
36

The Worst-Case Execution-Time
Problem—Overview of Methods and
Survey of Tools

REINHARD WILHELM TULIKA MITRA

Saarland University National University of Singapore

JAKOB ENGBLOM FRANK MUELLER

Virtutech AB North Carolina State University

ANDREAS ERMEDAHL ISABELLE PUAUT

Mälardalen University IRISA

NIKLAS HOLSTI PETER PUSCHNER

Tidorum Ltd. TU Vienna

STEPHAN THESING JAN STASCHULAT

Saarland University TU Braunschweig

andDAVID WHALLEY

PER STENSTRÖMFlorida State University

Chalmers University of TechnologyGUILLEM BERNAT

Rapita Systems, Ltd.

CHRISTIAN FERDINAND and REINHOLD HECKMANN

AbsInt Angewandte Informatik

The determination of upper bounds on execution times, commonly called worst-case execution
times (WCETs), is a necessary step in the development and validation process for hard real-time
systems. This problem is hard if the underlying processor architecture has components, such as

Work reported herein was supported by the European Accompanying Measure ARTIST, Advanced
Real Time Systems, and the European Network of Excellence, ARTIST2.
Authors’ addresses: Reinhard Wilhelm and Stephan Thesing, Fachrichtung Informatik, Saarland
University, D-66041 Saarbrücken, Germany; Jakob Engblom, Virtutech AB, Norrtullsgatan 15,
SE-113 27 Stockholm; Andreas Ermedahl, Department of Computer Science and Electronics,
Mälardalen University, PO Box 883, SE 72123 Västerås, Sweden; Niklas Holsti, Tidorum Ltd,
Tiirasaarentie 32, FI-00200 Helsinki, Finland; David Whalley, Computer Science Department,
Florida State University, Tallahassee, FL 32306-4530. These authors are responsible for the arti-
cle and have written the introduction to the problem area and the overview of the techniques. They
have also edited the tool descriptions to make them more homogeneous.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1539-9087/2008/04-ART36 $5.00 DOI 10.1145/1347375.1347389 http://doi.acm.org/
10.1145/1347375.1347389

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:2 • R. Wilhelm et al.

caches, pipelines, branch prediction, and other speculative components. This article describes dif-
ferent approaches to this problem and surveys several commercially available tools1 and research
prototypes.

Categories and Subject Descriptors: J.7 [Computers in Other Systems]; C.3 [Special-Purpose
and Application-Based Systems]: Real-Time and Embedded Systems

General Terms: Verification, Reliability

Additional Key Words and Phrases: Hard real time, worst-case execution times

ACM Reference Format:

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand,
C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., and Stenström,
P. 2008. The worst-case execution-time problem—overview of methods and survey of tools. ACM
Trans. Embedd. Comput. Syst. 7, 3, Article 36 (April 2008), 53 pages. DOI = 10.1145/1347375.
1347389 http://doi.acm.org/10.1145/1347375.1347389

1. INTRODUCTION

Hard real-time systems need to satisfy stringent timing constraints, which are
derived from the systems they control. In general, upper bounds on the execu-
tion times are needed to show the satisfaction of these constraints. Unfortu-
nately, it is not possible, in general, to obtain upper bounds on execution times
for programs. Otherwise, one could solve the halting problem. However, real-
time systems only use a restricted form of programming, which guarantees that
programs always terminate; recursion is not allowed or explicitly bounded as
are the iteration counts of loops. A reliable guarantee based on the worst-case
execution time of a task could easily be given if the worst-case input for the
task were known. Unfortunately, in general, the worst-case input is not known
and hard to derive.

We assume that a real-time system consists of a number of tasks, which
realize the required functionality. Figure 1 depicts several relevant properties
of a real-time task. A task typically shows a certain variation of execution times
depending on the input data or different behavior of the environment. The set
of all execution times is shown as the upper curve. The shortest execution time
is called the best-case execution time (BCET); the longest time is called the
worst-case execution time (WCET). In most cases, the state space is too large to

1Tool descriptions were provided by Guillem Bernat, Christian Ferdinand, Andreas Ermedahl,
Reinhold Heckmann, Niklas Holsti, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, Per Stenström and David Whalley. Guillem Bernat, Rapita Systems Ltd., IT
Center, York Science Park, Heslington, York YO10 5DG, United Kingdom. Christian Ferdinand
and Reinhold Heckmann, AbsInt Angewandte Informatik, Science Park 1, D-66123 Saarbrücken.
Tulika Mitra, Department of Computer Science, School of Computing, 3 Science Drive 2, National
University of Singapore, Singapore 117543. Frank Mueller, Department of Computer Science,
North Carolina State University, Raleigh, NC 27695-8206. Isabelle Puaut, IRISA, Campus Uni-
versity de Beaulieu, F-35042 Rennes Cédex. Peter Puschner, Institute für Technische Informatik,
TU Wien, A-1040 Wien. Jan Staschulat, Institute for Computer and Communication Network En-
gineering, Technical University Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig. Per
Stenström, Department of Computer Engineering, Chalmers University of Technology, S-412 96
Göteborg.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:3

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset
of measured executions. Its minimum and maximum are the minimal and maximal observed exe-
cution times, respectively. The darker curve, an envelope of the former, represents the times of all
executions. Its minimum and maximum are the best- and worst-case execution times, respectively,
abbreviated BCET and WCET.

exhaustively explore all possible executions and thereby determine the exact
worst- and best-case execution times.

Today, in most parts of industry, the common method to estimate execution-
time bounds is to measure the end-to-end execution time of the task for a subset
of the possible executions—test cases. This determines the minimal observed
and maximal observed execution times. These will, in general, overestimate the
BCET and underestimate the WCET and so are not safe for hard real-time
systems. This method is often called dynamic timing analysis.

Newer measurement-based approaches make more detailed measurements
of the execution time of different parts of the task and combine them to give
better estimates of the BCET and WCET for the whole task. Still, these methods
are rarely guaranteed to give bounds on the execution time.

Bounds on the execution time of a task can be computed only by methods that
consider all possible execution times, that is, all possible executions of the task.
These methods use abstraction of the task to make timing analysis of the task
feasible. Abstraction loses information, so the computed WCET bound usually
overestimates the exact WCET and vice versa for the BCET. The WCET bound
represents the worst-case guarantee the method or tool can give. How much
is lost depends both on the methods used for timing analysis and on overall
system properties, such as the hardware architecture and characteristics of the
software. These system properties can be subsumed under the notion of timing
predictability.

The two main criteria for evaluating a method or tool for timing analysis
are thus safety—does it produce bounds or estimates?— and precision—are the
bounds or estimates close to the exact values?

Performance prediction is also required for application domains that do not
have hard real-time characteristics. There, systems may have deadlines, but
are not required to absolutely observe them. Different methods may be applied
and different criteria may be used to measure the quality of methods and tools.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:4 • R. Wilhelm et al.

The literature on timing analysis has created a confusion by not always
making a distinction between worst-case execution times and estimates for
them. We will avoid this misnomer in this survey.

We will use the term timing analysis for the process of deriving execution-
time bounds or estimates. A tool that derives bounds or estimates for the
execution times of application tasks is called a timing-analysis tool. We will
concentrate on the determination of upper bounds or estimates of the WCET
unless otherwise stated. All tools described in Section 6, with the exception of
SymTA/P, offer timing analysis of tasks in uninterrupted execution. Here, a
task may be a unit of scheduling by an operating system, a subroutine, or some
other software unit. This unit is mostly available as a fully-linked executable.
Some tools, however, assume the availability of source code and of a compiler
supporting a subsequent timing analysis.

1.1 Organization of the Article

Section 2 introduces the problem and its subproblems and describes methods
being used to solve it. Sections 3 and 4 present two categories of approaches,
static- and measurement-based, while Section 5 provides a comparison of both
methods. Section 6 consists of detailed tool descriptions. Section 7 resumes the
state of the art and the deployment and use in industry. Section 8 lists limita-
tions of the described tools. Section 9 gives a condensed overview of the tools
in a tabulated form. Section 10 explain, how timing analysis is or should be
integrated in the development process. Section 11 concludes the paper by pre-
senting open problems and the perspectives of the domain mainly determined
by architectural trends.

2. OVERVIEW OF TIMING-ANALYSIS TECHNIQUES

This section describes the problems that make timing analysis both difficult and
interesting as a research topic, presents a decomposition of the problem into
subtasks, and categorizes some of the techniques used to determine bounds on
execution times. A given timing-analysis method or tool may not address or
solve all these subtasks and different methods and tools may solve the same
subtask in different ways.

2.1 Problems and Requirements

Timing analysis attempts to determine bounds on the execution times of a task
when executed on a particular hardware. The time for a particular execution
depends on the path through the task taken by control and the time spent in
the statements or instructions on this path on this hardware. Accordingly, the
determination of execution-time bounds has to consider the potential control-
flow paths and the execution times for this set of paths. A modular approach
to the timing-analysis problem splits the overall task into a sequence of sub-
tasks. Some of them deal with properties of the control flow and others with
the execution time of instructions or sequences of instructions on the given
hardware.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:5

2.1.1 Data-Dependent Control Flow. The task to be analyzed attains its
WCET on one (or sometimes several) of its possible execution paths. If the
input and the initial state leading to the execution of this worst-case path were
known, the problem would be easy to solve. The task would then be started in
this initial state with this input, and the execution time would be measured.
In general, however, this worst-case input and initial state are not known and
hard or impossible to determine. A data structure, the task’s control-flow graph
(CFG), describes a superset of the set of all execution paths. The task’s call
graph usually is integrated into the CFG.

A first problem that has to be solved is the construction of the CFG and
call graph of the task from a source or a machine-code version of the task. They
must contain all of the instructions of the task (function closure) under analysis.
Problems are created by dynamic jumps and calls with computed target address.
Dynamic jumps are mainly because of switch/case structures and are a problem
only when analyzing machine code, because even assembly code usually labels
all switch/case branches. Dynamic calls also occur in source code in the form of
calls through function pointers and calls to virtual functions. A component of a
timing-analysis tool, which reconstructs the CFG from a machine program, is
often called a front end.

Different paths through the CFG are taken depending directly or indirectly
on input data. Some paths in the superset described by the CFG will never
be taken, for instance, those that have contradictory consecutive conditions.
Eliminating such paths may increase the precision of timing analysis. The more
the analysis knows about the data flow through the task, the more it knows
about the outcome of and the relationship between conditions, the more paths
it may recognize as infeasible.

A phase called control-flow analysis (CFA) determines information about
the possible flow of control through the task to increase the precision of the
subsequent analyzes. CFA may attempt to exclude infeasible paths, determine
execution frequencies of paths or the relation between execution frequencies
of different paths or subpaths, etc., and has previously been called high-level
analysis.

Tasks spend most of their execution time in loops and in (recursive) functions.
Therefore, it is an essential task of CFA to determine bounds on the iterations of
loops and on the depth of recursion of functions. A necessary ingredient for this
are the values of variables, registers, or memory cells occurring in conditions
tested for termination of loops or recursion.

It is worth noting that complex processors may actually execute an instruc-
tion stream in a different order than the one determined by CFA. This is because
of pipelining (prefetching and delayed branching), branch prediction, and spec-
ulative or out-of-order execution.

2.1.2 Context Dependence of Execution Times. Early approaches to the
timing-analysis problem assumed context independence of the timing behav-
ior; the execution times for individual instructions were independent from the
execution history and could be found in the manual of the processor. From this
context independence was derived a structure-based approach [Shaw 1989]: if a

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:6 • R. Wilhelm et al.

task first executes a code snippet A and then a snippet B, the worst-case bound
for A; B was determined as that for A, ubA, added to that determined for B, ubB,
formally ubA;B = ubA + ubB. This context independence, however, is no longer
true for modern processors with caches and pipelines. The execution time of
individual instructions may vary by several orders of magnitude, depending
on the state of the processor in which they are executed. Thus, the execution
time of B can heavily depend on the execution state that the execution of A
produced. Any tool should exploit the knowledge that A was executed before
B to determine a precise upper bound for B in the context A. Determining the
upper bound ubA;B for A; B by ubA;B = ubA + ubB ignores this information and
will, in general, not obtain precise results.

A phase called processor-behavior analysis gathers information on the pro-
cessor behavior for the given task, in particular, the behavior of the compo-
nents that influence the execution times, such as memory, caches, pipelines,
and branch prediction. It determines upper bounds on the execution times of
instructions or basic blocks and has previously been called low-level analysis.

2.1.3 Timing Anomalies. The complexity of the processor-behavior analy-
sis subtask and the set of applicable methods critically depend on the complexity
of the processor architecture [Heckmann et al. 2003]. Most powerful micropro-
cessors suffer from timing anomalies [Lundqvist and Stenström 1999c]. Timing
anomalies are contraintuitive influences of the (local) execution time of one in-
struction on the (global) execution time of the whole task. This concept is quite
complex. Thus, we will try to explain it in some detail.

We assume that the system under consideration, executing hardware and ex-
ecuted software, are too complex to allow exhaustive execution or simulation. In
addition, not all input data are known, so that parts of the execution state are
missing in the analysis. Unknown parts of the state lead to nondeterministic
behavior, if decisions depend on these unknown parts. For timing analysis, this
means that the execution of an instruction or an instruction sequence consid-
ered in an initial abstract state may produce different times based on different
assumptions about the missing-state components. For example, missing infor-
mation about whether the next instruction will be in the cache may lead to
one execution starting with a cache load contributing the cache-miss penalty
to the execution time, while another execution will start with an instruction
fetch from the cache. Intuition would suggest that the latter execution would
always lead to the shorter execution time of the whole task. On processors with
timing anomalies, however, this need not be true. The latter execution may, in
fact, lead to a longer task execution time. This was observed on the Motorola
ColdFire 5307 processor [Heckmann et al. 2003]. The reason is the following.
This processor speculates on the outcome of conditional branches, that is, it
prefetches instructions in one of the directions of the conditional branch. When
the condition is finally evaluated it may turn out that the processor specu-
lated in the wrong direction. All the effects produced so far have to be undone.
In addition, fetching the wrong instructions has partly ruined the cache con-
tents. Taken together, the costs of the misprediction exceed the costs of a cache
miss. Hence, the local worst case, the I-cache miss, leads to the globally shorter

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:7

Fig. 2. A timing anomaly caused by speculation.

Fig. 3. A scheduling-caused timing anomaly.

execution time since it prevents a more expensive branch misprediction. This
exemplifies one of the reasons for timing anomalies, speculation-caused anoma-
lies. One such anomaly is shown in Figure 2.2

Another type of timing anomalies are instances of well-known scheduling
anomalies, first discovered and published by Graham [1966]. These occur when
a sequence of instructions, partly depending on each other, can be scheduled
differently on the hardware resources, such as pipeline units. Depending on the
selected schedule, the execution of the instructions or pipeline phases takes dif-
ferent times. Figure 3 shows an example of a scheduling-caused timing anomaly.

Timing anomalies violate an intuitive, but incorrect assumption, namely,
that always taking the local worst-case transition when there is a choice pro-
duces the global worst-case execution time. This means that the analysis cannot
greedily limit its search for upper bounds by choosing the worst cases for each
instruction. The existence of timing anomalies in a processor thus has a strong
influence on the applicability of methods for timing analysis for that proces-
sor [Heckmann et al. 2003].

—The assumption that only local worst cases have to be considered to safely
determine upper bounds on global execution times is unsafe.

—The assumption that one could identify a worst initial execution state, to
safely start measurement or analysis of a piece of code in, is unsafe.

The consequences for timing analysis of systems to be executed on processors
with timing anomalies are as follows:

2Figures 2 and 3 are taken from Reineke et al. [2006].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:8 • R. Wilhelm et al.

—The analysis may be forced to follow execution through several successor
states, whenever it encounters an abstract state with a nondeterministic
choice between successor states. This may lead to a quite large state space to
consider.

—The analysis has to be able to express the absence of state information instead
of assuming some worst initial state. Absent information in abstract states
stands for all potential concrete instances of these missing state components,
and, thus, do not wrongly exclude any possible execution.

2.2 Classification of Approaches

We present two different classes of methods.

—Static methods. These methods do not rely on executing code on real hardware
or on a simulator. Rather, they take the task code itself, maybe together
with some annotations, analyze the set of possible control-flow paths through
the task, combine control flow with some (abstract) model of the hardware
architecture, and obtain upper bounds for this combination. One such static
approach is described in detail in Wilhelm [2005].

—Measurement-based methods. These methods execute the task or task parts
on the given hardware or a simulator for some set of inputs. They then take
the measured times and derive the maximal and minimal observed execution
times (see Figure 1) or their distribution or combine the measured times of
code snippets to results for the whole task.

