
Using Dependency Model to Support Software Architecture Evolution

Hongyu Pei Breivold1, Ivica Crnkovic2, Rikard Land2, Stig Larsson3
1ABB Corporate Research, Industrial Software Systems, 721 78 Västerås, Sweden

hongyu.pei-breivold@se.abb.com

2Mälardalen University, 721 23 Västerås, Sweden

{ivica.crnkovic, rikard.land}@mdh.se

3ABB AB, 721 78 Västerås, Sweden

stig.bm.larsson@se.abb.com

Abstract
Evolution of software systems is characterized by

inevitable changes of software and increasing software

complexity, which in turn may lead to huge

maintenance and development costs. For long-lived
systems, there is a need to address and maintain

evolvability (i.e. a system’s ability to easily

accommodate changes) during the entire lifecycle. As

designing software for ease of extension and

contraction depends on how well the software

structure is organized, this paper explores the

relationships between evolvability, modularity and

inter-module dependency. Through a case study of an

industrial power control and protection system, we

describe our work in managing its software

architecture evolution, guided by the dependency

analysis at the architectural level. The paper includes

also the main analysis results, our experiences and

reflections during the dependency analysis process in

the case study.

1. Introduction

The role of software architecture in the evolution of

software-intensive systems is being recognized and

becoming increasingly important, as software

architecture allows or precludes nearly all of the

system’s quality attributes [2, 11]. The evolution of

software architecture implies integrating changing

requirements and coping with stakeholders’ concerns

with respect to business, technology, process and

organizational perspectives, which in turn may result in

increased complexity. These phenomena of continuous

change and increasing complexity in software systems

were recognized by Lehman and expressed in his laws

of software evolution [23]. In addition, one property of

software systems noted by Brooks [5] is invisibility of

software structure representation, which further

negatively affects the software architecture evolution.

Therefore, a lot of research has been done in exploring

the relationship between the design of a complex

system and the manner in which this system evolves

over time [27]. We describe in our earlier work [34] an

evolvability model which refines software evolvability

into a collection of subcharacteristics that can be

measured through a number of measuring attributes.

This paper is a continuation of our earlier work [34]

and further explores one particular measuring attribute,

i.e. modularity, which affects the behavior of a design

with respect to most of the evolvability

subcharacteristics, as designing software for ease of

extension and contraction depends on how well the

software structure is organized and modular designs

are argued to be more evolvable [27, 33], i.e. these

designs facilitate making future adaptations. Although

the value of modularity has been long recognized [41],

not much data has been published with respect to large

scale industrial software systems [22]. To enrich the

knowledge in this direction, we describe our

experiences through an industrial case study, with

respect to (i) exploring the relationship between

software evolvability, modularity and inter-module

dependencies; (ii) using dependency model to support

software architecture evolution; and (iii) to share

industrial software evolution experiences with respect

to reflections from the dependency analysis process.

The remainder of this paper is structured as follows.

Section 2 summarizes our evolvability model and in

particular explores the relationship between software

evolvability, modularity and inter-module

dependencies. Section 3 presents the methodology that

we used in the case study. Section 4 presents the case

study of an industrial control and protection software

system and describes our work in managing the

software architecture evolution through dependency

analysis. Section 5 discusses the experiences we gained

through the case study. Section 6 reviews related work

and finally section 7 concludes the paper.

2. Evolvability, Modularity and Inter-

Module Dependencies

This section summarizes first the evolvability model

from our earlier work [34] and secondly, explores

further the relationships between modularity,

evolvability subcharacteristics and inter-module

dependencies.

2.1 Evolvability Model

Software evolvability is a multifaceted quality

attribute [35]. Based on the definition of evolvability in

[35], analysis of various quality models [4, 13, 16, 21,

29], the software quality challenges and assessment

[15], the types of change stimuli and evolution [9], and

experiences we gained through industrial case studies,

we have identified subcharacteristics that are of

primary importance for an evolvable software system,

and outlined a software evolvability model that

provides a basis for analyzing and evaluating software

evolvability. The idea with the evolvability model is to

further derive the identified subcharacteristics to the

extent when we are able to quantify them and/or make

appropriate reasoning about the quality of service, as in

Figure 1.

Figure 1 Elements of the evolvability model

The subcharacteristics and examples of their

measuring attributes described in [34] are summarized

in Table 1. Definitions of these subcharacteristics are

provided in section 2.2. Failing in achieving any of

these subcharacteristics probably will undermine the

system’s ability to be evolved.

