
Design-Time Management of Run-Time Data in
Industrial Embedded Real-Time Systems Development∗

Andreas Hjertström, Dag Nyström, Mikael Nolin and Rikard Land
Mälardalen Real-Time Research Centre, Västerås, Sweden

{andreas.hjertstrom, dag.nystrom, mikael.nolin, rikard.land}@mdh.se

Abstract
Efficient design-time management and documentation of

run-time data elements are of paramount importance when
developing and maintaining modern real-time systems. In
this paper, we present the results of an industrial case-
study in which we have studied the state of practice in data
management and documentation. Representatives from five
companies within various business segments have been in-
terviewed and our results show that various aspects of cur-
rent data management and documentation are problematic
and not yet mature. Results show that companies today
have a fairly good management of distributed signals, while
internal ECU signals and states are, in many cases, not
managed at all. This lack of internal data management re-
sults in costly development and maintenance and is often
entirely dependent of the know-how of single individual ex-
perts. Furthermore, it has, in several cases, resulted in un-
used and excessive data in the systems due to the fact that
whether or not a data is used is unknown.

1 Introduction
Most of today’s embedded system developers are expe-

riencing a vast increase of system complexity. The growing
amount of data, the increasing number of electrical control
units (ECUs) and inadequate documentation are in many
cases becoming severe problems. The cost for development
of electronics in for instance high-end vehicles, have in-
creased to more than 23% of the total manufacturing cost.
These high-end vehicle systems contain more than 70 ECUs
and up to 2500 signals [1, 7].

A lot of research has been done in the area of run-time
data management for real-time systems. This has lead to
the development of both research-oriented data manage-
ment solutions, such as [2, 14, 18], and commercial real-
time data management tools, such as [4, 17, 22]. However,

∗This work is supported by the Swedish Foundation for Strategic Re-
search within the PROGRESS Centre for Predictable Embedded Software
Systems.

in most cases this research and these tools focus on run-time
algorithms and concepts, but do not manage data documen-
tation. In this case-study we investigate state of practice
in design-time data management and documentation of run-
time data in industrial real-time systems. An earlier case-
study on data management in vehicle control-systems has
indicated a lack of data management and documentation
internally in the ECUs [19]. The case-study in this paper
covers a broader scope of companies, and focuses on the
development process and documentation of real-time data.

The study includes five companies, four vehicle compa-
nies active in different domains and one company produc-
ing electrical control systems. The study identifies ten prob-
lem areas in the development process and suggests remedies
and directions for further studies. Furthermore, we show
that the importance of adequate data management is grow-
ing along with the increasing complexity of real-time and
embedded systems [9].

The main observation from our study is the rudimentary,
or in some cases total lack of, data management and data
documentation for internal ECU data. This should be com-
pared to distributed network data that, due to adequate tool
support, are fairly well managed and documented. We ob-
served that this lack of management, in some cases leads to
inadequate development routines when handling data.

Currently, companies developing safety-critical systems
are becoming increasingly bound to new regulations, such
as the IEC 61508 [11]. These regulations enforce stronger
demands on development and documentation. As an exam-
ple, for data management it is recommended, even on lower
safety levels, not to have stale data or data continuously up-
dated without being used. Companies lacking techniques
for adequate data management and proper documentation
will be faced with a difficult task to meet these demands.

The main contributions of this paper include:

• A case-study investigating state-of-practice in data man-
agement for real-time systems.

• Ten identified problem areas in current practice.
• Suggestions of remedies and future research directions.



The outline of the following parts of the paper is as
follows. Section 2 describes our research method and the
five participating companies. Section 3 reports the state-of-
practice in data management and documentation of indus-
trial embedded real-time systems. In section 4 we present
four key observations and ten identified problem areas in
current practice. In section 5 we propose six remedies and
future research directions. In section 6 and 7 we conclude
the paper and suggest future work based on the findings in
this case-study.

2 Research Method

This qualitative case-study [13] has been conducted at
five companies, mostly in various vehicular business seg-
ments, developing systems in various application areas
within the embedded real-time domain. The main source of
information has been interviews with open-ended questions
[21] conducted at the companies. One person at each com-
pany with in depth knowledge of their system development,
both on high and low level were interviewed. All interviews
have, after promises of anonymity, been recorded to be able
to have open discussions that could later be evaluated.