Static methods emphasize safety by producing bounds on the execution time,
guaranteeing that the execution time will not exceed these bounds. The bounds
allow safe schedulability analysis of hard real-time systems.

2.3 Methods for Subtasks of Timing Analysis

We briefly describe some methods that are being used to solve the above-
mentioned subtasks of timing analysis. These methods are imported from other
fields of computer science, such as compiler construction, computer architec-
ture, performance estimation, and optimization.

These methods can be categorized according to several properties: whether
they are automatic or manual, whether they are generic, i.e., stand for a whole
class of methods, or are specific instances of such a generic method, and whether
they are applied at analysis time or at tool-construction time.

A combination of the methods listed below or instances thereof is required
to realize a timing analysis method. Several such combinations are described
in Sections 3 and 4.

2.3.1 Static Program Analysis. Static program analysis is a generic
method to determine properties of the dynamic behavior of a given task with-
out actually executing the task [Cousot and Cousot 1977; Nielson et al. 1999].
These properties are often undecidable. Therefore, sound approximations are
used; they have to be correct, but may not necessarily be complete. An example
from our domain is instruction-cache analysis, which attempts to determine
for each point in the task which instructions will be in the cache every time

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:9

execution reaches this program point. For straight-line programs and known
initial cache contents, this is easy and can be done by a standard simulator.
However, it is, in general, undecidable for tasks whose control flow depends on
input data. A sound analysis will compute a subset of the instructions that will
definitely be in the instruction cache every time execution reaches the program
point. More instructions may actually be in the cache, but the analysis may not
be able to find this out. Several instances of static program analysis are being
used for timing analysis.

2.3.2 Measurement. Measurements can be used in different ways. End-to-
end measurements of a subset of all possible executions produce estimates, not
bounds. They may be useful for applications that do not require guarantees,
typically nonhard real-time systems. They may give the developer a feeling
about the execution time in common cases and the likelihood of the occurrence
of the worst case. Measurement can also be applied to code snippets after which
the results are combined to estimates for the whole program in similar ways as
used in static methods. Guarantees that safe bounds are obtained can currently
only be given for rather simple architectures because of the reasons given in
Section 2.1.

2.3.3 Simulation. Simulation is a standard technique to estimate the ex-
ecution time for tasks on hardware architectures. A key advantage of this ap-
proach is that it is possible to derive rather accurate estimations of the execution
time for a task for a given set of input data and assuming sufficient detail of
the timing model of the architectural simulator. However, Desikan et al. [2001]
shows that not all simulators can be trusted as clock-cycle accurate simulators
for all types of architectures. It compares timing measurements with runs on
different simulators and gives indication of the errors obtained for an Alpha
architecture. The Simplescalar [Austin et al. 2002] simulator among others is
used. Simplescalar is also used by some WCET groups. The results show large
differences in timing compared to the measured values.

Unfortunately, standard cycle-accurate simulators cannot be used off-hand
in static methods for timing analysis, since static methods should not simulate
execution for particular input data, but rather for all input data. Thus, input
data is assumed to be unknown. Unknown input data leads to unknown parts in
the execution state of the processor and nondeterministic decisions at control-
flow branches. Simulators modified to cope with these problems are being used
in several of the tools described later.

2.3.4 Abstract Processor Models. Processor-behavior analysis needs a
model of the architecture. This need not be a concrete model implementing
all of the functionality of the target hardware. A simplified model that is con-
servative with respect to the timing behavior is sufficient. Such an abstract
processor model either is a part of the engine for processor-behavior analysis
or is input to the construction of such an engine. In any case, the construction
of an abstract processor model is done at tool-construction time.

One inherent limitation of all the approaches that are based on some model
of the hardware architecture is that they rely on the timing accuracy of the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:10 • R. Wilhelm et al.

model. In general, computer vendors do not disclose enough information about
the microarchitecture so that one can develop and safely validate the accu-
racy of a timing model. Without such validation, any WCET tool based on an
abstract model of the hardware cannot be trusted without further assurance.
Additional means for model validation have to be taken. This could be done
by measurements. Measured execution times are compared against predicted
bounds. Another method is trace validation checking whether externally ob-
servable traces are projections of traces as predicted by the model. Not all
events predicted by the model are externally observable. However, both meth-
ods are similar to testing; they can discover the presence of errors, but not
prove their absence. Stronger guarantees can be given by equivalence checking
between different abstraction levels. An ongoing research activity is the formal
derivation of abstract processor models from concrete models.

2.3.5 Integer Linear Programming (ILP). Linear programming [Chvatal
1983] is a generic methodology to code the requirements of a system in the form
of a system of linear constraints. In addition, a goal function that has to be max-
imized or minimized to obtain an optimal assignment of values to the system’s
variables is given. One speaks of integer linear programming if these values
are required to be integers. While linear programs can be solved in polynomial
time, requiring the solution to be integer makes the problem NP-hard. This
indicates that the use of ILP should be restricted to small problem instances or
to subproblems of timing analysis generating only small problem instances.

In the timing-analysis domain, ILP is used in the IPET approach to bounds
calculation (see Section 3.4). The control flow of tasks is translated into integer
linear programs, essentially by coding Kirchhoff ’s rule about the conservation of
flow. Extra information about the control flow can often be coded as additional
constraints. The goal function expresses the execution time of the program
under analysis. Its maximal value is then an upper bound for all execution
times.

An escape from the exponential complexity that is often taken in other appli-
cation domains is to use heuristics. These heuristics will, in general, only arrive
at suboptimal solutions. A suboptimal solution in timing analysis represents
an unsafe estimate for the WCET. Thus the escape of resorting to heuristics is
barred.

ILP has been used for a completely different purpose, namely to model (very
simple) processors [Li et al. 1995a, 1995b]. However, the complexity of solv-
ing the resulting integer linear programs did not allow this approach to scale
[Wilhelm 2004].

2.3.6 Annotation. The annotation of tasks with information available from
the developer is a generic technique to support subsequently applied automatic
validation techniques. The developer using a WCET tool may have to supply
some information that the tool needs in separate files or by annotating the task.
This information describes

—the memory layout and any needed characteristics of memory areas,
—ranges for the input values of the task,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:11

Fig. 4. Core components of a timing-analysis tool. The flow of information is shown by grey arrows.
The white arrows represent tool-construction input.

—information about the control flow of the task if not determined automatically,
e.g., loop bounds, shapes of nested loops, if iterations of inner loops depend
on iteration variables of outer loops, frequencies of paths or branches taken,

—deviations from the standard function-calling conventions, and
—directives as to the desired precision of the result, which often depends on

the invested effort for differentiating contexts.

2.3.7 Front End. Most WCET tools analyze software at the executable
level, since only at this level is all necessary information available. The first
phase in timing analysis is thus the decoding of the executable and the re-
construction of its control flow. This can be quite involved, depending on the
instruction set of the processor and the code-generation patterns of the com-
piler. Some timing-analysis tools are integrated with a compiler, which emits
the necessary CFG and call graph for the analysis.

2.3.8 Visualization of Results. The results of timing analysis are presented
in human-readable form, best in the form of an informative visualization. This
usually shows the call and control-flow graphs annotated with computed timing
information and possibly also information about the processor states.

The following two sections present the two categories of approaches, static-
and measurement-based approaches. Section 6 describes the available tools
from these two categories in more detail.

3. STATIC METHODS

This class of methods does not rely on executing code on real hardware or on a
simulator, but rather takes the task code itself, combines it with some (abstract)
model of the system, and obtains upper bounds from this combination.

Figure 4 shows the core components of a static timing-analysis tool and the
flow of information.

3.1 Value Analysis

This is a static program analysis. Any method for data-cache behavior analy-
sis needs to know effective memory addresses of data, in order to determine
where a memory access goes. Effective addresses are only available at runtime.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:12 • R. Wilhelm et al.

However, a value analysis, as implemented in aiT (see Section 6.1), Bound-T
(see Section 6.2), and in SWEET (see Section 6.7), is able to determine many
effective addresses in disciplined code statically [Thesing et al. 2003]. It does
so by computing ranges for the values in the processor registers and local vari-
ables at every program point. This analysis is also useful to determine loop
bounds and to detect infeasible paths.

3.2 Control-Flow Analysis

The purpose of control-flow analysis (CFA) is to gather information about pos-
sible execution paths. The set of paths is always finite, since termination must
be guaranteed. The exact set of paths can, in general, not be determined. Any
superset of this set will be a safe approximation. The smaller this superset is,
the better. The execution time of any safely eliminated path can be ignored in
computing the upper bound and thus will not contribute to it.

The input of flow analysis consists of a task representation, e.g., the call graph
and the control-flow graph of the task and possibly additional information, such
as ranges for the input data and iteration bounds of some loops. The latter are
either determined by a preceding value analysis or provided by the user. The
result of the flow analysis can be seen as constraints on the dynamic behavior
of the task. This includes information on which functions may be called, on
dependencies between conditionals, and on the (in)feasibility of paths, etc.

There are a number of approaches to automatic flow analysis. Some of the
methods are general, while others are specialized for certain types of code con-
structs. The methods also differ in the type of codes they analyze, i.e., source-,
intermediate- (inside the compiler), or machine code.

CFA is generally easier on source than on machine code, but it is difficult to
map the results to the machine-code program because compilation, in particu-
lar, code optimization and linking, may change the control-flow structure.

Gustafsson et al. [2003] uses a combination of flow-analysis methods. For
simple loops, pattern matching is used. The pattern matching uses the results of
a value analysis. For more complex loop constructs, an abstract interpretation-
based method is used [Gustafsson 2000; Gustafsson et al. 2005]. The analysis is
performed on the intermediate code level. Pattern-matching methods are based
on the fact that for most loops the supported compilers use the same or similar
groups of machine instructions to initialize, update, and test loop counters.
Pattern matching finds occurrences of such instruction groups in the code and
analyzes the values of the instruction operands to find the counter range, for
example, in terms of the initial value, the increment or decrement and the final
value of the counter. The drawback of this method is that it can be defeated by
compiler optimizations, or by evolution of the compiler itself, if this changes the
emitted instruction patterns so much that the matching fails.

Bound-T (see Section 6.2) finds loop bounds by modeling the computation,
instruction by instruction, using affine equations and inequalities (Presburger
Arithmetic). Bound-T then examines the model to find variables that act as
loop counters. If Bound-T also finds bounds on the initial and final values of the
variable, a simple computation gives a bound on the number of loop iterations.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:13

Whalley et al. [Healy et al. 1998; Healy and Whalley 1999] use data-flow
analysis and special algorithms to calculate bounds for single and nested loops
in conjunction with a compiler. Stappert and Altenbernd [2000] uses symbolic
execution on the source code level to derive flow information. aiT’s loop-bound
analysis (see Section 6.1.) is based on a combination of an interval-based ab-
stract interpretation and pattern matching [Thesing 2004] working on the ma-
chine code.

The result of CFA is an annotated syntax tree for the structure-based ap-
proaches (see Section 3.4), and a set of flow facts about the transitions of the
CFG, otherwise. These flow facts are translated into a system of constraints for
the methods using implicit path enumeration (see Section 3.4).

3.3 Processor-Behavior Analysis

As stated in Section 2.1.2, a typical processor contains several components that
make the execution time context-dependent, such as memory, caches, pipelines,
and branch prediction. The execution time of an individual instruction, even
a memory access, depends on the execution history. To find precise execution-
time bounds for a given task, it is necessary to analyze what the occupancy
state of these processor components is for all paths leading to the task’s in-
structions. Processor-behavior analysis determines invariants about these oc-
cupancy states for the given task. In principle, no tool is complete that does not
take the processor periphery into account, i.e., the full memory hierarchy, the
bus, and peripheral units. In so far, an even better term would be hardware-
subsystem behavior analysis. The analysis is done on a linked executable, since
only this contains all the necessary information. It is based on an abstract model
of the processor, the memory subsystem, the buses, and the peripherals, which
is conservative with respect to the timing behavior of the concrete hardware,
i.e., it never predicts an execution time less than that which can be observed
on the concrete processor.

The complexity of deriving an abstract processor model strongly depends on
the class of processor used.

—For simpler 8- and 16-bit processors, the timing model construction is rather
simple, but still time consuming, and rather simple analyzes are required.
Complicating factors for the processor behavior analysis include instructions
with varying execution time because of argument values and varying data
reference time because of different memory area access times.

—For somewhat more advanced 16- and 32-bit processors, like the NEC V850E,
possessing a simple (scalar) pipeline and maybe a cache, one can analyze dif-
ferent hardware features separately, since there are no timing anomalies, and
still achieve good results. Complicating factors are similar as for the simpler
8- and 16-bit processors, but also include varying access times because of
cache hits and misses and varying pipeline overlap between instructions.

—More advanced processors, which possess many performance enhancing fea-
tures that can influence each other, will exhibit timing anomalies. For these,
timing-model construction is very complex. The analyzes to be used are also
less modular and more complex [Heckmann et al. 2003].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:14 • R. Wilhelm et al.

In general, the execution-time bounds derived for an instruction depend on
the states of the processor at this instruction. Information about the processor
states is derived by analyzing potential execution histories leading to this in-
struction. Different states in which the instruction can be executed may lead
to widely varying execution times with disastrous effects on precision. For in-
stance, if a loop iterates 100 times, but the worst case of the body, ebody, only
really occurs during one of these iterations and the others are considerably
faster (say twice as fast), the overapproximation is 99∗0.5∗ ebody. Precision can
be gained by regarding execution in classes of execution histories separately,
which correspond to flow contexts. These flow contexts essentially express by
which paths through loops and calls control can arrive at the instruction. Wher-
ever information about the processor’s execution state is missing, a conservative
assumption has to be made or all possibilities have to be explored.

Most approaches use data-flow analysis, a static program-analysis technique
based on the theory of abstract interpretation [Cousot and Cousot 1977]. These
methods are used to compute invariants, one per flow context, about the proces-
sor’s execution states at each program point. If there is one invariant for each
program point, then it holds for all execution paths leading to this program
point. Different ways to reach a basic block may lead to different invariants at
the block’s program points. Thus, several invariants could be computed. Each
holds for a set of execution paths and the sets together form a partition of the
set of all execution paths leading to this program point. Each set of such paths
corresponds to what sometimes is called a calling context, context for short. The
invariants express static knowledge about the contents of caches, the occupancy
of functional units and processor queues, and of states of branch-prediction
units. Knowledge about cache contents is then used to classify memory ac-
cesses as definite cache hits (or definite cache misses). Knowledge about the
occupancy of pipeline queues and functional units is used to exclude pipeline
stalls. Assume that one uses the following method: First accept Murphy’s Law,
that everything that can go wrong, actually goes wrong, assuming worst cases
all over. Then both types of “good news,” of the type described above, can often
be used to reduce the upper bounds for the execution times. Unfortunately, this
approach is not safe for many processor architectures with timing anomalies
(see Section 2.1.3).

3.4 Estimate Calculation

The purpose is to determine an estimate for the WCET. In dynamic approaches
the WCET estimate can underestimate the WCET, since only a subset of all
executions is used to compute it. Combining measurements of code snippets
to end-to-end execution times can also overestimate the WCET, if pessimistic
estimates for the snippets are combined. In static approaches, this phase com-
putes an upper bound of all execution times of the whole task, based on the
flow and timing information derived in the previous phases. It is then usually
called bound calculation. There are three main classes of methods combining
analytically determined or measured times to end-to-end estimates proposed
in literature: structure-based, path-based, and techniques using implicit-path
enumeration (IPET).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:15

Fig. 5. Bound calculation.

Figure 5, taken from Ermedahl [2003], shows the different methods. Fig-
ure 5a shows an example CFG with timing on the nodes and a loop-bound flow
fact.

In structure-based bound calculation as used in HEPTANE (cf. Colin and Puaut
[2000] and Section 6.6), an upper bound is calculated in a bottom-up traversal
of the syntax tree of the task combining bounds computed for constituents of
statements according to combination rules for that type of statement [Colin and
Bernat 2002; Colin and Puaut 2000; Lim et al. 1995]. Figure 5d illustrates how
a structure-based method would proceed according to the task syntax tree and
given combination rules. Collections of nodes are collapsed into single nodes,
simultaneously deriving a timing for the new node. As stated in Section 2.1.2,
precision can only be obtained if the same code snippet is considered in a num-
ber of different flow contexts, since the execution times in different flow contexts
can vary widely. Taking flow contexts into account requires transformations of
the syntax tree to reflect the different contexts. Most of the profitable transfor-
mations, e.g., loop unrolling, are easily expressed on the syntax tree [Colin and
Bernat 2002].

Some problems of the structure-based approach are that not every control
flow can be expressed through the syntax tree, that the approach assumes a
very straightforward correspondence between the structures of the source and

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:16 • R. Wilhelm et al.

the target program not easily admitting code optimizations, and that it is, in
general, not possible to add additional flow information, as can be done in the
IPET case.