Table 1 Subcharacteristics of evolvability and measuring

attributes

Subcharacteristics Measuring Attribute

Analyzability modularity, complexity, documentation

Architectural

Integrity
architectural documentation

Changeability modularity, complexity, coupling,

change impact, encapsulation, reuse

Extensibility modularity, coupling, encapsulation,

change impact

Portability mechanisms facilitating adaptation to

different environments

Testability modularity, complexity

Domain-specific

attributes
depend on the specific domains

2.2 Modularity and Subcharacteristics of

Evolvability

This section explains the relationship between

modularity and evolvability subcharacteristics.

Modularity is a concept by which a piece of software is

grouped into a number of distinct and logically

cohesive subunits, presenting services to the outside

world through a well-defined interface [12].

Modularization is a mechanism for improving the

flexibility and comprehensibility of a system while

allowing the shortening of its development time [32].

Modularity and analyzability Analyzability is the

capability of the software system to enable the

identification of influenced parts due to change stimuli,

such as changes in environment, organization, process,

technology and stakeholders’ needs. Modularity plays

an important role because an analysis of independent

modules in isolation is easier to perform than in an

analysis where a module is heavily dependent on other

modules. Components that have excessive and

unexpected dependencies are hard to work with

because they cannot be understood easily in isolation.

Statistics show that between 50% and 90% of software

maintenance involves the understanding of the

software being maintained [40], which implies the

essence of modularity to achieve software

analyzability.

Modularity and architectural integrity Architectural

integrity is the non-occurrence of improper alteration

of architectural information. A direct connection

between modularity and architectural integrity does not

exist. However, the modularization mechanisms and

techniques, tactics and rationale for each design choice

need to be documented to ensure architectural

integrity. This documentation process is essential for

the architecture to allow unanticipated changes in the

software without compromising software integrity and

to evolve in a controlled way [3].

Modularity and changeability Changeability is the

capability of the software system to enable a specified

modification to be implemented and avoid unexpected

effects. Modularity plays an important role in software

changeability because it reduces the probability that a

change to one module propagates to other modules,

and vice versa, to keep outside modifications from

propagating into the module. According to [2],

modularity increases the range of manageable

complexity and accommodates uncertainty.

Components that have excessive and unexpected

dependencies are hard to work with because changes to

functionality cannot be easily localized. Modularity

determines software quality in terms of changeability

[18]. Complex relationships between components

make it difficult to anticipate and identify the ripple

effects of changes [14].

Modularity and extensibility Extensibility is the

capability of the software system to enable the

implementation of extensions to expand or enhance the

system with new capabilities and features with minimal

impact to the existing system. Modularity plays an

important role in extensibility because it supports

separating concerns and enables definition of extension

points [10] based on such considerations as coupling,

cohesion. Components that have excessive and

unexpected dependencies are hard to work with

because the impact of extensions to functionality

cannot be easily localized, and may adversely impact

the capability of the software system to handle future

additions without the need to rewrite existing

functionality.

Modularity and portability Portability is the

capability of the software system to be transferred from

one environment to another. Modularity plays an

important role in portability because it enforces

information hiding behind a platform-independent

interface, and ensures that the interface does not

expose functions that are dependent on a particular

platform.

Modularity and testability Testability is the

capability of the software system to enable modified

software to be validated. Modularity plays an

important role in testability because it supports

separating concerns among the parts of the system

through coupling, cohesion and the likelihood of

changes, so that different parts of the system can be

tested separately without being interfered by each

other. Monolithic characteristic in design may result in

additional efforts in testing, as error corrections in one

part of the software might require retesting of the other

parts or the whole system. Having to link in many

different libraries also leads to increased testing effort,

particularly in the case of cyclic dependencies, where

unit testing and releasing become difficult and error-

prone.

Modularity and domain-specific attributes Domain-

specific attributes are the additional quality

subcharacteristics that are required by specific

domains. The relationship between modularity and

domain-specific attributes depends on the particular

attribute and domain context. For instance, component

exchangeability in the context of service reuse [26] is

one domain-specific attribute within the distributed

domain, e.g. wireless computing, component-based and

service-oriented applications. In this context,

modularity plays an important role because

encapsulation mechanism shields the business logic

and implementation from the outside world and thus

enables component exchangeability.

