
Analyzing Software Evolvability

Hongyu Pei Breivold
1,2

, Ivica Crnkovic
2
, Peter J Eriksson

1

1
ABB AB, Corporate Research

{hongyu.pei-breivold, peter.j.eriksson}@se.abb.com
2
Mälardalen University

{ivica.crnkovic, hongyu.pei-breivold}@mdh.se

Abstract
Software evolution is characterized by inevitable

changes of software and increasing software

complexities, which in turn may lead to huge costs

unless rigorously taking into account change

accommodations. This is in particular true for long-

lived systems in which changes go beyond

maintainability. For such systems, there is a need to

address evolvability explicitly during the entire

lifecycle. Nevertheless, there is a lack of a model that

can be used for analyzing, evaluating and comparing

software systems in terms of evolvability. In this paper,

we describe the initial establishment of an evolvability

model as a framework for analysis of software

evolvability. We motivate and exemplify the model

through an industrial case study of a software-

intensive automation system.

1. Introduction
Software maintenance and evolution are

characterised by their huge cost and cumbersome

implementation [1]. The systems’ capability to cost-

effectively accommodate various changes has become

essential. Accordingly, there is a strong need to carry

out software evolution efficiently and reliably, and

prolong the productive life of a software system. In this

paper, we use evolution to refer to the particular

evolution stage as described in the staged model by

Bennett and Rajlich [1]. We refer to the evolvability

definition in [18], since it expresses the dynamic

behaviour during a software system’s lifecycle and

supports the staged model: “An attribute that bears on

the ability of a system to accommodate changes in its

requirements throughout the system’s lifespan with the

least possible cost while maintaining architectural

integrity.”

1.1 Motivations
The need to explicitly address software evolvability

is becoming recognized [5]. There are examples of

different industrial systems that often have a lifetime of

20-30 years. These systems are subject to and may

undergo a substantial amount of evolutionary changes,

e.g. software technology changes, software systems

merge due to organizational changes, demands for

distributed development, system migration to product

line architecture, etc. The evolution problems we have

observed came from different cases. In this paper, we

exemplify and analyze in particular one industrial case

study that was carried out on a large automation control

system at ABB. The controller software consists of

more than three million lines of code written in C/C++

and a complex threading model, with support for a

variety of different applications and devices. It has

grown in size and complexity, as new features and

solutions have been added to enhance functionality and

to support new hardware, such as devices, I/O boards

and production equipment. Such a complex system is

difficult to maintain. It is also important and

considerably more difficult to evolve. Due to different

measures such as organizational and lifecycle process

improvements, the system keeps the maintainability,

but the evolvability becomes more difficult since the

increased complexity in turn leads to decreased

flexibility, resulting in problems to add new features.

Consequently, it would become costly to adapt to new

market demands and penetrate new markets.

Our particular system is delivered as a single

monolithic software package, which consists of various

software applications developed by distributed

development teams. These applications aim for specific

tasks in painting, welding, gluing, machine tending and

palletizing, etc. In order to keep the integration and

delivery process efficient, the initial architectural

decision was to keep the deployment artifact

monolithic; The complete set of functionality and

services is present in every product even though not

everything is required in the specific product. As the

system grew, it became more difficult to ensure that the

modifications of specific application software do not

affect the quality of other parts of the software system.

As a result, it becomes difficult and time-consuming to

modify software artifacts, integrate and test products.

To continue exploiting the substantial software

investment made and to continuously improve the

system for longer productive lifetime, it has become

essential to explicitly address evolvability, since the

inability to effectively and reliably evolve software

systems means loss of business opportunities [1]. We

want to emphasize here that the problem raised is not a

problem of maintainability. The major problems arise

when brand new (very different) features or different

development paradigms, shifting business and

organizational goals are introduced, so the problems

related to the software evolvability – a fundamental

element for increasing strategic and economic value of

the software [21].

To solve the problems presented above, we need to

handle several research issues: (i) which characteristics

are necessary for a software system to be evolvable; (ii)

how to assess evolvability in a systematic manner; (iii)

how to achieve evolvability; and (iv) how to measure

evolvability. Accordingly, we outline a software

evolvability model in section 2, where necessary

subcharacteristics of software evolvability and

corresponding measuring attributes are identified. This

model is established as a first step towards analyzing

and quantifying evolvability, a base and check points

for evolvability evaluation and improvement. Further in

section 3, we present the structured way of evolvability

evaluation that we used in the case study, and a brief

analysis of the evolvability subcharacteristics. Section

4 presents related work. Section 5 concludes the paper

and outlines the future work.

