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1 Introduction

The component model described in this report is developed within Progress1,
a strategic research centre funded by the Swedish Foundation for Strategic
Research. The key objective of Progress is to apply a software-component
approach to engineering and re-engineering of embedded software systems, in
particular within the domains of vehicular systems, automation and telecom.

The component model is influenced by previous work in the SAVE project2

and also to some extent by the Rubus component technology [2].

1.1 The Progress approach

The goal of Progress is to provide theories, methods and tools to increase qual-
ity and reduce costs in the development of systems in the vehicular-, automation-
and telecommunication domains. Together they are to cover the whole de-
velopment process, supporting the consideration of predictability and safety
throughout the development. As a basis for this work, Progress proposes a
component-based development approach.

To be able to apply component-based strategy throughout the development
process (starting from a vague specification of the system based on early require-
ments up to its final and precise specification and implementation ready to be
deployed), Progress adopts a concept of a component as a collection gather-
ing all the information needed and/or specified at different points of time of the
development process. That means a component comprises requirements, docu-
mentation, source code, various models (e.g. behavioural and timing), predicted
and experimentally measured values (e.g. performance and memory consump-
tion), etc.

To achieve predictability, Progress puts a strong emphasis on analysis to
provide estimations and guarantees of different important properties. Analysis is
present throughout the whole development process and gives results depending
on the completeness and accuracy of the models and descriptions. Early, inexact
analysis may be performed during design to guide design decisions and provide
early estimates. Once the development is completed, analysis may be used to
validate that the created components and their composition meet the original
requirements. The different analyses planned for Progress include reliability
predictions, analysis of functional compliance (e.g. ensuring compatibility of
interconnected interfaces), timing analysis (analysis of high-level timing as well
as low-level worst-case execution time analysis) and resource usage analysis (e.g.
memory, communication bandwidth).

The design and development of components is supplemented by deployment
activities consisting of two parts: (1) allocation of components to physical nodes
and (2) code synthesis. In code synthesis, the code of components are merged,
optimised and mapped to artefacts of an underlying real-time operating system

1Progress homepage: http://www.mrtc.mdh.se/progress
2SAVE homepage: http://www.mrtc.mdh.se/save
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(e.g., tasks). The binary images resulting from code synthesis are ready to be
executed at the target physical nodes.

Separating component development and deployment facilitates reusing com-
ponents over different physical architectures. However, since much of the desired
analysis requires information about allocation and the underlying platform, the
component model and the deployment models must be related.

The overall development approach envisioned by Progress is further elab-
orated in the concept paper [3].

1.2 Component model overview

The kind of complex distributed embedded systems found in the targeted do-
mains typically have quite different characteristics when considered at different
levels of granularity. The big parts of the system are different from the small
parts of some low-level control task, in terms of execution model, communica-
tion style, synchronisation, etc., but also with respect to the kind of information
that must be available and the type of analysis that is appropriate.

In general, systems consist of relatively independent big units encapsulating
complex functionality. In a distributed system, much of the communication
between and within these big units manifests as messages sent over a bus in
order to share data or to notify other parts of the system important events.
At a more fine-grained level, parts of the detailed control functionality can be
provided by small units that tend to have dedicated, restricted functionality,
simpler communication often manifesting within a single physical node, and
stronger timing and synchronisation requirements.

To address the different concerns at different levels of granularity, ProCom
consists of two distinct, but related, layers [1]. At the upper layer, called ProSys,
the system is modelled as a number of active and concurrent subsystems, com-
municating by message passing. The lower layer, ProSave, addresses the internal
design of a subsystem down to primitive functional components implemented
by code. Contrasting ProSys subsystems, ProSave components are passive and
the communication between them is based on a pipes-and-filters paradigm.

In both layers, information about a component is stored along with the
components in the repository, including requirements, textual documentation
and models of the behaviour and resource usage. Since it is anticipated that
additional analysis techniques will be developed in the future, the repository
structure is extendable, so that additional information required by a new anal-
ysis method can be added without impacting existing components.

