
Structural Testing of Component-Based Systems

Daniel Sundmark, Jan Carlson, Sasikumar Punnekkat, and Andreas Ermedahl

MRTC, Mälardalen University
Box 883, SE-721 23 Väster̊as, Sweden

daniel.sundmark@mdh.se

Abstract. Component based development of software systems needs
to devise effective test management strategies in order fully achieve its
perceived advantages of cost efficiency, flexibility, and quality in indus-
trial contexts. In industrial systems with quality demands, while testing
software, measures are employed to evaluate the thoroughness achieved
by execution of a certain set of test cases. Typically, these measures
are expressed in the form of coverage of different structural test crite-
ria, e.g., statement coverage. However, such measures are traditionally
applicable only on the lowest level of software integration (i.e., the com-
ponent level). As components are assembled into subsystems and further
into full systems, general measures of test thoroughness are no longer
available. In this context, we formalize the added test effort and show to
what extent the coverage of structural test criteria are maintained when
components are integrated, in three representative component models.
This enables focusing on testing the right aspects of the software at the
right level of integration, and achieves cost reduction during testing —
one of the most resource-consuming activities in software engineering.

1 Introduction

The component-based development paradigm has been quite successful in enter-
prise computing and is being explored as an attractive option in other domains
with quality demands, e.g., embedded software systems. However, in order to
gain wide acceptance in such domains, the component-based approach also needs
to devise efficient testing strategies and test management approaches, since test-
ing accounts for a lion’s share of the development cost in such systems. Quality
concerns also demand that the developer presents evidence of thoroughness of
verification efforts performed. Structural coverage is a set of measures for evalu-
ating the thoroughness of software testing, based on how exhaustively the tests
exercise certain aspects of the structure of the software under test [1]. Test crite-
ria based on structural coverage are well-defined for component-level testing [1,
2], but most of these definitions are not generally applicable for testing performed
post-integration, where issues of, e.g., multi-tasking and shared resources come
into play.

Building a system out of well-tested components does not necessarily result in
a well-tested system. However, during integration testing, it is possible to make
use of the information available on what aspects of the software that have already



been tested before integration. Ideally, during integration testing, testing should
only focus on the correctness of the actual interaction between the integrated
components.

The contribution of this paper is twofold. First, we describe the added test
effort required by component integration, by introducing the concept of composi-
tionally introduced test items. Second, we describe the impact of this concept for
a number of common structural test criteria and three representative component
models. We also outline how this concept can be used in order to maintain the
quality assurance achieved by structural test coverage at an arbitrary level of
integration in multi-level hierarchical development of component-based software.

The main motivation for this work is that it facilitates a less ad-hoc way of
determining the adequacy of integration- and system-level testing in addition to
the functional testing traditionally used at this level, while also clearly separating
the test items that could be tested at component-level from those that need to
be tested post-integration.

2 Background

Testing is the primary means for verification used in the software industry, and
methods and strategies for testing come in many different shapes. Depending on
the type of software system to be developed or maintained, hypotheses regarding
the types of bugs suspected in the software, and many other aspects, the testing
approach will be different. There is, however, a common ground for reasoning
about test techniques.

2.1 Software Testing and Coverage

A test criterion is a specification for evaluating the test adequacy given by a cer-
tain set of test cases. Test criteria are defined in terms of test items, the “atoms”
of test criteria. A test criterion is generally formulated such that test adequacy
(with respect to that criterion) is attained when all test items are exercised dur-
ing testing. For example, for the statement coverage criterion, statements are
the test items. Test items are also called coverage items. Coverage is a generic
term for a set of metrics used for expressing test adequacy (i.e., the thorough-
ness of testing or determining when to stop testing with respect to a specific
test criterion [1]). A coverage measure is generally expressed as a real number
between 0 and 1, describing the ratio between the number of test items exercised
during testing and the overall number of test items. Hence, a statement coverage
of 1 implies that all statements in the software under test are exercised. Rules
for when to stop testing can be formulated in terms of coverage. For example, a
statement coverage of 0.5 (indicating that half of the statements in the software
are exercised) may be a valid, if not very practical, stopping rule.