2. Software evolvability model
Software evolvability is a multifaceted quality

attribute [18]. Based on the definition in [18], the

software quality challenges and assessment [8], the

types of change stimuli and evolution [4], and

experiences we gained through industrial case studies,

we have discovered that only having a collection of the

subcharacteristics of maintainability as defined in the

ISO software quality standard [11] is not sufficient for

a software system to be evolvable. Therefore, we have

(i) complimented and identified subcharacteristics that

are of primary importance for an evolvable software

system, and (ii) outlined a software evolvability model

that provides a basis for analyzing and evaluating

software evolvability. The idea with the evolvability

model is to further derive the identified

subcharacteristics to the extent when we are able to

quantify them and/or make appropriate reasoning about

the quality of service, as in Figure 1.

Figure 1 Concept of the evolvability model

The identified subcharacteristics are summarized in

Table 1. They are a union of quality characteristics

having to do with changes, and are relevant for

characterization of evolution of software-intensive

systems during their life cycle. With these

subcharacteristics in mind, we have a basis on which

different systems can be examined and compared in

terms of evolvability. Any system that does not

explicitly address one or more of these

subcharacteristics is missing an element that probably

will undermine the system’s ability to be evolved.
Table 1 Subcharacteristics of evolvability

The additional quality subcharacteristics that are required by specific

domains [8].

Domain-specific

attributes

The capability of the software system to enable modified software to
be validated [11].

Testability

The capability of the software system to be transferred from one

environment to another [11].

Portability

The capability of the software system to enable the implementation of
extensions to expand or enhance the system with new capabilities and

features with minimal impact to the existing system (based on [11]).

Extensibility

The capability of the software system to enable a specified

modification to be implemented and avoid unexpected effects (based

on [11]).

Changeability

The non-occurrence of improper alteration of architectural information

(based on [12]).

Integrity

The capability of the software system to enable the identification of

influenced parts due to change stimuli (based on [11]).

Analyzability

DescriptionSub-
characteristics

The additional quality subcharacteristics that are required by specific

domains [8].

Domain-specific

attributes

The capability of the software system to enable modified software to
be validated [11].

Testability

The capability of the software system to be transferred from one

environment to another [11].

Portability

The capability of the software system to enable the implementation of
extensions to expand or enhance the system with new capabilities and

features with minimal impact to the existing system (based on [11]).

Extensibility

The capability of the software system to enable a specified

modification to be implemented and avoid unexpected effects (based

on [11]).

Changeability

The non-occurrence of improper alteration of architectural information

(based on [12]).

Integrity

The capability of the software system to enable the identification of

influenced parts due to change stimuli (based on [11]).

Analyzability

DescriptionSub-
characteristics

These subcharacteristics serve as a catalog of check

points for evaluation. Each subcharacteristic is

motivated and explained below in conjunction with the

case study. Examples of measuring attributes for each

subcharacteristic are given.

Analyzability The release frequency of the controller

software is twice a year, with around 40 various new

requirements that need to be implemented in each

release. These requirements may have impact on

different attributes of the system, and the possible

impact must be analyzed before the implementation of

the requirements. This requires that the software system

must have the capability to be analyzed and explored in

terms of the impact to the software by introducing a

change.

Description: Many perspectives are included in this

dimension, e.g. identification and decisions on what to

modify, analysis and exploration of emerging

technologies from maintenance and evolution

perspectives. Measuring attributes include modularity,

complexity, and documentation.

Integrity A strategy for communicating architectural

principles that we found out from various case studies

was to appoint members of the core architecture team

as technical leaders in the development projects.

However, this strategy although helpful to certain

extent, did not completely prevent developers from

insufficient understanding and/or misunderstanding of

the initial architectural decisions, resulting in violation

of architectural conformance. This may lead to

evolvability degradation in the long run.

Description: Architectural integrity is related to

understanding and coherence to the architectural

decisions and adherence to the original architectural

styles, patterns or strategies. Taking integrity as one

subcharacteristic of evolvability does not mean that the

architectural approaches are not allowed to be changed.

Proper architectural integrity management is essential

for the architecture to allow unanticipated changes in

the software without compromising software integrity

and to evolve in a controlled way [1]. Measuring

attributes include architectural documentation.