The work-flow of these interviews has been as follows;
(i) the interviewee was contacted and asked to take part in
this interview with a short explanation of the contents. (ii) A
short summary explaining our area of interest was sent one
week before the interview. (iii) The interview was executed,
and set to last for approximately one hour. (iv) After each
interview, the recording from the interview was analyzed
and the answers written down as a summary question by
question. (v) A document with all of the questions and their
respective summaries where sent back to the interviewee
for possible commenting and approval. In some cases, the
document included additional requests for clarification of
certain areas.

The interview questions were divided into five parts,
with some general questions in the beginning, more detailed
in the middle, and open discussions towards the end.

The interviews consisted of the following five parts:
Part one of the interview was a series of personal questions
to get background information such as the interviewees po-
sition at the company, years employed and area of expertise.
This was made to ensure that the interviewee had the desired
background and knowledge.
Part two was a series of short yes/no questions to get some
basic understanding about the business domain, product
characteristics, and how they manage the system and infor-
mation today.
Part three was the main part which included more exhaus-
tive questions about how data is managed and documented
during the development. This section also included ques-
tions regarding how and if documentation is continuously

updated when changes or corrections occur after release or
during maintenance.
Part four covered the development process and the organi-
zation.
Part five consisted of a more open part with a chance for
the interviewee to speak more freely about his/her own ex-
periences and observed problems within the area.

2.1 Case-Study Validity

All of the studied companies are among the world-
leaders within their respective domains which indicate a
representative selection. Based on this and the fact that the
findings are so conclusive among the companies, we be-
lieve that the study provides a representative overview of
the common practice and can therefore be considered im-
portant. However, the purpose of this study is not to claim,
based on this population, that the results are statistically
confident or valid for all companies in these business seg-
ments.

2.2 Description of Companies

The studied companies have requested to be anony-
mous and are therefore described in this paper as COMP1-
COMP5.

COMP1 is a producer of heavy vehicular systems. They
have a production volume in the range of 50.000-70.000
units per year. Their system are resource-constrained, dis-
tributed and with both critical and non-critical parts. In their
development they mainly use software components that are
developed in-house. The information is distributed between
ECUs via two redundant CAN [8] networks. The system is
built on a software platform that is continually evolving.

COMP2 produces heavy vehicular systems in the range
of 60.000-80.000 units per year and they base their sys-
tems on a software platform. Distribution of critical data
is performed on three CAN networks with different critical-
ity levels where the communication on the most critical bus
is cyclic whereas the other two are event triggered.

COMP3 is another vehicular company with annual vol-
umes in the range of 450.000-550.000 units. Their sys-
tem can be considered highly safety-critical and resource-
constrained. Furthermore, they use several different types
of networks to distribute data. Most of the hardware and
software are developed by subcontractors. Data is dis-
tributed using network protocols, such as CAN, LIN [15]
and MOST [16].

COMP4 is a manufacturer of public transportation sys-
tems producing about 1000 units per year. Network com-
munication is made on fieldbuses. They are now shifting to
Ethernet communication with their own protocol layers in
their latest platform. There are both periodic data and event



triggered data on the bus. They have a small amount of
software redundancy but are moving towards hardware re-
dundancy. Almost all development is made in-house. Their
systems are based on software platforms that are continu-
ously refined during their 30 year product lifetime. Old
products are during their lifetime updated with new soft-
ware platforms.

COMP5 develops around 10.000 units of large station-
ary logic control systems that are less resource-constrained
than the other systems in the study. Their systems are based
on regular software development and where parts of the sys-
tem are developed separately as components. Their sys-
tems are continuously changing and functionality is added
throughout the life-time of the system. Network communi-
cation is quite limited and based on Ethernet [6]. They have
developed their own standard for development based upon
the waterfall model [20]. The ECUs in the system contain
both critical and non-critical functionality. The system is
built using a centralized configuration database where in-
volved nodes collect information such as system parameters
and store them locally before usage.

C
om

pa
ny

V
eh

ic
ul

ar

Pr
od

uc
tV

ar
ia

nc
e

Sa
le

s
Vo

lu
m

e

H
ar

d
re

al
-t

im
e

So
ft

re
al

-t
im

e

R
es

ou
rc

e-
co

ns
tr

ai
ne

d

C
om

po
ne

nt
-b

as
ed

D
is

tr
ib

ut
ed

Pl
at

fo
rm

-o
ri

en
te

d

COMP1 Y 1 2 Y Y 3 Y Y Y
COMP2 Y 5 3 Y Y 4 N Y Y
COMP3 Y 4 5 Y Y 5 Y Y Y
COMP4 Y 2 1 Y Y 2 N Y Y
COMP5 N 2 1 Y Y 1 Y Y N

Figure 1. Company description.
Range: Low=1 and High=5. Yes=Y and No=N

All five companies selected for this study have been ac-
tive within research and development of distributed embed-
ded real-time systems for many years. This also applies to
the interviewees which all could be considered highly com-
petent and have at least five years of company experience.
The companies develop products that mainly incorporate
both hard and soft real-time properties. The investigation
concerns how their systems are developed and maintained
throughout their life-cycle.

