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Abstract

A static Worst-Case Execution Time (WCET) ana-
lysis derives upper bounds for the execution times of
programs. Such analysis requires information about the
possible program flows. The current practice is to pro-
vide this information manually, which can be laborious
and error-prone. An alternative is to derive this infor-
mation through an automated flow analysis.

In this article, we present a case study where an au-
tomatic flow analysis method was tested on industrial
real-time system code. The same code was the subject of
an earlier WCET case study, where it was analysed us-
ing manual annotations for the flow information. The
purpose of the current study was to see to which extent
the same flow information could be found automati-
cally. The results show that for the most part this is
indeed possible, and we could derive comparable WCET
estimates using the automatically generated flow infor-
mation. In addition, valuable insights were gained on
what is needed to make flow analysis methods work on
real production code.

1 Introduction

The worst-case execution time (WCET) is an impor-
tant parameter when verifying real-time properties. A
static WCET analysis estimates the WCET of a pro-
gram from mathematical models of the hard- and soft-
ware involved. If the models are correct, the analysis
will derive a timing estimate that is safe, i.e., greater
than or equal to the WCET. To be useful, the estimate
must also be tight, i.e., provide little or no overestima-
tion compared to the WCET.

To derive a timing bound for a program, information
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on both the hardware timing characteristics, as well
as the program’s possible execution flows, needs to be
derived. The latter includes iteration bounds on loops,
feasible paths through the program, etc.

The goal of flow analysis is to calculate such flow
information as automatically as possible. Flow anal-
ysis research has mostly focused on loop bound analy-
sis [12, 17, 21, 23, 24, 27], since these must be known
in order to derive finite WCET estimates. Flow anal-
ysis can also identify infeasible paths, i.e., paths pos-
sible to take according to the program control-flow
graph (CFG), but not actually feasible when execut-
ing the program. Infeasible path information is not
required to find a WCET estimate, but may enable
tighter WCET estimates, i.e., if the worst-case path is
found to be infeasible. Recent case studies [31, 37] have
shown that such information can help obtaining tighter
WCET bounds on industrial code. This has stimulated
the development of flow analyses calculating infeasible
path information automatically [20, 23].

Commercial WCET analysis tools such as aiT [2],
Bound-T [40], and RapiTime [32] are available to-
day. However, obtaining safe and tight WCET esti-
mates with these tools is still a laborious process, as
has been verified in several case studies on industrial
codes [7, 8, 14, 36, 37]. A major problem is typically
that much information must be provided manually. In
particular, the tools tend to require external informa-
tion about possible program flows, which can be hard
to manually provide since it typically requires a deep
understanding of how the code works. Obviously, it
should be interesting to test recently developed flow
analysis methods on real production codes in order to
see whether they can indeed alleviate this problem in
practice, and to identify possible problems.

In this article we report on a case study [5], where
a flow analysis method [23] was tested on code used in
articulated haulers manufactured by Volvo Construc-
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tion Equipment [41]. The code is written in a way that
gives many infeasible paths: thus, it is apt for evaluat-
ing analyses detecting such paths.

The code was subject to an earlier case study [37],
where it was analyzed with the aiT tool [2] using man-
ual annotations to constrain the program flow. Pro-
ducing these annotations took several weeks: obvi-
ously, automatic methods for deriving this information
would be highly desirable. The current study is a di-
rect repetition of the previous one, using the aforemen-
tioned flow analysis method to derive program flow
constraints. This made it possible to make a direct
comparison between the two studies.

The contributions of this article are:
• We evaluate the flow analysis method of [23] on

industrial code, measuring how many loops it can
bound and how many infeasible paths it can find.

• We make a direct comparison of the WCET esti-
mates calculated using automatically derived flow
information, and using manually derived flow infor-
mation from [37] respectively.

• We identify some problems arising when analyzing
real production code, as opposed to academic bench-
marks, and indicate how they can be solved.
The rest of this article is organized as follows: In

Section 2, we give a brief introduction to WCET ana-
lysis and related work in the area. Section 3 briefly
describes the used flow analysis method. Section 4 de-
scribes the analysed code and the system where it is
run. Section 5 presents results from a previous study.
Section 6 and Section 7 introduce the used WCET
analysis tools and the experimental setup. Section 8
presents observations made together with new analy-
sis features developed. In Section 9 we give the results,
and discuss them. Finally, in Section 10, we draw some
conclusions and give directions for further research.

