A Communication Protocol for
Hard and Soft Real-Time Systems

Christer Eriksson, Henrik Thane* and Mikael Gustafsson
Department of Real-Time Computer Systems
. Milardalen University, Sweden
* The Royal Institute of Technology, Sweden
Email: {cen,mgn}@mdh.se, *henrikt@damek.kth.se

Abstract

The distributed real-time community is mainly divided
into two camps: hard real-time and soft real-time; hybrid
systems have been considered but not to any great extent.
In this paper we propose a hybrid communication
protocol, which forms a foundation for interconnection of
nodes. in a distributed hybrid real-time system. The
protocol will enable both hard and soft real-time frames
on a broadcast communication bus, yet still guarantees
the hard real-time behaviour. The protocol will utilise the
communication bandwidth more efficiently, which is
relevant to cost-sensitive embedded applications.

1: Introduction

When implementing hard real-time services for safety-
critical embedded systems the time-triggered approach is
often preferred -- the input from the environment can
only propagate into the system at pre-defined points in
time, and output can only propagate from the system at
pre-defined points in time [Kop91,Lev95]. Thus, the
input/output state-space will shrink and the verification of
the system will be significantly simpler. Precisely time-
triggered actions are also essential for distributed control
applications [Tor96].

Many applications have however, not solely hard real-
time or soft real-time requirements, but a mixture of both
kinds. There are instants when a function with soft. real-
time requirements, in an otherwise hard real-time
environment, can be more efficiently implemented in a
soft real-time manner than in a hard real-time fashion.
For example, may long time planning in a mobile robot

1068-3070/96 $5.00 © 1996 IEEE
Proceedings of EURWRTS '96

187

application be implemented as a soft real-time task
[Nil95].

When applications are cost-sensitive, the hard real-time
requirement to accommodate for the worst case execution
time, yielding a low CPU utilisation, may seem like a
waste. There is thus a need for a hybrid, enabling both
hard real-time and soft real-time requirements to be
implemented in a satisfactory way.

Some work has been done on integrating hard and soft
real-time on a single node [Ham92,Rub95]. One hybrid
handles the hard real-time services via the time-triggered
approach and the soft real-time services via the event-
triggered approach. The time-triggered approach uses a
priori constructed schedules, which are used as dispatch-
tables during run-time. The soft real-time approach uses
on-line scheduling. To generalise this hybrid into a
distributed real-time system the communication system is
required to function in the same manner.

Outline

In section 2 the basic principles will be presented. In
section 3 we will cover the state of the art. In section 4
we will describe the proposed protocol and the clock
synchronisation. In section 5 we will discuss redundancy
issues and in section 6 we will discuss implementation
issues. Finally, we will make some conclusions.

2: Basic principles

In this paper we will pursue this idea of a hybrid
communication system. We will present a protocol,
enabling both hard and soft real-time frames on a
broadcast communication bus, yet still guarantees the
hard real-time requisites. We will also cover the subject

of clock synchronisation but not the subject of
membership. The protocol will utilise the communication
bandwidth more etficiently, which is relevant to cost-
sensitive embedded applications. The actual
implementation of the protocol interconnects the nodes
via CAN.

The Controller Area Network (CAN) is developed by
Intel and Bosch [CAN92], and is a broadcast
communication bus used for connecting nodes and
devices in embedded systems. The CAN bus uses a
CSMA/CA protocol, solving bus contention by arbitrating
between frames’ unique identifiers/priorities. The CAN
bus has become very popular in the embedded control
systems community; not surprisingly since it is a
standard, having an advanced error correction design and
a low price.

Traditional Time Division Multiple Access (TDMA)
protocols [Kop94a], statically divide a .computer
network’s capacity into a number of bus-slots. Each node
in a system 1is allocated one bus-slot, with a
corresponding right to transmit one frame. This approach
poorly utilises the transmission media -- the bus. Unused
bus-slots cannot be reused by other nodes. The worst case
response-time is one round, i.e., the accumulated time-
period, of having let all designated nodes have a chance
to transmit one frame.