Figure 1 shows some of the main similarities and differ-
ences between the companies. As seen in the figure, four
of the involved companies produce vehicular systems and
one company, COMP5 develops stationary industrial sys-
tems. The column "Product Variance" indicates if a com-
pany has large variances between their products. For ex-

ample at COMP2, less than two products delivered have
the same configuration while almost all of COMP1 prod-
ucts are off-the-shelf. Annual sales volume has a range be-
tween 1000 delivered products to several hundreds of thou-
sands. The products of all five companies have both soft and
hard real-time properties. Furthermore, all of the compa-
nies develop resource-constrained systems but systems de-
veloped at COMP1-COMP3 are more resource-constrained
than the others. The most resource-constrained product
developer is in this case COMP3 with high volumes and
limited amount of system resources. Finally, the column
"Platform-oriented", indicates if the company develops a
company-common software platform as a base used in sev-
eral manufactured products but with different configura-
tions.

3 Design-time Data Management

In this section we present some state-of-practice issues
on how the interviewed companies perform their documen-
tation and process at design-time followed by a number of
use cases and scenarios.

3.1 State of Practice

In the following part we present how the individual com-
panies perform their documentation and what kind tools and
processes are used. The main focus is to provide a better
understanding of how data is managed throughout develop-
ment and maintenance. Since there is a lot of information
about each company in this section, we have classified each
of the companies with a few keywords for readability and
overall understanding.

COMP1 uses Rubus Visual Studio [3], which is a de-
velopment environment that is tightly integrated with the
Rubus operating system. In this tool they have adequate
documentation complying with the J1939 and J1587 stan-
dard for bus messages. Except from bus messages they only
have sparse documentation on data types in the internals of
the ECUs. For most of the documentation they are entirely
dependent on the person responsible for a specific part of
the system. According to the interviewee this has worked
quite well previously when their old software platform was
used and the projects where smaller. Now they are introduc-
ing a new, more advanced, platform and are experiencing a
big increase in data flow and system complexity. Current
practice, where a small group or a single person alone is
responsible for this information, is not sufficient anymore.

Company classification: Dependent on individual devel-
opers.

COMP2 Internally within an ECU, documentation and
mechanisms such as special control groups evaluating the
work are not so extensive. It is more up to the developer



to manage data. The documentation and high-level devel-
opment of internal behavior is made in Enterprise Architect
[23] and follows Rational Unified Process (RUP) [12] as
their development process.

For network communication they recently moved from
text-based specifications to a database built on Vectors CAN
db-admin [24], with their own company specific communi-
cation layer. An integration group has control of the net-
work documentation and is responsible for how the signals
are used. This enables them to have control of the network
and its contents. Also, once a month, a more detailed review
that works as a filter for detecting errors is performed. The
documentation regarding the network is continuously up-
dated with new information but old data is never removed.
A problem for them has been the growing amount of doc-
umentation with several hundred pages of text to describe
small parts of the system.

They strictly follow a defined process for adding, remov-
ing or searching for data or data properties but have also
worked out a "speedy" process if you need fast decisions.
They also have a routine to once a year go through the sys-
tem and check if all data on the bus is used and all code
really executes.

Company classification: Network controlled by an inte-
gration group. Little control on internal ECU data manage-
ment

COMP3 uses Rational Rose [10] both for document-
ing internal signals within the ECU and for external, pub-
lic network signals. From Rational Rose, function, system
and software descriptions are generated. All signals are
then semi-automatically put in a signal database and also in
spread-sheets. From the spread-sheets, a special appendix
is generated with specifications on timing requirements, se-
mantics signals etc. The appendix is open for viewing to
all involved developers. They struggle with large amount of
text, sometimes several thousand pages, needed for describ-
ing models etc. Most of the development, both hardware
and software is made by subcontractors.

This company builds their systems on different software
platforms. Each platform has a leader that has a lot to say
about documentation. Except from deciding what should be
added or removed in the system, they also look at the entire
business case if a change is doable from a technical and eco-
nomical point of view. If not, they have the power to abort
the introduction of new functionality if deemed necessary.

The company’s knowledge about signals is documented
in a signal database on a global level but it is more up to
the responsible person for each software component to have
internal control of each ECU. This is, according to them, a
known problem. For internal ECU changes, there is a stan-
dardized document revision on dedicated meetings. Noth-
ing is released to a subcontractor until it is approved due to
legal aspects.

