
Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

 Achieving Sustainable Business for Industrial Software Systems

Pia Stoll*, ABB Corporate Research, pia.stoll@se.abb.com,
Anders Wall, ABB Corporate Research, anders.wall@se.abb.com

The session type selected for the paper presentation:

1) “Dialogue” Session �

2) “Author’s Presentation” Session �

Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

Achieving Sustainable Business for Industrial Software Systems

Pia Stoll*, ABB Corporate Research, pia.stoll@se.abb.com,
Anders Wall, ABB Corporate Research, anders.wall@se.abb.com

Business_process(es) and software_engineering for development of software for complex_systems;
impact_of_change on quality_cost; organizational_change��

�

�

INTRODUCTION

Sustainable development of industrial
software systems with controllable outcome in
terms of cost, schedule and quality despite
changes originating from new technology,
stakeholders’ concerns, organization, and
business goals during long life-times is a
challenge. Unruh [17] has argued that numerous
barriers to sustainability arise because today's
technological systems were designed and built
for permanence and reliability, not change.

Sustainability is a characteristic of a process
or state that can be maintained at a certain level
indefinitely. The implied preference would be for
systems to be productive indefinitely, to be
"sustainable." For instance, "sustainable
development" would be development of software
systems that last indefinitely. Author Michael
Pollan [13] has defined an unsustainable system
simply as "a practice or process that can't go on
indefinitely because it is destroying the very
conditions on which it depends.

There are several factors obstructing the
sustainability of the software development
process:

• Competing concerns from various
stakeholders affect the system and the
winner among the concerns is not always the
most logical. For a mature software system
most probably political concerns will
compete with functional concerns and affect
the system.

• The system’s software qualities are exposed
to change, e.g. the introduction of faster
multi-core processors might solve
performance issues outside the scope of the
architecture and therefore the focus and
mission of the architecture shifts to other
issues.

• The business goals of the system are
exposed to change. This happens when the
management shifts the focus from increase

of quality to cost cut and thereby changes
one important business goal for the system.

• The technical environment and organization
structure change. A new platform or
distributed development might be
unavoidable and therefore puts requirement
on change for the system.

If these factor where possible to control and
a stable balance of cost, schedule, and quality
outcome of the software system was achieved,
the system would be a sustainable software
system. The development of the software system
would deliver required quality to the customers’
satisfaction at the desired scheduled and cost
indefinitely. However unrealistic this might seem
it is truly the goal of sustainable software
development. The cost is a very important
measure since a long-lived system can be
achieved at a high cost but this would lead to an
unsustainable development process which would
eventually collapse.

Since software development is considered
an art involving people and people
communicating a sustainable system model
must include influences from people,
architecture, hardware, software, communication
and unpredictable changes in form of;
stakeholders’ concerns’ changes, technology
changes, business goal changes, and
organizational changes. With all influences
included in one model it would be desirable to be
able to predict or at least reason about the
outcome of the system; cost, schedule and
quality.

The remaining of this paper is organized with
a short overview of related work in the section
“Related Research” and the issues important for
sustainable industrial software systems is given
in section “Issues for Sustainable Business”. The
paper is concluded in the section “Conclusions”
followed by a short description of further work in
section “Future Work”.

Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

RELATED RESEARCH

The importance of technical, business, and
social influences on software architecture is
discussed in [1] and the relationship among the
technical, business, and social environments that
subsequently influence future architecture is
called the architecture business cycle (ABC).
The ABC focuses on the creation of software
architecture and the maintenance of the
architecture and conformance of the system to
the architecture, however, the ABC does not
handle sustainable system issues where it’s
possible that the architecture has to change
during the system’s lifetime. An attempt to
address sustainable systems can be found in
[10] where the integration of established
engineering methods with a development
organization’s life cycle is discussed. Here the
Attribute Driven Design (ADD) method, [19], and
the Cost Benefit Analyze Method (CBAM), [9],
are suggested as means for the architect to
design and chose appropriate architectural
responses to the new challenges during the
software development life cycle. The methods
are preferably used in the development phase
and the Architecture Trade-off Analysis Method
(ATAM) used after the system is released and
the stakeholders want to discover risks and
sensitivity point in the architecture related to
business goals.