Test criteria may be structural or functional, where structural test criteria
are based on the actual software implementation, or on abstract representations
of the software implementation (e.g., control flow graphs). As structural test



criteria are strictly based on the actual software implementation and different
inherent aspects of its structure, these are possible to define formally. Exam-
ples of structural test criteria include exercising of all instructions, all execution
paths, or all variable definition-use paths in the software. It should be noted
here that a full coverage (i.e., a coverage of 1) is not generally achievable for
structural test criteria. This is due to the fact that the control flow graph rep-
resentations used to define these criteria typically contain infeasible paths or
statements (i.e., paths or statements that are not actually exercisable when ex-
ecuting the code), and the exact determination of feasible paths and statements
is undecidable [3, 4].

On the other hand, test case selection based on functional test criteria is,
in the general case, ad-hoc in the sense that it depends on the quality, ex-
pressiveness, and the level of abstraction of the specification. Basically, a more
detailed and thorough specification will result in a more ambitious and thor-
ough functional test suite. Examples of functional test techniques are boundary
value testing and equivalence class partitioning testing based on the software
specification [5].

In the traditional view of the software engineering process, verification test-
ing is performed at different levels. Throughout the literature, many such levels
are discussed, but the most commonly reappearing levels of verification testing
are component, integration and system testing [5, 6], see Fig. 1. Component
testing (also known as unit testing) is performed at the “lowest” level of soft-
ware development, where the smallest units of software are tested in isolation.
Such units may be functions, classes or components. Integration testing can
be performed whenever two or more components are assembled into a system
or a subsystem. Specifically, integration testing focuses on finding failures that
are caused by interaction between the different components in the (sub)system.
System testing focuses on the failures that arise at the highest level of inte-
gration [7], where all parts of the system are incorporated and executed on the
intended target hardware(s). The execution of a system-level test case is con-
sidered correct if its output and behaviour complies with what is stated in the
system specification.

Generally, the lower the level of testing, the more likely that both structural
and functional criteria will be considered. In traditional system-level testing,
only functional criteria are considered [6], and integration testing poses several
problems for structural criteria, e.g., definition of control- and data-flow struc-
tures over component boundaries. Hence, as we recognize that structural and
functional techniques complement each other by focusing on different aspects of
the same software, this paper aims at facilitating the additional use of structural
criteria on higher levels of integration. It is our firm belief that, compared to
the traditional testing performed at the higher levels of integration, a combina-
tion of structural and functional testing will provide a more thorough software
verification.



Component testing

Integration testing [level 1]

Integration testing [level n-1]

Integration testing [level n] 

(System testing)
L

e
v
e
ls

o
f 

in
te

g
ra

ti
o

n

Fig. 1. Testing/integration levels in the software development process.

2.2 CBSE and Structural Software Testing

During component integration, the control- and data flow may be modified or
compromised, and coverage based on these concepts may be invalidated. Consid-
ering the system-level counterparts of control- and data flow, there are no widely
accepted general definitions of these concepts. Given unrestricted component in-
teraction, the control and data flow of a component assembly may exhibit an
unmanageable complexity. However, in practice the interaction between the soft-
ware parts in an integration is restricted by several factors, e.g., the run-time
system, and the architectural style used. To prevent an overwhelming complexity,
it is often desirable to adopt some level of component or unit isolation.

In Component-Based Software Engineering (CBSE), software applications
are built by composing software components into component assemblies [8, 9].
The main idea is that, by building systems out of well-tested components, an
increase in the predictability of the behaviour of the software could be gained;
provided that experience from component testing is taken into account.

Components are independent software units that interact via well-defined
interfaces. According to the basic CBSE principles, there should be no hidden
dependencies between components, except for those explicitly represented in the
component interfaces. This facilitates reuse, allowing a component to be replaced
without affecting the other components in the system.

In the context of structural testing at higher levels of integration, the addi-
tional information provided by component interfaces could be exploited while
reasoning about the control and data flow in an assembly, and, in a later stage,
when generating test cases. Thus, with a strong notion of component interface,
the use of CBSE gives benefits during integration level testing, compared to tra-
ditional approaches where the corresponding information must be derived from
low level code.