Our approach is in essence a TDMA protocol with a
CSMA/CA protocol interior to every bus-slot. This
approach has the benefit of allowing several nodes to
send several frames in one bus-slot, yielding a -short
response-time and allows soft real-time frames to be sent
when spare frames exist, i.e., when the hard real-time
application has not used all frames in a bus-slot.

The traditional TDMA protocol can be seen as special
case of this protocol, i.e., only one node is allowed to
send one message in one bus-slot.

This protocol requires that a global time-base is
established and that all clocks are synchronised with a
known precision. A global time base is imperative since
the protocol is synchronous (TDMA) and that the kernels
on each node are all subjects to a global time-triggered
schedule. Our clock synchronisation protocol uses a
distributed fault-tolerant scheme. Using special
characteristics inherent to all broadcast buses, i.e., that all
nodes receive a frame at the same time, and by using a
daisy-chain concept [L6n95] we can provide a fault-
tolerant clock-synchronisation in every bus-slot. The
clock synchronisation algorithm will be covered in
section 4.2.

188

3: State of The Art - Communication
principles and clock synchronisation

3.1: TTP - Time Triggered Protocol

TTP is a TDMA protocol. If a node has no data to send in
its allotted bus-slot, an empty frame is transmitted
instead. These periodic emissions contain
acknowledgement information and is viewed as a life-
sign by the membership service [Kop94a].

Clock synchronisation is accomplished by knowing all
frames’ arrival time a priori. The difference between the
actual arrival time and the a priori scheduled arrival time
is a measure by of how much the sender’s and the
receivers’ clocks differ. The set of collected information
is then sufficient to perform a fault-tolerant clock
synchronisation[Kop87,Kop94a]. This is done at every re-
synchronisation point, likely once every round. TTP uses
a Fault-tolerant average algorithm (FTA) [Lamg5] to
compute a global time. It discards the m slowest and m
fastest readings and average the rest, in order to cope with
m faulty readings. :

3.2: DACAPO

DACAPO uses, as TTP, a TDMA scheme and utilises the
time difference between a received message and the pre-
destined arrival time as a measure by how much two
clocks differ. However when TTP uses a Fault-tolerant
average algorithm [Lam85] to compute the global time,
DACAPO uses a Daisy-Chain algorithm (DC). The
principle behind this algorithm is that all clocks adjust to
the time of the currently sending node [L6n95]. The
obvious benefit, is that all clocks are synchronised every
time a frame is transmitted and not once every round, as
is the case with TTP.

Fault-tolerance is realised by having a reception window
centred around every sample point. This window is as
wide as the expected maximum clock skew. The
reception window filters through only the frames arriving
inside the window and thus ignores probably faulty
clocks.

3.3: VIA Basement

The protocol uses a TDMA scheme too, but allow in
contrast to TTP and DACAPO, a bus-slot to contain
several frames and allow bus-slots to vary in length
[Ahl95a, Ahl95b]. The basic idea in Ahlgren’s work is
very similar to our work (mixing hard and soft real-time
frames on the bus) but does not consider fault-tolerance
issues, such as membership, redundancy and fault tolerant
clock synchronisation. Clock synchronisation is

accomplished via a master-slave concept. Ahlgren’s work
has neither been implemented to the same extent as our
work.

3.4: The Real-Time Priority Bus

This protocol differs considerably from the previously
described protocols. When the other protocols are in
essence time-triggered this protocol is event-triggered.
The real-time priority bus concept uses an extension of
fixed priority pre-emptive scheduling, and addresses
scheduling of frames on shared broadcast buses [Tin95a].
The approach requires the communication bus to support
priorities.

The protocol works as follows: each node has a queue of
out-going frames, which are sorted by priority. Bus
contention is solved by arbitrating between frames’
priorities. The assignment of the frames’ priorities is
made off-line. If tasks residing on different nodes has
precedence relations with an associated message the
clocks of the nodes must be synchronised. A general
analysis has been derived for this protocol and a more
specific analysis has been developed for the CAN
communication protocol [Tin95a, Tin95b].

Using an event-triggered concept imposes serious
restraints on how to implement redundancy [Kop94b]. It
also limits the confidence gained by testing since the

state-space, which has to be covered is far greater than
when using a time-triggered concept [Lev95].