They work according to a so called "superset" thinking
in their software platform where they have excessive sig-
nals to support different versions of the system. A unique
configuration file containing specific information for a spe-
cific system is then distributed to all nodes in the system to
enable or disable desired functionality.

Company classification: Good global knowledge on sig-
nals. The platform leader controls functionality. Each soft-
ware developer is responsible for how data is managed in-
ternally on the ECU.

COMP4 uses spread-sheets for both signals and the
fieldbus. During development all staff in a project can
search and update these spread-sheets until they do a freeze.
A first freeze is done before the actual implementation but
is changed if faults are discovered. After a freeze, only a
special reference group can perform changes in the freezed
version. It is a living process until the product is type ap-
proved at the customer. All developers can read and reserve
signals during development. A company defined process is
used to decide when freezes are supposed to be done.

Company classification: Reference group controlled.
Uses freezed version and spread-sheets for signals.

COMP5 uses Serena Dimensions [22], an application
life-cycle tool where documentation is done together with
the code. They also use high-level drawing tools for com-
ponent development with a specified system interface and c-
code generation. Both code and documentation is versioned
in Serena Dimensions. The main idea with their system is
that data values can be changed in their central database
even when the system is up and running. When a change
is made in the configuration database and committed, all
involved nodes are notified that there are new data in the
database. ECUs that use this data, collect a local copy from
the database for internal use. Which kind of data a person
is able to change in the central database depends on which
authorization level the user is assigned. The majority of the
data communication is done internally on the ECU and not
on the network.

Company classification: Central configuration database.
Access rights controlled.

3.2 Use Cases and Scenarios

This section illustrates some of the important use cases
that occur during development and maintenance. What are
the main differences in how the involved companies handle
adding, removing, and searching for data in their system?

Adding data to the system This is done differently in all
companies. In COMP1, the responsible technician verifies
the system architecture, then decides which node to use and
how the data should be transported. This is then discussed



with the developer in an effort to find flaws in the solution.
After that there are no special routines for how this is done.
It is up to the developer. This same action is handled com-
pletely differently in COMP2 where a developer has to write
a function specification which is approved by the configura-
tion manager. In the change process, applicable on model-
ing and signaling COMP3 uses a rudimentary web interface
to ask for a change. A team then examines the change and
physically synchronizes it to see if the change is technically
justified. If it is a major change to the system, the business
case is also evaluated. In COMP4, adding data is managed
within the project but all signals should be added and ap-
proved before implementation. If a change is requested af-
ter the documentation is freezed, a reference group has to
verify and approve the change. COMP5 uses a similar pro-
cess. If the new data is approved by an authorized person it
can be added and used.

Removal of data Even if companies have some routine
for adding data to the system, routines on how to remove
data is usually non-existent. This raises the question if it
could be the case that there are signals in the system that
are produced but not consumed.

As in the previous section, in COMP1 it is up to the sys-
tem responsible. Rubus has no support for checking if a
produced signal is used or not. In COMP2, COMP3, and
COMP5 they do not remove anything at all. COMP2 does
a consistency check against a spread-sheet once a year to
see if all code in the system actually runs. If a signal on
the bus is not to be used anymore, its CAN ID is defined as
occupied and is never used again. This is made in order to
minimize future mistakes. COMP3 has no technique to au-
tomatically do a mapping and see if data is not used and can
be removed without affecting the system. It is considered
too time consuming to do this mapping. Instead they keep
the old data and calculate with a 15% overhead in the sys-
tem. In an effort to minimize the need for removal of data,
COMP4 does a consistency check in the beginning of each
project and only include required signals. They also try to
remove unnecessary signals during system updates but nor-
mally there are buffers for extra signals in a project. This is
because they want to avoid changes in the system that can
possibly have unknown consequences. If something is re-
moved in COMP5, it is verified in system tests. However
they do not really remove the data, instead they hide it so
that it cannot be used in the future.

What seems to be unanimous for all of these companies
is that removal of signals is problematic. Since there is no
good support for this in the tools or routines, it is again up
to the developer in COMP1 to take such a decision. In the
other companies they either try to eliminate signals when
starting a new project, use overhead in the system or do a
consistency check and hide unused signals.