In general, system composition out of a set of components is guided by the
architectural style chosen for the system. According to Shaw and Garlan [10],
examples of such architectural styles include:

– Dataflow systems, which include systems based on pipes and filters, where
components act as filters of data, and the interconnections between com-
ponents act as data pipelines. This type of system typically manipulates
sequential streams of data passed through components by pipelines.

– Call-and-return systems, e.g., object oriented systems, where the com-
ponents (objects) of the system interact through the use of inter-component
method calls.

– Independent components, e.g., event-based systems, uses an approach
where the invocation of components and component methods are not trig-
gered by explicit calls from other components, or on the explicitly stated
data flow through the system, but rather on the occurrences of internal or
external events.

In the following section, we will consider instances of these styles in order to
see how component composition according to each instance affects component
interaction, and the structural testing thereof. It should be noted that Shaw
and Garlan [10] also mention virtual machines and data centered systems
(repositories) as examples of architectural styles, but we will not consider them
in this paper.

3 Structural Testing of Component-Based Systems

In this section we describe what is required to achieve structural test coverage
for component assemblies, including whole component-based systems. In doing
this, we aim at a software development process where the knowledge of what
has already been tested, and the effects of component interaction, are used in
order to perform a more conscious, non-ad-hoc integration testing. Ideally, we
consider a process as the one described in Fig. 2, where the composition of a set
of components (1) is followed by an analysis determining if any further testing
is required to maintain the desired coverage (2). If such testing is required,
we generate (3) a set of test cases required to achieve the desired coverage,
whereafter test execution (4) and evaluation (5) follows, leading to an integrated
component assembly (or system) with the desired coverage maintained (6).

In doing this, our primary goal is to find a set of test cases that are required in
order to safely cover the aspects of the software added by component integration.
The secondary goal would be to find the minimal set of test cases that fulfils
this criterion. Unfortunately, since we are generally unable to determine exactly
which test items are feasible (i.e., executable on the level of integration where the
testing is performed), any analysis performed to safely determine feasible test
items will be over-approximative, and potentially find false positives [11]. Once
again, it should be noted that this problem is not unique to the higher levels of
testing we consider in this paper (even though it is likely to be more severe),



Set of
components
with desired

coverage

Introduced test
item calculation

Test case
generation

Test
execution

Test 
evaluation

Integrated
component

with maintained

coverage

1

2

3 4 5

6

Additional testing not required

Desired coverage achieved

Additional testing required

Desired coverage not achieved

Fig. 2. An outline of the envisioned process.

since not all items are feasible on component-level, and the exact determination
of feasible test items, even on component-level, is provably incalculable [3, 4].

Also, note that some test items that are feasible when testing a component
in isolation might be made infeasible by system integration [12]. For example, a
definition of a shared variable in one component may influence the flow of control
and make paths considered feasible in other components infeasible [13–15]. This
should be considered when performing testing of multi-tasking (and parallel)
systems.

3.1 Impact of Architectural Style

The architecture of the software under test will affect how test criteria will be
affected by component composition, since it, to a large extent, determines the
means of inter-component communication. Further, the choice of architectural
style to different degrees limits the component interaction, e.g., in terms of tem-
poral perturbation.

Although the proposed approach is not limited to a particular component
model or architectural style, it is exemplified by representatives of three different
architectural styles:

– CM1: As an example of the dataflow style, we consider a component model
(see Fig. 3a), similar to that of SaveCCM [16] or PECOS [17]. Contrast-
ing, e.g., the UNIX pipes-and-filters architecture where the filters execute
concurrently, we consider an interleaved model where components execute
non-preemptively. When activated, a component consumes one set of input
data and then executes to completion.

– CM2: Representing call-and-return systems, we consider a more traditional
model (see Fig. 3b), where components are invoked by method calls. Exam-
ples of such models include Sun’s JavaBeans [18], Microsoft’s COM [19], and
the Koala component model [20].



a) Pipes and filters

b) Call and return

c) Independent components

Fig. 3. Architectural Styles.

– CM3: As a third example, covering the architectural style of independent
components, we consider a component-based preemptive real-time system
where components correspond to individual tasks executing on an underly-
ing real-time operating system (see Fig. 3c). Here, we consider components
that are strictly periodic, inter-arrival and assume that execution is con-
trolled by a system-level scheduler that distributes computation among the
components, based on, e.g., priority levels. Moreover, components are pre-
emptive, meaning that the scheduler is allowed to interrupt a component
during its execution, should a component of higher priority level become
available for execution. Examples of component models of this type include
Rubus [21] and Autocomp [22].