The ProSys and ProSave layers are described in Section 2 and Section 3, re-
spectively, and Section 3.5 define the relation between them. Section 4 presents
an example of modelling a particular subsystem. Section 5 describes the meta-
model, formalising the concepts of the component model and specifying how
they relate.
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2 ProSys —the upper layer

In ProSys, a system is modelled as a collection of concurrent, communicat-
ing subsystems. A subsystem can in turn be built out of smaller subsystems,
thus making ProSys a hierarchical component model. From the perspective of
component-based development, subsystems are the “components” conforming to
the ProSys component model, defined as design or implementation units that
can be developed independently, stored in a repository and reused in multiple
applications.

The components on this level are often meant to be allocated to different
nodes in a distributed system. Even a single subsystem may consists of parts
that end up on different nodes. The distribution is however not specified in this
component model, as it is provided by a separate deployment model.

2.1 Subsystems

A subsystem is specified by typed input- and output message ports, as shown in
Figure 1. The ports express what messages the subsystem receives and sends.
The external view also includes attributes and models.

Figure 1: External view of a subsystem with three input message ports and two
output message ports.

Subsystems are active, in the sense that they may include activities that are
performed periodically or in response to some internal event, rather than as the
result of an external activation. They can contain reactive parts as well, that
are performed in response to the arrival of a message.

2.2 Connecting subsystems

A system consists of a collection of subsystems and connections from output
to input message ports. Message ports are not connected directly, but via a
message channel (see Figure 2). This means that information about the shared
information can be associated with the channel, rather than with the producer
or consumer. It also makes it possible to define that a particular data, e.g.,
vehicle speed, will be required in the system before the producer and receivers
of this data are defined. Message channels support n-to-n communication, i.e.,
several output ports as well as several input ports can be connected to the same
channel.
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Figure 2: Three subsystems communicating via a message channel.

Message passing is asynchronous, meaning that sending a message is a non-
blocking action. The way in which new messages are handled is defined by
the receiving subsystem (e.g., if the input message port is polled at a fixed
frequency or if the arrival of a new message directly triggers a response, if
additional messages are queued, ignored or overwrited previous messages, etc.).

2.3 Primitive and composite subsystems

Primitive subsystem can be internally modelled by ProSave components, as de-
scribed in Section 3.5. Alternatively, they can be realised by code conforming to
the runtime interface of Progress subsystems3. In the case of legacy code, i.e.,
existing code developed outside the Progress context, some modifications or
additions would typically be required to make it compatible with the Progress
subsystem interface. This componentisation activity is described in the concept
paper [3].

A composite subsystem internally consists of subsystems and message chan-
nels. There are also connections that associate the message channels with mes-
sage ports of the composite subsystem or the subsystems inside. This allows an
input port, acting as a message consumer outside the component, to act as a
message producer internally. Oppositely, an output port consumes messages on
the inside and acts as a message producer from the outside.

Two message channels connected to the same message port, outside and
within the component, respectively, will typically not manifest as two separate
entities in the final system. Rather, this connection via the message port can be
seen as a way to “unify” a channel defined locally within a composite component
with a particular channel in the component environment4.

An example of a composite subsystem is given in Figure 3.
3The details of this runtime interface remains to be decided, as a part of the work on

deployment and synthesis.
4Currently, the component model does not contain any constructs that modify messages as

they pass the boundary of the enclosing subsystem, for example queuing incoming messages
that are to be delivered to an internal subsystem that does not support queuing. This type
of construct might be introduced later on, if it is required for the development scenarios we
envision.
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Figure 3: An example of a composite subsystem.

3 ProSave — the lower layer

This section defines ProSave, a component-based design language especially
targeting subsystems with complex control functionality. It defines the ProSave
constructs and their semantics, and describes the connection between ProSave
and ProSys.

