review of the others in the light of the

proposed change. Figure 1 depicts the relationship between changes in

business objectives (∆B), process changes (∆P), organization changes (∆O),

and changes in the architecture (∆A).

Figure 1. Relationship between different types of changes

∆B → ∆O
↕

↕→
→

∆P

∆A

∆B → ∆O
↕

↕→
→

∆P

∆A

178 Paper E

The change based on business objectives can be initiated from any of the

three dimensions, e.g. a development group proposes a change in the

processes to reach the business objectives which may have influences on the

software architecture or the other way around. Changes in the organization,

e.g. a decision to distribute development to get presence in a specific

geographic market, may influence both architecture and development

processes.

The method proposed in this paper should not only provide guidance

concerning specific changes in existing architecture, organization, and

processes but should also give an indication on the cost and risks of the

proposed changes. Typically, the motivation for the kinds of changes

discussed in this paper is related to reducing product development- and

maintenance costs.

2.2 Business-Architecture-Process Method

To investigate and analyze the influences that a change in architecture will

have on the development processes we propose the Business-Architecture-

Process method. It covers the influence from business objectives and

architectural change on processes which is highlighted in Figure 2. It

consists of five steps: Initiate and Motivate the Organization, Find

Requirements on Affected Processes, Analyze Different Solutions, Define

Alternative Strategies, and Decide on Strategy. An important part of the

method is that the underlying business objectives are made visible and

should be clearly understood by the organization. Central in the method is

also the use of scenarios, i.e. synopsis describing an event or situation.

Through the scenarios, an understanding of the business objectives is

obtained as the implications of the objectives are made concrete. Finally, the

use of reference models is important as this reduces the risk to omit

significant process steps.

Paper E 179

Figure 2. Architectural changes affecting processes

2.2.1 Step 1: Initiate and Motivate the Organization

Before the investigation can begin, a common motivation must exist for the

organization. This is similar to the initiation phase as described in the

IDEAL model [9] from Software Engineering Institute used for process

improvement. Based on business drivers and a vision for what should be

accomplished with the architectural change, the sponsors and other roles for

the process investigation should be identified. The sponsors need to

communicate the vision, and identify the possible receivers of any process

changes. The final activity is to train these receivers in the architectural

influence on processes. The outcome of this first step is an organization that

is informed and prepared for the process investigation.

2.2.2 Step 2: Find Requirements on Affected Processes

Based on the business drivers as well as the targets and vision for the

architectural change, an understanding of what processes are affected should

be created. This is done based on scenarios that describe the goals of the

architectural change in a concrete way, the currently used practices, and one

or more reference models. The results of this step are new requirements on

the product development processes used.

The first activity in this step is to create a set of scenarios that describe the

vision and purpose of the architectural change in more detail. The reason to

work with scenarios is that this makes the vision concrete for the

stakeholders, and promotes a discussion about the activities in the

∆B → ∆O
↕

↕→
→

∆P

∆A

∆B → ∆O
↕

↕→
→

∆P

∆A

180 Paper E

organization. The scenarios limit the scope of the process investigations,

making it possible to focus on what is important for this specific change.

The scenarios should describe the different activities performed to achieve a

goal in an organization. One way to describe a scenario is found in Figure 4.

After the identification of the involved processes, an understanding of

current practices should be obtained. The practices need to be captured

through an appraisal as it is the used practice that is important, not the

documented. Also the problems in the currently used process will be

available after the appraisal, and should be part of the material used for

further activities. The use of reference models help the investigators to

ensure that no process is missed; if some practices are missing in the way

the organization is operating, that practice may be ignored if there is no

reference to check with.

When data about used processes and the scenarios are available, the next

step is to reason about whether a process is affected or not. This can be done

in a workshop with affected stakeholders, and will result in conclusions

regarding new requirements on the used processes. One essential part of the

activity is to capture the rationale for the analysis; the reasoning behind why

a process should be modified or added needs to be documented.

The result from this step is a set of the requirements on processes and tools

used. It is advisable to have a checkpoint after this step; if there are many

new requirements, the organization should consider alternatives to the

architectural change.