It should be noted that the components in the third example are only inde-
pendent in the sense that any transfer of control between components is initiated
by the system-level scheduler, and not from within a component. In general, the
components are not functionally independent, since they may communicate via
shared memory. Also, since tasks compete for the same computational resources,
they are clearly not independent with respect to timing.

It should also be noted that different architectural styles are sometimes
adopted at different integration levels of the same system, as in COMDES [23]
or ProCom [24]. For example, a large system might be built from a few indepen-



dent components, each of which in turn can be further decomposed into smaller
components interacting in a pipes and filter fashion. The aim of our method
is that the choice of architectural style at lower levels of integration should be
transparent when determining the test coverage at a specific level of integration.

3.2 Compositionally Introduced Test Items

In this section, we describe what needs to be covered by testing on a certain level
of component integration in order to maintain the coverage held by the compo-
nents to be integrated. This is done by defining the concept of compositionally
introduced test items. Simplified, these are the test items, given a certain test
criterion, that only exist on the current level of integration and above. These
additional test items particularly have two sources: The interaction between the
integrated components, and extra code added merely for the integration of the
components. Starting with the latter, during the development of systems based
on components there could be “extra” code involved, depending on the archi-
tectural style followed. Particularly, this extra code could comprise of different
categories such as:

– operating system code (e.g., driver routines, task switch routines and other
system functions); and

– glue code, written or automatically generated to connect components, and
for configuration and initialization.

For simplicity, we will consider the extra code as completely untested in the
remainder of this paper.

Given the existence of previously non-covered additional code, one will have
to pay special attention to ensure test coverage of this code during the higher
level integration. Also, even if the additional code is already covered, it might
give rise to additional test items for some test criteria and architectural styles,
caused by its interaction with the components in the assembly.

Before formally defining the concept of compositionally introduced test items,
some notation needs to be introduced. We consider an assembly A consisting of
components C1, . . . , Cα, composed in accordance with some component model
(i.e., α denotes the number of components in the assembly). To simplify the
presentation, we denote by C0 all the extra code of the assembly. In all other
aspects, C0 is not to be considered as a component. Moreover, given a particular
test criterion TC , the test items of Ci and A are denoted TI TC

Ci
and TI TC

A ,
respectively.

Definition 1 The set of compositionally introduced test items of a test crite-
rion TC and an assembly A, is defined as follows:

CITC
A = TI TC

A \
α⋃
i=1

TI TC
Ci



Thus, CITC
A denote the test items of A that are not present when the con-

stituent components C1, . . . , Cα are considered in isolation. Since most structural
test criteria are defined in terms of control flow paths or control flow graphs,
these concepts must be defined on an assembly level. For this, we denote by Si
the statements of component Ci.

Definition 2 The statements of an assembly A are denoted SA, and defined as

SA =
α⋃
i=0

Si.

Definition 3 The control flow graph of an assembly A is a directed graph where
the nodes are the statements in SA, and a directed edge 〈s1, s2〉 represents a
possible control flow from statement s1 to s2.

Definition 4 A control flow path of an assembly A is a finite path in the control
flow graph of A.

The control flow graph of an assembly can be very complex, particularly for
component models where transfer of control from one component to another is
not related to explicit constructs in the component code (as, for example, in
CM3 where the scheduler may preempt a component at any point). Further, we
note that each edge 〈sk, sk+1〉 in the control flow path of an assembly is either

1. part of the local control flow of a component Ci (i.e., 〈sk, sk+1〉 is in the
control flow path of Ci and 1 ≤ i ≤ α);

2. part of the control flow of the additional code C0; or
3. a transfer of control between two components, or between a component and

additional code (i.e., sk ∈ Si and sk+1 ∈ Sj , with i 6= j, 0 ≤ i ≤ α and
0 ≤ j ≤ α).

Categories 2 and 3 are of particular interest, since they are the ones introduced as
a result of the composition. The third category is the main source of complexity,
and this is also where the choice of component model has the biggest impact.