In ProSave, a subsystem is constructed by hierarchically structured, inter-
connected components. Components are passive, meaning that they do not
contain their own execution threads and thus can not initiate activities on their
own. Instead, they remain passive until activated by some external entity, and
when activated they perform the associated functionality before returning to
the passive state again. Component activation is always initiated at the sub-
system level, where components can be associated with periodical activation or
the occurrences of some external or internal event. This is further discussed in
Section 3.5.

ProSave components are design-time entities that are typically not distin-
guishable as individual units in the final executing system. During the deploy-
ment and realisation process, the components are transformed into executable
units, e.g., tasks, in order to achieve the desired runtime efficiency by avoiding
a costly component framework at runtime.

The architectural style is based on a data/control flow model with an explicit
separation of data transfer and control flow. The former is captured by data
ports where data of a given type can be written or read, and the latter by trigger
ports that control the activation of components.

3.1 Components

A ProSave component is a reusable unit of functionality, primarily designed to
encapsulate relatively small and rather low-level, non-distributed functionality.
The external view of a component consists of two major parts: ports through
which the functionality provided by component can be accessed, and information
about the component, represented by structured attributes.

Internally, the functionality of a component can either be realised by code,
or by interconnected sub-components, but the distinction is not visible from the
outside. The black-box view of a component, based only on the externally visible
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Figure 4: A simple ProSave component with two input ports to the left and
three output ports to the right. Triangles and boxes denote trigger ports and
data ports, respectively.

structure and attributes, is useful since it facilitates compositional reasoning
and supports early analysis of systems when some components are yet to be
implemented. Still, some analysis might require or benefit from a white-box
view of components, where the contents of a component is available, e.g., the
sub-component structure or the source code. In particular, synthesis activities
assume a fully defined system, and will probably mostly adopt a white-box view
to allow optimisations spanning several levels of nesting.

Figure 4 shows a component in its simplest form. When the input trigger
port is activated, it reads the current value at the input data port and starts
processing this value. When done, output is produced at the output data ports
on its right side, and control is forwarded via the output trigger port. The gen-
eral component interface, defined in detail below, allows components to provide
more than one service, and to produce parts of the output at different points in
time.

3.1.1 Services, groups and ports

The functionality of a component is made available to external entities by a set
of services, each corresponding to a particular functionality that the component
provides (e.g. control loop, diagnostics). Services are triggered independently
and they may be run concurrently. Each service consists of the following parts:

• An input port group consisting of a trigger port by which the service can
be activated and a set of data ports corresponding to the data required to
perform the service.

• A set of output port groups where the data produced by the service will
be available. Each group consists of a number of data ports and a single
trigger port indicating when new data is available.

Each port belongs to a single group, and each group belongs to one service. The
ports of an input group are informally referred to as input ports, and ports of
output groups are called output ports. Figure 5 illustrates these concepts.

Data ports are typed and associated with a default value used for initialisa-
tion. The type is specified by a type definition in C.5

5Elaborating on the details of a suitable type system is included in the plan for future
improvements.
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S1

S2

Figure 5: External view of a component with two services; S1 has two output
groups and S2 has a single output group.

Allowing multiple output groups provides the possibility to produce outputs
at different points in time.

In addition to the input trigger ports and the related entities, a component
has a collection of attributes. Some of them are explicitly associated with a
specific port, group or service (e.g., the worst case execution time of a service,
or the range of values produced at a data port), while others are related to
the component as a whole, for example a specification of the total memory
footprint.

3.1.2 Component semantics

Initially, all services of a component are in an inactive state where they can
receive data and trigger signals to the input ports, but no internal activities are
performed. When an input trigger port is activated, all the data ports in the
group are read in one atomic operation and then the service switches into an
active state where it performs internal computations and produces output at its
output groups. The data and triggering of an output group are always produced
in a single atomic step. Before the service may return to the inactive state again,
each of the associated output groups must have been activated exactly once.6

While in the running state, a service can not be triggered again (i.e., acti-
vations of the input trigger port are simply ignored). To avoid inefficiency, we
envision that this is ensured by analysis at design time, rather than enforced by
a runtime mechanism.