For the change requests entering the system
after its release the stakeholders have to take a
decision if they are worth implementing or not. In
an article from Boehm [4] it is argued that
software engineers should look at proposed
changes to software systems as investment
possibilities and calculate on the value of
investing in those changes with methods similar
to the methods in the investment economics, e.g.
option theory. Especially the value of the
success-critical stakeholders concerns should be
considered important. For the sustainable
software system this would mean that the
software engineers have to be updated on who
is a success-critical stakeholder and how to
calculate the value of his/hers concern’s
implementation. The calculation could also serve
as guidance to what concerns should be allowed
to enter the system as change requests.
However calculating a correct development effort
for a proposed changer request is very difficult.
Joergensen [8] has showed that software project
cost estimation uncertainty assessments are
frequently based on expert judgment, i.e.,
unaided, intuition-based processes and not on
formal models. His guidelines suggest, among
other things, that the most promising strategies
are not based on formal models, but on
supporting the expert processes.

The implementation of change requests also
have to have support in the development
process. The process has to support
unpredictable change requests as well as
support their fast realization. The Scrum [15]
development process has gained a lot of
supporters as it’s a light-weight process with a
strong connection to agile development
methods. Scrum considers the software
development process to be a chaotic empirical
process which requires close watching and
control, with frequent intervention. A scrum
software project is controlled by establishing,
maintaining, and monitoring key control
parameters. The key control parameters are
backlog, issues, risk, problems and changes -
task level management is not used. However in
[5] it is argued that agile development methods
are not well suited to large development
organizations such as those evolving sustainable
software systems. Scrum identifies the most
important stakeholders and these success-
critical stakeholder’s concerns are implemented
at first. This is similar to Ruhe and Saliu [14] who
describe the release planning approach based
on the features’ internal dependencies, the
resource constraints and the stakeholders’
importance.

In [20] the uncertainty principle of software
engineering (UPSE) is stated as “Uncertainty is
inherent and inevitable in software development
processes and products”. The software
development is described as a complex human
enterprise carried out in problem domains and
under circumstance that are often uncertain,
vague or otherwise incomplete. The principle of
uncertainty is also valid for those changes
entering the development organization which are
considered unpredictable in time and
consequence. The control of the sustainable
software development despite the UPSE is what
makes the sustainable software development
challenging.

ISSUES FOR SUSTAINABLE BUSINESS

The system architecture provides a context
for the software architecture and includes,
beside software architecture, also hardware and
people. System quality attributes and business
goals influence the system architecture. The
influencing factors which are factors affecting the
architecture part of the stakeholder concerns [16]
and include trends, technical environment,
previous experiences, market demands etc.

The influencing factors change over time and
hence the stakeholders’ concerns change over
time. The influencing factors impact and/or put
requirements on system quality attributes and

Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

business goals. This leads to that the system
quality attributes change as result as well as the
business goals. Changing business goals can
lead to changing enterprise architecture and
changing development organization as business
structures and business processes.

Since all these changes come from outside
the software system they are uncontrollable and
unforeseeable. When building software
architecture from start it may be possible to build
in support for foreseeable changes but not for an
unforeseen change, e.g. a sudden organizational
change.

Technology

What makes software especially difficult to
develop for sustainable system is that software
and hardware themselves are not sustainable.
Software technologies, tools, architectures like
the World Wide Web, languages like C and C#
change the software engineering culture in which
system builders operate and learn.

In many cases the demand from the
customers on smooth updates preferably in a
running plant regardless of what changes occur
over time translates into a requirement on
backward compatibility. Backward compatibility
also concerns hardware, where the customer
might run the system on hardware no more
available on the market.

For long-lived systems typically the
components from which the system is built, have
shorter life-cycles than the complete systems.
Many components in a large and complex
software system are acquired from third-party
developers. Consequently, a system provider
has no or limited control over the complete
system (e.g. no access to source-code). Hence,
it is very important to continuously monitoring the
sub-suppliers roadmaps and to have a tight and
sound relation with them. By doing so, a
company have the possibility to react well in time
before a particular component or technology for
which the development organization has no
control over gets obsolete. The fact that software
technologies and commercially available
software components have shorter life-cycles
than what is required for the system is something
that needs to be considered when designing the
architecture.

Typically the life-cycle of a software product
can be divided into three phases: initial design
(I), evolution (II), and end-of-life (III) (see Figure
1). During the initial design phase the
requirements are usually well-known and the
development of new functionality requires
relatively little effort. In the evolutionary phase

the requirements that were not known in (I) are
introduced and the effort for developing and
implementing these requirements require higher
effort, since consideration must be taken to what
already exists in the system. The architecture
developed during initial design does to a large
extent define what is possible in later phases
from an economical point of view.