2 WCET Analysis Overview and
Related Work

Static WCET analysis is usually divided into three
phases: a flow analysis, a low-level analysis where the
execution times for sequences of instructions are de-
cided from a performance model for the hardware, and
a final calculation phase where the flow and timing
information is combined to yield a WCET estimate.
Some WCET analysis methods are input-sensitive, tak-
ing constraints on input values into account to produce
tighter WCET estimates.

As mentioned, flow analysis derives information
about the possible execution paths through the pro-
gram. A loop bound analysis finds upper bounds to the
number of iterations of loops. Several approaches ex-

ist: syntactically oriented, detecting certain loop pat-
terns [24, 38], or semantically oriented, using Pres-
burger arithmetics [27], a combination of data flow
analysis and value analysis [12], or abstract interpre-
tation and program slicing [17, 21, 23].

An infeasible path analysis finds infeasible paths in
the program. Consider this example:

if (x<0) A else B; if (x>2) C else D;

Here, the true-branches for the if statements are in
conflict1, and the corresponding path A-C is infeasible.
Restrictions on input data values may yield more in-
feasible paths: for instance, if x>5, then also the paths
A-D, and B-D are infeasible. This can be detected by
an input-sensitive analysis.

Infeasible path analysis has been developed by com-
bining path enumeration, path pruning, and sym-
bolic evaluation [4], by using value-dependent con-
straints [25], through partially-known variables [3], by
identifying conflicts between variable assignments and
branch conditions [9], by abstract execution [23], and
by using Presburger arithmetics [20].

In low-level analysis, researchers have studied effects
of various hardware enhancing features, like caches,
branch predictors and pipelines [13, 29, 38]. A fre-
quently used calculation method is IPET (Implicit
Path Enumeration Technique), using arithmetical con-
straints to model the program structure, the program
flow and low-level execution times [15, 27, 38].

Studies of WCET analysis of industrial code are not
common. There are some reports on the use of com-
mercial WCET tools for analyzing codes for space ap-
plications [27, 26, 33], and in avionics industry [18, 39].
The experiences from some case studies are compiled
in [16]. These studies include WCET analysis of the
OSE operating system [8, 36], code controlling welding
equipment [14], and communication software in cars [7].
The aforementioned study of transmission code [37]
should also be mentioned, as well as a study of WCET
analysis of automotive software [31]. However, this is
the first paper, to our knowledge, that evaluates auto-
matic flow analysis for WCET calculation on industrial
real-time system code.

3 Abstract Execution

The flow analysis method used in the presented case
study, called abstract execution (AE), is briefly de-
scribed in this section. For details, we refer to [23].

AE is a form of symbolic execution [21]. It is based
on abstract interpretation (AI) [10], a framework for
program analysis where elements of an abstract domain

1We assume that x is not updated in A and B.
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Figure 2. Motor graders, wheel loaders, excavators and articulated haulers developed by Volvo CE

i = INPUT; // i = [1..4]

while (i < 10) {
// point p

...

i=i+2;

}
// point q

(a) Example

iter i at p

1 [1..4]
2 [3..6]
3 [5..8]
4 [7..9]
5 [9..9]
6 impossible

(b) Analysis

min.
#iter: 3

max.
#iter: 5

(c) Result

Figure 1. Example of abstract execution

represent sets of values, or program states. For in-
stance, sets of numerical values can be represented by
intervals, and program states by mappings from ad-
dresses to intervals. AE executes the program in the
abstract domain, with abstract values, and abstract
versions of functions and operators. If the abstract
domain uses intervals, then each numeric variable will
hold an interval rather than a number, and each as-
signment will calculate a new interval from the current
intervals held by the variables. The abstract value held
by a variable, at some point, represents a set contain-
ing the actual variable values at that point. AE uses
abstract states, with a program counter, and an ab-
stract store representing the contents of the memory.
AE is naturally input-sensitive since it is possible to
constrain the values of input variables in the initial ab-
stract store. Figure 1 illustrates how AE works for a
loop, by iterating, and counting the number of itera-
tions, until the abstract version of the loop condition
surely returns false for the back edge.