3.2 Connecting components

Components can be connected to collaborate in providing more complex func-
tionality. This is done by simple connections that transfer data or control and

6The requirement that all output groups must be activated might be relaxed in the future,
if optional output groups are introduced.
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by additional connectors providing more elaborate manipulation of the data-
and control flow. Connected components can be found inside composite com-
ponents, and on the top level inside subsystems.

3.2.1 Connections

A connection is a directed edge which connects two ports — either input data
port to output data port or input trigger port to output trigger port. In the
case of data ports, they must have compatible types. Graphically, a connection
is represented by an arrow from output- to input port.

There can be at most one connection attached to a port. An exception to
this rule is that the ports of a composite component (see Section 3.3.2) can have
one connection on the inside and one on the outside.7

A connection between data ports denotes the data transfer. ProSave follows
the push-model for data transfers. It means that whenever data is produced on
a data output port, the data is transferred by the connection to the input data
port and stored there, overwriting the previous value. A triggered component
always uses the latest value written to the input data port.

Connections between trigger ports define the control flow. That means that
a trigger port on the target endpoint of the connection is triggered as the result
of the trigger port on the source endpoint of the connection being activated.

In general, a transfer is not an atomic action, and the transfer over two differ-
ent connections can be carried out concurrently or in arbitrary order. However,
there is one exception to this, described in more detail in Section 3.4. This
exception essentially specifies that when data and triggering appear together at
an output port group, the data should be delivered before the triggering.

3.2.2 Connectors

In addition to connections, there are constructs called connectors that may be
used to control the data- and control-flow. In general, a connector is represented
by a rounded rectangle with the name of the connector written inside. The most
used connectors may also have a simplified notation. This is the case of Data
fork and Control fork, which may be abbreviated using a thick dot.

Data

fork
.
..

A data fork is used to split a data connection to several
ones. It has one input data port and at least two output
data ports. Data written to the input port are duplicated
on the output ports. Graphically, this connector can also
be denoted by a thick dot.

7Strictly speaking, we should say one connection on the inside of the component and one
on the outside of each instance of the component (see Section 5).
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Data or.
..

The data or connector is used to merge several data con-
nections to one. It has one output data port and least two
input data ports. Data written to any of the input ports are
forwarded to the output port.

Data

muxer
.
..

A data muxer allows grouping several data inputs into one
output. It is mainly used to build data of a message (ex-
changed at a system level). It has two or more input data
ports and one output data port. The type of the output
data port is a struct comprising data of all input data ports.
Whenever data is written to an input data port, it updates
it in the relevant parts of the output data stuct and makes
the data visible on the output data port.

Data

demuxer
.
..

A data demuxer works as an inverse to data muxer. It has
two or more output data ports and one input data port.
Whenever data is written to the input data port, it is ex-
tracted and respective parts made available on the output
data ports.

Control

fork
.
..

A control fork is used to split control flow to several con-
current paths. This connector has one input trigger port
and at least two output trigger ports. Whenever the input
trigger port is triggered, the trigger is transfered to all out-
put trigger ports. Graphically, this connector can also be
denoted by a thick dot.

Control

join
.
..

The control join connector joins the control flows of sev-
eral concurrent paths (an inverse operation to control fork).
This connector has one output trigger and at least two in-
put trigger ports. It waits until all input trigger ports are
triggered, then it triggers the output port. The alternative
notation for this connector is a small circle.

Selection .
..

.

..

Selection is used to choose a path of the control flow depend-
ing on a condition. This connector has one input trigger
port, and several output trigger ports and at least one in-
put data port. The connector has associated conditions over
the data coming from the input data ports. Based on the
result of evaluating the conditions, it forwards the incoming
trigger to exactly one of the output trigger ports.
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Figure 6: A typical usage of fork- and join connectors. When component A is
finished, components B and C are executed in arbitrary order (possibly inter-
leaved). Component D is executed once both B and C have finished.