Changeability Due to the monolithic characteristic of

the controller software, modifications in certain parts of

the software package may lead to ripple effects, and

requires recompiling, reintegrating and retesting of the

whole system. This results in inflexibility of patching

and customers have to wait for a new release even in

case of corrective maintenance and configuration

changes. Therefore, it is required that the software

system must have the ease and capability to be changed

without negative implications or with controlled

implications to the other parts of the software system.

Description: Software architecture that is capable of

accommodating change must be specifically designed

for change [10]. Measuring attributes include

complexity, coupling, change impact, encapsulation,

reuse, modularity.

Portability The current controller software supports

VxWorks and Microsoft Windows NT. There is a need

of openness for choosing among different operating

system vendors, e.g. Linux and Windows CE.

Description: Due to the rapid technical development on

hardware and software technologies, portability is one

of the key enablers that can provide possibility to

choose between different hardware and operating

system vendors as well as various versions of

frameworks. Measuring attributes include mechanisms

facilitating adaptation to different environments.

Extensibility The current controller software supports

around 20 different applications that are developed by

several distributed development centers around the

world. To adapt to the increased customer focus on

specific applications and to enable establishment of

new market segments, the controller, like any other

software systems, must constantly raise the service

level through supporting more functionality and

providing more features [3].

Description: One might argue that extensibility is a

subset of changeability. Due to the fact that about 55%

of all change requests are new or changed requirements

[15], we define extensibility explicitly as one

subcharacteristic of evolvability. It is a system design

principle where the implementation takes future growth

into consideration. Measuring attributes include

modularity, coupling, encapsulation, change impact.

Testability The controller software exposed huge

number of public interfaces which resulted in

tremendous time merely on interface tests. One task

was therefore to reduce the public interfaces to around

10%. Besides, due to the monolithic characteristic,

error corrections in one part of the software requires

retesting of the whole system. One issue was therefore

to investigate the feasibility of testing only modified

parts.

Description: According to statistics [7], software

testing spends as much as 50% of development costs

and comprises up to 50% of development time. Hence,

testability is a key feature permitting high quality to be

combined with reduced time-to-market. Measuring

attributes include complexity, modularity.

Domain- specific attributes The controller software

has critical real-time calculation demands. It is also

required to reduce base software code size and runtime

footprint.

Description: Different domains may require additional

quality characteristics that are specific for a software

system to be evolvable. Measuring attributes depend

on the specific domains.

3. Case study
We conducted the following structured evaluation

steps shown in Figure 2. The involved stakeholders

expressed that they were pleased with this systematic

approach, as it made architecture requirements and

corresponding design decisions more explicit, better

founded and documented.
Phase 1. Analyze the implications

of change stimuli on software
architecture

Phase 2. Analyze and prepare the
software architecture to

accommodate change stimuli

and potential future changes

Step 1. Identify requirements on the software architecture

Step 2. Prioritize requirements on the software architecture

Step 3. Extract architectural constructs related to the

identified issues from phase 1
Step 4. Identify refactoring components for each identified

issue
Step 5. Identify and assess potential refactoring solutions

from technical and business perspectives
Step 6. Identify and define test cases

Phase 3. Finalize the evaluation Step 7. Present evaluation results

Figure 2 Evaluation steps

The evaluation results included (i) the identified and

prioritized requirements on the software architecture;

(ii) identified components/modules that need to be

refactored for enhancement or adaptation; (iii)

refactoring investigation documentation which

describes the current situation and solutions to each

identified candidate that need to be refactored,

including estimated workload; and (iv) test scenarios.

3.1 Analysis of evolvability subcharacteristics
Analyzability was addressed through refining

activities for each identified requirement. Integrity

was addressed through extracting rationale for each

design decision; and providing training, guidelines and

code examples for software developers and using

tactics that enable the achievement of a certain quality

characteristic. Changeability was addressed through

restructuring the original function-oriented architecture

to product-line architecture. Extensibility was

addressed through the definition of a Base Software

SDK (Software Development Kit), consisting of well-

documented API (Application Programming Interface),

wizards and tools for developing application-specific

extensions. Portability was handled through the

portability layer which encapsulates infrastructure

technology choices and provides interfaces for

application software in the controller. Testability was

addressed through defining test scenarios and

applications to support platform testing. Domain-

specific attribute was planned with respect to

functionality partition of the controller software.