In path-based bound calculation, the upper bound for a task is determined by
computing bounds for different paths in the task, searching for the overall path
with the longest execution time [Healy et al. 1999; Stappert and Altenbernd
2000; Stappert et al. 2001]. The defining feature is that possible execution paths
are represented explicitly. The path-based approach is natural within a single
loop iteration, but has problems with flow information extending across loop-
nesting levels. The number of paths is exponential in the number of branch
points, possibly requiring heuristic search methods.

Figure 5b illustrates how a path-based calculation method would proceed
over the graph in Figure 5a. The loop in the graph is first identified and the
longest path within the loop found. The time for the longest path is combined
with flow information about the loop bound to extract an upper bound for the
whole task.

In IPET, program flow and basic-block execution time bounds are combined
into sets of arithmetic constraints. The idea was originally proposed in Li and
Malik [1995] and adapted to more complex flows and hardware timing effects
in Puschner and Schedl [1995], Engblom [2002], Theiling [2002a, 2002b], and
Ermedahl [2003]. Each basic block and program flow edge in the task is given a
time coefficient (tentity), expressing the upper bound of the contribution of that
entity to the total execution time every time it is executed and a count variable
(xentity), corresponding to the number of times the entity is executed. An upper
bound is determined by maximizing the sum of products of the execution counts
and times (

∑
i∈entities xi ∗ ti), where the execution count variables are subject to

constraints reflecting the structure of the task and possible flows. The result of
an IPET calculation is an upper timing bound and a worst-case count for each
execution count variable.

Figure 5c shows the constraints and formulas generated by an IPET-based
bound calculation method for the task illustrated in Figure 5a. The start and exit
constraints state that the task must be started and exited once. The structural
constraints reflect the possible program flow, meaning that for a basic block to
be executed it must be entered the same number of times as it is exited. The
loop bound is specified as a constraint on the number of times the loop-head
node A can be executed.

IPET is able to handle different types of flow information. Traditionally, it
has been applied in a global fashion treating the whole task and all flow infor-
mation together as a unit. IPET-based bound calculation uses ILP or constraint-
programming (CP) techniques, thus having a complexity potentially exponen-
tial in the task size. Also, since flow facts are converted to constraints, the size
of the resulting constraint system grows with the number of flow facts.

3.5 Symbolic Simulation

Another static method is to simulate the execution of the task in an ab-
stract model of the processor. The simulation is performed without input. The
simulator thus has to be capable to deal with partly unknown execution state.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:17

This method combines flow analysis, processor-behavior prediction, and bound
calculation in one integrated phase [Lundqvist 2002]. One problem with this
approach is that analysis time is proportional to the actual execution time of
the task. This can lead to a very long analysis, since simulation is typically
orders of magnitudes slower than native execution.

4. MEASUREMENT-BASED METHODS

These methods attack some parts of the timing-analysis problem by executing
the given task on the given hardware or a simulator, for some set of inputs, and
measuring the execution time of the task or its parts.

End-to-end measurements of a subset of all possible executions produce es-
timates or distributions, not bounds for the execution times, if the subset is not
guaranteed to contain the worst case. Even one execution would be enough if
the worst-case input were known.

Other approaches measure the execution times of code segments, typically
of CFG basic blocks. The measured execution times are then combined and
analyzed, usually by some form of bound calculation, to produce estimates of
the WCET or BCET. Thus, measurement replaces the processor-behavior anal-
ysis used in static methods. Thus, the path-subset problem can be solved in
the same way as for the static methods, using CFA to find all possible paths
and then using bound calculation to combine the measured times of the code
segments into an overall time bound. This solution would include all possible
paths, but would still produce unsafe results if the measured basic-block times
were unsafe. Another problem is that only a subset of the possible contexts
(initial processor states) is used for each measured basic block or other kind of
code segment.

The context-subset problem could be attacked by running more tests to mea-
sure more contexts or by setting up a worst-case initial state at the start of each
measured code segment. The first method (more tests) only decreases, but does
not eliminate, the risk of unsafe results and is expensive unless intensive test-
ing is already done for other reasons. Exhaustive testing of all execution paths
is usually impossible. The second method (use worst-case initial state) would
be safe if one could determine a worst-case initial state. However, identifying
worst-case initial states is hard or even impossible for complex processors (see
below). Measurement-based tools can compute execution-time bounds for pro-
cessors with simple timing behavior, but produce only estimates of the BCET
and WCET for more complex processors, as long as this problem is not convinc-
ingly solved. Other tools collect and analyze multiple measurements to provide
a picture of the variability of the execution time of the application, in addition
to estimates of the BCET and WCET.

There are multiple ways in which measurement can be performed. The sim-
plest approach is by extra instrumentation code that collects a timestamp or
CPU cycle counter (available in most processors). Mixed HW/SW instrumen-
tation techniques require external hardware to collect timings of lightweight
instrumentation code. Fully transparent (nonintrusive) measurement mecha-
nisms are possible using logic analyzers. Also hardware tracing mechanisms

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:18 • R. Wilhelm et al.

like the NEXUS standard and the ETM tracing mechanism from ARM are
nonintrusive, but do not necessarily produce exact timings. For example,
NEXUS buffers its output and time stamps are produced when events leave
the buffer, i.e., with a delay. Measurements can also be performed from the
output of processor simulators or even VHDL simulators.

The results of measurement-based analysis can be used to provide a picture
of the actual variability of the execution time of the application. They can also
be used to provide validation for the static analyis approaches. Measurement
should also not produce execution times that are far lower than the ones pre-
dicted by analytical methods, because this would indicate that the latter are
imprecise.

5. COMPARISON OF STATIC AND MEASUREMENT-BASED METHODS

In this section, we attempt to compare the two classes of timing-analysis
methods—static and measurement-based—to highlight the differences and
similarities in their aims, abilities, technical problems, and research directions.
The next section will describe some timing-analysis tools in more detail to show
the state of the practice of both classes of methods.

Static methods compute bounds on the execution time. They use CFA and
bound calculation to cover all possible execution paths. They use abstrac-
tion to cover all possible context dependencies in the processor behavior. The
price they pay for this safety is the necessity for processor-specific models
of processor behavior and possibly imprecise results, such as overestimated
WCET bounds. In favor of static methods is the fact that the analysis can
be done without running the program to be analyzed, which often needs
complex equipment to simulate the hardware and peripherals of the target
system.

Measurement-based methods replace processor behavior analysis by mea-
surements. Therefore, unless all possible execution paths are measured or the
processor is simple enough to let each measurement be started in a worst-case
initial state, some context-dependent execution-time changes may be missed
and the method is unsafe. For the estimate-calculation step, these methods
may use CFA to include all possible execution paths, or they may simply use
the observed execution paths (observed number of loop iterations, for exam-
ple), which, again, makes the method unsafe. The advantages claimed for these
methods are that they are simpler to apply to new target processors, because
they do not need to model processor behavior and that they produce WCET and
BCET estimates that are more precise—closer to the exact WCET and BCET—
than the bounds from static methods, especially for complex processors and
complex applications.

Still, since the exact WCET or BCET is usually not known, there is really
no way to check how precise an estimate or bound is. Studies of precision often
compare the estimates or bounds not to the exact WCET or BCET, but to the
extreme observed times from a large, but not exhaustive, set of tests.

Users can help to improve precision for both classes of methods. For the static
methods, users can improve the precision (tighten the bounds) by annotations

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:19

that exclude infeasible executions from the analysis. For the measurement-
based methods, users can improve the precision by adding test cases to include
more possible executions in the measurements. Some measurement-based tools
also allow annotations for the estimate calculation to exclude infeasible execu-
tions or to include more executions by defining larger loop bounds than have
been observed.

Both classes of methods share some technical problems and solutions. The
front ends are similar when both use executable code as input; control-flow
analysis is similar; and bound/estimate calculation can be similar. For example,
the IPET calculation is used by some static tools and by some measurement-
based tools.

The main technical problem for static methods is modeling processor behav-
ior. This is not a problem for most measurement-based methods, where the
main problem is to measure the execution time accurately, with fine granular-
ity, and without perturbing the program being measured. The solution is often
processor- or platform-specific, but implementing a measurement method for
a new processor is usually less work than creating an abstract model of the
processor behavior.

The handling of timing anomalies offers an interesting comparison of the
methods. For measurement-based methods, timing anomalies make it very hard
to find a worst-case initial state for a measurement. To be safe, the measure-
ment should now be done from all possible initial states, which is impractical.
Measurement-based methods then use only a subset of initial states and so are
not safe.

Static methods based on abstract interpretation have ways to express the
absence of information and can, therefore, analyze large state sets, including
all possible states for a safe analysis. Here, timing anomalies make it hard
to define state abstractions that give a precise abstract interpretation of each
instruction and of the execution time spent in the instruction—the processor
behavior tends to depend on unknown aspects of the state, forcing the abstract
simulation to follow many possible executions of each basic block. Still, this
laborious exploration is limited to basic blocks, because the abstract simula-
tion considers the global flow of the task for the processor-behavior analysis
by propagating simulation results between basic blocks. Thus, no worst-case
assumptions need to be made by the analysis on the basic block level.

Current research in these methods addresses some shared problems, while
each class of methods also has its own research directions. Clearly, research into
improved abstract processor models is relevant only to static methods, while
the development of better measurement methods—in particular, standard in-
terfaces for measurement for many processor types—is of interest mainly for
the measurement-based methods.

CFA, on the other hand, is a common subject of research that applies to
both static- and measurement-based methods. Another common subject is the
separation of contexts to improve the precision of the analysis. This means that
a given part of the task under analysis, for example, a subroutine or a loop body,
can be analyzed or measured separately depending on its context, for example,
the call path to the subroutine, or the iteration number of the loop. Here, the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:20 • R. Wilhelm et al.

question that is common to static- and measurement-based methods is when to
separate between contexts and how—automatically or by manual annotations.

6. COMMERCIAL WCET TOOLS AND RESEARCH PROTOTYPES

The tool providers and researchers participating in this survey have received
the following list of questions:

—What is the functionality of your tool?
—What methods are employed in your tool?
—What are the limitations of your tool?
—Which hardware platforms does your tool support?

This section has the following line-up of tools, from completely static tools
such as aiT in Subsection 6.1, Bound-T in Subsection 6.2, and the prototypes of
Florida (Subsection 6.3), Vienna (Subsection 6.4), Singapore (Subsection 6.5),
and IRISA (Subsection 6.6), through mostly static tools with a small rudiment
of measurement in SWEET (very controlled pipeline measurements on a simu-
lator), in Subsection 6.7, and the Chalmers prototype (Subsection 6.8), through
SymTA/P (cache analysis and block/segment measurement starting from a
controlled cache state and bound calculation), in Subsection 6.9, to the most
measurement-based tool, RapiTime (block measurement from an uncontrolled
initial state and bound calculation), in Subsection 6.10.

6.1 The aiT Tool of AbsInt Angewandte Informatik, Saarbrücken, Germany

6.1.1 Functionality of the Tool. The purpose of AbsInt’s timing-analysis
tool aiT is to obtain upper bounds for the execution times of code snippets
(e.g., given as subroutines) in executables. These code snippets may be tasks
called by a scheduler in some real-time application, where each task has a
specified deadline. aiT works on executables, because the source code does
not contain information on register usage and on instruction and data ad-
dresses. Such addresses are important for cache analysis and the timing of
memory accesses in case there are several memory areas with different timing
behavior.

Apart from the executable, aiT might need user input to be able to compute
a result or to improve the precision of the result. User annotations may be
written into parameter files and refer to program points by absolute addresses,
addresses relative to routine entries, or structural descriptions (like the first
loop in a routine). Alternatively, they can be embedded into the source code as
special comments. In that case, they are mapped to binary addresses using the
line information in the executable.

Apart from the usual user annotations (loop bounds, flow facts), aiT sup-
ports annotations specifying the values of registers and variables. The latter
is useful for analyzing software running in several different modes that are
distinguished by the value of a mode variable.

The aiT versions for all supported processors share a common architecture,
as shown in Figure 6:

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:21

Fig. 6. Architecture of the aiT WCET analysis tool.

—First, the control flow is reconstructed from the given object code by a
bottom-up approach. The reconstructed control flow is annotated with the
information needed by subsequent analyzes and then translated into
CRL (control-flow representation language, a human-readable intermedi-
ate format designed to simplify analysis and optimization at the exe-
cutable/assembly level). This annotated CFG serves as the input for the fol-
lowing analysis steps.

—Next, value analysis computes ranges for the values in the processor registers
at every program point. Its results are used for loop-bound analysis, for the
detection of infeasible paths, depending on static data, and to determine
possible addresses of indirect memory accesses. An extreme case of control,
depending on static data, is a virtual machine program interpreting abstract
code given as data. Souyris et al. [2005] report on a successful analysis of
such an abstract machine.

—aiT’s cache analysis relies on the addresses of memory accesses as found by
value analysis and classifies memory references as sure hits and potential
misses. It is based upon Ferdinand and Wilhelm [1999], which handles LRU
caches, but had to be modified to reflect the non-LRU replacement strategies
of common microprocessors: the pseudo-round-robin replacement policy of the
ColdFire MCF 5307, and the PLRU (Pseudo-LRU) strategy of the PowerPC
MPC 750 and 755. The deviation from perfect LRU is the reason for the
reduced predictability of the cache contents in the case of these two processors
compared to processors with perfect LRU caches [Heckmann et al. 2003].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:22 • R. Wilhelm et al.

—Pipeline analysis predicts the behavior of the task on the processor pipeline.
The result is an upper bound for the execution time of each basic block in
each distinguished execution context.

—Finally, bound calculation (called path analysis in the aiT framework) deter-
mines a worst-case execution path of the task from the timing information
for the basic blocks.

6.1.2 Employed Methods. The structuring of the whole task of determin-
ing upper bounds into several phases allows different methods, tailored to the
subtasks, to be used. In aiT’s case, value analysis and cache/pipeline analysis
are realized by abstract interpretation, a semantics-based method for static
program analysis [Ferdinand and Wilhelm 1999; Ferdinand et al. 2001; Lan-
genbach et al. 2002]. Path analysis is implemented by ILP. Reconstruction of
the control flow is performed by a bottom-up analysis [Theiling et al. 2000]. De-
tailed information about the upper bounds, the path on which it was computed,
and the possible cache and pipeline states at any program point are attached
to the call graph/control-flow graph and can be visualized in AbsInt’s graph
browser aiSee.

6.1.3 Limitations of the Tool. aiT includes automatic analysis to determine
the targets of indirect calls and branches and to determine upper bounds of the
iterations of loops. These analyzes do not work in all cases. If they fail, the user
has to provide annotations.

aiT relies on the standard calling convention. If some code does not adhere
to the calling convention, the user might need to supply additional annotations
describing control-flow properties of the task.

6.1.4 Supported Hardware Platforms. Versions of aiT exist for the Mo-
torola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 5307, ARM7
TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85 (proto-
type), and Infineon TriCore 1.3.

6.2 The Bound-T Tool of Tidorum, Helsinki, Finland

The Bound-T tool was originally developed at Space Systems Finland Ltd. under
contract with the European Space Agency (ESA) and intended for the verifica-
tion of on-board software in spacecraft. Tidorum Ltd. is extending Bound-T to
other application domains.

6.2.1 Functionality of the Tool. The tool determines an upper bound on
the execution time of a subroutine, including called functions. Optionally, the
tool can also determine an upper bound on the stack usage of the subroutine,
including called functions.

The input is a binary executable program with (usually) an embedded sym-
bol table (debug information). The tool is able to compute upper bounds on some
counter-based loops. For other loops the user provides annotations, called asser-
tions in Bound-T. Annotations can also be given for variable values to support
the automatic loop bounding.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:23

The output is a text file listing the upper bounds, etc., and graph files showing
call and control-flow graphs for display with the DOT tool [Gansner and North
2000].

As a further option, when the task under analysis follows the ESA-specified
HRT (“hard real time”) tasking architecture, Bound-T can generate the HRT ex-
ecution skeleton file that contains both the tasking structure and the computed
bounds and can be fed directly into the ESA-developed tools for schedulability
analysis and scheduling simulation.

6.2.2 Employed Methods. Reading and decoding instructions is hand-
coded based on processor manuals. The processor model is also manually con-
structed for each processor. Bound-T has general facilities for modeling control
flow and integer arithmetic, but not for modeling complex processor states.
Some special-purpose static analyzes have been implemented, for example, for
the SPARC register-file over- and underflow traps and for the concurrent op-
eration of the SPARC integer unit and floating-point unit. Both examples use
(simple) abstract interpretation followed by ILP.