A

B

C D

Selection

Data 

or

Control 

or

Figure 7: A typical usage of selection and or-connectors. When component A
is finished, either B or C is executed, depending on the value at the selection
data port. In either case, component D is executed afterwards, with the data
produced by B or C as input.

Control or.
..

The control or connector is used to join control flows of
alternative paths (an inverse operation to Selection). The
connector has at least two input trigger ports and one out-
put trigger port. It forwards each incoming trigger to the
output trigger. In contrast to control join, it does not wait
for all input triggers to become triggered.

The list of connectors is presumably incomplete and may grow over time as
additional data-/control-flow constructs prove to be needed. Figures 6 and 7
show two typical usages of connectors.

3.3 Primitive and composite components

When considering the internal structure, components come in two types: prim-
itive components which are realised by code, and composite components which
consist of internal components that together provide the desired functionality.
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S1

S2

speed

dist

speed brakeMode

control

typedef struct {

int *speed;

float *dist;

} in_S1;

typedef struct {

int *control;

} out_S1;

typedef struct {

int *speed;

} in_S2;

typedef struct {

int *brakeMode;

} out_S2;

void init();

void entry_S1(in_S1 *in, out_S1 *out);

void entry_S2(in_S2 *in, out_S2 *out);

Figure 8: Example of header file for a primitive component with two services,
and no explicit name mappings.

3.3.1 Primitive components

In a primitive component, the behaviour of each service is realised by a non-
suspending C function. In addition, the component has an init function which
is called at system startup to initialise the internal state.

More concretely, the primitive component specifies a header C file and a
source C file, where the init function and the service entry functions are declared
and defined8. The header file also declares the structs used for input and output
to the services. By default, the naming of entry functions and argument structs
is based on the names of services and ports, but explicit name mappings can
also be supplied (see Section 5.2). Figure 8 shows an example of a header file.

3.3.2 Composite components

The internal view of a composite component consists of sub-components, con-
nections and connectors. Each sub-component is, in turn, an instance of a
primitive or composite component, developed either from scratch or retrieved
from repository. Connections and connectors control the order in which sub-
components are invoked and how data are exchanged among them.

The ports of the encapsulating composite component appear “inwards” with
the opposite direction — for example an input trigger port of the enclosing
component acts as an output trigger port when seen from inside. That allows

8The current version of the API is restricted to primitive components with at most one
output group per service
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us to define the connections as always going from an output port to an input
port.

When the component writes to an output port, this data does not become
available outside the component until the trigger port of the port group is acti-
vates. When this happens, the values of all data ports in the group atomically
appear on the outside. Similarly, the input data ports can receive data also
when the service is in the active state, but these data are not propagated inside
the component until the next time the service is activated.

The usage of sub-components, connections and connectors actually form
workflows starting in an input trigger port of the composite component and
ending in the output trigger ports. If the component has several services, then
each service has its own workflow. It should not happen that a workflow trig-
gers an output trigger of another service. To prevent such problems, ProSave
limits internal interactions between services to only data connections (i.e. no
triggering).

There are no additional restrictions imposed by the component model on
the internal architecture of a composite component. Obviously, an incorrect use
of the connections and connectors may produce an architecture which exhibits
behavior forbidden for a component. Basically, we leave this as the responsibility
of the component developer. However, we envision tool support and analysis
methods that would allow a developer to validate an architecture and discover
such faulty behavior.

3.4 Abstract execution semantics

Parts of the semantics has been presented in previous sections, including the
behaviour of a component as viewed from the outside and the meaning of the
different connectors. This section gives a more complete view of the ProSave
execution semantics.

The execution semantics follows the component hierarchy, meaning that it is
defined for a single level of nesting. This allows reasoning about the behaviour
of a system also when some components are not fully decomposed down to
primitive components.