For the usage proposed here, i.e., to measure test coverage and guide test case
generation, it is preferrable if the transfer of control between components can be
determined, or approximated, from the component interfaces. The impact of the
component model on the control flow graph is further discussed in Section 4.2.

4 Test Criteria

This section lists a number of structural test criteria, and, for each criterion,
defines its set of compositionally introduced test items. In the cases where the
choice of component model (CM1 – CM3) affects this set, this effect is described
for each different choice. The structural test criteria we investigate in this section
with respect to the set of compositionally introduced test items are:



– Statement coverage is chosen since it is the most basic, and in our experi-
ence, the most widely recognized structural test criterion, even to the point
that it is sometimes used synonymously with code coverage or coverage in
general.

– Branch coverage is chosen since it has a large similarity to statement
coverage, but still differs with respect to compositionally introduced test
items.

– Path coverage is chosen based on the fact that it, in its basic form, requires
the execution of each path through the system. As such, it is one of the more
exhaustive test criteria available.

– Modified condition/decision coverage (MC/DC) is chosen since it is
required as a part of the de-facto standard process in software development
of some safety critical software, e.g., avionics software [25].

– All uses coverage is chosen since it, when considering shared variables
in multi-tasking environments (a typical integration or system-level testing
concern), targets failures related to race conditions and similar interleaving
problems [11, 26].

In our work, we make use of definitions of these criteria from [1, 27] in defining
the compositionally introduced test items for each of the three representative
component models.

4.1 Statement Coverage Criterion

According to Zhu et al. [1], “a set P of execution paths satisfies the statement
coverage criterion if and only if for all nodes n in the flow graph, there is at least
one path p ∈ P such that node n is on the path p”.

For CM1, CM2, and CM3, the set of compositionally introduced test items
of the statement coverage criterion are just the statements of the additional code,
i.e., CI sc

A = S0. This follows directly from Definitions 1, 2 and 4, since for each
statement s ∈ SA in the control flow graph of A we have s ∈ Si, 0 ≤ i ≤ α.
Thus, either s ∈ S0 or s is among the test items of component Ci, in which case
it should not be included in CI sc

A .

4.2 Branch Coverage Criterion

Again, according to Zhu et al. [1], “a set P of execution paths satisfies the branch
coverage criterion if and only if for all edges e in the flow graph, there is at least
one path p ∈ P such that p contains the edge e”.

As discussed in Section 3.2, there are three categories of edges in the assembly
control flow graph: (1) the control flow within the components, (2) the control
flow within the additional code, and (3) the transfer of control between two
components, or between a component and additional code. Edges from the first
category are not included in the set of compositionally introduced test items,
which thus can be described as CIbc

A = B2 ∪ B3, where B2 and B3 correspond
to categories 2 and 3 above, respectively.



Regarding B3, for CM1, these edges go from an exit statement of one com-
ponent to the entry statement of another. Alternatively, if communication is
carried out by glue code, from exit statements to some s ∈ S0 and from some
s ∈ S0 to the entry statement of a component.

For CM2, B3 consists of edges going from a method call statement in one
component to an entry statement in the called component, and from the return
statement of a method to the next statement of a caller, possibly linked by
additional code statements.

For CM3, let Ci and Ci be two components, such that Cj has strictly higher
priority than Ci. Then B3 contains edges from all statements in Si to the first
statement of Cj , and from each final statement in Sj to all statements in Si. Note
that if the assembly constitutes the entire system, then additional information is
available, such as periods, response times, etc. of all components in the system.
This additional system-level information can be exploited to further reduce the
number of edges in B3.

4.3 Path Coverage Criterion

“A set P of execution paths satisfies the path coverage criterion if and only if
P contains all execution paths from the begin node to the end node in the flow
graph” [1].

For this criterion, the compositionally introduced test items are those paths
in the control flow graph of A which includes a statement from S0, or two
statements sk ∈ Si and sl ∈ Sj , such that i 6= j.

For CM1, the paths in CIpc
A are sequential combinations of local control flow

paths of the components, respecting the order in which they are connected in
the pipes and filter scheme. For CM2, CIpc

A is the set of interleaved control flow
paths, where the points of interleaving are constituted by the calls and returns of
methods between components. For CM3, CIpc

A consists of interleaved control
flow paths, where the points of interleaving are governed by component priority
levels, similarly to the branch coverage criterion discussed above.