2.3 Modularity and Inter-Module Dependency

Inter-module dependency is one of many indicators

and measures for achieving modularity. Excessive

inter-module dependencies have long been recognized

as an indicator of poor software design [37]. They

diminish the ability to reason about components of the

software architecture in isolation. It becomes also

difficult to assess and manage change impacts.

One way to visualize these dependencies is the

Design Structure Matrix (DSM)
1
, which is a

representation and analysis mechanism for system

modeling with respect to system decomposition and

integration. Several architectural styles and

dependency types, e.g. cyclic and hierarchical

dependencies, are detectable in this matrix. There are

two main categories of DSMs: static and time-based

[6]. Static DSMs represent system elements and are

analyzed with clustering algorithm. Time-based DSMs

represent activity flows and are analyzed with

sequencing algorithms. In this paper, we focus on static

DSMs to reveal software structure problems during

software evolution and explore alternative architectures

to improve the evolvability of the software system.

3. Research Method

We designed and conducted the dependency

analysis of the control and protection system software

which consists of more than one million lines of C and

C++ code. The approach described in [37] was applied

and we performed the following steps:

Step 1: Understand application and Dependency

Structure Matrix representation.

Step 2: Create preliminary Dependency Structure

Model of the application, using the hierarchical

structure of the code’s own namespace.

Step 3: Create conceptual architecture.

Step 4: Organize the Dependency Structure Model to

reflect the intended conceptual architecture.

Step 5: Define design rules, specifying external library

usage and application interdependencies.

Step 6: Perform dependency management during

software evolution.

Two potential parser alternatives were considered,

i.e. Doxygen and Microsoft Browser (BSC). Doxygen

was in the end not selected for analyzing and parsing

the source files. The reason is that it does not correctly

resolve dependencies when the symbol names are not

unique, i.e. Doxygen can mix up a local variable

reference for a global variable reference if they have

the same name. It also has problems with symbol

names used in multiple contexts. The BSC module was

1
 http://www.dsmweb.org

instead chosen to be used as input for generating the

initial dependency model. It processes source code

written in both procedural and object-oriented

languages (e.g., C and C++), capture indirect calls

(dependencies that flow through intermediate files),

run in an automated fashion and output data in a format

that could be input to a DSM. The BSC module

analysis is file based and supports member level

expansion of the files displayed in the dependency

model.

We used Lattix
2
, a source code level DSM

derivation tool to extract code dependencies and

examined the following kinds of dependencies:

Class reference: If class A refers to class B, e.g. as in

an argument in a method, then A depends on B.

Invokes: If a function in class A calls to a function or a

constructor of class B, then A depends on B.

Inherits: If class A is a subclass of class B, then A

depends on B.

Data member reference: If a function in class A

makes reference to a data member of class B, then A

depends on B.

Three persons were actively involved in and

performed the analysis process – one researcher from

the research center, one software architect and one key

software developer from the development unit of the

analyzed system. The focus of the researcher was to

apply the tool and analysis approach on the analyzed

software system, attain an overview of the dependency

situation and identify hotspots in the architecture and

implementation. The software architect and the key

software developer from the development unit have

provided with information through daily meetings to

make the conclusions objective. They also supported

with their comprehensive domain knowledge,

especially during the iterative process of creating a

conceptual architecture for the analyzed system, where

they identified the subsystems and modules in each

layer. The risk of bias has been further decreased

through the involvement of other researchers in the

analysis of the experiences. The dependency analysis

process took approximately three weeks. The

architecture hotspots and refactoring solution proposals

for the evolution path of the software system were

identified. These proposals were discussed with the

main technical responsible persons and architects,

documented and transferred further to the

implementation teams. Additionally, the experiences

described in section 5.1 are summaries of the opinions

of the involved stakeholders from the development

unit.

2
 http://www.lattix.com

4. Case Study

The power control and protection system is built up

from a basic system which handles communication,

I/O and services, and from application functions that

are combined to define various products. Software

development is performed by several different

development teams from two separate business units

and across different geographical locations. We

focused on the basic system which is the platform for

different product types, i.e. control and protection as

well as combinations of these.

The main problem with the original software

architecture was the existence of tight coupling among

components, which has led to additional work to

modify some existing functionality and add support for

new functionality in various products. This problem

was discussed during the architecture workshops with

the stakeholders, including people from product

management, software architecture team and key

software development team. Thus, inventory of

candidates for modularization through dependency

analysis was identified as the first top priority

architecture requirement. Accordingly, the main focus

of our case study was to analyze the software

architecture in terms of inter-module dependencies,

and to achieve a precise dependency overview for

supporting software evolution. We identified potential

flaws in architecture, implementation violations and

defined an evolution path of the software architecture.