Searching and usage of data How can a developer or
system architect know if a data is already produced or not?
COMP1 has a developer responsible for this knowledge and
if a signal is needed by another developer, he/she has to
ask that person. They have no documentation regarding the
contents of the nodes. The network however is better doc-
umented. In the other companies it is possible to search
for signals in a spread-sheet, signal database or some type
of development tool with more or less detailed information.
COMP2 is very strict on signals on the bus and developers
have to go through an integration group to require infor-
mation, if a signal exists and can be used. They have less
knowledge about the internals of an ECU, what exists and
can be used. However a group of people review the system
regularly to avoid errors. Both COMP3 and COMP4 uses
a spread-sheet where all developers involved can search for
a signal. In COMP3 you have to go through the platform
group for usage approval. COMP4 does not have the same
control mechanism for the usage of signals. If a signal is
broadcasted on the bus it is open for usage, no additional
decisions has to be made when using the signal. There is
however only one that can write to any given signal. Except
from COMP1, it is possible to search for a signal and use
after approval by some kind of control group.

4 Observations and Problems Areas

In this section we have, based on the above use cases and
scenarios, formulated four key observations and ten prob-
lem areas.

4.1 Key Observations

O1. Impact of product variability on documentation. All
of the involved companies in this study have different
approaches and a variation of techniques for preserving
knowledge about their systems. These companies also pro-
duce products that vary more or less. It seems that there
is a relationship between the quality of the documentation
and the product variability. Figure 1 showed how vari-
ances differ between different companies. COMP1 man-
ufactures off-the-shelf products. COMP2 and COMP3 both
have large product variances to support usage in different
environment settings or to suit various vehicular equipment
alternatives. COMP4 and COMP5 have small variances. In
COMP4 the variances mostly concern HMI settings.

With this information in mind, we can clearly see that
this is reflected in their system documentation. COMP1
that produces off-the-shelf products has the least amount of
documentation on their system. COMP2 and COMP3 has
large variances and both have a more rigorous documenta-
tion process. One of the reasons for this could be that large



product variances in COMP2-COMP3 are one of the rea-
sons that have forced them to have a more developed preser-
vation of system knowledge.
O2. Inclusion of Excessive Signals. All of the involved
companies have excessive signals in the system as well as
functionality that is turned on an off. COMP2 always has
excessive signals included in the system to support several
vehicle variations. Each system is then configured to suit
the individual vehicle configuration. An example of this
is to have signals that support both automatic and manual
gearboxes. In this way they turn on and off required func-
tionality to suit their needs. The reasons for having exces-
sive signals in their systems vary. In most cases excessive
signals are included, either to support product variations or
because there is a desire to keep them in the system since a
change can have unknown effects to the system.

One reason for having excessive signals and functions in
the system is to minimize modifications to the system. If
proper tools and documentation techniques were available,
it would be possible to build the system more optimized,
without unused signals and functionality to save system re-
sources and reduce cost.
O3. Prioritization of selected parts of the system. As a re-
sult of ineffective and inadequate tools for documentation,
parts of systems are prioritized. Although COMP3 uses sev-
eral different techniques to manage and document their sys-
tem, it is a known problem that they prioritize more critical
parts of the system as engine control, compared to the more
soft infotainment functionality which is lagging behind.
O4. Awareness that common practice is not enough.

To get a flavor of how companies and interviewees con-
sider their documentation and development process they
where asked to rank themselves and how they compare to
their competitors at the end of each interview.

When ranking themselves on a scale from one to ten
where one is the lowest, a majority of the companies ranked
themselves below average. One company ranked itself high
with the motivation that as long as they don’t have to extend
their system with new signals and interfaces, current prac-
tice is sufficient. This indicates that it is hard to expand,
change or add new functionality to their system, which
could be a direct result of poor system documentation. The
fact that most companies rank themselves below average re-
garding their documentation and development process indi-
cates that there is much to be done within this area.

When they ranked themselves compared to their com-
petitors, the ranking follows the same pattern with a below
average score. This is interesting since these companies use
a variation of documentation, from person dependent to ex-
tensive signal databases and processes to handle signals, al-
though mostly for distributed signals.

In order to successfully manage these advanced systems,
new techniques for how to handle data has to be introduced.

As stated earlier one single person having extensive knowl-
edge about the internals of an ECU is not ideal and could be
considered as a possible single point of failure.

The overall statement here is that this is how documenta-
tion is believed to be handled within their application area.
A question that arises here is why companies that produce
highly safety-critical applications in their own opinion have
below average control of their system, documentation and
process.