Note that the semantics defines activities and communication on a concep-
tual level, and is not meant to illustrate the concrete runtime communication
mechanisms. During synthesis, the design-time components are transformed
into runtime entities, such as tasks, with different communication possibilities.
It is the responsibility of synthesis to ensure that the behaviour of the run-
time system is consistent with what is specified by the execution semantics and
the ProSave design. For example, although the semantics view data transfer
on different levels of nesting as separate activities, the final system may realise
communication between two primitive components on different levels by a single
write to a shared variable, ignoring the intermediate steps of activating input
and output port groups, as long as the overall behaviour is consistent with the
execution semantics.
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The overall responsibility of a composite component is to realise the inter-
nal workflows defined by connections, connectors and subcomponents. Con-
cretely, this amounts to transferring data and triggering over connections, car-
rying out connector functionality and interacting with constructs one level of
nesting above and below.

Seen from inside, data and triggering appear at the ports of the input port
group when a service is activated. When this happens, or when new data or
triggering become available at the output port of a subcomponent or connector,
it should be forwarded on the connection leading out of the port. This transfer
may take an arbitrary amount of time, and different transfers may be performed
concurrently or in any order. There is only one restriction, related to the end-
to-end delivery of the data and triggering of a single activation of an output
port group: The trigger signal should not arrive to any port before all data have
arrived to all end destinations (i.e., to component ports). Informally, this should
hold also if the data passes through a connector that modifies it, such as a data
demuxer.

The final phase of a transfer depends on the destination:

• When data reaches a port, it overwrites the current value of that port. In
the case of a connector, the data is handled according to the connector
semantics (e.g., written to the connector output ports in case of a data
split), otherwise nothing more happens.

• When triggering reaches a connector, it is handled according to the con-
nector semantics.

• When triggering reaches a component input port, nothing happens if the
service is currently active. If it is currently passive, then the values of the
data ports of the triggered port group are atomically copied inside the
component, and the service becomes active.

• When triggering reaches an output port of the enclosing component, the
current contents of the ports of that group become available at the next
level of nesting (i.e., outside the enclosing component), possibly after some
delay.

It is also the responsibility of the composite component to turn a service back to
the passive mode once all the activities related to the activation of the service
have finished. This means that there should be no pending transfer of data
or triggering, and all subcomponent services that was activated should have
returned to a passive state.

3.5 Using ProSave in a ProSys subsystem

Components in ProSave are passive, typically local and they communicate via
data exchange and triggering. A ProSys subsystem differs from a ProSave com-
ponent in several aspects. A subsystem has its own threads of execution, which
means that it can actively initiate the execution of a particular functionality.
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Moreover, subsystems use message passing with explicit message channels as
the means of communication, and parts of a single subsystem often end up on
different nodes in the final system.

This section describes how ProSave can be used to define the internals of
a ProSys subsystem. This is done in a similar way to how composite compo-
nents are defined internally — as a collection of interconnected components and
connectors — but with some additional connector types to allow for:

a) mapping between message passing and trigger/data communication, and

b) specifying activation of ProSave components.

The additional connectors are described in detail in the list below.

An input message port of the subsystem acts as a ProSave
connector with one output trigger port and one output data
port which can be connected to a ProSave component or
connector. Whenever a message is received, the message
port writes message data to the output data port and acti-
vates the output trigger.

The output message port is an inverse to the input message
port. In ProSave it acts as a connector with one input trig-
ger and one input data port. When the trigger is activated,
the port sends a message with the data currently available
on the input data port.

Clock

A clock serves for generating periodic triggers. It has one
output trigger port which is triggered at a specified rate.
Clocks are assumed to follow a common conceptual time,
i.e., they are not allowed to drift. However, it is not as-
sumed that all clocks produce their first activation simulta-
neously, meaning that the relative phasing between clocks
is arbitrary. As an alternative notation, this connector can
be represented by a clock symbol.

The coupling between ProSave and ProSys is performed only at the top level
in ProSave, which means that the connectors listed above are not allowed inside
a ProSave component.