In addition, we succeeded to convince the management

of the effectiveness of using dependency model to

guide and support software architecture evolution.

4.1 Examples of Analysis

We performed static software analysis using DSM

models based on source code dependencies to extract

dependency relations. Since the complete assessment

of components cannot be presented due to space

limitations, we select a subset and exemplify with two

examples from the case to illustrate component

evolution through inter-module dependency analysis.

The examples are chosen to be understandable for

people outside the power technology domain, while

still representative and illustrative for the many various

discussions and solutions that occurred during the

analysis. The identified hotspots are analyzed in terms

of the following views: (i) problem description: the

problem and disadvantages of the original design of the

component; (ii) requirements: the new requirements

that the component needs to fulfill; (iii) improvement

solution: the architectural solution to design problems;

and (iv) rationale and architectural consequences: the

rationale for design decisions and architectural

implications of the deployment of the component.

4.1.1 Example 1 - Web Server

The Web Server subsystem is used to monitor the

process and status of devices with respect to

measurements, events and alarms. It consists of three

main parts: a third-party software module, web client

application and the software interface between client

and server applications. The web client application is a

combination of static and dynamic web pages, client-

side scripts and style sheets.

Problem Description. Two cyclic dependency

problems exist and these dependencies need to be

removed, since we cannot change anything to either the

module without possibly affecting the others.

Accordingly, they prevent us from developing, testing

or releasing modules independently.

(1) The Web Server subsystem existed within the Base

system as shown in Figure 2a). It consists of third-

party software, which is intertwined with the control

and protection system’s product family. As a result, the

code size of Base increases, and the Base is affected by

the third-party software because Base needs to be

updated and recompiled once there is any update or

change of the third-party software in the Web Server

subsystem. However, simply moving Web Server

outside Base creates a problem of cyclic dependencies

between Web Server and Base as shown in Figure 2b).

The dependency matrix in Figure 4a) illustrates also

the cyclic dependencies between Web Server and Base,

i.e. the number in the first row indicates that Base uses

Web Server, and vice versa as indicated by the number

in the fourth row. Figure 4a) illustrates the

dependencies among the components and visualizes

the dependency violations, i.e. the implementation and

architectural violations that are against design rules and

design decisions. These violations are shown by the

dependencies above the diagonal in the matrix (refer to

[36, 31] for details). The numbers in the cells indicate

the dependency strengths.

(2) The Data component encapsulated in HMI Variant

subsystem is used by both the HMI Variant and the

Web Server subsystem as shown in Figure 2a). To

reduce the coupling between Web Server and HMI

Variant, the Data component needs to be moved

outside of HMI Variant. However, this creates another

problem of cyclic dependencies between HMI Variant

and Data as shown in Figure 2b). The dependency

matrix in Figure 4a) illustrates also the cyclic

dependencies between Data and HMI Variant, i.e. the

number in the second row indicates that Data uses

HMI Variant, and vice versa as indicated by the

number in the third row.

 a) b)
Figure 2. Conceptual view of the original correlations

between Web Server and HMI components

Requirements. The Web Server must be isolated and

moved outside Base. The Data component must be

moved outside HMI Variant. In addition, the

dependencies from Base to Web Server, as well as

dependencies from Data to HMI Variant need to be

removed.

Improvement Solution. The original architecture is

transformed by partitioning the HMI Variant and Base

respectively so that the cost for component

modification is reduced. The revised conceptual

architecture is illustrated in Figure 3.

Figure 3. Conceptual view of the refactored correlations

Rationale and Architectural Consequences. The

dependencies from Web Server to Base exist because

some files in the Web Server component are used by

the start-up sequence files in the Base. Accordingly,

the implementations in the start-up sequence files were

modified, and equivalent function was implemented in

the application main module instead in order to remove

the dependencies from Base to Web Server as

illustrated in Figure 4b). In this process, we break the

cyclic dependencies between Web Server and Base by

moving the classes and functions that they both depend

on into the application main module. The dependencies

from Data to HMI Variant are caused by dead codes

that are not in use any more.

The revised system architecture consists of a

number of cohesive, modular subsystems and

components with their implementations hidden behind

well-defined interfaces. The probability that a change

to one module (e.g. HMI Variant or Web Server)

propagates to other modules is reduced.

 a) b)

Figure 4. Dependencies before a) and after refactoring b)

4.1.2 Example 2 – Base

The Base software is used to provide a collection of

services, as well as a platform that provides means of

instantiation and configuration of application

functions.