The CFG is often defined to model the processor’s instruction-sequencing
behavior, not just the values of the program counter. A CFG node typically rep-
resents a certain pipeline state, so the CFG is really a pipeline-state graph.
Instruction interactions (e.g., data-path blocking) are modeled in the time as-
signed to CFG edges.

Counter-based loops are bounded by modeling the task’s loop-counter arith-
metic as follows. The computational effect of each instruction is modeled as a
relation between the “before” and “after” values of the variables (registers and
other storage locations). The relation is expressed in Presburger arithmetic as
a set of affine (linear plus constant term) equations and inequalities, possi-
bly conditional. Instruction sequences are modeled by concatenating (joining)
the relations of individual instructions. Branching control-flow is modeled by
adding the branch condition to the relation. Merging control-flow is modeled by
taking the union of the inflowing relations.

Loops are modeled by analyzing the model of the loop body to classify vari-
ables as loop invariant or variant. The whole loop (including an unknown num-
ber of repetitions) is modeled as a relation that keeps the loop-invariant vari-
ables unchanged and assigns unknown values to the loop-variant variables.
This is a first approximation that may be improved later in the analysis when
the number of loop iterations is bounded. With this approximation, the compu-
tations in an entire subprogram can be modeled in one pass (without fix-point
iteration).

To bound loop iterations, Bound-T first reanalyzes the model of the loop
body in more detail to find loop-counter variables. A loop counter is a loop-
variant variable such that one execution of the loop body changes the variable
by an amount that is bounded to a finite interval that does not contain zero.
If Bound-T also finds bounds on the initial and final values of the variable, a
simple computation gives a bound on the number of loop iterations.

Bound-T uses the omega calculator from Maryland University [Pugh 1991]
to create and analyze the equation set. Loop bounds can be context-dependent

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:24 • R. Wilhelm et al.

if they depend on scalar pass-by-value parameters for which actual values are
provided at the top (caller end) of a call path.

The worst-case path and the upper bound for one subroutine are found by
the implicit path enumeration technique (see Section 3.4) applied to the CFG
of the subroutine. The lp solve tool is used [Berkelaar 1997]. If the subroutine
has context-dependent loop bounds, the IPET solution is computed separately
for each context (call path).

Annotations are written in a separate text file, not embedded in source code.
The program element to which an annotation refers is identified by a symbolic
name (subroutine, variable) or by structural properties (loops, calls). The struc-
tural properties include nesting of loops, location of calls with respect to loops,
and location of variable reads and writes.

6.2.3 Limitations of the Tool. The task to be analyzed must not be recur-
sive. The control-flow graphs must be reducible. Dynamic (indexed) calls are
only analyzed in special cases, when Bound-T’s data-flow analysis finds a unique
target address. Dynamic (indexed) jumps are analyzed based on the code pat-
terns that the supported compilers generate for switch/case structures, but not
all such structures are supported.

Bound-T can detect some infeasible paths as a side effect of its loop-bound
analysis. There is, however, no systematic search for such paths. Points-to anal-
ysis (aliasing analysis) is weak, which is a risk for the correctness of the loop-
bound analysis.

The bounds of an inner loop cannot depend on the index of the outer loop(s).
For such “nonrectangular” loops Bound-T can often produce a “rectangular” up-
per bound. Loop-bound analysis does not cover the operations of multiplication
(except by a constant), division or the logical bit-wise operations (and, or, shift,
rotate).

The task to be analyzed must use the standard calling conventions. Further-
more, function pointers are not supported, in general, although some special
cases such as statically assigned interrupt vectors can be analyzed.

No cache analysis is yet implemented (the current target processors have no
cache or very small and special caches). Any timing anomalies in the target pro-
cessor must be taken into account in the execution time that is assigned to each
basic block in the CFG. However, the currently supported, cacheless processors
probably have no timing anomalies. As Bound-T has no general formalism (be-
yond the CFG) for modeling processor state, it has no general limitations in that
regard, but models for complex processors would be correspondingly harder to
implement in Bound-T.

6.2.4 Supported Hardware Platforms. Intel-8051 series (MCS-51), Analog
Devices ADSP-21020, ATMEL ERC32 (SPARC V7), Renesas H8/300, ARM7
(prototype) and ATMEL AVR and ATmega (prototypes).

6.3 Research Prototype from Florida State, North Carolina State,
and Furman Universities

The main application areas for our timing analysis tools are hard real-time
systems and energy-aware embedded systems with timing constraints. We are

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:25

currently working on using our timing analyzer to provide QoS for soft real-time
systems.

6.3.1 Functionality of the Tool. The tool set performs timing analysis of a
single task or a subroutine.

A user interacts with the timing analyzer in the following manner. First, the
user compiles all of the files that comprise the task. The compiler was modified
to produce information used by the timing analyzer, which includes number
of loop iterations, control flow, and instruction characteristics. The number of
iterations for simple and nonrectangular loop nests are supported. The timing
analyzer produces lower and upper bounds for each function and loop in the
task. This entire process is automatic.

6.3.2 Employed Methods. The tool uses data-flow analysis for cache anal-
ysis to make caching categorizations for each instruction [Arnold et al. 1994]. It
supports direct-mapped and set-associative caches [Mueller 2000]. CFA is used
to distinguish paths at each loop and function level in the task [Arnold et al.
1994]. The pipeline is simulated to obtain the upper bound of each path, caching
categorizations are used during this time so that pipeline stalls, and cache-miss
delays can be properly integrated [Healy et al. 1995]. The loop analysis iter-
atively finds the worst-case path until the caching behavior reaches a fixed
point that is guaranteed to remain the same [Arnold et al. 1994; Mueller 2000].
Loop-bounds analysis is performed in the compiler to obtain the number of iter-
ations for each loop. The timing analyzer is also able to address nonrectangular
loop nests, which is modeled in terms of summations [Healy et al. 2000]. Para-
metric timing analysis support is also provided for runtime bound loops by
producing a bounds formula parameterized on loop bounds rather than cy-
cles [Vivancos et al. 2001]. Branch-constraint analysis is used to tighten the
predictions by disregarding paths that are infeasible [Healy and Whalley 2002].
A timing tree is used to evaluate the task in a bottom-up fashion. Functions are
distinguished into instances so that caching categorizations for each instance
can be separately evaluated [Arnold et al. 1994].

6.3.3 Limitations of the Tool. Loop bounds for numeric timing analysis are
required to be statically known, or there has to be a known loop bound in the
outer loop in a nonrectangular loop nest. Loop bounds need not be statically
known when using parametric timing analysis support. Like most other timing
analysis tools, no support is provided for pointer analysis or dynamic alloca-
tion. No calls through pointers are allowed since the call graph must be explicit
to analyze the task. We also do not allow recursion since we do not currently
provide any support to automatically determine the maximum number of re-
cursive calls that can be made in a cyclic call graph. We provide limited data
cache support wrt. access patterns [White et al. 1999]. We also provide limited
support for data cache analysis for array accesses in loop nests using cache
miss equations [Ramaprasad and Mueller 2005]. The timing analyzer is only
able to determine execution-time bounds of applications on simple RISC/CISC
architectures. The tool has limited scalability in terms of analyzing small codes
in seconds and medium-sized codes in minutes. Entire systems, however, may

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:26 • R. Wilhelm et al.

take hours/days, which we do not deem feasible. Scalability depends on the
system/target device and is less of a problem with 8-bit systems, but a more
significant problem with 32-bit systems.

6.3.4 Supported Hardware Platforms. The hardware platforms include a
variety of uniprocessors (multiprocessors should be handled in schedulability
analysis). These include the MicroSPARC I, Intel Pentium, StarCore SC100,
PISA/MIPS, and Atmel Atmega [Anantaraman et al. 2003; Mohan et al. 2005].
Experiments have been performed with the Force MicroSPARC I VME board.
The timing analyzer WCET predictions have been validated on the Atmel At-
mega to cycle-level accuracy [Mohan et al. 2005].

6.4 Research Prototypes of TU Vienna

The TU Vienna real-time group has developed a number of tool prototypes for
experimenting with different approaches to execution-time analysis. Three of
these are presented in this paper: The first is a prototype tool for static-timing
analysis that has been integrated into a Matlab/Simulink tool chain and can
analyze C code or Matlab/Simulink models. Second we present a measurement-
based tool that uses genetic algorithms to direct input-data generation for tim-
ing measurements in the search for the worst case or long program execution
times. The third tool is a hybrid tool for timing analysis that uses both mea-
surements and elements from static analysis to assess the timing of C code.

6.4.1 TU Vienna Research Prototype for Static Analysis

6.4.1.1 Functionality of the tool. The timing analysis for C programs per-
forms timing analysis for software coded in WCETC, where WCETC is a subset of
C with extensions that allow users or tool components for flow analysis to make
annotations about (in)feasible execution paths [Kirner 2002]. The tool cooper-
ates with a C compiler. The compiler translates the WCETC code into object code
and some information for the WCET analyzer. This object code is then analyzed
to compute an upper bound. Back annotation of bound information for single
statements, entire functions, and tasks are possible.

A component of the static tool has been built into the Matlab/Simulink tool
chain. This component generates code from the block set that includes all path
annotations necessary for timing analysis, i.e., there is no need to perform any
additional flow analysis or annotate the code. In that way, the tool supports fully
automatic timing analysis for the complete Matlab/Simulink block set defined
within the European IST project SETTA (see Kirner et al. [2002]). In addi-
tion, the tool supports back-annotation of detailed execution-time information
for individual Matlab/Simulink blocks and entire Matlab/Simulink application
models.

6.4.1.2 Employed methods. A number of adaptations had been made to the
Matlab/Simulink tool chain. First, the code-generation templates used by the
target language compiler (TLC) were modified. The templates for our block
set were changed so that TLC generates code with WCETC macros instead of
pure C code. Second, a GNU C compiler was adapted to translate WCETC code

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:27

and cooperate with the WCET analyzer. The modified C compiler uses abstract
cointerpretation of path information during code translation in order to trace
changes in the control structure as made by code optimization. This cotransfor-
mation of path information is the key to keeping path information consistent in
optimizing compilers, thus facilitating timing analysis of highly optimized code
[Kirner and Puschner 2003; Kirner 2003]. It computes execution-time bounds
for the generated code by means of ILP adding information about infeasible ex-
ecution paths [Puschner and Schedl 1997]. Back-annotation of timing-analysis
results to the Matlab/Simulink specification level is done via dedicated WCET
blocks that represent time bounds for blocks and entire tasks.

6.4.1.3 Limitations of the tool. If used together with the SETTA Mat-
lab/Simulink block set, the static WCET tool provides a fully automated timing
analysis, i.e., there is no need for annotations or help from the user to calculate
execution-time bounds. Thus, there are no limitations besides the fact that the
programmer must only use blocks from the block set.

In case the tool is to be used to analyze C code, it may be necessary to an-
notate the code with information about (in)feasible paths (either by using a
flow-annotation tool or by providing manual annotations). In the latter case,
the quality of the computed bounds strongly depends on the quality of the an-
notations.

6.4.1.4 Supported hardware platforms. M68000, M68360, and C167.

6.4.2 TU Vienna Research Prototype for Measurement-Based Analysis

6.4.2.1 Functionality of the tool. The measurement-based tool for dynamic
execution-time analysis yields optimistic approximations to the worst-case ex-
ecution times of a piece of code.

6.4.2.2 Employed methods. Genetic algorithms are used to generate input
data for execution-time measurements [Puschner and Nossal 1998] as follows:
At the beginning, the task or program under observation is run with a number
of random-input data sets. For each of the input data sets the execution time
is measured and stored. The execution-time values are then used as fitness
values for their respective input data sets (i.e., longer execution times imply
higher fitness). The fitness values, in turn, form the basis for the generation of
a new population of input data sets by the genetic algorithms. The GA-based
input data-generation strategy is repeated until the termination criterion as
specified for the analysis is reached [Atanassov et al. 1999].

6.4.2.3 Limitations of the tool. GA-based bounds search can, in general, not
guarantee to produce safe results, as measurement-based techniques approach
the upper bound from the side of lower execution times.

6.4.2.4 Supported hardware platforms. The targets supported include the
C167 and PowerPC processors.

6.4.3 TU Vienna Research Prototype for Hybrid Analysis

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:28 • R. Wilhelm et al.

Fig. 7. Architecture of the TU-Vienna hybrid timing analysis tool.

6.4.3.1 Functionality of the tool. The hybrid timing analysis tool combines
static program analysis techniques and execution time measurements to calcu-
late an estimate of the WCET. The main features of the tool are the automatic
segmentation of the program code into segments of reasonable size and the
automatic generation of test data used to measure the execution times of all
subpaths within each program segment. The tool has been designed with a spe-
cial focus on analyzing automatically generated code, e.g., code generated from
Matlab/Simulink models.

The architecture of the hybrid analysis tool is given in Figure 7. The tool takes
a C program as input, partitions the program into code segments, and extracts
path information that is used during the final bounds calculation to identify
infeasible paths within the program. Automatic test data generation is used
to derive the required input data for the execution-time measurements. The
measurements are typically performed remotely on the real target hardware.
Measurement results are processed to construct a timing model specific to the
analyzed program, which is used together with the path information to calculate
a WCET estimate.

6.4.3.2 Employed methods. The central technique of the hybrid timing-
analysis tool is the automatic test data generation used to derive a WCET
estimate by means of execution time measurements. To approach a full sub-
path coverage within each program segment, a formal test data-generation
method, based on model checking, is used [Wenzel et al. 2005a, 2005b]. How-
ever, to compensate the high computation cost of formal test data generation,
a three-step approach is used:

1. Random search is used to generate the majority of test data. The path cov-
erage of these test data is derived using an automatically, entirely instru-
mented version of the program.

2. Heuristic search methods, like genetic algorithms, allow to improve the seg-
ment coverage already achieved by step 1.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:29

3. The remaining test data are generated using formal test data generation
based on model checking [Clarke et al. 1999]. The formal model of the pro-
gram needed for the model checker is automatically derived from the source
code. Code optimizations have to be performed to improve the performance
of the formal test data generation [Wenzel et al. 2005a]. This approach pro-
vides for a given subpath in a program segment either the test data to trigger
its execution or the information that this subpath is infeasible.

Based on the measurement results and the path information of the program,
the overall WCET estimate is calculated using ILP.

6.4.3.3 Limitations of the tool. As the tool performs static program anal-
ysis at the source code level, it has to be assured that the compiler does not
significantly change the structure of the program code. The hybrid analysis
tool guarantees path coverage for each program segment. Therefore every ex-
ecution scenario is covered by the analysis. However, the tool does not provide
state coverage; thus, the WCET estimate, though being quite precise, is not
guaranteed to be a safe upper bound of the execution times for complex pro-
cessors having pipelines or caches. Furthermore, the calculation of the tool
supports program-flow annotations only at the granularity of entire program
segments.

6.4.3.4 Supported hardware platforms. The targets supported currently in-
clude the HCS12, and Pentium processors.

However, as the hybrid approach of the tool does not rely on a model of a
processor, it is relatively easy to adapt it to other processors. To port the tool to
a new processor, one has to modify the instrumentation code used to measure
execution times and provide a mechanism to communicate the measurement
results to the host computer.

6.5 The Chronos Research Prototype from National University of Singapore

Chronos3 is an open-source static WCET analysis tool

6.5.1 Functionality of the tool. The purpose of Chronos is to determine
a tight upper bound for the execution times of a task running on a modern
processor with complex microarchitectural features. The input to Chronos is a
task written in C and the configuration of the target processor. The front end of
the tool performs data-flow analysis to compute loop bounds. If it fails to obtain
certain loop bounds, user annotations have to be provided. The user may also
input infeasible-path information to improve the accuracy of the results. The
front end maps this information from the source code to the binary executable.

The core of the analyzer works on the binary executable. It disassembles
the executable to generate the CFG and performs processor-behavior analysis
on this CFG. Chronos supports the analysis of (1) out-of-order pipelines, (2)
various dynamic branch prediction schemes, and (3) instruction caches, and
the interaction among these different features to compute a tight upper bound
on the execution times.

3Chronos, according to Greek mythology, is the personification of time.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:30 • R. Wilhelm et al.

6.5.2 Employed Methods. Chronos employs several innovative techniques
to efficiently obtain safe and tight upper bounds on execution times.

The core of the analyzer determines upper bounds of execution times of each
basic block under various execution contexts, such as correctly predicted or
mispredicted jump of the preceding basic blocks and cache hits/misses within
the basic block [Li 2005]. Determining these bounds is challenging for out-
of-order processor pipelines because of the presence of timing anomalies. It
requires the costly enumeration of all possible schedules of instructions within
a basic block. Chronos avoids this enumeration via a fixed-point analysis of the
time intervals (instead of concrete time instances) at which the instructions
enter/leave different pipeline stages [Li et al. 2004].