The use of these connectors is exemplified in Figure 9. The encapsulating
subsystem has message ports as described in Section 2. Internally, each message
port acts as a connector with a trigger and a data port, which can be connected
to other components or connectors in the ordinary ProSave way. Additionally,
clocks are used to generate periodic triggers.

The connections on the top level inside a subsystem follow the same seman-
tics as the connections inside the ProSave component. A transfer activity is
initiated when data or triggering appears at an output port of a component

16



50 Hz

C1
C2

C3

10 Hz

Figure 9: A ProSys subsystem internally modelled by ProSave.

or connector, or at an input message port. When triggering reaches an output
message port, the current data of that port is sent as a message.

4 Example

To illustrate the component model we use as an example an electronic stabil-
ity control (ESC) system from the vehicular domain. In addition to anti-lock
braking (ABS) and traction control (TCS), which aim at preventing the wheels
from locking or spinning when braking or accelerating, respectively, the ESC
also handles sliding caused by under- or oversteering. Basically, when the ESC
detects that the direction of the car differs significantly from the desired direc-
tion indicated by the steering wheel, it brakes one of the wheels to counteract
the sliding.

When the car is modelled in ProCom, the ESC would be one of many sub-
systems at the top level, together with subsystems for engine control, airbags,
climate control, etc. To simplify the example, we assume that none of the inputs
to the ESC, i.e., yaw, acceleration and steering wheel position and wheel speed,
are needed by any other subsystem. We also assume that the ESC does not
need any additional information from other subsystems, ignoring for example
any specification of how the ESC should react if some other part of the system
is not functioning properly.

For the output, we assume that the ESC has direct access to actuators for ad-
justing the brake pressure of individual wheels. Acceleration adjustments, how-
ever, are output as messages to the engine subsystem. The ESC also produces
messages indicating if it is active or not, used for example by the information
panel to warn the driver.

The ESC can be further decomposed, as shown in Figure 10. Inside, we find
subsystems for the sensors and actuators that are local to the ESC. There are
also subsystems corresponding to specific parts of the ESC functionality (SCS,
TCS and ABS). In the envisioned scenario, the TCS and ABS subsystems are
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Figure 10: The ESC is a composite subsystem, internally modelled by local
message channels and smaller subsystems.

Figure 11: The SCS subsystem, modelled in ProSave.

reused from previous versions of the car, while SCS corresponds to the added
functionality for handling under- and oversteering. Finally, the “Combiner”
subsystem is responsible for combining the output of the three. The contents
of the SCS subsystem are further elaborated in the following section.

To exemplify the ProSave level of the component model, the contents of the
SCS subsystem is shown in Figure 11. SCS is a primitive subsystem, internally
modelled in ProSave. It contains a single periodic activity, performed at a
frequency of 50 Hz. This activity first activates the components responsible
for computing the actual and desired directions, respectively. When both have
finished, another component compares the two directions and decides whether
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Figure 12: ProSys metamodel — Subsystem

or not the stability control should be activated. The actual response, i.e., the
adjustment of brakeage and acceleration, is computed by a fourth component.

5 Meta-model

The meta-model is a feature of the component model. It models its concepts
as classes and shows the relations among them. Following the different levels
in ProCom, the meta-model is also divided to two packages — ProSys and
ProSave.

5.1 ProSys package

A subsystem is represented by a class Subsystem (see Figure 12). Each subsys-
tem has message ports (classes InputMessagePort and OutputMessagePort),
which it uses for communication with other subsystems. The top-level system
is in ProSys viewed as a special subsystem (typically with no message ports)
and thus it is also represented by class Subsystem.

The class Subsystem refers to a realisation of the subsystem, which may
define the subsystem as a composition of other subsystems or as a composition
of ProSave components. If the realisation of a subsystem is undefined, the class
Subsystem provides only a black-box view of a subsystem, which is advantageous
in early stages of design when the realisation of a subsystem is not decided yet.