Problem Description. The Base software is a mixture

of components that were traditionally implemented as

function-oriented subsystems. They were not ordered

according to any architectural styles. Direct

connections and dependencies existed among

components. If a change is made for a component, this

implies changes to other components as well. The

original coarse-grained architecture is depicted in

Figure 5.

Figure 5. A conceptual view of the original software

architecture

The initial DSM is created after loading the code base

as in Figure 6.

Figure 6. Initial DSM for the code base

The x-axis and the y-axis of the matrix represent the

same subsystems which are numbered sequentially.

The dependencies for each subsystem are read down a

column. Reading column 1, we see that subsystem1

depends on subsystem23 with dependency strength of

'2'. This figure reveals the tight couplings among

components and violations of design decisions (shown

by the dependencies above the diagonal in the matrix).

Requirements. Clear boundaries between different

parts of the system need to be defined. Late source

code changes should not impose ripple effects through

the system.

Improvement Solution. The revised conceptual

architecture is illustrated in Figure 7. It consists of

three layers including Utility layer, Middle Layer and

Application Layer. The conceptual architecture was

attained through an iterative process, i.e. daily

discussions with the software architect and key

software developer, with respect to what-if scenarios

(what is the impact if we change) based on the

dependency information provided by the inter-module

dependency model.

Application Layer

Scripts

Middle Layer

Utility Layer

Support Error Handling

Virtual

Operating

System

General

Purpose Library

Registry

File System
Basic Data

Types

Device Drivers Maintenance
Self Supervision

System

Basic

Communication

System

Hardware

Support Library
System Event

Database

Management

Generic IO

Communication

Protocols

Application

Components

Figure 7. A conceptual architecture of the Base system

Rationale and architectural consequences. The

original architecture is restructured into layered

architecture, as the layers architectural pattern helps to

structure applications to be decomposed into groups of

subtasks at a particular level of abstraction [7]. The

layered organization of software components offers a

number of benefits such as reusability, changeability

and portability [38]. In addition, cyclic dependencies

across layers are identified as illustrated in Figure 8.

For instance, reading column 6, we see that Utility

layer depends on Middle layer with dependency

strength of '57', indicating architectural layering

violations.

Figure 8. Dependencies after restructuring

The figure is a snapshot of the dependency model

during the analysis process. The dependency violations

are visualized by the dependencies above the diagonal

in the matrix. As cyclic dependencies would make

layers monolithic and inseparable, it is essential to

break the cyclic dependencies. Two primary

mechanisms [28] exist: (i) apply the dependency

inversion principle; and (ii) create a new module or

package, and move the classes that the cyclic

dependent modules depend on into the new package.

5. Experiences and Reflections

This section presents firstly the benefits that were

perceived by the involved stakeholders and secondly,

our reflections through performing the inter-module

dependency analysis.

5.1 Perceived Benefits of Performing

Dependency Analysis Using Dependency

Model

We summarize below visible benefits that were

perceived and reported by the involved stakeholders in

the organization.

a) It becomes easy to achieve a good overview of

dependencies within the whole software system;

b) The software architects and software developers

have increased potentials to do pre-studies in exploring

different architectural and implementation solutions,

due to the possibility of simulating changes in the

dependency model without the necessity of making any

modifications to the actual source code and due to the

corresponding quick feedback on modifications from

dependency analysis;

c) It enables a better and faster understanding of

unfamiliar modules from dependency perspective; For

instance, the development of Web Server subsystem

was originally outsourced to another development unit

located in another country. After the initial

development, the original developers have changed

their job and no one in the organization has the

complete knowledge of the subsystem. However, the

visualization of inter-module dependencies through the

dependency model provides support for understanding

the interaction of this subsystem with other parts of the

system.

d) It facilitate discovery of implementation violation

and perform quality check between various revisions;

Design rules can be defined in the dependency model.

Thus, it is possible to monitor if any implementation

violations occur in the consecutive revisions to

continuously check the quality of the architecture.

e) The possibility for reuse is increased; Excessive and

unexpected dependencies reduce the reusability of

components in different contexts and complicate the

evolution of respective components, since each

extension of components might affect other

components. An example is managing inter-module

dependencies in product line architecture. When a

component is shared across multiple products, all

components that this component depends on will also

have to be shared or replicated in all of those products.

f) The time to do modularization work is shortened due

to the quick visualization feedback from the

dependency model.