4.4 MC/DC Criterion

According to Chilenski and Miller [27], the Modified Condition/Decision Cov-
erage (MC/DC) criterion is satisfied when “every point of entry and exit in the
program has been invoked at least once, every condition in a decision in the pro-
gram has taken on all possible outcomes at least once, and each condition has
been shown to independently affect the decision’s outcome. A condition is shown
to independently affect a decision’s outcome by varying just that condition while
holding fixed all other possible conditions”.

For CM1, CM2, and CM3, the set of compositionally introduced test items
is the set of test items introduced by the additional code. To show that these are
the only test items introduced by the integration of components, we establish
that no new points of entry and exit are introduced by composition, and that



the only conditions in the resulting assembly are the conditions residing in the
assembled components.

4.5 All Uses Coverage Criterion

“A set P of execution paths satisfies the all-uses criterion if and only if for
all definition occurrences of a variable x and all use occurrences of x that the
definition feasibly reaches, there is at least one path p in P such that p includes
a subpath through which that definition reaches the use” [1].

The compositionally introduced test items of the all uses criterion is given
by CIus

A = D1 ∪D2, where D1 is the set of pairs of definiton and uses that fulfil
the criterion in the control flow graph of the additional code; D2 is the set of
pairs of definitions and uses that fulfil the criterion, and where the definition
of the variable is performed in a component Ci and the use of the variable is
performed in a component Cj , such that i 6= j.

In CM1, all component communication is supposed to take place via the
explicit component ports. If this can be ensured, e.g., by the development frame-
work,D2 is empty. For CM2, it is also the case thatD2 is empty if the underlying
formalism does not permit shared variables. Since CM3 allows shared variables,
D2 is simply the set of feasible inter-component shared variable definition and
use pairs.

5 Discussion

Our research so far has been aimed at developing a general formal theory for
identifying additional structural test efforts required under different models of
component interactions. The consideration of three architectural styles and five
test criteria yields fifteen possible architectural style/test criterion combinations,
of which not all are reasonably applicable. Below, we reflect upon the most
notable combinations.

The fact that statement coverage composes nicely might be no major sur-
prise, since it is intuitive that no new statements are introduced during inte-
gration (besides the ones in the extra code). Branch coverage, however, is more
interesting during integration testing, since the set of all compositionally intro-
duced test items for branch coverage describes all transfers of control from one
component in the assembly to another. For CM3, covering these transfers of
control quickly becomes impracticable without rigid restrictions on the schedul-
ing of components, but for CM1 and CM2, covering these branches would be
a feasible way of testing explicit component interactions.

Path coverage suffers severely from complexity issues even at the component
level [1], and would at best be applicable for very small systems conforming to
CM1 and CM2, with a handful of branching statements. Furthermore, the fact
that MC/DC coverage scales well for all architectural styles might be interesting
to component-based software developers building systems that should conform
to a standard that requires such coverage (e.g., [25]). Finally, as related work



shows [11, 26], data flow (e.g., all uses) coverage on integration level is useful for
detecting interleaving failures such as race conditions and stale-value errors in
systems conforming to CM3.

6 Related Work

Previous contributions in testing of component-based systems range from verifi-
cation of execution time properties by evolutionary testing [28], through regres-
sion testing of components based on information provided regarding component
changes [29], to model-based testing of component-based systems [30]. Despite
this variety of contributions in this field, there exists, to our knowledge, no
previous work discussing traditional structural test coverage in the integration
testing of component-based systems. However, the fact that components need to
be tested in the integrated setting in which they are intended to operate is recog-
nized, e.g., by Weyker [31]. It is our firm belief that the quality of the verification
would benefit by complementing the functional testing traditionally performed
during integration with structural coverage as described in this paper.

Outside the component-based development community, the most notable ef-
forts regarding structural testing on integration- or system level has been inves-
tigations of how to achieve structural coverage in concurrent systems of differ-
ent flavours (typically focusing on definitions and uses of shared variables [11,
26]). For structural testing of concurrent systems, many approaches combine
the internal control flow structure of concurrent threads with the possible syn-
chronizations between the threads. By doing this, a system-level control flow
representation for structural testing can be achieved. Also related to this work,
are contributions describing specialized structural test criteria focusing on the
control flow paths of concurrent programs [32–35]. In contrast to the above
works, the contribution of this paper is an effort to generalize the problem by
considering several architectural styles, and a variety of test criteria.