2.2.3 Step 3: Analyze Different Solutions

The understanding of the practices used in the organization is together with

the scenarios used to describe different possible ways to change the affected

processes. For each proposed change, the consequences are listed. These

typically include changes in roles, authorities, responsibilities, competence,

documentation, and communication. It is important at this stage to have a set

of different alternatives described for each process independently of other

processes, as the selected solution may differ depending on combined

considerations for several processes.

2.2.4 Step 4: Define Alternative Strategies

The solutions from step 3 are in this step grouped together to form

strategies. Here combinations of process changes are investigated. Each

Paper E 181

strategy should be a combination of proposed process changes that enables a

particular scenario or a group of scenarios to be implemented. The reason

for combining the process changes into strategies is that they may influence

each other. For example, a change in the handling of product integration can

affect configuration management, i.e. the way that baselines are managed.

The description of a strategy should include associated risks as well as steps

and related effort needed to implement the process changes.

2.2.5 Step 5: Decide on Strategy

When the different process changes have been described and combined into

strategies, the organization is ready for the decision on what strategy to

select. The business objectives will be the basis for the decision, as will the

risks for each of the strategies. To make a successful implementation likely

it is important that the decision on a specific strategy is properly

communicated and discussed. In these discussions, the underlying material

such as the process investigations based on scenarios can be used.

Documenting the decision and the rational for the selected solution is

important as the environment may change and new situations appear.

Having the background available reduces the effort to adapt to the new

situation.

3. Case Study

We have used the proposed method to investigate a product development

organization, how the refactoring of an industrial control system is planned

and implemented, and how this influences the processes. The investigation

has been performed as a participant-observer study, i.e. the research was

performed through participation in the refactoring project.

3.1 Case Description

The case that has been studied is the refactoring of an industrial control

system at an ABB development unit. The system has evolved through

several generations over a ten year period, and new functions are

continuously added. Currently, the control system consists of more than

three million lines of C/C++ code and several different applications are built

on the same basic monolithic system. The refactoring is initiated in order to

increase the possibilities to independently develop basic functions and

applications, to ensure high quality software, and to increased efficiency in

182 Paper E

the software development. The most important business drivers in this case

are: shortened time-to-market for new applications and new releases of

existing applications, and decreased cost for maintenance.

The basic idea of the restructuring is to divide the monolithic software

architecture into three parts; a kernel, a set of common extensions, and

application specific extensions (Figure 3). The kernel and the common

extensions are to be managed by one development group, while the

applications is intended to be developed at several different locations. The

kernel includes components that provide basic services, e.g. operating

system abstractions, which must be a part of the all products, while the

common extensions should be selected when defining an application

specific product, e.g. support for a specific field bus. The Base Software is

the combination of the kernel and the common extensions.

 Figure 3. Block diagram of the refactored software

 Common
extensions

Application
specific

extensions
Application

specific
extension A

Base
Components Base

Components

Common
extensions

Kernel

Base

Paper E 183

Software components in this context are modules built out of several classes

and can have both internal and public interfaces. The idea is that a Base

Software SDK (Software Development Kit) should be developed with the

public interfaces provided by the Base Software (the API, application

programming interface). The SDK should include a well-documented API (a

programmers guide), a user guide describing how to develop applications

based on the SDK, wizards for developing extensions, and tools for building

products based on the SDK and application specific components. These

tools should also include e.g. verification tools. The final result from the

application development is the load file for the control system, which is

added at production time. Additional adaptation for a specific plant can be

made, but is not considered a part of the application product.

3.2 Applying the Proposed Method

This section describes how we applied the Business-Architecture-Process

method to the industrial case.

3.2.1 Initiate and Motivate the Organization

The first step is to Initiate and Motivate the Organization both for the

architectural change, and the need to investigate the influence on process.

The organization had two clear business objectives: to reduce cost for

verification, and to increase capability to perform distributed development.

Through the research and development project, the vision and goals for

refactoring were communicated to the stakeholders. One problem in this

case was that the sponsor assigned the project manager to communicate the

vision, both internally in the project and externally to the rest of the

organization, giving perceived less importance to the message. However,

through this approach, also the architectural influence on the product

development processes where covered, and the receivers of the process

changes were involved. The communication was also continued throughout

the project to ensure that new information and status was given to the

receivers.