4.2 Identified Problem Areas

There are several important aspects to consider re-
garding how these companies treat and documents data
internally on ECUs or on the communication network. We
have from the above use cases and scenarios identified ten
problems, divided into three areas:

Documentation volume and structure
P1. Growing information volume. A major problem that
was repeatedly raised during the interviews was the grow-
ing volume of information [9]. As an example, model de-
scriptions are today made in different tools and sometimes
in plain text. This is a major problem since there sometimes
can be several thousand pages of text. In most cases every-
thing is backward compatible and nothing is ever removed.
This continuously adds to the complexity of the documen-
tation and the amount of text. It is not efficient to supply a
system-responsible person with several hundred of pages of
information with some small changes. This seems to be a
neglected problem that is becoming an overwhelming issue
for developers and system architects.
P2. Obsolete documentation. Documentation is perceived
as hard to maintain, requiring a lot of effort and time. As a
direct consequence of this, correct and up-to-date documen-
tation is lagging behind. One individual person or a group
of persons can be responsible for updating reported changes
in documentation. However it is hard to do this in parallel
with development and this often introduces a delay until the
change is reflected in the documentation.

If a company has documentation, it is versioned and
there is also some kind of template specifying the how this
should be done. However in all cases, how this is done in
practice is highly dependent on the individual person man-
aging the documentation. This has in one company lead to
a special template used as a simple speedy possibility to go
around their own rules. One way companies do this is to
let everybody change according to their needs and freeze a
version of the documentation regularly. COMP3 does not
have this problem since a developer has to request a change
beforehand.



P3. Stale data. Poor preservation of knowledge and inad-
equate documentation techniques often lead to stale signals
in systems that the companies are or are not aware of. An
issue with this is that these stale data items, except from
adding to memory, bandwidth and CPU usage, may cause
failures or unwanted system behavior. Unknown effects
such as these are addressed in new, more stringent regu-
lations such as IEC61508.
P4. Inadequate ECU data documentation. One thing cor-
respond for all of the involved companies. There is a dif-
ference in how they treat data and signals on the network
compared to internal data on ECUs. The network is doc-
umented using various tools and techniques whereas inter-
nal ECU data in most cases are not. The lack of efficient
tools and techniques have made individual developers re-
sponsible for much of the knowledge about data items and
functionality inside an ECU.
P5. Dependency on individual developers. Internal knowl-
edge of an ECU is in several of the involved companies left
to a single individual or a group of developers. This is an
important issue since companies could lose valuable infor-
mation due to poor, or non-existent, documentation. As an
example, an individual developer in COMP1 can have all
information about a certain part of the system or function-
ality. When other developers need a signal or information
regarding that system or function, they have to ask the de-
veloper for it. When asked how this would influence the
company if a staff member would leave the company, they
say that it would not be a disaster but it would mean a lot of
effort for someone else to get up to date.

The systems that COMP1 are developing have so far
been quite small since large parts of the product have
been mechanically controlled. The current trend is to
introduce more and more computer-controlled parts, thus
rapidly increasing the system complexity. The small size
and amount of data in the system made it possible for
persons to keep track of most things. This worked up
until now. New platforms are being released with more
computer controlled systems that are too complex for a
single developer to handle. The new systems are redundant,
safety-critical, contain more diagnostics, more signals,
human-machine interface (HMI), and other functionalities.

Tool support
P6. Lack of efficient tool support. More efficient documen-
tation, tools and processes are needed and could in the end
reduce development costs. Companies themselves indicate
that within a few years they will need to use a small set of
tools or one single flexible tool to limit the amount of text
describing models today. Since systems and functions re-
quire a lot of effort and are costly to develop, companies
reuse as much of the system as possible. This puts high de-
mands on documentation in order for developers to be able

to understand how a function will work if it is reused in
another setting with other dependencies. This is especially
true if it is a safety-critical function which often is rigor-
ously verified and tested.
P7. Lack of visualization. As systems are getting more het-
erogeneous and more complex, in the sense of more sig-
nals, increasing number of ECUs and more distributed data
items, developers have raised the question of a need for a
graphical view of the whole development chain to aid de-
velopers and system architects.

Important aspects to visualize are;

• how functions are connected
• how data is shared between functions
• how ECUs are connected
• where the nodes are physically placed

Routines
P8. Poor support for adding data. Routines for adding data
to the system differ a lot between the companies. A problem
here is that there is a lot of manual work done by individual
developers, or just open discussions to verify how additional
data affects the system and there is no effective tool support
for this matter.
P9. Difficult to search for data. As long as a data item is
distributed on the network, it is in most cases possible to
search for a data item. However the possibility to search for
an internal ECU data item is in most cases limited.
P10. No support for removal of data. Despite the fact that
some of these systems are resource-constrained and avail-
able resources are sparse, a lot of unnecessary data items
remain unused in the system. In an effort to reduce the
number of unused data items, some of the companies try
to remove old data when starting a new project but they are
careful about doing so because they lack knowledge about
system dependencies such as, who are producing and who
are consuming this data. Instead they either try to hide data,
leave it as it is, or mark them as occupied so there will be no
new users. It seems that the overall problem here is a lack
of feedback from the development tools. There is no way to
automatically see dependencies for internal data.