Next, the analyzer employs ILP to bound the number of executions corre-
sponding to each context. This is achieved by bounding the number of branch
mispredictions and instruction-cache misses. Here ILP is used to accurately
model branch prediction and instruction cache, as well as their interaction [Li
et al. 2005]. The analysis of branch prediction is generic and parameterizable
w.r.t. the commonly used dynamic branch-prediction schemes, including GAg
and gshare [Mitra et al. 2002]. Instruction caches are analyzed using the ILP-
based technique proposed by Li et al. [1999]. However, the integration of cache
and branch prediction requires analyzing the constructive and destructive tim-
ing effects because of cache blocks being “prefetched” along the mispredicted
paths. This complex interaction is accounted for in the analyzer [Li et al. 2003]
by suitably extending the instruction-cache analysis.

Finally, bounds calculation is implemented by the IPET technique (see
Section 3.4) by converting the loop bounds and user-provided infeasible-path
information to linear-flow constraints.

6.5.3 Limitations of the Tool. Chronos currently does not analyze data
caches. Since the focus is mainly on processor-behavior analysis, the tool per-
forms limited data-flow analysis to compute loop bounds. The tool also requires
user feedback for infeasible program paths.

6.5.4 Supported Hardware Platforms. Chronos supports the processor
model of SimpleScalar [Austin et al. 2002] sim-outorder simulator, a popu-
lar cycle-accurate microarchitectural simulator. The tool deliberately targets a
simulated processor model so that the processor can be easily configured with
different pipeline, branch prediction, and instruction-cache options. This allows
the user to evaluate the efficiency, scalability, and accuracy of the WCET an-
alyzer for various processor configurations without requiring the actual hard-
ware. Moreover, the source code of the entire tool is publicly available, allowing
the user to easily extend and adapt it for new architectural features and esti-
mation techniques.

6.6 The HEPTANE tool of IRISA, Rennes

HEPTANE is an open-source static WCET analysis tool released under GPL li-
cense.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:31

6.6.1 Functionality of the Tool. The purpose of HEPTANE is to obtain upper
bounds for the execution times of C programs by a static analysis of their code
(source code and binary code). The tool analyzes the source and/or binary format
depending on the calculation method the tool is parameterized to work with.

6.6.2 Employed Methods. HEPTANE embeds in the same analysis tool a
timing schema-based and an ILP-based method for bound calculation (see
Sections 3.4 and 2.3.5). The former method produces quickly safe, albeit in
some circumstances, overestimated upper bounds for a code snippet, while the
latter requires more computing power, but yields tighter results. The two calcu-
lation methods cannot be used simultaneously on fragments of the same task.
The timing-schema method operates on the task’s syntactic structure, which is
extracted from the source code. The ILP-based method exploits the task’s CFG
extracted from the task’s binary.

Finding the upper bound of a loop requires the knowledge of the maxi-
mum number of loop iterations. HEPTANE requires the user to give this infor-
mation through symbolic annotations in the source program. Annotations are
designed to support nonrectangular and even nonlinear loops (nested loops
whose number of iterations arbitrarily depends on the counter variables of
outer loops) [Colin and Puaut 2000]. The final bound is computed using an ex-
ternal evaluation tool (Maple and Maxima for the computation method based
on timing schemata, lp solve and CPLEX, for the method based on ILP).

HEPTANE integrates mechanisms to take into account the effect of instruction
caches, pipelines, and branch prediction.

—Pipelines are tackled by an off-line simulation of the flow of instructions
through the pipelines.

—An extension of Frank Mueller’s so-called static cache simulation [Mueller
2000], based on data-flow analysis, is implemented in the tool. It classifies
every instruction according to its worst-case behavior with respect to the in-
struction cache. Instruction categories take into account loop-nesting levels.
The HEPTANE tool takes as input the memory map of the code (cacheable ver-
sus uncacheable code regions, address range of scratchpad memory, if any)
as well as the contents of locked cache regions if a cache-locking mechanism
is used [Puaut and Decotigny 2002].

—An approach derived from static cache simulation is used to integrate the
effect of branch predictors, based on a cache of recently taken branches [Colin
and Puaut 2000].

The modeling of the instruction cache, branch predictor, and pipeline pro-
duce results expressed in a microarchitecture-independent formalism [Colin
and Puaut 2001a], thus allowing HEPTANE to be easily modified or retargeted to
a new architecture.

6.6.3 Limitations of the Tool

—No automatic flow analysis (loop bounds are given manually as annotations
at the source code level) and no detection of mutually exclusive or infeasible

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:32 • R. Wilhelm et al.

Fig. 8. Architecture of the SWEET timing-analysis tool.

paths, resulting in pessimistic upper bounds for some tasks (e.g., Colin and
Puaut [2001b]).

—The bound-calculation method based on timing schemata currently does not
support compiler optimizations that cause a mismatch between the task’s
syntax tree and CFG.

—No support for data-cache analysis.
—Limited number and types of target processors (currently limited to scalar

processors with in-order execution) and only the gcc compiler.

6.6.4 Supported Hardware Platforms. HEPTANE is designed to produce
timing information for in-order monoprocessor architectures (Pentium 1—
accounting for one integer pipeline only, StrongARM 1110, Hitachi H8/300,
and MIPS as a virtual processor with an overly simplified timing model).

6.7 SWEET (SWEdish Execution-Time Tool)

SWEET was previously developed in Mälardalen University, C-Lab in
Paderborn, and Uppsala University. The development has now fully moved
to Mälardalen University [?], with a main research focus on the flow analysis.

6.7.1 Functionality of the Tool. SWEET has been developed in a modular
fashion, allowing for different analyzes and tool parts to work rather indepen-
dently [Gustafsson 2000; Engblom 2002; Ermedahl 2003]. The tool architecture
of SWEET is shown in Figure 8. In essence, it conforms to the general scheme for
WCET analysis presented in Section 2, consisting of three major phases: a flow
analysis, a processor-behavior analysis, and an estimate calculation. The ana-
lyzes communicate through two well-defined data structures, the scope graph
with flow facts [Ermedahl 2003], (representing the result of the flow analysis)
and the timing model [Engblom 2002], (representing the result of the processor-
behavior analysis). In essence, SWEET offers the following functionality:

—Automatic flow analysis on the intermediate code level.
—Integration of flow analysis and a research compiler.
—Connection between flow analysis and processor-behavior analysis.
—Instruction cache analysis for level-one caches.
—Pipeline analysis for medium-complexity RISC processors.
—A variety of methods to determine upper bounds based on the results of flow

and pipeline analysis.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:33

6.7.2 Employed Methods. Unlike most WCET analysis tools, SWEET’s
flow analysis is integrated with a research compiler. The flow analysis is per-
formed on the intermediate code (IC) of the compiler, after structural optimiza-
tions. Thus, the control structure of the IC and the object code is similar, and
the flow-analysis results for the IC are valid for the object code as well.

SWEET’s flow analysis is based on a multiphase approach. A program slic-
ing is used to restrict the flow analysis to only those parts of the program that
may affect the program flow [?]. A value analysis (see Subsection 3.1), combined
with pattern-matching catches “easy cases,” such as simple loops. More compli-
cated codes are handled by the abstract execution [Gustafsson 2000; Gustafsson
et al. 2005], a form of symbolic execution based on abstract interpretation. The
analysis uses abstract interpretation to derive safe bounds on variables val-
ues at different points in the program. However, rather than using traditional
fixed-point iteration [Cousot and Cousot 1977], loops are “rolled out” dynami-
cally and each iteration is analyzed individually in a fashion similar to symbolic
execution. The abstract execution is able to automatically calculate both loop
bounds and infeasible path information.

SWEET’s processor-behavior analysis is highly decoupled from the flow anal-
ysis and based on a two-phase approach. In the first phase, the memory-access
analysis, memory areas accessed by different instructions are determined. If
the target hardware has an instruction cache, an instruction-cache analysis
similar to Ferdinand et al. [1999] is also performed. The result of the analysis
is a set of “execution facts,” which are used in the pipeline analysis. Such facts
specify the memory area(s) that an instruction may reference or if the instruc-
tion may hit and/or miss the cache. Execution facts can also specify other factors
like assumptions on branch prediction outcomes and the precise set available
depends on the target processor.

The pipeline analysis is performed by simulating object code sequences
through a trace-driven cycle-accurate CPU model. The CPU model needs to
be controllable so that the execution facts can correctly be accounted for in
each instruction, and the instruction trace followed as provided (branch in-
structions have to follow the trace, for example). The execution facts are used
to enforce worst-case timing behavior of the instructions. For data-dependent
instructions, the worst-case timing is assumed, unless execution facts specify
otherwise. The pipeline analysis has been explicitly designed to allow standard
CPU simulators to be used as CPU models. However, this requires that the sim-
ulator is clock-cycle accurate, can be forced to perform its simulation according
to given instruction sequences and corresponding execution facts, and does not
suffer from timing anomalies.

Consecutive simulation runs starting with the same basic block in the code
are combined to find timing effects across sequences of two or more blocks in the
code [Engblom 2002]. The analysis assumes that there is a known upper bound
on the length of block sequences that can exhibit timing effects; this value can
be greater than two even on quite simple processors.

SWEET’s estimate calculation phase support three different type of calcu-
lation techniques, all taking the same two data structures as input. A fast
path-based technique [Stappert et al. 2001; Ermedahl 2003], a global IPET

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:34 • R. Wilhelm et al.

technique [Ermedahl 2003], and a hybrid clustered technique [Ermedahl et al.
2005; Ermedahl 2003]. The clustered calculation can perform both local IPET
and/or local path-based calculations (the decision on what to use is based on
the flow information available for the specific program part under analysis).

SWEET uses DOT from GraphViz [Gansner and North 2000] to graphically
visualize its results.

6.7.3 Limitations of the Tool. Each part of the tool, flow analysis, processor-
behavior analysis, and bound calculation have their individual limitations.

The flow analysis can handle ANSI-C programs including pointers, unstruc-
tured code, and recursion. However, to make use of the automatic flow analysis,
the program must be compiled with the research compiler that SWEET is inte-
grated with, otherwise flow facts must be manually given. There are also some
limitations inherent to the used research compiler, e.g., the use of dynamically
allocated memory is currently not supported, and annotations will be needed
in such cases.

The current memory access analysis does not handle data caches. Only one-
level instruction caches are supported. The pipelines that are amenable to
SWEET’s pipeline analysis are limited to in-order pipelines with bounded long-
timing effects and no timing anomalies. In particular, out-of-order pipelines are
not handled.

The path-based bound calculation requires that the code of the task is well
structured. The IPET-based and clustered calculation methods can handle ar-
bitrary task graphs.

6.7.4 Supported Hardware Platforms. SWEET’s processor-behavior anal-
ysis currently supports the ARM9 and the NEC V850E. The V850E model has
been validated against actual hardware, which the ARM9 has not.

6.8 Research Prototype from Chalmers University of Technology

This tool is a research prototype that was developed to evaluate new concepts
for the determination of execution-time bounds for tasks executed on high-
performance microprocessors featuring pipelining and multilevel caching tech-
niques.

6.8.1 Functionality of the Tool. The developed tool is capable of automati-
cally deriving safe upper bounds for tasks’ binaries using a subset of the Power-
PC instruction-set architecture. It is sometimes possible to derive the exact
WCET, in case the worst-case input of the task is known.

Additional functionality includes:

—Integration of path and timing analysis through symbolic cycle-level execu-
tion of the task on a detailed architectural simulation model extended to han-
dle unknown input data values [Lundqvist and Stenström 1999b; Lundqvist
2002].

—Binary code-transformation techniques that eliminate timing anomalies,
which may occur when tasks are run on processors where instructions are
scheduled dynamically [Lundqvist and Stenström 1999c; Lundqvist 2002].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:35

—A data cache analysis method that can identify data structures that can be
safely cached - called predictable - so as to improve the worst-case cache per-
formance. Under this method, data structures with unpredictable access pat-
terns are identified and tagged as non-cacheable [Lundqvist and Stenström
1999a].

—A method that can determine the worst-case data-cache performance for data
accesses to predictable data structures whose exact location in the address
space is statically unknown. This method can be applied to improve worst-
case cache performance for, e.g., procedures whose input parameters are
pointers to data structures whose access patterns are predictable, but whose
locations in the memory space are not known until runtime [Lundqvist 2002].

6.8.2 Employed Methods. Simulation models have been used for some time
to estimate the execution time for tasks on future architectures making use of
advanced pipelining and caching techniques. One such example is the Sim-
pleScalar toolset [Austin et al. 2002]. A key advantage of this approach is
that it is possible to derive arbitrarily accurate estimations of the execution
time for a task for a given set of input data and assuming sufficient detail of
the timing model of the architectural simulator. Unfortunately, as the input
data is unknown for a WCET analyzer, such simulation models cannot be used
off-hand.

Concepts have been developed that leverage on the accuracy of architec-
tural timing models to make tight, but still safe estimates of the execution-time
bounds. One key concept developed is cycle-level symbolic program simulation.
First, loop bounds, branch conditions, etc., which are not input data dependent
will be calculated as the task is executed symbolically on the architectural sim-
ulator. However, in order to handle unknown input data, the instruction-set
simulator was extended with the capability of handling unknown parts of ex-
ecution states. For example, if a branch condition depends on unknown input
data, both paths are executed. Inevitably, this may result in the well-known
path-explosion problem in program loops with a large number of iterations. A
path-merging approach excludes the paths that may not be part of the worst-
case execution path through the task. The analysis that determines which paths
to exclude must take into account what timing effect they may have in the
future. This involves analysis of worst-case performance taking microarchitec-
tural features, such as pipelining and caching, into account. Methods have been
developed and integrated to perform this analysis for a range of architectural
features, including multilevel instruction and data caches [Lundqvist and Sten-
ström 1999b; Lundqvist and Stenström 1999a] and multiple-issue pipelines
with dynamic instruction scheduling [Lundqvist and Stenström 1999c]. How
often path merging is carried out is a trade-off between computational speed
and accuracy of the analysis and is investigated in Lundqvist [2002]. The de-
scribed symbolic execution of tasks has been shown to exclude some infeasible
paths thereby making the execution-time bounds tighter.

6.8.3 Limitations of the Tool. The user has to provide annotations for loops
with unknown termination properties.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:36 • R. Wilhelm et al.

An inherent limitation of the approach is the computational complexity of
the analysis. While the path-merging method partly addresses this concern, it
also introduces overestimation of the WCET. Therefore, we believe that this
approach is most relevant in the final stage of the development cycle, when the
design space has been narrowed down so that one can afford the long-running
simulations for limited aspects of the entire system.

6.8.4 Supported Hardware Platforms. Our tool currently supports a fairly
rich subset of the PowerPC instruction set architecture. We have also inte-
grated architectural timing models for some implementations of the PowerPC
featuring dual-instruction issue, a dynamically scheduled pipeline, a param-
eterized cache hierarchy with split first-level set-associative instruction and
data caches and a unified second-level cache. The cache and block size as well
as the associativity of each cache is parameterized.

6.9 SymTA/P Tool of TU Braunschweig, Germany

6.9.1 Functionality of the Tool. The purpose of SymTA/P is to obtain upper
and lower execution time bounds of C programs running on microcontrollers.
SymTA/P is an acronym of SYMbolic Timing Analysis for Processes. The key
idea of SymTA/P is to combine platform independent path analysis on source
code level and platform-dependent measurement methodology on object code
level, using an actual target system. The main benefit is that this hybrid anal-
ysis can easily be retargeted to a new hardware platform.

The execution time measurement can be obtained by an off-the-shelf cycle-
accurate processor simulator or by an evaluation board. Instruction cache as
well as data-cache behavior is analyzed for a single uninterrupted task exe-
cution. Furthermore, the cache-related preemption delay for fixed priority pre-
emptive real-time systems for direct mapped and associative caches is analyzed
and integrated in a cache-aware response time analysis. To be efficient, cache
analysis requires that a task execution trace can be generated that is uninter-
rupted by cache misses, either because the task is small enough to fit in the
cache or because the evaluation system offers sufficient on-chip fast memory,
e.g., scratchpad RAM. If that is not available, then an appropriate simulator
must be used instead.

6.9.2 Employed Methods. The hybrid approach consists of a static program
path analysis and a measurement for the execution time of program segments.
In most static analyzes of execution times, a basic block has been assumed
as the smallest entity. However often a program consists of a single feasible
execution path (SFP) only. Such a SFP is a sequence of basic blocks where the
execution sequence is invariant to input data [Wolf 2002; Wolf et al. 2001; Ye
and Ernst 1997].