3.2.2 Find Requirements on Affected Processes

To investigate the influence on the product development processes, the

second step, Find requirements on affected processes, was performed. The

first activity was to develop a set of scenarios to be used together with two

184 Paper E

reference models, CMMI [14] and ISO/IEC 15288:2002 [7] . The scenarios

describe different roles and activities and serves as a source of requirements

for the processes. Through the use of process models, the processes can be

structured and investigated with a specific process area in focus. The second

activity has been to look at the current process to understand how the system

is developed today. Throughout the appraisal, it has been important to

understand the different needs from different stakeholders such as product

managers, application developers, and base system developers. Each process

area has been discussed and analyzed using the specific practices as

described in CMMI and the different requirements described in “Systems

engineering - Systems life cycle processes” (ISO/IEC 15288:2002). Based

on the information from the two first activities, the requirements for the

process have been defined and described.

In our investigation, four different scenarios have been defined, with

different levels of independence for the application development units. In

this context, application development is the process of combining

application specific extensions, and the Base Software. This process may be

performed by an organization separated from the one developing the kernel

and common extensions.

Each scenario involves different roles that may be involved in the product

development process when developing an application. These include an

application development team, a Base Software integration team, a

verification team, and a production team.

The example scenario in Figure 4 describes one alternative for how the

integration of a new or modified application is done. In this example, the

Base Software Integration Team is responsible for the integration of the

application specific extensions. The application tests are performed by the

application development team and further tests of the total system is

performed by the verification team. Note that this example is a

simplification of the real case which includes additional processes such as

product management, release handling, and production.

Paper E 185

Figure 4. Example scenario. (Boxes denotes activities, and lines are

showing flow of information and data)

The specific process areas that were identified as subject to most

requirements for change were product management including release

planning, requirement development, requirement management, configuration

management, product integration, and verification. In this paper we describe

the requirements and proposed solutions for product integration,

configuration management, and verification. The practices that are described

build on good practices identified in industry and have been examined using

the different scenarios for use of the Base Software and the development of

the applications.

3.2.3 Analyze Different Solutions

The third step, Analyze different solutions, was performed in discussions

with experts in the different processes, and the findings where validated

through a review. Here, each of the affected areas in the example process

areas is described, with the different solutions discussed.

Configuration management:
The parts of configuration management that are affected by the refactoring

and changes in how applications are developed include handling of the

code-base, documentation of builds (i.e. the process of compiling and

linking software or the result of this process) and the increased need for

availability of stable versions for development, tests and integration

purposes.

Verification
Team

Base

Software

Integration
Team

Application
development

Team

Verification
Team

Base

Software

Integration
Team

Application
development

Team

Development

of new or

changed
application

System

verification

with new

application

Test of

application

Integration

into common

code base

186 Paper E

A decision on how to handle the code-base is needed as this will create

different requirements on the infrastructure. One common code-base can be

used for the whole development organization, including the application

development centers. If one code-base is maintained, processes need to be

defined for how the applications are included, and what baselining strategy

should be used. The handling procedures should also include naming rules,

version handling, and library structures that are common for the whole

system. A description of the rules and procedures should be included in the

Base Software SDK to ensure that they are available to the application

engineers.

If several repositories are used, localization for structures, names, and

documentation can be introduced. This can, however, result in issues

regarding availability for support, service, maintenance, and production

functions that must be resolved. Hence, if local repositories are introduced,

rules for accessibility, backup, release notifications and for error corrections

must be defined and implemented in each part of the organization.

Rules for how builds should be documented are needed and should be

standardized. The information should contain information about included

components/modules, tools and hardware used. It is also important to

document the versions of software and hardware used for the build activity.

This is a change from current handling where this is done in one location.

Today, the handling can differ between the different application developers

as the builds they initiate always are made for development purpose only

and are not documented as well as a production build. The product builds

are today made centrally, but may be made by the application developers

once the new product architecture is launched.

Stable versions of the different components/modules are needed for

developers, integrators, and test engineers. Base Software development

builds should be made available for development purposes to Base Software

developers, but not to application developers or the verification function as

changes are introduced between different builds as a part of the development

process. Instead, baselines with well defined content should be made

available at agreed milestones. As with the build documentation, this is due

to the fact that the versions provided to the application developers may be

the version that is included in the product shipped to an end customer.