������������������������

��
�
�
��
�
�
	

��

�
� ���
�

Figure 1 Product life-cycle phases

It is important to find a balance between
upfront investments in, e.g. software
architectural design, and time-to-market for
software development in sustainable complex
industrial systems in the perspective of a
product’s life-cycle. By diagnosing a system’s
life-cycle phase in terms of trends in crucial
organizational measurements we believe that it
is possible to quantitatively motivate efforts in
improving fundamental software qualities in
order to prolong a system’s productive life-time.
A typical trend in an organizational measurement
could be the increasing number of person-hours
invested related to the decreasing number of
function points delivered. This could be an
indication of a system being in the end-of-life
phase (III).

Even though technology evolves in a high
pace, business specific logic does not. Operating
systems and hardware changes all the time but
the basic principles for, e.g. control the motion of
a robot, evolves slower. Another example is the
paper production. The chemical process behind
paper production will not change as it’s defined
by physical parameters and reactions. The
control algorithms, which are part of the business
logic, involved in controlling the pressure, strain
and so on will continuously be refined but not
experience major change. Usually there are
great investments in the business logic and the
investments are secured by intellectual property
claims, so it is important to make as much as
possible out of these investments. This is where
we have the core competence, and the core
business. Returning to the core business has
proven to be successful for many companies

Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

where ABB is one of them. ABB returned its
focus to automation and power distribution after
some years with a broader scope. Isolating the
business logic in a way that enables the
technology around it to evolve with the least
possible cost is crucial. The statement may
seem easy enough but for researchers who have
been using FORTRAN for their algorithms
because its ability to process a huge amount of
control parameters fast and that now have the
possibility of using Matlab algorithms translated
into C# just as efficiently it’s not that easy.
Should they now remodel the process in Matlab
because in the long run C# offers more
advantages than FORTRAN? What’s the return
of investment, the ROI, value of the change?

Organization

According to [1] there are three classes of
organizational influences on software
architecture;

• Immediate business: An organization may
have an investment in certain assets, such
as existing architectures and the products
based on them.

• Long-term business: The architecture can
form the core of the long-term infrastructure
investment to meet the organization’s
strategic goals.

• Organizational structure: The organizational
structure can shape the architecture such
that the division of functionality aligns with
existing units of expertise.

For sustainable systems there is a challenge
in creating a sustainable architecture possible to
implement under these three different
organizational influences. There will be shifts in
organization influence inside a development
organization, e.g. if distributed development is
introduced. In this case the distributed
development could for instance put requirement
on the architecture to support isolated module
development. Another example is if the
architecture suddenly has to support the
migration of several products into one, as may
be the case when a company acquires another
company. For this case the shift in organizational
structure goes from immediate business to long-
term business. Development organizations often
have to deal with drastic shifts like this without
the customer noticing any major differences in
actual system software quality.

Recognizing that change requests are
something normal and that deviations from
predictions will occur for a sustainable software

system, the question is how to act upon them.
Should a change in stakeholders’ concerns
toward more secure system always respond in
that the system is optimized for security? Or will
this be in conflict with business goals as e.g.
making the system available over internet?

In traditional control theory [12], optimization
theories have been developed to optimize the
system parameters for stability. Something
similar is needed for sustainable software
systems in order to make the right system
decisions in terms of economics, architecture,
technology and people. There are many states
that can be controlled and/or observed for a
sustainable software system model:

• Software architecture – The design and the
infrastructure of the system

• Software technology – The various
technologies used as a technical base, such
as programming environment, operating
system and middleware.

• Software components – The various
proprietary and commercial components
used to realize the system, examples of
components are user interface, user
management and transaction managers.

• Hardware – The core of the system where
the software is running

• Software communication – everything
regarding communication including
compatibility with other vendor products,
communication hardware, communication
stacks and redundancy concepts.

• People interaction – Most industrial systems
have people that interact with them and how
this is performed is one key to the operation
of the whole system.

• Development processes – Processes
influence the organization and the
architecture and the opposite.

The two last states, people interaction and
the development processes, might be the
hardest to control since they include human
psychology. In [3] programming accidents are
examined, i.e., models, methods, artefacts, and
tools, to determine that each has a step that
programmers find very painful and consequently
avoid or postpone. The avoidance or
postponement disturbs the processes in a not
controllable way and leads at the worst to
uncontrollable cost, schedule, and quality
outcome.