Sometimes, abstract execution of a condition node
will yield possible execution paths for both the true-
and false-branch. In Figure 1 this occurs before itera-
tion 4 and 5, where i = [7..10] and [9..11], respec-
tively. An abstract state will then be created for each
outcome of the test. This means that there may be
many simultaneous abstract states, representing differ-
ent possible execution paths. The number of possible
abstract states may grow exponentially with the length
of these paths: thus, any algorithm for abstract execu-
tion must be able to merge states, which is typically

done at program points where different paths join. If
the states are merged using the least upper bound op-
erator on the domain of abstract states, then the result
is an abstract state safely representing all possible con-
crete states, but possibly with some loss of precision.
Different strategies for merging will thus yield different
tradeoffs beween analysis time and precision.

We have designed and implemented an algorithm for
AE [23], which can generate different kinds of program
flow constraints. It is a quite straightforward worklist
algorithm, which iterates over a set of abstract states,
generating new abstract states from old ones. Certain
program points are taken to be merge points (typically
where different paths join): the algorithm keeps a list
of abstract states having reached a merge point, and
merges new states arriving to a merge point with pre-
vious states at the same point. States in the merge
list are eventually released, according to some rule. At
present, the merged states are released in random or-
der. The algorithm terminates when all abstract states
have reached the final program point.

Flow constraints are typically generated for repeat-
ing program constructs, like loops. Our AE algorithm
extends abstract states with recorders, which collect
program flow information. Program parts to be an-
alyzed have collectors, which successively accumulate
this information from the states. Supported analyses
are (upper and lower) loop bounds analysis, and sev-
eral infeasible path analyses: infeasible nodes, which
are nodes never executed in a certain context, maximal
node counts, generalising the infeasible node analysis,
excluding node pairs, pairs of nodes which can never
be executed together, and infeasible paths longer than
two nodes.

4 The Analyzed System

The code under study is used in articulated haulers
and other vehicles manufactured by Volvo Construc-
tion Equipment (Volvo CE) [41]. Volvo CE is a world
leading manufacturer of such equipment, see Figure 2.
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The vehicles are controlled by a distributed control sys-
tem, consisting of a set of networked ECU’s equipped
with the Infineon C167CS processor [28].

Rubus Real-Time Operating System. The soft-
ware uses the Rubus real-time operating system [34].
Rubus is task-oriented, with three kinds of tasks.
Green tasks are interrupt tasks. They have the highest
priority in the system and preempt other tasks when
released. Red tasks are hard real-time tasks triggered
by the system clock: they are scheduled offline. Possi-
ble attributes for the red tasks are release time, period
time, deadline, precedence and WCET. Blue tasks, fi-
nally, are event-triggered soft tasks, and are scheduled
online at lower priority than red and green tasks.

Rubus can measure the execution time of tasks.
This can be used for high-water-marking of the execu-
tion time, which then bounds the WCET from below.
The current practice is to set the WCET attribute for
red tasks by adding a safety margin to the measured
WCET estimate.

The Rubus VS is built upon the Rubus Component
Model (Rubus CM) which uses sets sets of intercon-
nected Software Components (SC). Each SC has a set
of input ports where data is received, and a set of out-
put ports where data is produced.

Task Code Properties. The analyzed code consists
of 13 red real-time tasks in the Transmission ECU for
articulated haulers. The source code for the tasks is
mainly written in C (some tasks include some assem-
bler), and it is compiled with the Tasking compiler. All
tasks have a simple code structure, with if-statements,
just a few loops, only one nested loop, no recursion, and
no dynamic calls or memory allocations. The larger
tasks contain a large number of function calls, and
some functions are used many times in many differ-
ent contexts. The code is written in a style with many
mutually exclusive conditions, which gives rise to many
infeasible paths. For details, see Section 9 and [37].

Single-shot Tasks. Red Rubus tasks have single-
shot task semantics2. Such tasks terminate after each
invocation, and the OS is responsible for scheduling
and (re)activating the task. Such tasks should not
contain delay calls, or infinite loops waiting for invo-
cations. Figure 3 shows the difference between single-
shot- and traditional task coding.