5.2 Experiences and Reflections

We list below our reflections during the dependency

analysis.

Gain management support Senior management

generally has limited technical understanding to see the

direct benefits of refactoring software architecture for

improved quality, especially when there is a lack of

economic models visualizing the benefits of

investment. Although the software architects see the

need for architecture restructuring, they usually do not

have the roles of personnel resource management to

execute the restructuring. In the case study, the three

week dependency analysis succeeded to convince the

management of the priority of architectural refactoring

through the measure of dependency model. As a result,

the management determined to continue with software

architecture quality improvement activities instead of

only focusing on providing functionalities.

Document rationale for each design decision

Although the representation in the dependency

structure matrix demonstrates the design decisions

through the definition of design rules, e.g. the can-use

and cannot-use rules, there is still a lack of explicit

documentation of rationale behind the architectural

decisions. Therefore, the dependency model needs to

be complemented with design rationale information.

Apply routine dependency analysis as a quantitative

indicator for judging the necessity of software

refactoring and for supporting the choice of design

decisions The software architecture needs to evolve to

accommodate changes. Meanwhile, it is also essential

to define design rules and monitor if any

implementation violations occur during the software

evolution process. Thus, we suggest routine

dependency analysis as an integral part and

quantitative indicator for continuously judging the

necessity of performing software refactoring. In this

sense, the process is close to the idea of agile software

development in terms of continuous reengineering.

In addition, the choice of any design decisions can be

supported by the quantitative measures from

dependency analysis. It is a challenging task to make

appropriate architectural decisions especially when

there is a lack of quantitative measurement of the

corresponding impacts on the system. Although there

exist design tactics that assist in making design

decisions, their corresponding impact within a

particular system is still on an intuitive and qualitative

level. Therefore, we suggest complementing with

dependency analysis to better support design decisions,

i.e. qualitatively reason about and quantitatively

measure the impacts to make more accurate estimation

on workload when making architectural changes.

Combine static code analysis with dynamic
information extraction The case study shows that it is

beneficial to perform static dependency analysis of

source code to assist in software architecture evolution.

Another aspect that is of interest is to identify and

analyze the runtime structure and behavior of the

software, and identify the runtime components and

their dependencies. An example is to reconstruct

software architectures in terms of pattern recognition.

Patterns whose implementation involves dynamic

mechanisms will require extraction of dynamic

information [17]. This suggests a combination of

extracting dynamic information of a system at run time

and static source code analysis.

Combine different means for improved

modularization In the case study, there have been

discussions about techniques and means to increase

modularization, as well as the potentials of combining

different approaches for improved modularization and

quality attributes. For instance, studies [20, 30] have

shown that aspect-oriented software development can

be applied in conjunction with object-oriented

programming in order to achieve better modularity,

reuse and adaptability in complex software systems

[31]. As part of the dependency analysis process, we

have identified some means for providing

modularization (as shown in Table 2) to support

software evolution and to provide one way to let some

part of a system change independently of all other

parts. A modularization technique benefits a design

only when the potential changes to the design can be

well encapsulated by the technique [8]. In the case

study, the improved modularization was achieved

through applying several design principles, e.g.

separation of concerns, encapsulation boundaries and

architectural coupling reduction, together with object-

oriented software engineering and layered architecture

style.

Table 2. Examples of Means to Increase Modularization
Means to Increase

Modularization

Examples

Separation of concerns

Information hiding

Encapsulation boundaries

Narrow component interfaces

Design Principles

Architectural coupling reduction

Object-oriented software engineering

Component-based software engineering

Service-oriented software engineering

Aspect-oriented software engineering

Software Engineering

Paradigms

Feature-oriented programming

Object-oriented Design

Patterns

e.g. model-view-controller

Specification of interfaces between

components

Formal Specification

Assembling of components with

compatible specifications

Programming Languages e.g. coding guidelines for enabling

modularization in programming

languages

Architectural description languages, e.g.

ACME

Modeling Techniques

UML being enhanced with additional

modularity mechanisms and abstraction,

e.g. aspects, features

Architecture Styles e.g. layer architectural style

6. Related Work

The link between modularity and evolution was

described by Simon [39] who argued that nearly-

decomposable systems facilitate experimentation and

problem solving. [22] examined the design evolution

of one open source software product and one company

software product platform through the modelling lens

of design rule theory and design structure matrices.