But before the change request reaches the
development stage it has to be approved and
there is various way of handling change

Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

requirements. In [7] a decision support theory in
form of real options theory is suggested for
guiding investment decisions regarding a change
in the software. Typically the option theory
calculations could serve as input to a change
request board.

During the lifetime of a long-lived system
there will be a turn-over of engineers. The
engineers possess competence and know-how
concerning the system. Typical examples of
crucial know-how is the intention and rational
behind certain architectural decisions. As
engineers come and go through the organization
there is a great risk that this knowledge is lost.
As a consequence, poor design decision may be
taken during a system’s evolution which
contributes to shorten the productive phase of
the sustainable systems. A proper architectural
documentation is one way to minimize the risk of
competence drain due to turn-over of engineers.
Yet again the human psychology aspect enters
the field since software developers often find
documentation a very painful step and avoid this
as far as possible. When documenting software
the people doing the documentation has to find it
meaningful and ultimately, such documentation
has to have some notion of intention, i.e.
rationales for architectural decisions [21].

Market

It’s not only customers’ expectations that
change over time. Also a company’s business
goals change, e.g. penetration of new markets.
Every company has its own set of business
goals and to achieve a common perception of
the goals, it would be beneficiary to generalize
them. One approach is presented by Bass and
Kazmann where they have categorized the
business goals from a number of ATAM
evaluations [2]. Their five categories are; 1)
“Reduce total cost of ownership”, (2) “Improve
capability/quality of system”, (3) “Improve market
position”, (4) “Support improved business
processes”, and (5) ”Improve confidence in and
perception of the system”.

Typically there will be a movement between
quality focused business goals as (1), (2), and
(3) and functionality focused business goals as
(3) and (5). A “fresh” software system is typically
more focused on “Improve market position” and
“Improve confidence in and perception of the
system”. New functionality is then released to
customers and feedback from the release in form
of change requirements and trackers leads to yet
more new functionality. When the software
system has grown to a certain extent the focus
might shift to quality focused goals as “Reduce

total cost of ownership”, and “Improve
capability/quality of system”.

The challenge lays in balancing the shift in
business goals with their interpretation to
software quality goals and functionality
requirements. For example “Reduce total cost of
ownership” can mean outsourcing parts of the
development and this puts high requirements on
the modifiability and testability quality and also
on software development processes different to
in-house development [11].

Another example is the conflict of the shift
towards “Reduce total cost of ownership”
including the tactics to use standard hardware. If
the market differentiators for the product are high
robustness and backward compatibility, it means
the robustness issue has to be solved with
standard hardware and the backward
compatibility issue with non complex architecture
in order not to implement expensive
development. This is truly a challenge. The
customer’s perception of the system should be
the same, only with updated software and
hardware. Industrial systems have customers
running legacy hardware which have no intention
or motivation to shift hardware to the latest
technology. For system developers the
customer’s hardware puts requirement on the
software to be backward compatible with the
legacy hardware as well as backward compatible
with legacy software.

It is not uncommon for industrial software
system to have a few dominating customers who
demand certain system qualities. In this case the
challenge lies in to what extent the system
producer can tailor the system to please one
dominant customer before the other customers
object to not getting their requirements met or
having to pay for qualities they don’t require. We
have seen examples where a few dominant
customers have driven a system to be too costly
compared to competitors offers. The reason is
that the system provides a lot of functionality
which are not specifically requested by the
majority of customer categories, but requires
more expensive hardware infrastructure which
contributes to the cost. However there is also an
advantage with a large dominant customer. They
provide the means for the rework of one system
to an extent not possible otherwise, which in the
CelsiusTech case proved very successful. In the
case of CelsiusTech [6], the unpredictable
change in the form of the simultaneous awarding
of two massive contracts (each of which was for
a system beyond anything the company had
ever attempted) led to a complete redesign of
the system architecture based on the core
assets. The new product-line architecture was

Business Sustainability 2008

Sustainable Industrial Software Systems Stoll, Wall

the entry to new business areas not previously
accessible.