SymTA/P uses symbolic analysis on the abstract syntax tree to identify such
single feasible paths (SFP) at the source code level. The result is a CFG with
nodes containing single feasible paths or basic blocks that are part of a multiple
feasible path. A single feasible path can reach beyond basic block boundaries,
for example, a fast Fourier transformation or a FIR filter. In these cases, the
program contains loops with several if-then-else statements, which are input

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:37

independent. This means that the branch direction depends only on local vari-
ables with known values, for example, the loop iteration count. Therefore, the
entire loop represents an SFP and is represented by a single node. The main
benefit of SFPs is a smaller number of instrumentation points.

In a second step, the execution time for each node is estimated. Off-the-shelf
processor simulators or standard cost-efficient evaluation boards can be used.
The C source code is instrumented with measurement points that mark the
beginning and the end of each node. Such a measurement point is linked to
a platform-dependent measurement procedure, such as accessing the system
clock or internal timer. For a processor simulator the instrumentation can use
a processor debugger command to stop the simulation and store the internal
system clock. Then, the entire C-program with measurement points is compiled,
linked, and executed on the evaluation board (or simulated on the processor
simulator). During this measurement, a safe initial state cannot be assured in
all cases. Therefore, an additional time delay is added that covers a potential
underestimation during such a measurement.

At this step, SymTA/P assumes that each memory access takes constant
time. For timing analysis, input data for a complete branch coverage must be
supplied. A complete branch coverage means that with a given set of input data
all branches and other C statements are at least executed once. This criterion
requires the user to specify a considerably fewer number of input data than a full
path coverage, because combinations of execution paths need not be considered.
This advantage comes with the drawback that it adds a conservative overhead
to cover pipelining effects between nodes.

The constant memory access time assumption is revised by analyzing the
instruction-cache and the data-cache behavior [Wolf et al. 2002b]. When us-
ing a processor simulator, the memory-access trace for each node is generated
using a similar methodology as the execution time measurements. The traced
memory accesses are annotated to the corresponding node in the CFG. A data-
flow analysis technique is used to propagate the information, which cache lines
are available at each node. Pipelining effects between nodes are not directly
modeled. Instead, a conservative overhead corresponding to starting with an
empty pipeline is assumed.

The longest and shortest path in the CFG are found by IPET (see Section 3.4)
and Figure 5. The time for each node is given by the measured execution time
and the statically analyzed cache-access behavior. This framework has also been
used to calculate the power consumption of a program [Wolf et al. 2002a]. Loop
bounds have to be specified by the user, if the loop condition is input-dependent.

If preemptive scheduling is used, cache blocks might be replaced by higher
priority tasks. SymTA/P considers the cache behavior of the preempted and
preempting task to compute the maximum cache-related preemption delay.
This delay is considered in cache-aware response time analysis [Staschulat
and Ernst 2004; Staschulat et al. 2005].

SymTA/P uses a static analysis approach for data-cache behavior, which com-
bines symbolic execution to identify input-dependent memory accesses and uses
ILP to bound the worst-case data-cache behavior for input-dependent memory
accesses [Staschulat and Ernst 2006].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:38 • R. Wilhelm et al.

6.9.3 Limitations of the Tool. The measurement on an evaluation board is
more accurate if the program paths between measurements points are longer.
If many basic blocks are measured individually, the added time delays to cover
pipelining effects would lead to an overestimation of the total worst-case execu-
tion time. Data-dependent execution times of single instructions are not explic-
itly considered. It is assumed that input data covers the worst-case regarding
data-dependent instruction execution time. Input data has to be provided that
generates complete branch coverage. Such patterns are usually available from
a functional test. The precision of the final analysis depends on the measure-
ment environment. Especially for evaluation boards, the interference of the
measurement instrumentation has to be a constant factor to obtain sufficiently
accurate results. Currently, the approach assumes a sequential memory access
behavior where the CPU stalls during a memory access.

6.9.4 Supported Hardware Platforms. C programs on the following mi-
crocontrollers have been analyzed: ARM architectures (e.g., ARM9), TriCore,
StrongARM, C167, and i8051. The software power analysis has been applied
to SPARClite. Furthermore, an open interface for processor simulators and a
measurement framework for evaluation boards is provided.

6.10 The RapiTime Tool of Rapita Systems Ltd., York, UK

RapiTime aims at medium to large real-time embedded systems on advanced
processors. The RapiTime tool targets the automotive electronics, avionics and
telecommunications industries.

6.10.1 Functionality of the Tool. RapiTime is a measurement-based tool,
i.e., it derives timing information of how long a particular section of code (gen-
erally a basic block) takes to run from measurements. Measurement results are
combined according to the structure of the program to determine an estimate
for the longest path through the program,

RapiTime not only computes an estimate for the WCET of a program as a sin-
gle (integer) value, but also the whole probability distribution of the execution
time of the longest path in the program (and other subunits). This distribution
has a bounded domain (an absolute upper bound, the WCET estimate, and a
lower bound).

The input of RapiTime is either a set of source files (C or Ada) or an ex-
ecutable. The user also has to provide test data from which measurements
will be taken. The output is a browsable HTML report with description of the
WCET prediction and actual measured execution times, split for each function
and subfunction.

Timing information is captured on the running system by either a software
instrumentation library, a lightweight software instrumentation with external
hardware support, purely nonintrusive tracing mechanisms (like Nexus and
ETM) or even traces from CPU simulators.

The user can add annotations in the code to guide how the instrumentation
and analysis process will be performed, to bound the number of iterations of
loops, etc.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:39

The RapiTime tool supports various architectures, adapting the tool for new
architectures requires porting the object code reader (if needed) and determin-
ing a tracing mechanism for that system.

RapiTime is the commercial quality version of the pWCET tool developed at
the Real-Time Systems Research Group at the University of York.

6.10.2 Employed Methods. The RapiTime tool is structure based and
works on a tree representation of the program. The structure is derived from
either the source code or from the direct analysis of executables.

The timing of individual blocks is derived from extensive measurements ex-
tracted from the real system. RapiTime not only computes the maximum of the
measured times, but whole probability distributions [Bernat et al. 2002, 2005].
The WCET estimates are computed using an algebra of probability distribu-
tions.

The timing analysis of the program can be performed on different contexts,
therefore allowing to individually analyze, for instance, each different call to a
function. The level of detail and how many contexts are analyzed is controlled
by annotations. RapiTime also allows to analyze different loop iterations by
virtually unrolling loops. For each of these loop contexts, loop bounds are derived
from actual measurements (or annotations).

6.10.3 Limitations of the Tool. The RapiTime tool does not rely on a model
of the processor. Thus, in principle, it can model any processing unit (even with
out-of-order execution, multiple execution units, various hierarchies of caches,
etc). The limitation is put on the need to extract execution traces, which require
some code instrumentation and a mechanism to extract these traces from the
target system. Regarding source code level, RapiTime cannot analyze programs
with recursion and with nonstatically analyzable function pointers.

6.10.4 Supported Hardware Platforms. Motorola processors (including
MPC555, HCS12, etc), ARM, MIPS, and NecV850.

7. EXPERIENCE

Three commercial WCET tools are available, aiT, Bound-T, and RapiTime.
There are extensive reports about industrial use [Thesing et al. 2003; Sandell
et al. 2004; Souyris et al. 2005; Byhlin et al. 2005; Holsti et al. 2000b, 2000a].
In fact, tools are under routine use in the aeronautics and the automotive in-
dustries. They enjoy very positive feedback concerning speed, precision of the
results, and usability. The aeronautics industry uses them in the development
of the most safety-critical systems, e.g., the fly-by-wire systems for the Airbus
A380. The used WCET tool will be qualified as a verification tool in the sense of
the international avionics standard for safety-critical software, RTCA/DO-178B
(Software Considerations in Airborne Systems and Equipment Certification Re-
quirements) for Level A Code.

There are not many published benchmark results about timing-analysis
tools. A study done by Lim et al. [1995] of a method carefully explained the
reasons for overestimation. Thesing et al. [2003] and Souyris et al. [2005]

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:40 • R. Wilhelm et al.

Table I. Cache-Miss Penalties and Degrees of Overestimation

Overestimation
Reference Year Cache-miss penalty (%)
Lim et al. [1995] 1995 4 20–30
Thesing et al. [2003] 2002 25 15

Souyris et al. [2005] 2005
60 for accessing instructions in SDRAM
200 for access over PCI bus 30–50

report experiences made by developers. The developers are experienced and
the tool is integrated into the development process. We summarize these three
comparable benchmarks in Table I. They seem to exhibit a surprising paradox.
Benchmarks published earlier offer better results regarding the degree of over-
estimation, although significant methodological progress has been made in the
meantime. The reason lies in the fact that the advancement of processor archi-
tectures and, in particular, the divergence of processor and memory speeds have
made the challenge of timing analysis harder. Both have increased the timing
variability and, thus, the penalty for the lack of knowledge in analysis results.
Let us take the cache-miss penalty as an example, the single cause with highest
weight. In Lim et al. [1995], a cache-miss penalty of four cycles was assumed. In
Thesing et al. [2003], a cache-miss penalty of roughly 25 was given, and, finally,
in the setting described in Souyris et al. [2005], the cache-miss penalty was be-
tween 60 internal cycles for a worst-case access to an instruction in SDRAM and
roughly 200 internal cycles for an access to data over the PCI bus. Thus, any
overestimation should be considered in the context of the given architecture.
An overestimation of 30% reported in Souyris et al. [2005] means huge progress
compared to an overestimation of 30% reported in 1995 [Lim et al. 1995]! On the
other hand, static methods are capable of predicting exact WCETs on simple
microcontrollers without caches, deep pipelines, and speculation.

The Mälardalen University WCET-research group has performed sev-
eral industrial WCET case studies as M.Sc. Thesis projects using the
SWEET [Carlsson et al. 2002] and aiT [Sandell et al. 2004; Byhlin et al. 2005;
Eriksson 2005; Zhang 2005; Sehlberg 2005] tools. The students were experts
neither on the used timing-analysis tool nor on the analyzed system. However,
they were assisted both by WCET analysis experts from academia and indus-
trial personel with detailed system knowledge.

The case studies show that it is possible to apply static WCET analysis to
a variety of industrial systems and codes. The tools used performed well and
derived safe upper timing bounds. However, detailed knowledge of the analyzed
code and many manual annotations were often required to achieve reasonably
tight bounds. These annotations were necessary to give the analysis enough
knowledge about program flow constraints and, in some cases, constraints on
addresses of memory accesses. A higher degree of automation and support from
the tools, e.g., automatic loop-bounds calculation, would, in most cases, have
been desirable.

The case studies also show that single timing bounds, covering all possible
scenarios, are not always what you want. For several analyzed systems it was
more interesting to have different WCET bounds for different running modes

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:41

or system configurations rather than a single WCET bound. The latter would
in most cases have been a gross overapproximation. In some cases, it was also
possible to manually derive a parametrical formula [Sandell et al. 2004; Byhlin
et al. 2005], showing how the WCET estimate depends on some specific system
parameters.

The case studies were done for processors without cache. The overestimations
were mostly in the range 5–15% as compared with measured times. In some
cases, measurements were done with emulators and, in some cases, directly on
the hardware using oscilloscopes and logical analyzers.

7.1 Performance and Size

Table IV in Section 9 lists the maximal size of tasks analyzed by the different
tools. They vary between 10 and 80 KB of code. Analysis times vary widely,
depending on the complexity of the processor and its periphery and the struc-
ture and other characteristics of the software. Analysis of a task for a simple
microprocessor, such as the C166/ST10, may finish in a few minutes. Analysis
of a complex software, an abstract machine, and the code interpreted by it, and
a complex processor has been shown to take in the order of a day (see Souyris
et al. [2005]).

Also of interest is the size of the abstract processor models underlying some
static analysis approaches. They range from 3000 to 11,000 lines of C code. This
C code is the result of a translation from a formal model.

8. LIMITATIONS OF THE TOOLS

Determining safe and precise bounds on execution times is a very difficult prob-
lem, undecidable, in general, as is known, but still very complex for programs
with bounded iteration and recursion. There are several features whose use will
easily ruin precision. Among these are pointers to data and to functions that
cannot statically be resolved, and the use of dynamically allocated data. Most
tools will expect that function-calling conventions are observed. Some tools for-
bid recursion. Currently, only monoprocessor targets are supported. Most tools
only consider uninterrupted execution of tasks.

9. TOOL COMPARISON

This section shows in a condensed form the most relevant information about
the different tools. The following abbreviations for the Vienna tools are used,
Vienna M. for Vienna Measurement, Vienna S. for Vienna Static, and Vienna H.
for Vienna Hybrid. Table II lists the methods used for the different subtasks.
The methods are the ones described in Section 2. The abbreviation n.a. stands
for not applicable, while a dash (-) is used when no such method or analysis is
employed.

Table III describes which architectural features, e.g., caches and pipelines,
may be present in processor architectures for which instances of the tools are
available. Instruction caches are supported by most of the tools. However, data
caches need a resolution of effective memory addresses at analysis time. This
is currently not supported by many tools. Of particular interest is whether
only in-order execution pipelines are supported. Out-of-order execution almost

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:42 • R. Wilhelm et al.

Table II. Analysis Methods Employed

Tool Flow Processor behavior Bound calculation
aiT Value analysis Static program analysis IPET
Bound-T Linear loop-bounds

and constraints by
Omega test

Static program analysis IPET per function

RapiTime n.a. Measurement Structure-based
SymTA/P Single feasible path

analysis
Static program analysis for

I/D cache, measurement
for segments

IPET

HEPTANE — Static prog. analysis Structure-based, IPET
Vienna S. — Static program analysis IPET
Vienna M. Genetic algorithms Segment measurements n.a.
Vienna H. Model checking Segment measurements IPET
SWEET Value analysis,

abstract execution,
syntactical analysis

Static program analysis for
instr. caches, simulation
for the pipeline

Path-based,
IPET-based,
clustered

Florida Static program analysis Path-based
Chalmers Modified simulation
Chronos Static prog. analysis IPET

Table III. Support for Architectural Features

Tool Caches Pipeline Periphery
aiT I/D, direct/set associative, LRU,

PLRU, pseudo round robin
In-order/out-of-order PCI bus

Bound-T — In-order —
RapiTime n.a. n.a. n.a.
SymTA/P I/D, direct/set-associative, LRU n.a. n.a.
HEPTANE I-cache, direct, set associative,

LRU, locked caches
In-order —

Vienna S. Jump-cache Simple in-order —
Vienna M. n.a. n.a. n.a.
Vienna H. n.a. n.a. n.a.
SWEET I-cache, direct/set associative, LRU In-order —
Florida I/D, direct/set associative In-order —
Chalmers Split first-level set-associative,

unified second-level cache
Multi-issue

superscalar
—

Chronos I-cache, direct, LRU In-order/out-of-order,
dyn. branch
prediction

—

unavoidably introduces timing anomalies [Lundqvist and Stenström 1999c],
which require integrated analyzes of the cache and the pipeline behavior.

Table IV gives additional information, such as the language level of the ana-
lyzed software, how the results are presented, the size of the biggest programs
analyzed, etc.

Table V lists the hardware platforms that have been targeted with the tools.

10. INTEGRATION WITH OTHER TOOLS

Timing analysis can be performed as an isolated activity. However, most of
the time it is done for a subsequent schedulability analysis, whose job it is to

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:43

Table IV. Additional Featuresa

Result Maximal
Tool Language level representation analyzed Integration
aiT Object Text, graphical 80 KB Some versions adapted to

code generated by
STATEMATE, Ascet/SD,
Scade, MATLAB/Simulink,
or Targetlink

Bound-T Object Text, graphical 30 KB Sack-extent analysis, HRT
schedulability analyzer

RapiTime Source (C, Ada),
object

Graphical,
html based

50 KLOC Matlab/Simulink, Targetlink,
SimpleScalar simulator

SymTA/P Source (C) Text, graphical 7 KLOC Tasking compiler,
schedulability analysis
(cache-related preemption
delay)

HEPTANE Source, object Graphical 14 KLOC
Vienna S. Source, object Text, graphical Matlab/Simulink, optimizing

compiler
Vienna M. Object Text
Vienna H. Source, object Text, graphical Matlab/Simulink, Targetlink
SWEET Flow analysis on

intermediate,
proc. beh. anal.
on object

Text, graphical IAR, SUIF, and LCC
compilers

Florida Object Cycle-accurate simulators,
power-aware schedulers,
compiler

Chalmers Object
Chronos Object Graphical 10 KB GCC compiler, SimpleScalar

simulator
aThe first column gives the language level of the systems analyzed. The second column shows how the results
are presented to the user. The third column gives the maximum size of tasks analyzed in one run. The total size
of the analyzed system may be larger. The last column lists other tools integrated with the timing-analysis tool.

check, whether the given set of tasks can all be executed on the given hardware,
satisfying all their constraints. Timing analysis should be integrated with such
a schedulablity analysis for improved results, because schedulability analysis
can profit from information about context-switch costs incurred by cache and
pipeline damages that result from preemption. Information about the amount
of damage can be made available by WCET tools.