Paper E 187

Product Integration Strategy:
The product integration is the inclusion of functionality into the common

code base, and should not be confused with builds. The ability to build

systems must be given to all developers, but with different degrees of

freedom. Base Software developers should be able to build new kernel and

Base Software systems, but the integration into the common code base

should be performed by a kernel integration function. Application

developers should be able to build systems that include a pre-built Base

Software module and new functions, but the integration into the application

code base should be performed by the application integration function.

Three different types of integrations are needed with the chosen

architecture:

• Kernel integration,

• Base Software integration

• Application integration.

Kernel integration includes only the parts that are needed for all systems.

This integration is performed by the Base Software integration function. As

there may be applications built without any of the common extensions

selected, there is a requirement to test the kernel as a basic version of the

software.

Base Software integration is starting from the kernel, adding the common

extensions, resulting in Base Software. This integration is also performed by

the Base Software integration function. It should ensure that the extensions

can be selected as described and that the expected interfaces are available

after the integration.

The sequence for when functionality is integrated is determined for the Base

Software, including both the kernel and the common extensions.

Application integration is based on the product definitions and is after

verification and validation delivered for production. An application

integration function is responsible for the inclusion of new functionality into

the integration. This function should also be responsible for the inclusion of

new versions of the Base Software for use with the specific application.

Verification is needed to ensure that the new Base Software version is

compatible with the application.

The whole strategy of the integration will be changed through the use of a

new layered architecture. This gives also the organization the possibility to

change boundaries and responsibilities.

188 Paper E

Development of new applications and functions need to be built on stable

releases of the Base Software. This implies that intermediate versions of the

Base Software should not be broadly available, and that the versions made

available should have been tested.

Requirements on application development units:
Each development unit that will develop products based on the Base

Software SDK will have to fulfill a number of criteria. This section

describes the areas where criteria are needed.

As the target system is an embedded controller, the final deployment is done

as one executable even if the development of applications is made

separately. The first requirement is that the development unit has the

competence required for the specific development that is performed on the

Base Software SDK. This calls for training of all engineers in how to use the

Base Software SDK as well as general purpose software tools that are used.

In addition to this, domain knowledge for both the type of embedded system

that is used and for the specific application is needed.

The second requirement is that a specification of the equipment needed for

the application development and integration units must be developed. It

should include specification for the development environment, with external

and internal SDK, hardware requirements for development computers, tools

for verification including automated tests and build machines. Development

units that are performing the integration function also need equipment for

integration tests.

Finally, a third requirement, certification, can be introduced. This should be

done to ensure that quality development is performed through guaranteeing

that the competence and skills needed are in place The certification should

check that training has been provided to all development engineers as

defined in the training requirements, that verification procedures are defined

and validated and that the development equipment and development

environments are available.

The certification should be performed by the unit responsible for the Base

Software development and be performed for individual engineers as well as

for the organizations developing applications.

Product integration delivery and criteria:
To accept a solution or function for integration, the readiness of the

delivered modules must be checked. This should be done using criteria for

when a module can be delivered. If development of applications is

distributed to many parts of the organization, a set of criteria that can be

Paper E 189

used for all levels of integration is needed. This will ensure that the

documentation and quality is maintained on a common level, and the

transfer of functions between different parts of the system is simplified. An

example is when an application specific extension is generalized and made

available as a common extension.

Examples of criteria for allowing a function to be integrated are that code

reviews and module/class tests have been performed with satisfactory

results, the level of expected remaining errors is documented, and design

documentation is available.

Tool support is recommended to simplify the checking of criteria for

delivery to integration. One example of this is tools used for static and

dynamic analysis as a complement to manual code review. Tools are

available that can assist with workflow functions and process templates.

Interface handling: Insufficient control of interfaces is a source of mistakes

and problems in development of products. The requirements on and designs

of interfaces need to be captured and documented to assist in the

development of components/modules. To ensure proper use of interfaces, a

standardized way of documenting is needed to reduce ambiguity and

misunderstandings. This documentation should include the following:

• Functionality

• Expected environment

• Limitations for use

• Usage

• Returned results

• Ownership

Note that this documentation complements the description of the interfaces

in the SDK and is primarily used for Base Software design and

implementations. This is also one area where the architecture may be

influenced by the changes in the process: the attributes that can be retrieved

from the system at runtime should also include information about

possibilities for tests of the different modules. This ensures that proper

verification can be done also in late stages of the integration process, i.e.

when integrating the application.