The idea of using design rules and DSM was similar to

the way that we have performed in our case study. We

further enrich the data with experiences and reflections

through our dependency analysis of a complex

industrial software system.

There exist different ways to visualize

dependencies. [27] describes the concept of DSM and

the application of design rules to identify violations,

and to keep the code and its architecture in

conformance with one another. Checking the

conformance between design and implementation has

been explored in [19]. Li [24] proposed object-oriented

system dependency graph to calculate the impact of

changes made to a class, with focus on three

relationships, i.e. containment, use/reference and

inheritance. Sullivan et al. [41] and Lopes et al. [25]

have presented that DSM modeling can capture Parnas’

information hiding criterion [32] and is valuable for

software design. [1] formalizes this reasoning by

showing that modularity creates design options.

The Architecture Tradeoff Analysis Method

(ATAM) [2] is a method for evaluating software

architectures in terms of quality attribute requirements

to achieve better architecture. It is used to expose the

possible areas of risks, non-risks, sensitivity points and

trade-off points in the software architecture. Since it

relies on the knowledge of the architect and has no

provision for code inspection, it is not a precise

instrument [2] as it is possible that some risks remain

undetected. As a dependency model has the feature of

being able to quantitatively and thus objectively

visualize the inter-module dependencies, it can be used

as a complementary approach to ATAM when there is

existence of code.

7. Conclusions and Future Work

In this paper, we explored the links between

evolvability, modularity, as well as inter-module

dependency, and described a dependency analysis of a

complex industrial power control and protection

system, using the inter-module dependency model. The

analysis was driven by the need of improving software

evolvability, and it was performed by three persons

(one researcher, one software architect and one key

software developer), taking approximately three weeks.

The purpose of the analysis is to visualize

dependencies to provide direction to hotspots in the

architecture and implementation. The resulting analysis

documentation was widely accepted by the

stakeholders involved in the analysis process and

became a blueprint for further implementation

improvement. Besides, the management was convinced

of the effectiveness of using dependency model as a

means to guide and support software architecture

evolution. Additionally, the quantitative results also

convinced them of the priority of improving

architecture for better quality, instead of only focusing

on functionality.

Our plans are to apply dependency model in new

cases and in new domains, and further complement the

static analysis with dynamic execution analysis. In

addition, we need to consider the impact with respect

to the software system’s behavior, quality and any

possible tradeoffs when we introduce any

modularization mechanism and technique. Thus,

another research area that is of interest is to investigate

the impact of the choice of modularization

mechanisms, as they might have consequences for

flexibility and other concerns, such as runtime

qualities, e.g. performance and scalability, etc.

References

[1] Baldwin, C. Y., Clark, K. B.: Design Rules, vol 1, The

Power of Modularity, MIT Press. (2000)

[2] Bass, L., Clements, P., Kazman, R.: Software

Architecture in Practice. Addison- Wesley. (2003)

[3] Bennett, K., Rajlich, V.: Software Maintenance and

Evolution: a Roadmap. The Future of Software Engineering,

Anthony Finkelstein (Ed.), ACM Press. (2000)

[4] Boehm, B. W. et al.: Characteristics of Software Quality.

Amsterdam, North-Holland. (1978)

[5] Brooks, F. P. No Silver Bullet. IEEE Computer, Vol. 20,

No. 4. (1987)

[6] Browning, T. R.: Applying the Design Structure Matrix

to System Decomposition and Integration Problems: A

Review and New Directions, IEEE Transactions on

Engineering Management. (2001)

[7] Buschmann, F. et al.: Pattern-Oriented Software

Architecture: A System of Patterns. Chichester, NY: Wiley.

(1996)

[8] Cai, Y., Huynh, S.: An Evolution Model for Software

Modularity Assessment. Fifth International Workshop on

Software Quality. (2007)

[9] Chapin, N. et al.: Types of Software Evolution and

Software Maintenance, Journal of Software Maintenance and

Evolution: Research and Practice. (2001)

[10] Clements, P., Bachmann, F., Bass, L. et al.:

Documenting Software Architectures – Views and Beyond.