On the other hand, timing precision can profit from integration of WCET tools
with compilers. Compilers have semantic information that is hard to recover
from the generated code. If this information were passed on to the WCET tool,
the precision could be increased. For instance, the integration with the com-
piler and linker would be desirable to supply the WCET tool with the possible
targets for dynamic calls and jumps and the possible memory locations for dy-
namic data accesses (pointer analysis). A standard format for this information,
perhaps embedded in the linked executable, would be preferable to a real-time
interaction between these tools. A closer integration between the WCET tool
and the compiler is desirable, so that the compiler can utilize feedback about

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:44 • R. Wilhelm et al.

Table V. Supported Hardware Platforms

Tool Hardware platform
aiT Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 5307,

ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85,
Infineon TriCore 1.3

Bound-T Intel-8051, ADSP-21020, ATMEL ERC32, Renesas H8/300, ATMEL AVR,
ATmega, ARM7

RapiTime Motorola PowerPC family, HCS12 family, ARM, NecV850, MIPS3000
SymTA/P Various ARM (RealView Suite), TriCore, i8051, C167
Heptane Pentium1, StrongARM 1110, Hitachi H8/300
Vienna S. M68000, M68360, C167
Vienna M. C167, PowerPC
Vienna H. HCS12, Pentium
SWEET ARM9 core, NEC V850E
Florida MicroSPARC I, Intel Pentium, StarCore SC100, Atmel Atmega, PISA/MIPS
Chalmers PowerPC
Chronos SimpleScalar out-of-order processor model with MIPS-like instruction-set

architecture (PISA)

temporal properties of code from the WCET tool in order to identify the best
code optimization strategy for each section of code it generates.

For automatically synthesized code, integration with the semantic informa-
tion available on the model level would be very helpful. Timing information
about dynamically called library functions is necessary to bound the time for
their calls.

The current symbol–table structures in executable files are also an important
practical problem, although trivial in theory. The symbol–table structures are
poorly defined and differ across compilers and targets.

It is obvious that a source-file browsing tool should be integrated with the
WCET tool, to help the user to understand the results and to control the WCET
tool. The browsing tool may, in turn, need to interact with a version-control tool.

An exciting extension is to integrate a WCET tool into a tool for the perfor-
mance analysis of distributed and communication-centric systems.

11. CONCLUSIONS

The problem of determining upper bounds on execution times for single tasks
and for quite complex processor architectures has been solved. Several com-
mercial WCET tools are available and have experienced very positive feedback
from extensive industrial use. This feedback concerned speed, precision of the
results, and usability. Several research prototypes are under development.

11.1 Remaining Problems and Future Perspectives

What significant problems or novel directions is timing analysis facing?

—Increased support for flow analysis. Most problems reported in timing-
analysis case studies relate to setting correct loop bounds and other flow
annotations. Stronger static program analyzes are needed to extract this
information from the software.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:45

Table VI. Contact Information for the Tools

Tool Contact person Contact information
aiT Christian Ferdinand email: info@AbsInt.com

AbsInt Angewandte Informatik GmbH Phone: +49 681 383 60 0
Science Park 1 Fax: +49 681 383 60 20
D-66123 Saarbrücken Web: www.AbsInt.com
Germany

Bound-T Niklas Holsti Email : info@tidorum.fi
Tidorum Ltd Phone: +358 (0) 40 563 9186
Tiirasaarentie 32 Web: www.tidorum.fi
FI-00200 Helsinki Web: www.bound-t.com
Finland

RapiTime Guillem Bernat email: enquiries@rapitasystems.com
Rapita Systems Ltd. Phone: +44 1904 567747
IT Center, York Science Park Fax: +44 1904 567719
Heslington Web: www.rapitasystems.com
York YO10 5DG
United Kingdom

SymTA/P Rolf Ernst and Jan Staschulat email: ernst|staschulat@ida.ing.tu-bs.de
Institute for Computer and Phone: +49 531 391 3730
Communication Network Engineering Fax: +49 531 391 3750
Technical University Braunschweig
Hans-Sommer-Str. 66

Web: www.ida.ing.tu-bs.de/research/
projects/symta

D-38106 Braunschweig, Germany
HEPTANE Isabelle Puaut email: puaut@irisa.fr

IRISA, ACES Research Group Phone: +33 02 99 84 73 10
Campus univ. de Beaulieu Fax: +33 02 99 84 25 29
35042 Rennes Cédex, France Web: www.irisa.fr/aces/work/heptane-

demo/heptane.html
Vienna Peter Puschner email: peter.puschner@tuwien.ac.at

Inst. für Technische Informatik Phone: 01 58 801 18 227
TU Wien Fax: 01 58 69 149
A-1040 Wien, Austria

SWEET Björn Lisper email: bjorn.lisper@mdh.se
Mälardalen University email: andreas.ermedahl@mdh.se
P.O. Box 883 SE-721 23 email: jan.gustafsson@mdh.se
SE 72123 Västeräs Phone: +46 21 151 709
Sweden Web: www.mrtc.mdh.se/projects/wcet/

Florida David Whalley email: whalley@cs.fsu.edu
Florida State University
Frank Mueller email: mueller@cs.ncsu.edu
North Carolina State University Web: http://moss.csc.ncsu.edu/ mueller/
Chris Healy email: chris.healy@furman.edu
Furman University, USA

Chalmers Per Stenström email: pers@ce.chalmers.se
Department of Computer Engineering Phone: +46 31 772 1761
Chalmers University of Technology Fax: +46 31 772 3663
S-412 96 Göteborg, Sweden

Chronos Tulika Mitra, email: tulika@comp.nus.edu.sg
Abhik Roychoudhury, email: abhik@comp.nus.edu.sg
Xianfeng Li, email: lixianfe@comp.nus.edu.sg
National University of Singapore www.comp.nus.edu.sg/˜rpembed/chronos

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:46 • R. Wilhelm et al.

—Verification of abstract processor models. Static timing-analysis tools based
on abstract processor models may be incorrect if these models are not cor-
rect. Strong guarantees for correctness can be given by equivalence check-
ing between different abstraction levels. Ongoing research activities attempt
the formal derivation of abstract processor models from concrete models.
Progress in this area will not only improve the accuracy of the abstract proces-
sor models, but also reduce the effort to produce them. Measurement-based
methods can also be used to test the abstract models.

—Integration of timing analysis with compilation. An integration of static tim-
ing analysis with a compiler can provide valuable information available in
the compiler to the timing analysis and thereby improve the precision of
analysis results.

—Integration with scheduling. Preemption of tasks causes large context-switch
costs on processors with caches; the preempting task may ruin the cache con-
tents, such that the preempted task encounters considerable cache-reload
costs when resuming execution. These context-switch costs may be even dif-
ferent for different combinations of preempted and preempting task. These
large and varying context-switch costs violate assumptions underlying many
real-time scheduling methods. A new scheduling approach considering the
combination of timing analysis and preemptive scheduling will have to be
developed. SymTA/P provides an integration of WCET calculation and cache-
related preemption delay for schedulability analysis [Staschulat et al. 2005].

—Interaction with energy awareness. This may concern the trade off between
speed and energy consumption. Jayaseelan et al. [2006] presents a static
analysis technique to estimate the worst-case energy consumption of a task
on complex microarchitectures. Estimating a bound on energy is nontrivial
as it is unsafe to assume any direct correlation with the bound on execution
time. On the other hand, information computed for WCET determination,
e.g., cache behavior, is of high value for the determination of energy con-
sumption [Seth et al. 2003].

—Design of systems with time-predictable behavior. This is a particularly well-
motivated research direction, because several trends in system design make
systems less and less predictable [Thiele and Wilhelm 2004].

There are first proposals in this area. Anantaraman et al. [2003] pro-
pose a virtual simple architecture (VISA). A VISA is the pipeline timing
specification of a hypothetical simple processor. Upper bounds for execution
times are derived for a task assuming the VISA. At runtime, the task is
executed speculatively on an unsafe complex processor, and its progress is
continuously gauged. If continued safe progress appears to be in jeopardy,
the complex processor is reconfigured to a simple mode of operation that
directly implements the VISA, thereby explicitly bounding the task’s over-
all execution time. Progress is monitored at intratask checkpoints, which
are derived from upper bounds and unsafe predictions of execution times
for subtasks [Anantaraman et al. 2004]. Hence, VISA shifts the burden of
bounding the execution times of tasks, in part, to hardware by supporting
two execution modes within a single processor. Puschner [2005] proposes to

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:47

transform sets of program paths to single paths by predicate conversion as
in code generation for processors with predicated execution. The disadvan-
tage is the loss in performance resulting from the need to execute predicated
paths that would originally not be executed.

Any proposal increasing predictability plainly at the cost of performance
will most likely not be accepted by developers.

—Extension to component-based design. Timing-analysis methods should be
made applicable to component-based design and systems built on top of real-
time operating systems and using real-time middleware.

11.2 Architectural Trends

The hardware used in creating an embedded real-time system has a great effect
on the ease of predictability of the execution time of programs.

The simplest case are traditional 8- and 16-bit processors with simple ar-
chitectures. In such processors, each instruction basically has a fixed execution
time. Such processors are easy to model from the hardware timing perspective,
and the only significant problem in WCET analysis is how to determine the
program flow.

There is also a class of processors with simple in-order pipelines, which are
found in cost-sensitive applications requiring higher performance than that
offered by classic 8- and 16-bit processors. Examples are the ARM7 and the
recent ARM Cortex R series. Over time, these chips can be expected to replace
the 8- and 16-bit processors for most applications. With their typically sim-
ple pipelines and cache structures, relatively simple and fast WCET hardware
analysis methods can be applied.

At the high end of the embedded real-time spectrum, performance require-
ments for applications, like flight control and engine control, force real-time
systems designers to use complex processors with caches and out-of-order exe-
cution. Examples are the PowerPC 750, PowerPC 7448, and ARM11 families of
processors. Analyzing such processors requires more advanced tools and meth-
ods, especially in the hardware analysis.

The mainstream of computer architecture is steadily adding complexity and
speculative features in order to push the performance envelope. Architectures
such as the AMD Opteron, Intel Pentium 4 and Pentium-M, and IBM Power5
use multiple threads per processor core, deep pipelines, and several levels of
caches to achieve maximum performance on sequential programs.

This mainstream trend of ever-more complex processors is no longer as domi-
nant as it used to be, however. In recent years, several other design alternatives
have emerged in the mainstream, where the complexity of individual processor
cores has been reduced significantly.

Many new processors are designed by using several simple cores instead of a
single or a few complex cores. This design gains throughput per chip by running
more tasks in parallel, at the expense of single-task performance. Examples are
the Sun Niagara chip, which combines eight in-order four-way multithreaded
cores on a single chip [Olukotun and Hammond 2005] and the IBM-designed
PowerPC for the Xbox 360, using three two-way multithreaded in-order cores

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:48 • R. Wilhelm et al.

[Krewell 2005]. These designs are cache-coherent multiprocessors on a chip
and thus have a fairly complex cache and memory system. The complexity
of analysis moves from the behavior of the individual cores to the interplay
between them as they access memory.

Another very relevant design alternative is to use several simple processors
with private memories (instead of shared memory). This design is common
in mobile phones, where you typically find an ARM main processor combined
with one or more DSPs on a single chip. Outside the mobile phone industry,
the IBM–Sony-Toshiba Cell processor is a high-profile design using a simple
in-order PowerPC core along with eight synergistic processing elements (SPEs)
[Hofstee 2005]. The Cell will make its first appearance in the Sony PlayStation
3 gaming console, but IBM and Mercury Computing systems are pushing the
Cell as a general-purpose real-time processor for high-performance real-time
systems. The SPEs in the Cell are designed for predictable performance and
use local program-controlled memories rather than caches, just like most DSPs.
Thus, this type of architecture provides several easy-to-predict processors on a
chip as an alternative to a single hard-to-predict processor.

Field-programmable gate arrays (FPGAs) are another design alternative
for some embedded applications. Several processor architectures are avail-
able as “soft cores” that can be implemented in an FPGA together with
application-specific logic and interfaces. Such processor implementations may
have application-specific timing behavior, which may be challenging for off-the-
shelf timing analysis tools, but they are also likely to be less complex and thus
easier to analyze than general-purpose processors of similar size. Likewise,
some standard processors are now packaged together with FPGA on the same
chip for implementing application-specific logic functions. The timing of these
FPGA functions may be critical and need analysis, separately or together with
the code, on the standard processor.

There is also work on application-specific processors or application-specific
extensions to standard instruction sets, again creating challenges for timing
analysis. Here there is also an opportunity for timing analysis: to help find the
application functions that should be speeded up by defining new instructions.

ACKNOWLEDGMENTS

ARTIST (Advanced Real-Time Systems) is an IST project of the EU. Its goals
are to coordinate the research and development effort in the area of advanced
real-time systems. ARTIST established several working groups, one of them on
Timing Analysis, under the direction of Reinhard Wilhelm. The cluster includes
the leading European WCET researchers and tool vendors. The goal of the
cluster is to combine the best components of existing European timing-analysis
tools. This working group has collected industrial requirements for WCET tools
by asking (potential) users of this technology to fill out a questionnaire. The
results were condensed into an article that has appeared in the proceedings of
the EUROMICRO WCET workshop 2003 [Wilhelm et al. 2003].

The same working group has questioned tool providers and researchers
about their commercial and research tools, respectively. This article contains an

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:49

introduction into the methods for the determination of execution-time bounds
and a survey of the existing tools.

Many thanks go to the anonymous reviewers for extensive and very helpful
comments on the first version of the paper. These comments led to substantial
improvements of the presentation.

REFERENCES

ANANTARAMAN, A., SETH, K., PATIL, K., ROTENBERG, E., AND MUELLER, F. 2003. Virtual simple ar-
chitecture (VISA): Exceeding the complexity limit in safe real-time systems. In International
Symposium on Computer Architecture. 250–261.

ANANTARAMAN, A., SETH, K., PATIL, K., ROTENBERG, E., AND MUELLER, F. 2004. Enforcing safety of
real-time schedules on contemporary processors using a virtual simple architecture (VISA). In
Proceedings of the IEEE Real-Time Systems Symposium. 114–125.

ARNOLD, R., MUELLER, F., WHALLEY, D., AND HARMON, M. 1994. Bounding worst-case instruction
cache performance. In Proceedings of the IEEE Real-Time Systems Symposium. Puerto Rico.
172–181.

ATANASSOV, P., HABERL, S., AND PUSCHNER, P. 1999. Heuristic worst-case execution time analysis.
In Proceedings of the 10th European Workshop on Dependable Computing. Austrian Computer
Society (OCG). 109–114.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system
modeling. IEEE Comput. 35, 2.

BERKELAAR, M. 1997. lp solve: A mixed integer linear program solver. Tech. Rept. Eindhoven
University of Technology.

BERNAT, G., COLIN, A., AND PETTERS, S. M. 2002. WCET analysis of probabilistic hard real–time
systems. In Proceedings of the 23rd Real-Time Systems Symposium RTSS 2002. Austin, Texas.
279–288.

BERNAT, G., NEWBY, M., AND BURNS, A. 2005. Probabilistic timing analysis: An approach using
copulas. J. Embedded Comput. 1, 2, 179–194.

BYHLIN, S., ERMEDAHL, A., GUSTAFSSON, J., AND LISPER, B. 2005. Applying static WCET analysis to
automotive communication software. In Proceedings of the 17th Euromicro Conference of Real-
Time Systems, (ECRTS’05). 249–258.

CARLSSON, M., ENGBLOM, J., ERMEDAHL, A., LINDBLAD, J., AND LISPER, B. 2002. Worst-case execu-
tion time analysis of disable interrupt regions in a commercial real-time operating system. In
Proceedings of the 2nd International Workshop on Real-Time Tools (RT-TOOLS’2002).

CHVATAL, V. 1983. Linear Programming, Freeman, San Francisco, CA.
CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge,

MA.
COLIN, A. AND BERNAT, G. 2002. Scope-tree: A program representation for symbolic worst-case

execution time analysis. In Proceedings of the 14th Euromicro Conference of Real-Time Systems,
(ECRTS’02). 50–59.

COLIN, A. AND PUAUT, I. 2000. Worst case execution time analysis for a processor with branch
prediction. J. Real-Time Syst. 18, 2–3 (May), 249–274.

COLIN, A. AND PUAUT, I. 2001a. A modular and retargetable framework for tree-based WCET
analysis. In Proceedings of the 13th Euromicro Conference on Real-Time Systems. Delft, The
Netherlands. 37–44.

COLIN, A. AND PUAUT, I. 2001b. Worst-case execution time analysis of the RTEMS real-time oper-
ating system. In Proceedings of the 13th Euromicro Conference on Real-Time Systems. Delft, The
Netherlands. 191–198.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages. Los Angeles, CA. 238–252.