Red tasks do not preempt each other in the Volvo
CE system. At each invocation a single-shot task will
be passed all its needed data, either through input pa-
rameters or globals, instead of keeping it on the stack.
If a single-shot task cannot be preempted, then its ef-
fect on the environment can be analyzed by considering

2Sometimes called one-shot tasks or run-to-completion tasks.

taskEntryFunc(params) {
// Read params

// Do some work

// Set params

return;

}

taskEntryFunc( ) {
while(1) {

// Read locals & globals

// Do some work

// Set locals & globals

wait for invocation();

}
}

(a) Single-shot task (b) Traditional task

Figure 3. Different task models

its code in isolation. We utilize this in the SVVA anal-
ysis described in Section 8.

Furthermore, the single-shot task model makes it
more easy to determine each task’s input parameters,
as well as the task’s start and end point (the latter
giving the code for which a WCET estimate should
be derived), see Figure 3(a). For traditionally coded
tasks, this is more difficult: see Figure 3(b).

In Rubus each red task has a dedicated C entry func-
tion, taking a single pointer as parameter. The pointer
points to a global C struct which belongs to the task.
The struct has three kinds of elements:
• input - pointers to data areas, which contain input

data to the task (written by other tasks)
• output - pointers to data areas where the task can

write its produced output (can only be read by other
tasks), and

• state - pointers to data areas where persistent pri-
vate data are stored between task invocations.

If there are no green tasks in the system, then the out-
put and new state of a red task will be solely decided
by its input and previous state, as if the code had ex-
ecuted in isolation.

5 The Previous Case Study

In the previous case study [37], the same 13 red
tasks were analyzed with the aiT tool using only man-
ually provided annotations. Providing the annotations
took about seven weeks: this included annotations for
bounding the loops, and specifying infeasible paths.
Especially the latter proved to be laborious. Providing
the infeasible path information gave up to 31% tighter
WCET estimates compared to a minimum effort anal-
ysis using loop bounds information only. Compared
with measured (unsafe) WCET estimates, the stati-
cally calculated WCET estimates (with infeasible path
information) were in the range 4 – 33% higher. The re-
sults show that reasonably tight WCET estimates can
be achieved for this kind of code, using a static WCET
analysis tool, and that infeasible path information can
give substantially tighter WCET estimates, however at
a potentially high cost in labor time.
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6 The SWEET WCET Analysis Tool

SWEET [15, 22] is a WCET analysis research pro-
totype tool [30]. SWEET can handle full ANSI-C pro-
grams including pointers, unstructured code, and re-
cursion. The basic analysis steps of SWEET are shown
in Figure 4. This case study only used the flow ana-
lysis of SWEET, so we only describe this analysis here.
The low level and calculation parts of SWEET were
replaced by aiT in this case study, since SWEET does
not support the C167CS processor.

The flow analysis of SWEET is automatic and input-
sensitive. Unlike most WCET analysis tools, SWEET
is integrated with a compiler and performs the flow
analysis on its intermediate representation NIC [44].

Constraints on input values are given in SWEET’s
annotation language. Numeric variables are con-
strained by intervals. Pointer constraints are sets of
abstract addresses, each representing a range of NIC
addresses. Annotations can constrain the variable val-
ues in specific program points. Normally, when con-
straining inputs, this is the program entry point.

SWEET uses abstract execution as described in Sec-
tion 3. SWEET also includes a traditional value anal-
ysis (VA) by abstract interpretation [10], which gives a
safe, potentially pessimistic, estimation of the possible
sets of states in different program points. Currently
supported abstract domains in the AE and VA are in-
tervals [22], congruences [6], and their product domain.

SWEET performs a program slicing [42] in order to
restrict the AE and VA to only those program parts
and variables that may affect the program flow [35].
The program slicing can also be used to see what parts
of a code might be affected by which input variables.

For large programs both the AE and the VA might
need to allocate many abstract states. Each state can
be large since each variable or aggregate data structure
not removed by the slicing, should be assigned a cor-
responding abstract value. To minimize the memory
needs a copy-on-write approach is therefore used [11],
allowing states to share variable or aggregate data
structure assignments with identical abstract values.