4. Related work
To evaluate evolvability, Ramil and Lehman

proposed metrics based on implementation change logs

[16] and computation of metrics using the number of

modules in a software system [13]. Another set of

metrics is based on software life span and software size

[20]. In [19], a framework of process-oriented metrics

for software evolvability was proposed to intuitively

develop architectural evolvability metrics and to trace

the metrics back to the evolvability requirements based

on the NFR framework. The best known quality models

for evaluating quality include McCall [14], Boehm [2],

FURPS [9], ISO 9126 [11] and Dromey [6]. However,

the term evolvability is not explicitly addressed in any

of the quality models. An ontological basis which

allows for the formal definition of a system and its

change at the architectural level is presented in [17].

[18] proposed a taxonomy to address change as factors

and classify evolvability into several aspects, e.g.

generality, adaptability, scalability and extensibility.

However, it does not cover all the types of software

evolution, e.g. concerns of product line development.

5. Conclusions and future work
This paper proposes and demonstrates an

evolvability model and an evaluation approach, which

were applied into complex industrial context to assist

software evolvability analysis. By establishing the

evolvability model, we hope to have improved the

capability in being able to on forehand understand and

analyze systematically the impact of a change stimulus.

This, in turn, helps us to prolong the evolution stage.

We intend to continue working on the evolvability

model by conducting more case studies to confirm and

refine the model. Further we plan to analyze the

correlations among the subcharacteristics with respect

to constraints and tradeoffs.

6. References
[1] K. Bennett and V. Rajlich. Software Maintenance and

Evolution: a Roadmap. The Future of Software Engineering,

Anthony Finkelstein (Ed.), ACM Press 2000.
[2] B.W. Boehm et al. Characteristics of Software Quality.

Amsterdam, North-Holland, 1978.

[3] J. Bosch. Design and Use of Software Architectures –

Adopting and Evolving a Product-Line Approach. Addison-

Wesley. 2000.

[4] N. Chapin et al. Types of Software Evolution and

Software Maintenance, Journal of Software Maintenance and

Evolution: Research and Practice, 2001.

[5] S. Ciraci and P. Broek. Evolvability as a Quality Attribute

of Software Architectures. The International ERCIM

Workshop on Software Evolution 2006.

[6] G. Dromey. Cornering the Chimera. IEEE Software

(January): 33-43, 1996.

[7] N.S. Eickelmann and D.J. Richardson. What Makes One

Software Architecture More Testable Than Another?

SIGSOFT Workshop, 1996.

[8] R. Fitzpatrick et al. Software Quality Challenges. 26th

International Conference on Software Engineering, 2004.

[9] R. Grady and D. Caswell. Software Metrics: Establishing

a Company-Wide Program. Englewood Cliffs, NJ,

PrenticeHall. 1987.

[10] D. Isaac and G. McConaughy. The Role of Architecture

and Evolutionary Development in Accommodating Change.

Proc. NCOSE’94, 1994.

[11] ISO/IEC 9126-1. International Standard. Software

Engineering. Product Quality – Part 1: Quality Model, 2001.

[12] Laprie, Dependable Computing and Fault-Tolerant

Systems. Vol. 5, Dependability: Basic Concepts and

Terminology. Laprie, J.C. (ed.). New York: Springer, 1992

[13] M.M. Lehman and J.F. Ramil et al. Metrics and Laws of

Software Evolution – The Nineties View. IEEE Computer

Press, pp 20-32, 1997.

[14] J.A. McCall, P.K. Richards and G.F. Walters. Factors in

Software Quality. National Technical Information Service,

1977.

[15] T.M. Pigoski. Practical Software Maintenance. Wiley

Computer Publishing, 1996.

[16] J.F. Ramil and M.M. Lehman. Metrics of Software

Evolution as Effort Predictors – A Case Study. ICSM, 2000.

[17] D. Rowe and J. Leaney. Evaluating Evolvability of

Computer Based Systems Architectures – an Ontological

Approach. Proc. of International Conference and Workshop

on Engineering of Computer-Based Systems, 1997.

[18] D. Rowe and J. Leaney. Defining Systems Evolvability –

a Taxonomy of Change. Proc. of the IEEE Conference on

Computer Based Systems, 1998.

[19] N. Subramanian and L. Chung. Process-Oriented

Metrics for Software Architecture Evolvability. 6th IWPSE,

2002.

[20] T. Tamai and Y. Torimitsu. Software Lifetime and its

Evolution Process over Generations. ICSM, 1992.

[21] N.H. Weiderman et al. Approaches to Legacy Systems

Evolution. Technical Report CMU/SEI-97-TR-014, 1997.