It is important to ensure that the interface documentation also includes

implicit dependencies that are related to generation of target code. This

190 Paper E

includes internal changes in modules that may not affect its interface but

requires recompilation or linking.

Once an interface has been included in a Base Software release, the changes

must be controlled and communicated. A decision process is needed to

ensure that proper handling of changes in interfaces. Also, the product road

map should be considered as any change of an interface may affect

applications that need to ensure that the change affects the application as

expected.

Changes of interfaces in Base Software need to be documented to ensure

that they can be communicated to users and also to ensure that changes can

be tracked. The documentation of a change should include the rational, a

listing of affected parts of Base Software, as well as a description of how the

change can influence the applications. Changes to interfaces in the

applications should be handled in a similar way as application specific

extensions may be transformed into common extensions.

Verification strategies:
As the system is integrated iteratively in steps, there is a need to also have

verification performed in steps. The verification of the kernel needs to

ensure that the specified functionality is available and that the described

interfaces are working correctly. As the kernel cannot be tested without an

application that uses the interfaces, a test application is needed. This test

application should include enough functionality to ensure appropriate

coverage of the functions in the kernel. A second set of verifications is

needed to ensure that the common extensions are working as specified. This

calls for a different test application. Finally, the applications need to be

tested. As the applications affect the functionality and the performance of

the final system, parts of the tools and methods used for verification of the

kernel and the common extensions need to be made available to the

application engineers as part of the SDK.

As the Base Software is used for the development of many applications,

deficiencies that remain after the verification will increase the risk that this

error will affect one of the applications and causing problems in the field.

This calls for higher standards in the verification of the Base Software than

for the applications. The verification also needs to ensure that different

combinations of the kernel and the chosen extensions are working. We note

that the need to have well working verification of the Base Software also

create a need for specific interfaces that enable the verification team to test

the system sufficiently.

Paper E 191

However, as the customer of the product will not distinguish the Base

Software from the application, an error in the application may create a

market problem that is as sever as a problem in the Base Software. Thus, the

support for testing the applications is important, and should be a part of the

Base Software SDK. It should also be part of the training and, if used, in the

certification of the development unit.

3.2.4 Define Alternative Strategies

Define alternative strategies is the fourth step. In our case the strategies are

divided from a business perspective and are based on how the application

products are packaged, distributed, and verified. Two of the areas requiring

process changes, product integration delivery criteria and interface handling,

which are needed independent of the chosen strategy, and is based on the

analysis of the changes in combination with the scenarios. The strategies are

summarized in Table 1. Also the pros and cons as well as the risks have

been captured, documented, and reviewed for each one of the strategies.

These are related to the business objectives and are as such specific for the

business situation the organization is performing under.

3.2.5 Decide on a Strategy

The final step, Decide on a strategy, was in the case study delayed as the

business implications for changing the product development to be more

distributed needed further investigation by product management. The final

decision was to stay with the current model, strategy 1, and gradually move

towards strategy 4. The decision was also to allow different locations to

work in different ways, i.e. use different strategies, and develop their

capabilities over time. As a consequence, the organization developing the

Base Software SDK will deal with a diverse set of internal customers,

requiring different levels of support. How this will be handled from a

business and organizational perspective needs to be further investigated, e.g.

how costs for the support should be divided between the different users of

the Base Software SDK.

192 Paper E

Table 1 Strategies and corresponding changes in processes

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Centralized distribution Distribution by application

Process area or

activity
Central

verification

Verification

by application

Central

verification

Verification

by application

Configuration

management

One

common

repository

One

common

repository

Distributed

repositories

Distributed

repositories

Product Integration

Strategy

Central

application

integration

Central

application

integration

Distributed

application

integration

Distributed

application

integration

Requirements on

application

development units

Ability to

develop based

on SDK

Ability to

develop, and

verify based on

SDK

Ability to

develop, and

integrate based

on SDK

Ability to

develop,

integrate, and

verify based on

SDK

Product integration

delivery criteria

Common

criteria for all

levels of

integration

Common

criteria for all

levels of

integration

Common

criteria for all

levels of

integration

Common

criteria for all

levels of

integration

Interface handling Secure

interface

handling for

Base Software

Secure

interface

handling for

Base Software

Secure

interface

handling for

Base Software

Secure

interface

handling for

Base Software

Verification

strategies

Stepwise

verification

Stepwise

verification,

with application

developer doing

final verification

Stepwise

verification

Stepwise

verification,

with application

developer doing

final verification

3.3 Case Discussion and Lessons Learned

Compared to an ad-hoc method, the Business-Architecture-Process method

facilitated the definition of the proposed changes in the development

processes and the compilation of strategies. This was concluded by the

organization after the investigations were performed, and compared to

earlier architectural changes when no method was used for assessing process

change. The difference in results is that necessary changes are implemented

faster and that the organization is better informed and prepared for the new

technology and new processes.