4: Protocol description

Application Layer

Basic Layer

Figure 1: The protocol hierarchy.

The proposed protocol assumes that a broadcast bus is
used, where the transactions are atomic, i.e., that every
node or none receives a frame.

The protocol consists of two layers: the basic layer and
the application layer (figure 1). We will in this paper only
cover the basic layer and clock synchronisation. The
basic layer-is in essence the data-link layer of the OSI
stack, merely handling transmission and reception of
frames over the network. The application layer handle
time-constrained and non time-constrained messages of
greater complexity than one frame. For example, may the

189

soft real-time part of the application layer provide
services for a TCP/IP implementation.

4.1: Basic layer

The basic layer handles two types of frames, hard real-
time frames (HRTF) and soft real-time frames (SRTF).
The modes of transmission range from broadcast to
unicast, depending on if the receivers are configured to
sift through or not sift through frames.

HRTFs have timing requirements, which must be met. To
satisfy these timing constraints, HRTFs are scheduled pre
run-time using an off-line scheduler. SRTFs are
scheduled on-line, using for example, the real-time
priority bus concept [Tin95a, Tin95b] and information
provided by the off-line scheduler about the spare-
capacity in bus-slots.

4.1.1: Description of the basic protocol

In each bus-slot a fixed number of n, frames can be sent,
where i is the slot index. A frame is an atomic data-unit
that can be transmitted on the bus. The bus-slots can have
varying lengths, depending on. the application
requirements. The duration of a bus-slot is denoted t,. The
application may allocate hard real-time frames (HRTFs)
using the entire or a subset of all the frames in a bus-slot.
These HRTFs are transmitted first. The frames sent in a
bus-slot can originate from several different nodes. When
all globally scheduled HRTFs have been successfully
transmitted, soft real-time frames (SRTF) can be
transmitted. Since a broadcast bus with atomic
transactions must be used, we can be certain that a
consensus exists regarding if all frames have been
transmitted or not.

Soft real-time
i frame queues.

Bus slot 2

Figure 2: Frames in slot 1,
SRTFs on each node.

Bus slot 1 |

2 and pending

Example 1: Assume a system that consists of two nodes
and two bus-slots. Each bus-slot contains five frames.

In bus-slot 1: node 1 sends HRTFs h11 and h12; node
2 sends a HRTF h21.

In bus-slot 2: node 2 sends HRTF h22; node 1 sends a
HRTF h13.

There are two frames left for SRTFs in bus-slot 1, and
three left in bus-slot 2. The SRTFs are, as mentioned
previously, scheduled on-line and picked from a queue on
each node. SRTFs t1ansm1tted and pending are illustrated
in figure 2.

4.1.1.1: The bus-slots are divided into zones

Every bus-slot i of length t, is divided into 4 zones. The
reasons for having this division, is partially ‘due to the
precision of the global time base, partially due to
termination of ongoing transmissions, and due to the need
to establish a consensus in the system before changing
bus-slots or changing system modes.

Bus-slot

Zones

N
UL

Figure 3: The four zones of a bus-slot.

Tdt

Zone 1

At instant Tinit does a zone change take place, from zone
4 to zone 1.

No traffic on the bus is allowed during zone 1, reception
and transmission of frames are disabled. Pending HRTFs
from the previous -slot are downloaded to the
communication controlier. A HRTF frame waiting to be
transmitted must be available for transmission during the
previous bus-slot, and will be available to the receiver at
the start of the following bus-slot. It will take a minimum
of one bus-slot (t) and a maximum of two bus-
slots(t+t,,), from the production of the data until the
delivery of the data.

Zone 2

At instant Ter zone | changes to zone 2. Reception of
HRTFs is permitted, if they are scheduled, otherwise
reception of SRTFs is allowed. Due to the precision of the
global time-base, can the transmissions of frames not start
at the same time as the reception of frames. The duration
of zone 2 must be at least as long as the maximum clock
skew,8 , between any two clocks in the system. If this is
not accommodated for, frames could be lost if a receiver
is lagging behind.