CONCLUSIONS

This paper has described the challenges for
the development of sustainable industrial
software systems. The most important factor to
recognize is the factor of time and its effect on
system development since industrial software
systems often have long lifetimes. The second
factor to recognize is that change in
organization, technology, and market over time
is something inevitable and that the development
has to calculate for this. The third factor to
recognize is that changes are not always
predictable or foreseeable and that a static
system could have difficulties to host
unpredictable and unforeseeable changes. The
forth factor to recognize for industrial systems is
that their customers most often don’t want to
experience any change since a change requiring
knowledge update or process interruptions is
costly. The last factor to recognize is that the
producer can achieve the desired quality and
cost despite unpredictable changes at an
unreasonable cost, but this would lead to an
unsustainable development process which would
eventually collapse.

This leads us to the conclusion that the
sustainable industrial software system has to
control the cost, quality, and schedule outcome
of the system despite unpredictable and
predictable changes in organization, market, and
technology affecting the system over time.

FUTURE WORK

Future work will include an attempt to
establish a sustainable software system model,
including measures for the key states important
for the control of the outcome of a sustainable
industrial software system. In this work software
economics will be a key essence influencing the
software engineering theory for the model.

References
[1] Bass, L., Clements, P., Kazman, R.: Software

Architecture in Practice. Addison-Wesley
(1998)

[2] Bass, L., Kazman, R.: Categorizing Business
Goals for Software Architectures. In: SEI (ed.),
Pittsburgh (2005)

[3] Berry, D.M.: The Inevitable Pain of Software
Development: Why There Is No Silver Bullet.
LNCS 2941. Springer Verlag (2004)

[4] Boehm, B.W., Sullivan, K.J.: Software
economics: a roadmap. Proceedings of the

Conference on The Future of Software
Engineering. ACM, Limerick, Ireland (2000)

[5] Boehm, B.W.: A view of 20th and 21st century
software engineering. Proceeding of the 28th
international conference on Software
engineering. ACM, Shanghai, China (2006)

[6] Clements, P., Northrop, L., Software Product
Lines: Practices and Patterns, Addison-Wesley
(2002)

[7] Erdogmus, H.: Valuation of Complex Options in
Software Development. ICSE'99 Workshop on
Economics Driven Software Engineering
Research (EDSER1). ACM/IEEE, Los Angeles
(1999)

[8] Joergensen, M.: Evidence-bases guidelines for
assessment of software development cost
uncertainty. IEEE transactions on software
engineering 31 (2005)

[9] Kazman, R., Jai, A., Klein, M.: Quantifying the
costs and benefits of architectural decisions. In:
Jai, A. (ed.): Software Engineering, 2001. ICSE
2001. Proceedings of the 23rd International
Conference on (2001) 297-306

[10] Kazman, R., Nord, R.L., Klein, M.: A life-cycle
view of architecture analysis and design
methods. In: SEI (ed.), Pittsburg (2003)

[11] Larsson, S., Wall, A., Wallin, P.: Assessing the
Influence on Processes when Evolving the
Software Architecture. Workshop, IWPSE'07,
Dubrovnik, Croatia (2007)

[12] Ljung, L.: System Identification - Theory For the
User. Prentice Hall, Upper Saddle River, N.Y.
(1999)

[13] Pollan, P, Our Decrepit Food Factories, New
York Times, 2007.

[14] Ruhe, G., Saliu, M.O.: The art and science of
software release planning. Software, IEEE 22
(2005) 47-53

[15] Schwaber, K.: SCRUM Development Process.
OOPSLA 95 Business Object Design and
Implementation workshop (1995)

[16] Stoll, P., Wall, A., Norström, C.: Guiding
Architectural Decisions with the Influencing
Factors Method. WICSA. IEEE, Vancouver
(2008)

[17] Unruh , G.C., Escaping carbon lock-in, Energy
Policy, vol. 30, no. 4, 2002, pp. 317-325.

[18] Unruh, G.C., Understanding carbon lock-in,
Energy Policy, vol. 28, no. 12, 2000, p. 817-
830.

[19] Wojcik, R., Bachmann, F., Bass, L., Clements,
P., Merson, P., Nord, R.L., Wood, B.: Attribute-
Driven Design (ADD), Version 2.0. CMU/SEI,
Pittsburg (2006)

[20] Ziv, H., Richardson, D.J.: The Uncertainty
Principle in Software Engineering. 19th
International Conference on Software
Engineering (ICSE'97). ACM (1997)

[21] Leveson N. G, Intent Specifications: An
Approach to Building, Human-Centered
Specifications, IEEE Transections on Software
Engineering, vol. 26, no. 1, 2000