7 Conclusions and Future Work

Building a system out of well-tested components does not necessarily result in a
well-tested system. Generally, after integration of well-tested components into a
subsystem or a system, the interaction between components remain to be tested.
Using functional testing, we will cover the functional aspects of the integration
(if the specification used as the base for test case generation is of a sufficient
quality), but in order to cover structural and non-functional aspects, structural
testing is required. Furthermore, structural coverage measures are not perfect,
but they constitute the main formal quality assurance measures available in
software testing.

In this paper, we have described the added test effort required by component
integration, by introducing the concept of compositionally introduced test items.
Also, we have described the impact of this concept for a number of common
structural test criteria considering common architectural styles. Second, we have



shown what is required in order to achieve structural test coverage at an arbitrary
level of integration in multi-level hierarchical development of component-based
software. By doing this, we have facilitated a less ad-hoc way of determining
the adequacy of integration- and system-level testing than the functional testing
traditionally used at this level.

Extending this approach to other component models and identifying impacts
of relaxing some of our assumptions will be the immediate followups of this work.
Several interesting questions also need to addressed such as a) what information
we need to provide at the component interface level and b) what happens if
we do not have access to source code. We have also assumed strong adherence
to component model semantics at lower levels of implementation, which cannot
be taken for granted in many systems where the underlying implementation
could be based on languages such as C. Scenarios that are potentially capable of
invalidating the results need to identified and appropriate additional test efforts
need to be incorporated.

Furthermore, in the continuation of this work, a goal would be to, for different
architectural styles, and different test criteria, find a set test cases that safely
covers the set of compositionally introduced test items. A second goal would be
to find the minimal set of test cases that fulfils this criterion.

References

1. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Computing Surveys (CSUR) 29(4) (1997) 366–427

2. Juristo, N., Moreno, A.M., Vegas, S.: Reviewing 25 Years of Testing Technique
Experiments. Journal of Empirical Software Engineering 9(1-2) (2004) 7–44

3. Frankl, P.G., Weyuker, E.J.: An Applicable Family of Data Flow Testing Criteria.
IEEE Transactions of Software Engineering 14(10) (1988) 1483–1498

4. Pavlopoulou, C., Young, M.: Residual test coverage monitoring. In: ICSE ’99: Pro-
ceedings of the 21st international conference on Software engineering, Los Alamitos,
CA, USA, IEEE Computer Society Press (1999) 277–284

5. Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House Publishers
(2002)

6. van Veenendaal, E.: The Testing Practitioner. Uitgeverij Tutein Nolthenius (2002)
7. Copeland, L.: A Practitioner’s Guide to Software Test Design. STQE Publishing

(2003)
8. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems.

Artech House Publishers (2002)
9. Lau, K.K., Wang, Z.: A Survey of Software Component Models (May 2006) Sec-

ond edition, Pre-print CSPP-38, School of Computer Science, The University of
Manchester.

10. Shaw, M., Garland, D.: Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice-Hall (1996)

11. Sundmark, D., Pettersson, A., Sandberg, C., Ermedahl, A., Thane, H.: Finding
DU-Paths for Testing of Multi-Tasking Real-Time Systems using WCET Analysis.
In: Proceedings of the 7thInternational Workshop on Worst-Case Execution Time
Analysis, (WCET’2007). (July 2007)



12. Pretschner, A.: Compositional Generation of MC/DC Integration Test Suites.
Electronic Notes in Theoretical Computer Science 82(6) (2003)

13. Goldberg, A., Wang, T.C., Zimmerman, D.: Applications of Feasible Path Analysis
to Program Testing. In: ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT
international Symposium on Software Testing and Analysis, New York, NY, USA,
ACM Press (1994) 80–94

14. Gustafsson, J., Ermedahl, A., Lisper, B.: Algorithms for Infeasible Path Calcula-
tion. In: Sixth International Workshop on Worst-Case Execution Time Analysis,
(WCET’2006), Dresden, Germany (July 2006)