190

Zone 3

At instant Tet zone 2 changes to zone 3 and transmission
of frames is allowed. Any time during zone 3 can
transmission and reception of SRTFs be ‘enabled if all
HRTFs are sent and received.

Zone 4

At instant 7dt a zone change takes place from zone 3 to
zone 4, and transmissions of HRTFs and SRTFs are
disabled. Due to the precision of the global time base, can
reception of frames not terminate at the same time as the
disabling of transmissions. Neither can we disable
reception until the last sent frame has propagated through
the network. This sums up to a duration of zone 4 to at
least & +Ft (where Ft is the}trzinsmission time of one
frame). If this is not accommodated for, frames could be
lost due to a lagging transmitter.

4.1.1.2; Error services

A vital feature in any communication system is to provide
error notification to the application. Our system provide
services for error notification when:

an omission failure is discovered, i.e., all HRTFs have

. not been successfully transmitted or received in a bus-
slot. Causes may be transient faults on the bus, a fail-
silent node or an awry clock synchronisation.

a frame is received in zone 1. A cause may be a faulty
clock.

a SRTF is received when not all HRTFs have been
received or transmitted. A cause may be a faulty

agreement - of the members in the system
(membership).

4.2: Clock Synchronisation Protocol

All clock synchronisation protocols must: (1) gather

information about the clock skews between nodes in a
system, (2) calculate a global time-base using the
gathered information, and (3) adjust the local clocks
according to the global time-base. If the clock
synchronisation protocol is fault-tolerant too, it must also
discern which clock skews are faulty and discard the
faulty values.

Our clock synchronisation protocol is a generalisation of
the protocol proposed by Gergeleit and Streich [Ger95].
Their clock synchronisation scheme uses a master-slave
concept, while our protocol uses ‘a rotating master
scheme. This eliminates a single point of failure.

The protocol is founded on a few basic assumptions:

A broadcast bus must be used. Every node in a system
receives a frame at the same time with a known
tolerance, T.

Every successful transmission and reception of frames
are acknowledged. The delay between transmission
and reception acknowledgement must be fixed.

The protocol works as follows:

1. An initiator node, Y, sends a frame in a bus-slot n. The
master in bus-slot n, M, time-stamps the arrival-time
of the frame, ¢,. Every slave, S time-stamps the
arrival-time, z_ of the frame.

The master M, in slot n sends its time-stamp ¢, in slot
n+1. When the slaves receive M,’s time-stamp, ¢, the
slaves calculate the clock skew & =(¢, - ¢,) and adjust
their clocks according to 6. The Master, M,’s "time-
stamp frame” is now a new initiator Y.,

. The master sets =0 and does therefore not adjust its
clock. :

The set of masters could either be a subset or the entire
set of nodes in the system. The set of masters must be
chosen in relation to the specified failure hypothesis.
Fault-tolerance is achieved by only using clock skews
interior to a specified tolerance, J

max®

5: Redundancy issues

A possibility for a time triggered protocol to handle
omission failures is to use redundancy. Redundant HRTFs
could be replicated according to the following principles:

o replicate a frame k times in a bus-slot to handle k-1

failures.

o replicate a frame in & bus-slots to handle k-1 failures

¢ replicate a frame on k buses to handle k-1 failures.

The actual replication of HRTFs should be handled by an
off-line scheduler.

6: Implementation

The implementation of the protocol is based on the Intel
82527 CAN controller. The CAN protocol fulfils the
requirements listed in section 4 except for the
requirement that the controller must be deterministic. One
of the major drawbacks with current CAN
implementations, is that the application software has no
or limited control of the automatic re-transmissions of

191

frames. It would have been useful if the controller had
provided ‘services for enabling and disabling re-
transmissions, or provided notification by interrupt if a re-
transmission was commencing, so that further re-
transmissions could be terminated by the controlling
software.

Another problem regarding CAN, however academic, is
that a receiving node could have a Byzantine behaviour
[Lam85]. For example if a controller-interface is flawed,
a receiver could terminate every sent message by sending
an active error frame. A nasty scenario, is ‘when a
controller terminates every other message by sending an
error frame, which results in it never becoming error
passive. Another malicious behaviour might be when a
faulty receiver terminates 127 frames before it becomes
error passive.