SWEET has a rich number of options allowing the
user to tailor the analysis, and to control the tradeoff
between precision and analysis time. It allows explicit
control over merge point placement, different types of
infeasible path detection can be done at several levels
of precision, different underlying abstract domains can
be used, sharing can be turned off or on, etc.

The output from SWEET’s different flow analyses
is a set of flow facts, which basically are sets of linear
inequalities constraining the possible values of execu-
tion counters. The flow fact concept is described in
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Figure 4. The experimental setup

e.g., [15]. Flow facts are given relative to scopes, which
typically correspond to loops and functions. The flow
facts produced by SWEET are context sensitive, where
the contexts are call strings of scopes. For example, a
function can obtain different flow facts at different call
sites, which may yield more precise flow facts and a
tighter WCET.

7 The Experimental Setup

The setup was done to mimic the earlier case
study [37], using the aiT tool to do the final WCET
calculation. The manually provided aiT annotations
in [37] were replaced by annotations which were man-
ually translated from SWEET’s automatically derived
flow facts. See Figure 4 for an illustration.

aiT is a commercial WCET analysis tool from Ab-
sInt GmbH [2]. It analyses executable binaries, and
supports the Infineon C167CS architecture among oth-
ers [43]. Like SWEET, aiT has an annotation lan-
guage for providing external information to the ana-
lysis [19]. Some important annotations to constrain
the possible program flow are: loop bounds, maximal
recursion depth, dead code, outcome of conditions, and
possible values of registers. The aiT annotations are
context-insensitive, meaning that an annotation within
a function must be valid irrespective of the context
from where the function is called.

The translation process from SWEET flow facts to
aiT annotations was quite straight-forward. The flow
facts for infeasible paths could be expressed using aiT
annotations for flows and conditions. However, we had
some minor problems; one was that not all the flow
facts could be translated, since SWEET’s flow facts
are context sensitive whereas aiT’s annotations are not.
Another one was that in some cases the code generated
by the Tasking compiler had a slightly different CFG
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Task(INPUT T *in) {
static int prev;

int diff,i;

diff = in->cur - prev;

for (i=0; i<diff; i++)

{ /* do some work */ }
prev = in->cur;

}

Figure 5. Task code using a state variable

than the corresponding NIC code. Thus, we had to
carefully compare the generated codes to make sure
that the NIC basic blocks, referred to by SWEET flow
facts, had a counterpart in the C167CS binary code.

8 Observations and New Features

During the case study we made some observations
which sometimes inspired us to develop new analysis
features. The major observations, and the new features
are presented below.

Input-value dependent conditions. Many condi-
tions in the code depended on task inputs. This pro-
vides an argument for input-sensitive flow analyses,
since they can potentially produce better flow infor-
mation for such codes. In addition, the conditions in a
task often depended on many task inputs (see Section 9
for details). Thus the program slicing was, for many
tasks, not able to remove many inputs. This resulted
in large abstract states in the analysis.

Large and complex input sets. Input sets to dif-
ferent tasks were often very large and consisted of sev-
eral complex aggregate data structures. We believe
that this common for industrial codes. This added fur-
ther to the size of the abstract states, and also made
the task of constraining inputs more laborious. To
ease the latter we developed several new features in
SWEET’s value annotation language, including better
support for constraining the values of aggregate data
structures and pointers.

Due to the large input sizes, and since input data
structures often resided in various C files with types
hidden by typedefs, it became problematic to give an-
notations for some globals. Similar to many assembly
languages, NIC’s data has no declared types. Thus, it
is possible to assign any type to a NIC variable. We
therefore had to be very careful when giving input value
annotations.

To help detecting erroneous annotations, we imple-
mented an annotation type checker, which generates a
warning if the type of a given annotation does not cor-
respond to the type assumed by the AE for the initial
value set by the NIC compiler. This feature turned out
to be quite helpful.