Four observations where made that will affect future use of the method. The

first was that as we are using reference models as a basis for the appraisal of

Paper E 193

used processes, there is a risk that the proposed changes are generic process

improvement proposal, and not connected to the change of the architecture.

The second observation is that some of the changes in processes might only

be depending on the changed business objectives, and not be a result of the

architectural change. However, the process changes were not identified

when the business objectives were initially analyzed. We conclude that the

proposed method also helps the organization to identify these needed

changes. The third observation was that it is important to continuously have

a dialog with the sponsor. In the case study, the aspect of distributed

development was reinforced. Finally, the involvement of some stakeholders

was possible first after the strategies were formulated: the interest and time

to analyze partial solutions and alternatives with too many degrees of

freedom was minimal, and a full strategy was needed to ensure the full

attention. Note also that there is substantial effort needed for the method as

many stakeholders are involved. We think that to minimize the time and

effort, it is important to plan workshops and other interaction early, ensuring

that the effort spent is balanced with expected gains in reduced problems.

All these observations will affect the next revision of the described method.

4. Related Work

This section describes work that has been done related to influences

between architecture, organization, and processes.

Various methods concerning the business objectives impact on both process

and architecture exists but none combining the three. For architectural

analysis the Architecture Tradeoff Analysis Method, ATAM [8], can be

used. The goal of ATAM is to assess the consequences of architectural

decisions in the light of quality attribute requirements. Typically there exist

competing quality attributes such as modifiability, security, reliability, and

maintainability that different stakeholders consider to be the most important.

These quality attributes are broken down into scenarios. ATAM is divided

into nine steps. These steps involve eliciting a utility tree and identifying

risks, sensitivity, and tradeoff points. Since ATAM focuses on technical

tradeoffs it can be complemented with the Cost Benefit Analysis Method,

CBAM [10]. CBAM aids in the process of making architectural decisions by

providing a return of investment (ROI), ratio. This ratio is the benefit

divided by cost. A problem with quality attributes is that they are abstract

and each stakeholder has it own interpretation of it. Neither ATAM nor

CBAM compares different architectures and can therefore be hard to use

194 Paper E

when it comes to choosing a between different architectures. To aid in

selecting a specific architecture over another, a method is presented in [15].

This method uses the elicitation of scenarios from ATAM and then analysis

different architectural approaches with the Chainwise Paired Comparison

method (CPC). CPC is based on the Analytical Hierarchy Process, AHP [12]

but CPC only requires O(n) comparisons instead of the O(n2) needed with

AHP. This method provides a structured reasoning why a specific

architecture is chosen. The method is also highly scalable and can therefore

be adapted to fit the resources available, however it does not consider the

implications the chosen architecture has on the process, or how the process

affects the architecture.

Another example, where different scenario-based methods have been used

as a basis for assessment of architectures, has been described by Del Rosso

[2]. This investigation is interesting as it describes the evolution of a product

line, and can be compared to the case study in this paper. It also compares

scenario-based methods with performance assessments and experience-

based assessments. However, the connections to process and organization

are not examined.

Several methods, such as SCAMPI [13] and ISO/IEC TR 15504 (SPICE)

[5], are available for assessing processes, and there are also methods

available for evaluations of specific processes such as TPI. However, none

of these are designed specifically to understand the combined changes of

architecture, organization, and processes. Additional support for assessing

processes can be found in different standards and reference models for

development life-cycles [3, 6, 7, 14].

In [11], Ovaska et al describes how the architecture supports the product

development processes in a multi-site environment, and the influence

between the two is implicitly described. The study suggests that

coordination efforts for activities are not enough, but that interdependencies

between activities must be handled. This requires that a common

understanding of the architecture. There is however no discussion about

how the changes of architecture or process would influence each other.