(2007)

[11] Clements, P., Kazman, R., Klein, M.: Evaluating

Software Architectures: Methods and Case Studies. Addison-

Wesley. (2002)

[12] Developing Architecture Views.

http://www.opengroup.org/architecture/togaf8-

doc/arch/chap31.html. (visited 2008)

[13] Dromey, G.: Cornering the Chimera. IEEE Software

(January): 33-43. (1996)

[14] Feng, T., Zhang, J., Li, W.: Applying Change Impact

Analysis and Design Metrics in CBR Based Software Design

Improvement, Proc. of ISCIT. (2005)

[15] Fitzpatrick, R. et al.: Software Quality Challenges. 26th

International Conference on Software Engineering. (2004)

[16] Grady, R., Caswell, D.: Software Metrics: Establishing a

Company-Wide Program. Englewood Cliffs, NJ,

PrenticeHall. (1987)

[17] Guo, G. Y., Atlee, J. M., Kazman, R.: A Software

Architecture Reconstruction Method. WICSA. (1999)

[18] Huynh, S., Cai, Y.: An Evolutionary Approach to

Software Modularity Analysis, 1st International Workshop

on Assessment of Contemporary Modularization Techniques.

(2007)

[19] Huynh, S., Cai, Y. et al.: Automatic Modularity

Conformance Checking. ICSE (2008)

[20] Improve modularity with aspect-oriented programming.

http://www.ibm.com/developerworks/java/library/j-aspectj/.

(visited 2008)

[21] ISO/IEC 9126-1. International Standard. Software

Engineering – Product Quality – Part 1: Quality Model.

(2001)

[22] LaMantia, M. J., Cai, Y. et al.: Analyzing the Evolution

of Large-Scale Software Systems using Design Structure

Matrices and Design Rule Theory: Two Exploratory Cases.

WICSA. (2008)

[23] Lehman, M.: Laws of Software Evolution Revisited.

Software Process Technology, 5th European Workshop

EWSPT. (1996)

[24] Li, L.: Change Impact Analysis for Object-Oriented

Software, PhD thesis, George Mason University, Virginia,

USA. (1998)

[25] Lopes, C. V., Bajracharya, S. K.: An Analysis of

Modularity in Aspect Oriented Design, Proc. of AOSD.

(2005)

[26] Lüer, C. et al.: The Evolution of Software Evolvability.

IWPSE. (2001)

[27] MacCormack, A., Rusnak, J., Baldwin. C. Y.: The

Impact of Component Modularity on Design Evolution:

Evidence from the Software Industry. HSB Working

Knowledge. (2008)

[28]Martin,R.: Acyclic Dependency Principle -

Granularity.http://www.objectmentor.com/resources/articles/

granularity.pdf (visited 2008)

[29] McCall, J. A., Richards, P. K., Walters, G. F.: Factors in

Software Quality. National Technical Information Service.

(1977)

[30] Mens, T., Demeyer, S.: Software Evolution. Springer.

(2008)

[31] Padayachee, A., Eloff, J.H.P.: The Next Challenge:

Aspect-oriented Programming. Proc. of the Sixth IASTED

International Conference on Modelling, Simulation, and

Optimization. (2006)

[32] Parnas, D. L.: On the Criteria to be Used in

Decomposing Systems into Modules. (1972)

[33] Parnas, D. L.: Designing Software for Ease of Extension

and Contraction, IEEE Transactions on Software

Engineering. (1979)

[34] Pei Breivold, H., Crnkovic, I., Eriksson, P.: Analyzing

Software Evolvability. Proc. of COMPSAC. (2008)

[35] Rowe, D., Leaney, J.: Defining Systems Evolvability – a

Taxonomy of Change. Proc. of the IEEE Conference on

Computer Based Systems. (1998)

[36] Sangal, N.: Expressing Software Architecture with Inter-

module Dependencies. EclipseZone.

http://www.eclipsezone.com/articles/lattix-dsm/. (visited

2008)

[37] Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using

Dependency Models to Manage Complex Software

Architecture, OOPSLA. (2005)

[38] Sarkar, S., Rama,: A Method for Detecting and

Measuring Architectural Layering Violations in Source

Code. (2006)

[39] Simon, Herbert A.: The Architecture of Complexity.

Proc. of the American Philosophical Society 106: 467-482,

repinted in idem. (1981) The Sciences of the Artificial, 2nd

ed. MIT Press, Cambridge, MA, 193-229. (1962)

[40] Stoermer, C., O'Brien, L., Verhoef, C.: Moving Towards

Quality Attribute Driven Software Architecture

Reconstruction, Proc. of the 10th Working Conference on

Reverse Engineering. (2003)

[41] Sullivan, K., Cai, Y., Hallen, B., Griswold, W. G.: The

Structure and Value of Modularity in Software Design,

SIGSOFT Software Engineering Notes. (2001)