Algorithm 1: The SVVA analysis.
SVVA(T ,Sinit )
Input: T : A task to find state variables for

Sinit : An initial state
1. Snew := Sinit

2. repeat
3. Sprev := Snew

4. Snew := VA(T ,Sprev ) � Sprev

5. until Sprev = Snew

6. PrintStateVariableAnnots(Snew )

An erroneous or missing annotation can also result
in a run-time error in the AE. The frequency of such
errors prompted us to improve the AE error messages
with better information to trace the error’s origins.

Globals shared between tasks. Global data in C
is either initialized by the programmer or given a de-
fault zero (NULL) value. Inputs shared by several dif-
ferent tasks are, in the Volvo CE system, implemented
as global C data structures. Thus, it was in many cases
not safe to use the default values as input value con-
straint since the globals might be assigned another val-
ues by other tasks. We therefore had to identify such
globals and in many cases manually constrain their val-
ues. Careful inspection of the code, often in collabo-
ration with the Volvo CE engineers, had to be made
to ensure the correctness of the provided input value
constraints. We believe that this situation is similar
for many real-time systems where tasks communicate
through global shared variables.

Unknown values of state variables. As described
in Section 4, each analyzed task uses three different
data areas for communicating results between tasks
(input and output) and to hold values between its invo-
cations (state). Both input and state variables may be
used to decide the outcome of conditionals and must
be considered by the flow analysis. For the analyzed
system, the values of inputs were well known and could
be annotated. However, the possible values of the state
variables were, in general, not known. In most cases it
was also hard to find these values by code inspection.

We believe that such state variables are common
in many task-oriented systems. Figure 5 illustrates
the principle. Here, the state variable prev (declared
static, thus persistent) retains its value until the next
invocation of the task.

State Variable Value Analysis. To derive con-
straints for the values of state variables automatically
we developed an analysis, called State Variable Value
Analysis (SVVA). SVVA is performed as a fixpoint
calculation over a task T , as shown in Algorithm 1.
Sinit is the initial state at the start of the first invo-
cation of T , with annotations of input variables. VA
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Task Source LOC Funcs Loops Conds
1 3.6 55 1 0 4
2 4.5 56 1 0 4
3 4.7 58 3 0 4
4 5.2 72 1 0 13
5 6.3 86 2 0 9
6 4.9 43 5 1 10
7 9.3 123 4 1 32
8 8.2 119 5 0 17
9 5.5 49 5 0 9
10 10.9 195 3 0 40
11 8.8 188 5 0 43
12 40.7 707 20 0 165
13 565.0 12765 97 18 2737

Table 1. Properties of the 13 analyzed tasks

stands for ”value analysis”, and can be any analysis
that, given an initial abstract state and a task as in-
put, returns a final abstract state which holds a safe
over-approximation of all variable values. In our eval-
uations we used SWEET’s value analysis for this pur-
pose, but the AE should work as well. The fixpoint
is an abstract state with possible ranges for the state
variable values, from which annotations for the state
variables are generated.

In order to reach a fixpoint faster, knowledge about
state variable values can be provided through annota-
tions to the analysis. E.g., in our case study several
tasks had a counter whose value range was obvious.
The corresponding state variables will then be excluded
from the SVVA analysis. In order to make the SVVA
analysis even more efficient, we can (optionally) per-
form it only on the program slice with respect to the
state variables at the exit point of the task.

9 Experimental Evaluation

Table 1 gives some code properties for the 13 ana-
lyzed tasks. Source gives the source code size in kilo-
bytes (kb). LOC gives the number of C-code lines
with comments and blank lines removed. Funcs gives
the number of functions reachable within the task and
Loops and Conds gives the total number of loops and
conditions (including loop-exit conditions) within these
functions. Tasks 1 – 11 are quite small, whereas task
12 and especially task 13 are substantially larger. Only
a few of the tasks contain loops. The loop in task 7
was written in assembler, which we had to remove to
make the source compatible with the NIC compiler.
We rewrote the part of the code which depended on
the loop. All tasks contain conditions, in particular
task 13.

