
Save-IDE
An Integrated Development Environment for Building Predictable Component-Based

Embedded Systems

Séverine Sentilles, Paul Pettersson, Ivica Crnkovic
Mälardalen University

School of Innovation, Design and Engineering
Västerås, Sweden

{severine.sentilles, paul.pettersson,
ivica.crnkovic}@mdh.se

John Håkansson
Uppsala University,

Department of Information Technology
Uppsala, Sweden
johnh@it.uu.se

Abstract— In this paper we present an Integrated Development
Environment Save-IDE, a toolset that embraces several tools: a
tool for designing component-based systems and components,
modeling and predicting certain run-time properties, such as
timing properties, and transforming the components to real-time
execution elements. Save-IDE is specialized for the domain of
dependable embedded systems, which in addition to standard
design tools requires tool support for analysis and verification of
particular properties of such systems.

I. INTRODUCTION
Component-Based Software Engineering (CBSE) is an

approach which aims to increase the efficiency in software
development by (i) reusing already existing solutions
encapsulated in well defined entities (components) and (ii)
building systems by efficient composition (which includes
constructive, i.e. functional composition, or “wiring”, and
composition of extra-functional properties).

To achieve this goal, composition theories are necessary
but not enough; the existence of technologies which include
tool support is crucial. This is even more true in specific
domains, such as dependable embedded systems. The
development process for this category of systems requires a
strong emphasis on analysis, verification, and validation in
order to ensure the necessary quality of the final products.
Three types of requirements are characteristic for these
systems: dependability (reliability, availability, safety, etc.),
timing requirements (release and response time, execution
time, deadline, etc.), and resource utilization (memory, CPU,
message channels). Further, compared to desktop and pure
software systems, software in embedded systems have
significantly different design models from execution models;
while for example design models can utilize component
models, execution models are based on run-time entities such
as threads, tasks, scheduling mechanisms, etc. This implies that
a CBSE approach for embedded systems must have an
additional element in the development chain – transformation
of models in the deployment phase. Consequently, there is a
need for an Integrated Development Environments (IDE),
gathering all the tools and techniques needed in the
development process and integrating them with component-

based development. Compared to the majority of existing IDEs
which focus mainly on the programming aspect, an IDE for
component-based dependable embedded systems should
highlight (i) design, (ii) analysis, (iii) transformations, and (iv)
verification.

In this paper we present an IDE developed for the
SaveCCM component model [1] as part of a component-based
development approach that includes three key activities in the
development process: design, analysis, and synthesis. The IDE,
called Save-IDE1, comprises these quite different aspects of the
development of component-based embedded systems, and
demonstrates an approach to the integration of different tools
into a common environment.

II. SAVE-IDE
Save-IDE is designed as a platform and a set of tools that

cover the design lifecycle. It includes design of a system and
components, specification of component behavior, analysis of
timing properties and deployment (simple transformation from
components to an execution model, generation of glue code
and compilation). Save-IDE is developed in the Eclipse devel-
opment platform using the Eclipse Modeling Framework
(EMF), the Graphical Modeling Framework (GMF), and the
Acceleo plugins.

The System Design is realized in an Architecture Editor,
which is implemented as a graphical user interface used to
design SaveCCM systems. The inner parts of compound
elements (assembly, composite, and switch) are realized
through diagram partitioning that allows distinguishing
external view of an element from its internal view. The external
view describes the ports, the various models used, whereas the
internal view handles the inner components, and their
connections. For a primitive component (which does not
include architectural SaveCCM elements), only the external
view is possible. The internal view is described in the
Component Development part of Save-IDE.

1 The SaveIDE is available for download from the webpage

http://sourceforge.net/projects/save-ide/

This work was partially supported by the Swedish Foundation for
Strategic Research via the strategic research centre Progress.

The Component Development provides both a Component
C-code Editor and an Architecture Editor. The component C-
code Editor is used to develop SaveCCM primitive
components and is provided by the Eclipse C/C++
Development Tooling (CDT). From the System Design
perspective, skeletons for the C-code and the corresponding
header files are generated. These skeleton files are then filled
with the appropriate source code. The Architecture Editor is
also used to develop composite components, which are
components constructed out of inner-components.

The exchange of components between the System Design
perspective and the Component Development perspective are
realized through a Repository Browser. Within the System
Design perspective, the repository browser also allows the
reuse of previously realized SaveCCM elements such as
components, assemblies, composites, or switches. Those
elements can be located on local or remote repositories.

The Analysis part in the Save-IDE is provided by the
Timed-Automata Editor (TAE) and the model-checking tool
UPPAAL PORT. The TAE provides developers with a graphical
user interface for formally modeling the internal behavior of
SaveCCM elements as extended timed automata [2]. Using a
semi-automatic mapping process it is possible to associate
external ports of a SaveCCM element with variables of the
internal TA, which allows for formal descriptions of elements
composed into composite components or architectural
descriptions.

The output of the TAE and the mapping can be compiled (by
Save-IDE) to an XML-format accepted by the UPPAAL PORT
tool 2 which consists of a graphical simulator integrated in
Save-IDE and a verifier. Using the integrated simulator it is
possible to validate the dynamic behavior of complete
SaveCCM design in the early development phases of a project,
prior to implementation. Using the verifier interface, it is
possible to establish by model-checking whether a SaveCCM
model satisfies requirements specified in a subset of the logic
Timed CTL. The UPPAAL PORT verifier is developed based on
the timed automata model-checker UPPAAL [3], but extended
with partial order reduction techniques which exploits the
structure and semantics of SaveCCM model to improve the
model-checking efficiency [4]. Fig. 1 shows two screenshots
of Save-IDE.

REFERENCES
[1] Mikael Åkerholm et al., “The SAVE approach to component-based

development of vehicular systems”, Journal of Systems and Software,
vol 80, nr 5, Elsevier, May, 2007

[2] R. Alur and D. L. Dill. “A theory of timed automata”. Theoretical
Computer Science, 126(2): 183–235, 1994

[3] Larsen, K. G., Pettersson, P., and Yi, W. “UPPAAL in a Nutshell”. Int.
Journal on Software Tools for Technology Transfer 1 (1–2), 134–152,
Oct. 1997.

[4] J. Håkansson and P. Pettersson. “Partial order reduction for verification
of real-time components”. In Proc. of the 5th International Conference
on Formal Modelling and Analysis of Timed Systems, LNCS 4763,
pages 211-226, Springer-Verlag, 2007.

2 UPPAAL PORT is available for download from the webpage

http://www.uppaal.org/port

Figure 1. Save-IDE screenshots – the architecture editor (left screenshot), the timed automata editor (upper part of the right screenshot), and the behavior
simulator (lower part of the right screenshot).