The subsystem realisation that defines the subsystem as a composition of
other subsystems is captured by class CompositeSubsystem (see Figure 13).
It lists internal subsystem instances, message channels and connections. An
internal subsystem instance (class SubsystemInstance) refers to a Subsystem
that implements it. In early stages of design, this reference may be not set, in
which case the subsystem instance serves as a placeholder to be assigned the
implementation later.

The communication within a subsystem is realised by explicit message chan-
nels (class MessageChannel). The connection of between a message channel
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Figure 13: ProSys — Composite Subsystem

and a subsystem’s port is realised by class Connection. It connects the mes-
sage channel to a port of a subsystem instance (specified by referring to the
subsystem instance and the port of the respective subsystem) or it delegates
messages between the message channel and a port of the composite subsystem
(the reference to subsystem instance is left unset in this case).

5.2 ProSave package

The top-level of a ProSave design is represented by class ProSaveSubsystem
(see Figure 14) which acts as a realisation of a ProSys subsystem.

The internals of a ProSave subsystem are modelled by sub-component in-
stances, connectors and connections.

A subcomponent instance (class SubcomponentInstance) represents a par-
ticular instantiation of a component (class Component). (This is similar to
subsystems and their instances within a composite subsystem.)

The class Component (see Figure 15) defines the services (class Service),
each of which splits to an input port-group (class InputPortGroup) and a num-
ber of output port-groups (class OutputPortGroup). Each port-group defines
one trigger port and a set of data ports.

Ports are categorized and represented in the meta-model by classes Input-
DataPort, OutputDataPort, InputTriggerPort, OutputTriggerPort and their
abstract ancestors DataPort, TriggerPort, Port.
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Figure 14: ProSave — Subsystem
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Figure 15: ProSave — Component, Services and Ports
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The flow between subcomponent instances is driven by connectors and con-
nections (see Figure 16). There are a number of connectors defined in ProSave.
Each type of a connector is represented by a dedicated class in the meta-model
(DataFork, Selection, ControlJoin, etc.). Each connector defines its ports
by including descendants of Port.

The connectors at the top-level of ProSave include also message input/output
ports (classes InputMessagePort and OutputMessagePort — see Figure 17).
These correspond to ports defined by the subsystem and in fact make the sub-
system message ports accessible to the ProSave design.

The linkage between connectors and/or components is realised by connec-
tions. A connection (class Connection) connects two port ports together. Simi-
larly to connections between subsystems, the connection may refer to a subcom-
ponent instance, in which case the port is related to that particular instance.
Otherwise, the port is used directly, which is the case of ports used in delegation
and the ports of connectors.

A component contains a link to its realisation (class ComponentRealization).
Similarly to subsystems, this feature allows having only black-box components
at early stages of design and assigning them the realisation later on. ProSave
distinguishes two realisations — either by a composition of subcomponents (i.e.
composite component) or by code (i.e. primitive component).

A composite component (class CompositeComponent) is modeled in a similar
way as the ProSave subsystem on the top-level (see Figure 18) — by subcompo-
nent instances, connectors and connections. However, an important distinction
is that only a restricted subset of connectors may be used inside a composite
component — only connectors inheriting from class ConnectorInsideComponent.

A primitive component (class PrimitiveComponent) is tied to a particular
implementation in C programming language (see Figure 19). It also provides
mapping of each of its services to a particular C-method and for each service it
defines mapping of ports to C-variables.

Virtually any element in ProSave design may have a set of attributes (see
Figure 20). These attributes capture requirements, models and other properties.
On the level of a meta-model this is captured by abstract class Attribute,
which should be specialised to model a particular requirement, quality attribute,
timing requirement, etc.
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Figure 16: ProSave — Connectors
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Figure 17: ProSave — Additional Top-Level Connectors
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Figure 18: ProSave — Composite Component
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Figure 19: ProSave — Primitive Component
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Figure 20: ProSave — Component Attributes
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