DESIKAN, R., BURGER, D., AND KECKLER, S. 2001. Measuring experimental error in microprocessor
simulation. In Proceedings of the 28th International Symposium on Computer Architecture (ISCA
2001). ACM Press, New York.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:50 • R. Wilhelm et al.

ENGBLOM, J. 2002. Processor pipelines and static worst-case execution time analysis. Ph.D. thesis,
Uppsala University, Dept. of Information Technology, Box 337, Uppsala, Sweden.

ERIKSSON, O. 2005. Evaluation of static time analysis for CC systems. M.S. thesis, Mälardalen
University, Västerås, Sweden.

ERMEDAHL, A. 2003. A modular tool architecture for worst-case execution time analysis. Ph.D.
thesis, Uppsala University, Dept. of Information Technology, Box 325, Uppsala, Sweden. ISBN
91-554-5671-5.

ERMEDAHL, A., STAPPERT, F., AND ENGBLOM, J. 2005. Clustered worst-case execution- time calcula-
tion. IEEE Trans. Comput. 54, 9 (9).

FERDINAND, C. AND WILHELM, R. 1999. Fast and efficient cache behavior prediction for real-time
systems. Real-Time Systems 17, 131–181.

FERDINAND, C., MARTIN, F., AND WILHELM, R. 1999. Cache behavior prediction by abstract interpre-
tation. Sci. Comput. Programming 35, 163–189.

FERDINAND, C., HECKMANN, R., LANGENBACH, M., MARTIN, F., SCHMIDT, M., THEILING, H., THESING, S.,
AND WILHELM, R. 2001. Reliable and precise WCET determination for a real-life processor. In
EMSOFT. LNCS, vol. 2211. 469–485.

GANSNER, E. R. AND NORTH, S. C. 2000. An open graph visualization system and its applications
to software engineering. Softw. Pract. Exp. 30, 11, 1203–1233.

GRAHAM, R. L. 1966. Bounds for certain multiprocessing anomalies. Bell System Tech. J. 45,
1563–1581.

GUSTAFSSON, J. 2000. Analyzing execution-time of object-oriented programs using abstract in-
terpretation. Ph.D. thesis, Department of Computer Systems, Information Technology, Uppsala
University.

GUSTAFSSON, J., LISPER, B., SANDBERG, C., AND BERMUDO, N. 2003. A tool for automatic flow analysis
of C-programs for WCET calculation. In 8th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2003), Guadalajara, Mexico.

GUSTAFSSON, J., ERMEDAHL, A., AND LISPER, B. 2005. Towards a flow analysis for embedded system C
programs. In Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2005). Sedona.

HEALY, C. AND WHALLEY, D. 1999. Tighter timing predictions by automatic detection and exploita-
tion of value-dependent constraints. In Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium (RTAS’99). 79–88.

HEALY, C. AND WHALLEY, D. 2002. Automatic detection and exploitation of branch constraints for
timing analysis. IEEE Trans. Softw. Eng. 763–781.

HEALY, C., WHALLEY, D., AND HARMON, M. 1995. Integrating the timing analysis of pipelining and
instruction caching. In Proceedings of the IEEE Real-Time Systems Symposium. Pisa, Italy. 288–
297.

HEALY, C., SJÖDIN, M., RUSTAGI, V., AND WHALLEY, D. 1998. Bounding loop iterations for timing
analysis. In Proceedings of the 4th IEEE Real-Time Technology and Applications Symposium
(RTAS’98).

HEALY, C., ARNOLD, R., MÜLLER, F., WHALLEY, D., AND HARMON, M. 1999. Bounding pipeline and
instruction cache performance. IEEE Trans. Comput. 48, 1 (Jan).

HEALY, C., SJODIN, M., RUSTAGI, V., WHALLEY, D., AND VAN ENGELEN, R. 2000. Support-
ing timing analysis by automatic bounding of loop iterations. J. Real-Time Syst. 121–
148.

HECKMANN, R., LANGENBACH, M., THESING, S., AND WILHELM, R. 2003. The influence of processor
architecture on the design and the results of WCET tools. IEEE Proc. Real-Time Syst. 91, 7,
1038–1054.

HOFSTEE, P. 2005. Power efficient processor architecture and the cell processor. In 11th Sympo-
sium on High-Performance Computing Architecture (HPCA-11).

HOLSTI, N., LÅNGBACKA, T., AND SAARINEN, S. 2000a. Using a worst-case execution-time tool for
real-time verification of the DEBIE software. In Proceedings of the DASIA 2000 Conference (Data
Systems in Aerospace 2000, ESA SP-457).

HOLSTI, N., LÅNGBACKA, T., AND SAARINEN, S. 2000b. Worst-case execution-time analysis for digital
signal processors. In Proceedings of the EUSIPCO 2000 Conference (X European Signal Process-
ing Conference).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:51

JAYASEELAN, R., MITRA, T., AND LI, X. 2006. Estimating the worst-case energy consumption of
embedded software. In 12th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS).

KIRNER, R. 2002. The programming language WCETC. Tech. rept. Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

KIRNER, R. 2003. Extending optimising compilation to support worst-case execution time analy-
sis. Ph.D. thesis, Technische Universität Wien, Vienna, Austria.

KIRNER, R. AND PUSCHNER, P. 2003. Transformation of meta-information by abstract co-
interpretation. In Proceedings of the 7th International Workshop on Software and Compilers
for Embedded Systems. Vienna, Austria. 298–312.

KIRNER, R., LANG, R., FREIBERGER, G., AND PUSCHNER, P. 2002. Fully automatic worst-case execution
time analysis for matlab/simulink models. In Proceedings of the 14th Euromicro International
Conference on Real-Time Systems. 31–40.

KREWELL, K. 2005. IBM speeds Xbox 360 to market. Microprocessor Report.
LANGENBACH, M., THESING, S., AND HECKMANN, R. 2002. Pipeline modelling for timing analysis. In

Static Analysis Symposium SAS 2002, M. V. Hermenegildo and G. Puebla, Eds. Lecture Notes in
Computer Science, vol. 2477. Springer-Verlag, New York. 294–309.

LI, X. 2005. Microarchitecture modeling for timing analysis of embedded software. Ph.D. thesis,
School of Computing, National University of Singapore.

LI, X., MITRA, T., AND ROYCHOUDHURY, A. 2003. Accurate timing analysis by modeling caches,
speculation and their interaction. In ACM Design Auto. Conf. (DAC).

LI, Y.-T. S. AND MALIK, S. 1995. Performance analysis of embedded software using implicit path
enumeration. In Proceedings of the 32:nd Design Automation Conference. 456–461.

LI, Y.-T. S., MALIK, S., AND WOLFE, A. 1995a. Efficient microarchitecture modeling and path anal-
ysis for real-time software. In Proceedings of the IEEE Real-Time Systems Symposium. 298–307.

LI, Y.-T. S., MALIK, S., AND WOLFE, A. 1995b. Performance estimation of embedded software
with instruction cache modeling. In Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design. 380–387.

LI, Y.-T. S., MALIK, S., AND WOLFE, A. 1999. Performance estimation of embedded software with
instruction cache modeling. ACM Trans. Design Auto. Electronic Syst. 4, 3.

LI, X., ROYCHOUDHURY, A., AND MITRA, T. 2004. Modeling out-of-order processors for software timing
analysis. In IEEE Real-Time Systems Symposium (RTSS).

LI, X., MITRA, T., AND ROYCHOUDHURY, A. 2005. Modeling control speculation for timing analysis.
J. Real-Time Syst. 29, 1.

LIM, S.-S., BAE, Y. H., JANG, G. T., RHEE, B.-D., MIN, S. L., PARK, C. Y., SHIN, H., PARK, K., MOON, S.-M.,
AND KIM, C. S. 1995. An accurate worst case timing analysis for RISC processors. IEEE Trans.
Softw. Eng. 21, 7, 593–604.

LUNDQVIST, T. 2002. A WCET analysis method for pipelined microprocessors with cache memories.
Ph.D. thesis, Dept. of Computer Engineering, Chalmers University of Technology, Sweden.

LUNDQVIST, T. AND STENSTRÖM, P. 1999a. A method to improve the estimated worst-case perfor-
mance of data caching. In Proceedings of the 6th International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA’99). 255–262.

LUNDQVIST, T. AND STENSTRÖM, P. 1999b. An integrated path and timing analysis method based on
cycle-level symbolic execution. Real-Time Syst. 17, 2/3 (Nov.).

LUNDQVIST, T. AND STENSTRÖM, P. 1999c. Timing anomalies in dynamically scheduled microproces-
sors. In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS’99). 12–21.

MITRA, T., ROYCHOUDHURY, A., AND LI, X. 2002. Timing analysis of embedded software for specu-
lative processors. In ACM SIGDA International Symposium on System Synthesis (ISSS).

MOHAN, S., MUELLER, F., WHALLEY, D., AND HEALY, C. 2005. Timing analysis for sensor network
nodes of the atmega processor family. Proceedings of the IEEE Real-Time and Embedded Tech-
nology and Applications Symposium. 405–414.

MUELLER, F. 2000. Timing analysis for instruction caches. J. Real-Time Syst. 18, 2 (May), 217–
247.

NIELSON, F., NIELSON, H. R., AND HANKIN, C. 1999. Principles of Program Analysis. Springer-Verlag,
Heidelberg.

OLUKOTUN, K. AND HAMMOND, L. 2005. The future of microprocessors. ACM Queue.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

36:52 • R. Wilhelm et al.

PUAUT, I. AND DECOTIGNY, D. 2002. Low-complexity algorithms for static cache locking in multi-
tasking hard real-time systems. In Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS02), Austin, Texas. 114–123.

PUGH, W. 1991. The omega test: A fast and practical integer programming algorithm for de-
pendence analysis. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE conference on
Supercomputing. ACM Press, New York. 4–13.

PUSCHNER, P. 2005. Experiments with WCET-oriented programming and the single-path archi-
tecture. In Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems. 205–210.

PUSCHNER, P. AND SCHEDL, A. 1997. Computing maximum task execution times—A graph-based
approach. J. Real-Time Syst. 13, 1 (Jul.), 67–91.

PUSCHNER, P. AND NOSSAL, R. 1998. Testing the results of static worst-case execution-time analysis.
In Proceedings of the 19th IEEE Real-Time Systems Symposium. 134–143.

PUSCHNER, P. P. AND SCHEDL, A. V. 1995. Computing maximum task execution times with lin-
ear programming techniques. Tech. rept. Technische Universität Wien, Institut für Technische
Informatik. Apr.

RAMAPRASAD, H. AND MUELLER, F. 2005. Bounding worst-case data cache behavior by analytically
deriving cache reference patterns. In Proceedings of the IEEE Real-Time Embedded Technology
and Applications Symposium. 148–157.

REINEKE, J., THESING, S., WACHTER, B., WILHELM, R., BECKER, B., EISINGER, J., AND POLIAN, I. 2006.
On the notion of timing anaomaly. forthcoming.

SANDELL, D., ERMEDAHL, A., GUSTAFSSON, J., AND LISPER, B. 2004. Static timing analysis of real-
time operating system code. In Proceedings of the 1st International Symposium on Leveraging
Applications of Formal Methods (ISOLA’04).

SEHLBERG, D. 2005. Static WCET analysis of task-oriented code for construction vehicles. M.S.
thesis, Mälardalen University, Västerås, Sweden.

SETH, K., ANANTARAMAN, A., MUELLER, F., AND ROTENBERG, E. 2003. FAST: Frequency-aware static
timing analysis. In Proceedings of the IEEE Real-Time Systems Symposium. 40–51.

SHAW, A. C. 1989. Reasoning about time in higher-level language software. IEEE Trans. Softw.
Eng. 15, 7, 875–889.

SOUYRIS, J., LE PAVEC, E., HIMBERT, G., JÉGU, V., BORIOS, G., AND HECKMANN, R. 2005. Computing the
WCET of an avionics program by abstract interpretation. In WCET 2005. 15–18.

STAPPERT, F. AND ALTENBERND, P. 2000. Complete worst-case execution time analysis of straight-
line hard real-time programs. J. Syst. Architecture 46, 4, 339–355.

STAPPERT, F., ERMEDAHL, A., AND ENGBLOM, J. 2001. Efficient longest executable path search for pro-
grams with complex flows and pipeline effects. In Proceedings of the 4th International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, (CASES’01).

STASCHULAT, J. AND ERNST, R. 2004. Multiple process execution in cache related preemption delay
analysis. In EMSOFT. Pisa, Italy.

STASCHULAT, J. AND ERNST, R. 2006. Worst case timing analysis of input dependent data cache
behavior. In ECRTS. Dresden, Germany.

STASCHULAT, J., SCHLIECKER, S., AND ERNST, R. 2005. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay. In ECRTS. Palma de Mallorca, Spain.

THEILING, H. 2002a. Control flow graphs for real-time systems analysis. Ph.D. thesis, Universität
des Saarlandes, Saarbrücken, Germany.

THEILING, H. 2002b. ILP-based interprocedural path analysis. In Embedded Software (EMSOFT).
Lecture Notes in Computer Science, vol. 2491. Springer, New York. 349–363.

THEILING, H., FERDINAND, C., AND WILHELM, R. 2000. Fast and precise WCET prediction by sepa-
rated cache and path analyses. Real-Time Syst. 18, 2/3 (May), 157–179.

THESING, S. 2004. Safe and precise WCET determination by abstract interpretation of pipeline
models. Ph.D. thesis, Saarland University.

THESING, S., SOUYRIS, J., HECKMANN, R., RANDIMBIVOLOLONA, F., LANGENBACH, M., WILHELM, R., AND

FERDINAND, C. 2003. An abstract interpretation-based timing validation of hard real-time
avionics software systems. In Proceedings of the 2003 International Conference on Depend-
able Systems and Networks (DSN 2003). IEEE Computer Society, Los Alamitos, CA. 625–
632.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

The Worst-Case Execution-Time Problem • 36:53

THIELE, L. AND WILHELM, R. 2004. Design for timing predictability. Real-Time Syst. 28, 157–177.
VIVANCOS, E., HEALY, C., MUELLER, F., AND WHALLEY, D. 2001. Parametric timing analysis. In Pro-

ceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems. 88–93.

WENZEL, I., RIEDER, B., KIRNER, R., AND PUSCHNER, P. 2005a. Automatic timing model generation
by CFG partitioning and model checking. In Proceedings of the Design, Automation and Test in
Europe (DATE’05). Munich, Germany.

WENZEL, I., RIEDER, B., KIRNER, R., AND PUSCHNER, P. 2005b. Measurement-based worst-case ex-
ecution time analysis. In Proceedings of the 3rd IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS’05). Seatlle, Washington. 7–10.

WHITE, R., MUELLER, F., HEALY, C., AND WHALLEY, D. 1999. Timing analysis for data caches and
wrap-around fill caches. Real-Time Syst. 209–233.

WILHELM, R. 2004. Why AI + ILP is good for WCET, but MC is not, nor ILP alone. In VMCAI
2004. LNCS, vol. 2937. Springer, New York. 309–322.

WILHELM, R. 2005. Determining bounds on execution times. In Handbook on Embedded Systems,
R. Zurawski, Ed. CRC Press, Boca Raton, FL. 14–1, 14–23.

WILHELM, R., ENGBLOM, J., THESING, S., AND WHALLEY, D. 2003. Industrial requirements for WCET
tools—Answers to the ARTIST questionnaire. In EUROMICRO Workshop on WCET (WCET
2003).

WOLF, F. 2002. Behavioral Intervals in Embedded Software. Kluwer Academic Publ., Norwel,
MA.

WOLF, F., ERNST, R., AND YE, W. 2001. Path clustering in software timing analysis. IEEE Trans.
VLSI Syst. 9, 6, 773–782.

WOLF, F., KRUSE, J., AND ERNST, R. 2002a. Timing and power measurement in static software
analysis. In Microelectronics Journal, Special Issue on Design, Modeling and Simulation in Mi-
croelectronics and MEMS, vol. 6(2). 91–100.

WOLF, F., STASCHULAT, J., AND ERNST, R. 2002b. Hybrid cache analysis in running time verification
of embedded software. J. Design Autom. Embedded Syst. 7, 3, 271–295.

YE, W. AND ERNST, R. 1997. Embedded program timing analysis based on path clustering and
architecture classificaton. In Proceedings of the IEEE International Conference on Computer-
Aided Design (ICCAD ’97), San Jose, CA. 598–604.

ZHANG, Y. 2005. Evaluation of methods for dynamic time analysis for CC systems AB. M.S. thesis,
Mälardalen University, Västerås, Sweden.

Received February 2004; revised June 2006; accepted January 2007

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