7: Conclusion

In this paper we have pursued the idea of a hybrid
communication system. We have presented a protocol,
enabling both hard ‘and soft real-time frames on a
broadcast communication bus, which guarantees the hard
real-time requisites.

The approach was in essence a TDMA protocol with a
CSMA/CA protocol interior to every bus-slot. This
approach has the benefit of allowing several nodes to
send several frames in one bus-slot, both hard real-time
frames and soft real-time frames. Comparing the
proposed protocol with a traditional TDMA scheme, the
protocol has a better utilisation of the media by allowing
soft real-time frames on the bus. Comparing the proposed
protocol “with an event triggered concept it is more
deterministic. This protocol is very flexible, it can either
be configured as a strictly TDMA kind of protocol,
strictly as an event-triggered kind of protocol or anything
in between.

8: Acknowledgement

This work has been supported by the Swedish Technical
Board (NUTEK) and the Research Council of
Vistmanland.

9: References

[Ah195a] B. Ahlgren. VIA BASEMENT DRTS Requirements
document: Communication Services. ProVIA-93303,
Version 2, Stockholm February, 1995,

[Ahl95b] B. Ahlgren. VIA BASEMENT DRTS Requirements

document: Communication Protocol Specification..

ProVIA-93304, Version 2, Stockholm February,

1995. ’ :

[CAN92]

[Ger95]

[Ham92]

[Kop87]

[Kop91]

[Kop94a]

[Kop94b]

[Lam85]

[Lev9s]

{L6n95]

[Ni195]

[Rub95]

[Tin95a]

[Tin95b]

Road Vehicles - Interchange of Digital Information -
Controller Area Network (CAN) for High Speed
Communication, ISO DIS 11898, February 1992.

M. Gergeleit, H. Streich. Synchronising High-
Resolution Clocks via the CAN-Bus. Second
International CAN Conference. Heathrow, England,
October 1995,

D.K.Hammer and O.S. van Roosmalen. An Object-
oriented Model for the construction of dependable
distributed systems, proc. 2nd -International
workshop on object orientation in operating systems.
Paris 1992.

H. Kopetz. Clock Synchronisation in Distributed
Real-Time Systems, IEEE Trans. Computers, Aug.
1987.

H. Kopetz. Event-Triggered versus Time-Triggered
Real-Time Systems. Lecture Notes in Computer
Science, vol. 563 Springer Verlag, Berlin, 1991.

H. Kopetz and H Griinsteidl. TTP - A Protocol for
Fault-Tolerant Real-Time Systems. IEEE Computer,
January, 94.

H. Kopetz. A Communication Infra Structure for a
Fault-Tolerant Distributed Real-Time System.
Proceedings 1994 IFAC workshop on Distributed
Computer Control Systems, Toledo, Spain,
September 1994,

L Lamport etal, Synchronising clocks in the
presence of faults, journal of the ACM, Vol. 32, No.
1, Jan 1985.

N. Leveson. Safeware - System Safety and
Computers. Addison Wesley, 1995.

Lonn H et. al, Synchronisation is Safety-Critical
Distributed Control Systems for Vehicle Dynamics”,
Tech Report, Chalmers, 1995.

M. Nilsson, A New Approach to Extreme Fault
Tolerance: Conscious” Real-time Control. In
proceedings of SNART’95, Chalmers Institute of
Technology, August 1995.

Rubus OS, Real-Time Operating System, Tutorial.
Arcticus Systems AB Dataviigen 9A,
175 62 Jarfilla, Sweden 1995.

K. W. Tindell et. al. Analysing Real-Time
Communications: Controller Area Network (CAN).
Proceedings Real-Time Systems Symposium, Puerto
Rico, December 1994,

K. W. Tindell et. al. Analysis of Hard Real-Time
Communications. Journal of Real-Time Systems,
vol. 9, no. 2, September 19953.

192

[Toro6]

M Térngren. Fundamentals of Implementing Real-
Time Control Applications in Distributed Computer
Systems. To appear in the Journal of Real-Time
Systems, 1996,