15. Hayes, I., Fidge, C., Lermer, K.: Semantic Characterisation of Dead Control-Flow
Paths. IEE Proceedings - Software 148(6) (December 2001) 175 – 186

16. Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H̊akansson, J., Möller, A.,
Pettersson, P., Tivoli, M.: The SAVE approach to component-based development
of vehicular systems. Journal of Systems and Software 80(5) (May 2007) 655–667

17. Nierstrasz, O., Arévalo, G., Ducasse, S., Wuyts, R., Black, A.P., Müller, P.O.,
Zeidler, C., Genssler, T., van den Born, R.: A component model for field devices. In:
Proc. of the 1st Int. IFIP/ACM Working Conference on Component Deployment,
Springer (2002) 200–209

18. Sun Microsystems: JavaBeans Specification 1.01 (August 1997) Available from
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html.

19. Box, D.: Essential COM. Addison-Wesley (1997)
20. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Com-

ponent Model for Consumer Electronics Software. IEEE Computer 33(3) (2000)
78–85

21. Lundbäck, K.L., Lundbäck, J., Lindberg, M.: Component Based Development
of Dependable Real-Time Applications. Technical report, Arcticus Systems,
http://www.arcticus.se

22. Sandström, K., Fredriksson, J., Åkerholm, M.: Introducing a component technology
for safety critical embedded realtime systems. In: International Symposium on
Component-based Software Engineering (CBSE7), Edinburgh, Scotland, Springer
Verlag (May 2004)

23. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework
for Generative Development of Distributed Real-Time Control Systems. In: Proc. of
the 13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, IEEE (2007) 199–208

24. Bureš, T., Carlson, J., Crnković, I., Sentilles, S., Vulgarakis, A.: ProCom – the
Progress Component Model Reference Manual, version 1.0. Technical Report
MDH-MRTC-230/2008-1-SE, Mälardalen University (June 2008)

25. RTCA: Software Considerations in Airborne Systems and Equipment Certification,
RTCA/DO-178B. RTCA (December 1992)

26. Yang, C.S.D., Pollock, L.L.: All-uses Testing of Shared Memory Parallel Programs.
Software Testing, Verification and Reliability 13(1) (2003) 3 – 24

27. Chilenski, J.J., Miller, S.P.: Applicability of Modified Condition/Decision Coverage
to Software Testing. Software Engineering Journal (September 1994) 193 – 200

28. Groß, H.G., Mayer, N.: Evolutionary testing in component-based real-time system
construction. In: GECCO ’02: Proceedings of the Genetic and Evolutionary Com-
putation Conference, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(2002) 1393

29. Mao, C., Lu, Y.: Regression testing for component-based software systems by
enhancing change information. In: APSEC ’05: Proceedings of the 12th Asia-



Pacific Software Engineering Conference, Washington, DC, USA, IEEE Computer
Society (2005) 611–618

30. Pelliccione, P., Muccini, H., Bucchiarone, A., Facchini, F.: TeStor: Deriving Test
Sequences from Model-based Specifications. In: Eighth International SIGSOFT
Symposium on Component-based Software Engineering (CBSE 2005), Lecture
Notes in Computer Science, LNCS 3489. (2005) 267 – 282

31. Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE
Softw. 15(5) (1998) 54–59

32. Katayama, T., Itoh, E., Ushijima, K., Furukawa, Z.: Test-Case Generation for
Concurrent Programs with the Testing Criteria Using Interaction Sequences. Pro-
ceedings of sixth Asia-Pacific Software Engineering Conference (APSEC’99) 00
(1999) 590

33. Taylor, R.N., Levine, D.L., Kelly, C.D.: Structural Testing of Concurrent Programs.
IEEE Transactions on Software Engineering 18(3) (1992) 206–215

34. Wong, W.E., Lei, Y., Ma, X.: Effective Generation of Test Sequences for Structural
Testing of Concurrent Programs. In: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS’05), Wash-
ington, DC, USA, IEEE Computer Society (2005) 539–548

35. Yang, R.D., Chung, C.G.: Path Analysis Testing of Concurrent Program. In:
Information and Software Technology. Volume 34(1). (Jan 1992) 43–56