Paper E 195

5. Conclusion and Future Work

Development of business objectives may initiate changes in the product

development. The changes can affect architecture, organization, and

process. However, our observation is that a change in one of these three

aspects may influence the other two as a secondary consequence. We have

described a method for assessing the influence a proposed architectural

change can have on the process. Central to this method is the use of

scenarios and process reference models. Combining solutions to process

requirements into strategies gives a possibility for stakeholders to easy

understand the implications of different decisions. By applying the proposed

method during the refactoring of an industrial control system, we have based

on the proposed method identified key areas and changes to these that need

to be implemented in the development process. The case study has also

resulted in the identification of additional details as useful input to the

method. The case study supports our proposal that a structured method

supports efficient and effective investigations of process changes due to

architectural changes.

Threats to validity are that the reference models may be inappropriate for

the investigation and that the selected scenarios are not representative and

exhaustive for the product and organization. We argue that by selecting

different reference models that are used in the organization today we cover

current knowledge of processes for product and system development in this

context. We have also ensured that the scenarios have been validated

through review with product management, as well as with process owners,

developers, and architects.

Future work includes detailing the description in the method, adding details

on how each step should be performed, and also give additional examples.

Additional details need to be added regarding scalability and resource needs

for using the model in different types of organizations. There is also a need

to expand the method to describe also remaining relationships depicted in

Figure 1. This involves finding appropriate reference models for

investigating organizations and architectures, and including the use of

scenarios and combined solutions as strategies into the additional methods.

196 Paper E

6. REFERENCES

[1] Bennett, K.H. and Rajlich, V.T., Software maintenance and evolution: a

roadmap. in Proceedings of the Conference on The Future of Software

Engineering, (Limerick, Ireland, 2000), ACM Press, 73-87.

[2] Del Rosso, C. Continuous evolution through software architecture evaluation: a

case study. Journal of Software Maintenance and Evolution: Research and

Practice, 18 (5). 351-383.

[3] EIA-731.1. Systems Engineering Capability Model, Electronic Industries

Alliance, 2002.

[4] Greer, D. and Ruhe, G. Software release planning: an evolutionary and iterative

approach. Information and Software Technology, 46 (4). 243-253.

[5] ISO/IEC15504:2004. Information technology - Process assessment, ISO/IEC,

2004.

[6] ISO/IEC12207:1995. Information technology - Software life cycle processes,

ISO/IEC, 1995.

[7] ISO/IEC15288:2002. Systems engineering - Systems life cycle processes,

ISO/IEC, 2002.

[8] Kazman, R., Klein, M. and Clements., P. ATAM: Method for architecture

evaluation. CMU/SEI-2000-TR-004, Carnegie Mellon University, Software

Engineering Institute, 2000.

[9] McFeeley, R. IDEALSM: A User’s Guide for Software Process Improvement,

Carnegie Mellon University, Software Engineering Institute, 1996.

[10] Nord, R.L., Barbacci, M.R., Clements, P., Kazman, R., Klein, M., O’Brien, L.

and Tomayko, J.E. Integrating the Architecture Tradeoff Analysis Method

(ATAM) with the Cost Benefit Analysis Method (CBAM), CMU/SEI-2003-TN-

038, Carnegie Mellon University, Software Engineering Institute, 2003.

[11] Ovaska, P., Rossi, M. and Marttiin, P. Architecture as a coordination tool in

multi-site software development. Software Process: Improvement and Practice,

8 (4). 233-247.

[12] Roper-Lowe, G.C. and Sharp, J.A. The Analytic Hierarchy Process and Its

Application to an Information Technology Decision. The Journal of the

Operational Research Society, 41 (1). 49-60.

[13] SCAMPI update team, Standard CMMI® Appraisal Method for Process

Improvement (SCAMPISM) A, Version 1.2: Method Definition Document,

Carnegie Mellon University, Software Engineering Institute, 2006.

[14] SEI. CMMI® for Development, Version 1.2., Pittsburgh, PA, USA,, 2006.

[15] Wallin, P., Fröberg, J. and Axelsson, J., Making Decisions in Integration of

Automotive Software and Electronics: A Method Based on ATAM and AHP. In

Fourth International Workshop on Software Engineering for Automotive

Systems (SEAS 2007), (Minneapolis, USA, 2007).