Table 2 gives some input-dependency and annota-
tion measures for the 13 analyzed tasks. Inpt gives the
number of global variables and aggregate data struc-
tures which are inputs to the given task. ISize gives

Task Inpt ISize FInpt ReqAn DerAn
1 6 31777 6 4 0
2 6 82 6 6 0
3 7 31812 7 7 0
4 13 31842 13 12 2
5 9 70 9 7 0
6 7 78 7 7 0
7 11 132 11 18 3
8 9 115 5 17 11
9 8 81 8 8 4
10 20 31899 20 17 8
11 24 176 24 16 3
12 58 32245 55 25 15
13 1044 50863 250 69 -

Table 2. Input dependencies and annotations

the total size in bytes allocated for the inputs by the
NIC compiler. FInpt gives the number of inputs which
may affect the program flow. These are the inputs kept
after making a program slicing upon all conditions in
the code. Since our program slicing treats each aggre-
gate data structure as one single data object, such a
data structure will be kept as long as a one of its mem-
bers fields holds a value or points to something which
might affect the program flow.

There are several programs with really large input
sizes, even though the number of input data structures
might be small. Thus, many of the tasks use large
input data structures. For most programs very few
inputs can be sliced away: thus, there are many re-
maining variables and aggregate data structures which
may affect the program flow.

The number of input value annotations required by
the AE to produce flow facts is given by ReqAn. This
number does not always correspond to the number of
globals which may affect the program flow. This is
because different fields in an aggregate data structure
might need to be separately annotated and since some
inputs, e.g., global pointers, might be given an initial
value by the compiler which never is updated by the
program. DerAn holds the number of state variable
input value annotations derived by SVVA. The value 0
in the column means that no state variables were used,
the ”-” (for task 13) indicates that the value could not
be calculated (see next page).

Table 3 gives some measures on the loop bound and
infeasible path analyses performed. Column BL gives
the number of bounded loops by the AE loop bound
analysis. The value 0 means that the analysed pro-
gram contains no C-code loops (recall that the assem-
bler loop in task 7 was removed). We conclude that
SWEET is able to automatically derive loop bounds for
all C-code loops. The analysis was preceeded by a pro-
gram slicing on loop exit conditions only. Thus, more
code and inputs could be sliced away compared to the
infeasible path analysis, resulting in smaller abstract
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Task BL Time Cov IN EP IP MC DA
1 0 2.75 100% 0 0 0 10 0
2 0 0.02 100% 0 0 0 10 0
3 0 2.72 100% 0 0 0 10 0
4 0 7.47 100% 0 4 0 31 4
5 0 0.12 100% 0 2 1 25 3
6 1 0.07 92% 2 0 0 21 2
7 0 5.65 100% 0 7 5 73 12
8 0 0.41 100% 0 5 0 45 5
9 0 0.04 100% 0 0 0 23 0
10 0 15.08 97% 9 - - 91 2
11 0 4.35 100% 0 4 0 91 4
12 0 173.34 99% 354 10 8 1067 19
13 18 - - - - - - -

Table 3. Analysis and flow information details

states in the AE and less remaining code to analyse.
A manual inspection of the analyzed loops gave that
only one of the analyzed loops had an iteration count
which depended on an input parameter. However, sev-
eral of the loops were conditionally taken or not taken
depending on some input parameters.

The remaining columns in Table 3 summarize the
results of the infeasible path analysis. Time gives the
analysis time for the loop bound and infeasible path
analyses in seconds, and Cov gives the percentage of
NIC basic blocks abstractly executed by the AE. As
expected, the time for the AE grows with the size of
the program. The number of flow facts for infeasible
nodes IN, excluding node pairs EP, longer infeasible
paths IP, and maximal node count MC derived by
SWEET are also given. All tasks, except task 10, were
analyzed with merge points set at loop- and function
exits. Task 10 contained code parts with many condi-
tions, causing the number of abstract states generated
by the AE to grow too fast for this merging strategy.
By using a higher degree of merging, with merge points
additionally set after if-statements, also task 10 could
be analyzed. However, this meant that only IN and
MC flow facts could be derived for this task. There-
fore, the EP and IP columns are marked by ”-” for
this task.

An initial analysis of task 13 indicated the same
problems as for task 10. The number of inputs af-
fecting the flow was also large, making the size of each
abstract state large. Moreover, the analysis of task
13 posed a problem due to the large amount of glob-
als that needed manual input value annotations. The
globals were stored in many different C files and many
were of state variable type. The task was analyzed at
the end of the project, leaving too little time to do all
the needed annotations. As a result, no infeasible path
analysis was made for this task, which is indicated by
”-” in the corresponding columns.