5 Remedies and Vision for Future Directions

In this section we elaborate, based on the problems (P1-
P10), observations (O1-O4) from the study, and future stan-
dards and regulations, on possible improvements in data
management tools and processes for embedded real-time
system’s development.

To improve data management we propose to lift data to
a higher level during development. A more data centric de-
velopment is needed, where data is considered early in the



development phase and seen as its own entity. To substan-
tially elevate existing data management and documentation
towards a more data centric development, we propose six
remedies;

R1. A unified development environment. To successfully be
able to manage the problems stated in P1, P2, P5 and P6,
scattered information needs to be gathered in one develop-
ment environment. As seen in the study, some companies
successfully use a signal database for bus messages. By ex-
tending this to also include internal signal and state data, an
integrated data management environment supporting the en-
tire development chain including requirements, modeling,
design, implementation, and testing is achieved. This data
management environment could aid developers by filtering
out only the relevant documentation for each development
activity. Correctly implemented this environment should
provide an easy interface for developers from different sub-
systems can share to update and manage documentation.

R2. Global data warehousing and data-flow graphs. Data
warehousing is an effective technique, providing means to
store, analyze and retrieve data. By introducing global data
warehousing, and data-flow graphs to the development en-
vironment a company-common documentation base that de-
velopment projects of different sub-system can access and
share is provided. It also gives developers the possibil-
ity to identify and visualize data providers and subscribers
and thereby aiding designers when adding, managing and
removing data. This gives developers the means to solve
problems identified as P3, P4, P8-P10.

R3. Automated tools and techniques. To additionally aid
developers solving P2, P4-P5 and maximize the impact of
a unified development environment, automated tools and
techniques must be introduced to link design-time docu-
mentation against run-time mechanisms.

R4. Physical visualization. By introducing physical visu-
alization, showing the physical layout and data streams of
the system, identified as P7, we solve a problem that was
explicitly pointed out by some interviewees in the study.

R5. Meta-data information. To aid in solving P2 and P6,
a natural coupling between system requirements and data
properties meta-data information such as resolution, real-
time properties, priorities, criticality, etc. needs to be in-
cluded into the development environment.

R6. Integrated data modeling tool. During our previous
case-study [19] it became obvious that using internal data
structures for internal data storage lead to difficulties to
keep track of data and to perform memory optimization. A
integrated data modeling tool can provide developers with
means to organize and structure all system data, thereby
aiding in solving P5. Within the database community sev-
eral data modeling techniques, such as entity-relationship
modeling,[5] exist.

Introducing these remedies and forming a uniform de-
velopment environment give developers the prerequisite
needed for effectively managing their system development
and maintenance. Figure 2 illustrates how the problems are
linked with the proposed remedies.

Remedies

Problems R1 R2 R3 R4 R5 R6
P1 X
P2 X X X X
P3 X
P4 X X
P5 X X X
P6 X X
P7 X
P8 X
P9 X

P10 X

Figure 2. Problem areas with associated rem-
edy or remedies.

6 Conclusions

In this paper, we show that due to the increasing system
complexity, current state of practice in data management is
not adequate. There are many important issues observed in
this case-study. From these, we have identified ten prob-
lem areas and formulated four key observations, based on
current practice and future needs. These problem areas and
observations set the path for future research and improve-
ment.

It is confirmed by all involved companies that new pro-
cesses and techniques for achieving a satisfactory documen-
tation on a software system are needed to be able to handle
the needs of today and tomorrow. This is something that
could be required to meet the upcoming safety regulations,
eg. as specified by IEC 61508, and will be a complex and
difficult transition for these companies.

The study shows that there is much to be done within the
area, especially documentation of data internally on ECUs.
Inefficient, or lack of, routines for adding, removing or
searching for data or data properties has in some cases made
companies completely dependent on individual experts in-
stead of thorough documentation. As the systems grow, this
approach is no longer feasible.

Another more unwanted effect of inadequate data man-
agement is that there are also data included which no one



knows exists. These stale signals is an important safety
issue since they could have unknown consequences to the
system. An important fact is that these systems are in many
cases resource-constrained and stale data waste resources.
This could be a major cost factor for mass producing com-
panies with high demands of cost-efficiency.