The automatically generated infeasible path flow
facts were manually translated to aiT flow annotations.

The number of such annotations are given in DA. Some
of the generated flow facts were redundant and were
therefore not translated. The context-sensivity inher-
ent in the SWEET flow facts also made some trans-
lations fail. We made two runs with aiT, one using
manually given flow annotations from the previous case
study [37] and one using the translated SWEET flow
facts. For all the successfully analyzed tasks 1–12, aiT
produced exactly the same WCET estimates. We also
visually compared the two aiT generated worst-case
path graphs to make sure that were equal. We there-
fore conclude that for these tasks SWEET was able
to produce infeasible path information which tightened
the generated WCET estimate equally well as the pre-
viously manually given flow annotations.

10 Conclusions and Future Work

We have presented a case study where an automatic
flow analysis method was used for WCET analysis of
industrial production code. The analysis method was
for the most part able to automatically derive flow in-
formation of at least the same quality as the earlier,
manually provided information [37], and the resulting
WCET estimates were identical. This provides evi-
dence that automatic flow analysis methods can reduce
the need for manual annotations, thus making WCET
analysis tools easier to use.

For the studied code, loop iteration bounds turned
out to mostly not be dependent on input data. How-
ever, infeasible paths were. Thus, to obtain tight
WCET estimates, flow analysis methods should be
input-sensitive. Further, the code had many inputs,
provided through complex data structures. To provide
correct value constraints for all these input variables
was not always an easy task. Academic benchmark
code for WCET analysis mostly has a few rather sim-
ple input variables, thus not exposing this problem.

The studied code has state variables which are per-
sistent between task invocations. We believe this is
common for task-oriented code. For the studied code
these variables often affect the program flow, thus bet-
ter WCET estimates can potentially be obtained by
bounding their values. This is not always easy, how-
ever, since their possible values for new task invoca-
tions recursively depend on their previous values. We
designed and implemented the State Variable Value
Analysis (SVVA) to automatically bound the values
of such variables. The current version of SVVA only
concerns persistent variables pertaining to a single,
nonpreemptive task. We plan to study how to ex-
tend SVVA to systems of communicating, possibly pre-
empted tasks, also taking into account possible restric-
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tions on the invocation order among tasks.
However, there will always be variables whose values

will not be possible to bound by an automatic code
analysis, like data originating from the outside world.
Therefore, it is also important with better means to
provide bounds on data manually when needed.

For two tasks, we failed to derive precise infeasi-
ble path constraints automatically. The reason for this
was primarily the memory consumption of the anal-
ysis: both these tasks have many conditionals and a
very large number of possible paths. Our current merge
strategies during AE does not seem to reduce the num-
ber of abstract states optimally, which may result in a
large number of abstract states simultaneously held in
memory. Furthermore, the sometimes large data areas,
and the inability of our slicing to reduce these areas
much, led to single abstract states being large. We be-
lieve these are the two main reasons why the analysis
failed for these tasks.

There are several ways to reduce the memory needs.
Our current slicing does not distinguish between ele-
ments in NIC data areas (corresponding to structs or
arrays in C). Thus, it is possible that the program
flow in the analyzed tasks actually only depends on
small parts of their respective input data areas. A
more precise slicing, differing between different parts
of the areas, could thus potentially reduce the size of
the needed abstract states: this would also reduce the
need for manual value annotations in cases where auto-
matic methods for deriving these won’t work. Sharing
between abstract states could be improved: a promis-
ing idea builds on version arrays for efficient update of
arrays in side-effect-free languages [1]. If elements in
data areas turn out to mostly hold the same value, then
compressed state representations can be beneficial.

We currently consider strategies for lower the num-
ber of simultaneous abstract states, e.g., by introducing
ordered merge, meaning that merged states ”further
from“ termination are released first.

Finally, we have recently developed loop- and in-
feasible path analyses based on a combination of pro-
gram slicing, value analysis and invariant analysis [17].
These methods trade precision for better worst-case be-
haviour, and they should also in general have less need
for memory.
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