Currently, adequate tools to manage distributed data ex-
ist, resulting in a much better data management for dis-
tributed data compared to internal ECU data. In this paper,
suggestions for improved tool-support for internal data, as
well as overall system data management is presented. It is
our belief that a novel tool that incorporate adequate data
documentation, management and design views, both for de-
sign and run-time would significantly improve current data
management practices.

7 Future Work

From this case-study we could also see an emerging need
for more flexible and efficient run-time data management.
Several interviewees indicated that there is an increasing
need to manage both hard and soft real-time requirements
within their systems. There are also indications that a more
secure handling of data is needed since there is a desire to
connect to the system at run-time for maintenance, upgrades
and infotainment purposes. This issue is seems especially
important when using telematics to access these safety criti-
cal systems. Another issue is the coming standards and reg-
ulation which will put higher demand on data management.
These are some of the important issues still to investigate
based on the outcome from this case-study.

References

[1] A. Albert. Comparison of Event-Triggered and Time-
Triggered Concepts with Regard to Distributed Control Sys-
tems. pages 235–252, 2004.

[2] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndts-
son, and B. Eftring. DeeDS Towards a Distributed and Ac-
tive Real-Time Database System. ACM SIGMOD Record,
25(1):38–40, 1996.

[3] Arcticus Systems. http://www.arcticus.se.
[4] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Vol-

cano - a Revolution in On-Board Communications. Techni-
cal report, Volvo Technology Report, 1998.

[5] P. P.-S. Chen. The entity-relationship model - toward a uni-
fied view of data. ACM Trans. Database Syst., 1(1), 1976.

[6] D. Dolezilek. Iec 61850: What you need to know about
functionality and practical implementation. Power Systems
Conference: Advanced Metering, Protection, Control, Com-
munication, and Distributed Resources, March 2006.

[7] L. Gabriel and H. Donal. Expanding Automotive Electronic
Systems. Computer, 35(1):88–93, Jan 2002.

[8] R. B. GmbH. CAN Specification. Bosch, Postfach 30 02 40
Stuttgart, version 2.0 edition, 1991.

[9] K. Hänninen, J. Mäki-Turja, and M. Nolin. Present and Fu-
ture Requirements in Developing Industrial Embedded Real-
Time Systems - Interviews with Designers in the Vehicle
Domain. In 13th Annual IEEE Int. Conf, Engineering of
Computer Based Systems (ECBS), Germany, 2006.

[10] IBM Rational software. New York, USA. http://www-
306.ibm.com/software/rational.

[11] International Electrotechnical Commission IEC. Standard:
IEC61508, Functional Safety of Electrical/Electronic Pro-
grammable Safety Related Systems. Technical report.

[12] A. S. Jochen Krebs. IBM Rational Unified Process Refer-
ence and Certification Guide : Solutions Designer (RUP).
IBM Press, December 2007.

[13] R. K.Yin. Case Study Research Design and Methods. Sage
Publications, Inc, third edition edition, 2003.

[14] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen.
A Distributed Real-Time Main-Memory Database for
Telecommunication. In Proceedings of the Workshop on
Databases in Telecommunications. Springer, 1999.

[15] Local Interconnect Network. http://www.lin-subbus.org.
[16] Media Oriented Systems Transport.

http://www.mostcooperation.com/home/index.html.
[17] Mimer SQL Real-Time Edition, Mimer Information Tech-

nology. Uppsala, Sweden. http://www.mimer.se.
[18] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and

J. Hansson. COMET: A Component-Based Real-Time
Database for Automotive Systems. In Proceedings of the
Workshop on Software Engineering for Automotive Systems,
pages 1–8. The IEE, June 2004.

[19] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N.-
E. Bånkestad. Data Management Issues in Vehicle Control
Systems: a Case Study. In Proceedings of the 14th Euromi-
cro Conference on Real-Time Systems, pages 249–256. IEEE
Computer Society, June 2002.

[20] W. Royce. Managing the development of large software sys-
tems: concepts and techniques. In ICSE: Proceedings of
the 9th international conference on Software Engineering,
pages 328–338. IEEE Computer Society Press, 1987.

[21] C. B. Seaman. Qualitative methods in empirical studies
of software engineering. Software Engineering, 25(4):557–
572, 1999.

[22] Serena Dimensions. http://www.serena.com/products/.
[23] Sparx Systems Ltd. http://www.sparxsystems.eu/.
[24] Vector Informatics, CANdb Admin. http://www.vector-

worldwide.com.


