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Abstract

We present the concept of pattern-triggered tasks which
are released when a particular pattern of events occur. A
formal event algebra is used to de�ne complex triggering
conditions for these tasks, and the detection of triggering
conditions is performed within the system by code gener-
ated automatically from these de�nitions. The implemen-
tation of the algebra has many desirable features for re-
source constrained real-time systems, including bounded
and low execution time and memory consumption. Fur-
thermore, we present novel schedulability analysis for our
pattern-triggered tasks that leverage on existing analysis
for �xed-priority and dynamic-priority scheduling poli-
cies.

1. Introduction

In this paper we present the concept of pattern-
triggered tasks. Pattern-triggered tasks are released for
execution when a, potentially complex, pattern of events
occur. The events and the triggering conditions are for-
mally speci�ed by an event algebra that allow complex
combinations of events to be expressed [7]. To guarantee
bounded response-times and make our systems amenable
for scheduling analysis, the individual events that build
up these event patterns are assumed to be sporadic with a
known minimum interarrival time.

Our event algebra has attractive properties making it
suitable for engineering of resource constrained real-time
systems. First and foremost, the algebra provides sim-
ple and intuitive operators (e.g., conjunction, disjunction
and sequence). Furthermore, the code for pattern detec-
tion can be automatically generated from the event expres-
sions, and exhibits necessary qualities in order to be used
in resource constrained real-time systems: (i) it is resource
ef�cient, and bounded, with regards to memory footprint
as well as processing time; (ii) worst case execution time
(WCET) can easily be analysed by automated tools since
the code only contains simple programming constructs.

Pattern-triggered tasks can be realised without explicit
∗This work was partially supported by the Swedish Foundation for
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support for pattern detection in the underlying real-time
operating system. Moreover, they can be modelled as a
particular set of sporadic tasks, which allows traditional
schedulability analysis techniques for sporadic task mod-
els under �xed priority (FPS) and earliest deadline �rst
(EDF) scheduling policies, to be applied. Thus, the pro-
posed technique allows co-existence of periodic, sporadic
and pattern-triggered tasks in a single system and that
high precision schedulability results can be obtained for
all three types of tasks.

Example As a running example throughout the paper,
we consider a system where the external events are a but-
ton, a pressure alarm and a temperature alarm, and where
the desired behaviour includes performing a particular re-
sponse when both alarms have occurred, unless the button
is pressed in between.

The rest of the paper is organised as follows: Sec-
tion 2 surveys related work, and Section 3 de�nes the task
model and describes how pattern-triggered tasks are re-
alised. Section 4 presents the event algebra used to de�ne
event patterns, including formal semantics and important
properties. The generation of detection code is described
in Section 5, and in Section 6 we present schedulability
analysis for task sets including pattern-triggered tasks, be-
fore concluding the paper in Section 7.

2. Related Work

The concept of pattern-triggered tasks is quite differ-
ent from the concept of event-streams that are used to
model chains of tasks by, e.g., Chakraborty et al. [8] and
in SymTA/S [13]. In short, they consider a scenario where
tasks are triggered by external events that can have com-
plex occurrence patterns, while in our approach the exter-
nal events are simple and the detection of signi�cant event
patterns is performed within the system. Common to the
two approaches is that information about event patterns
is exploited in the schedulability analysis to achieve more
accurate results.

Timed automata has been proposed as a modelling lan-
guage for complex triggering patterns [3]. However, for
practically oriented engineers it is often a daunting task
to specify system behaviour using timed automata. Fur-
thermore, the computational complexity of analysing such
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speci�cations with respect to schedulability can be over-
whelming. In particular, constructs that require that multi-
ple patterns are detected concurrently, such as conjunction
or non-occurrence of a complex pattern, typically result in
very large automata compared to the size of the automata
detecting the constituent parts [22].

More directly related to our approach, Mok et al. [20]
present a framework based on real time logic (RTL),
which is a �rst order logic with a dedicated predicate en-
coding event occurrences. The framework has, for exam-
ple, been used in the context of network management [18]
and in an electronic brokerage application [21]. It has also
been suggested as the basis for composite event speci�-
cation in active databases [17]. Bounded detection algo-
rithms are presented, but the memory bound depends on
the time constants used in the pattern de�nitions and on
the minimum interarrival time of events [20].

The operators of our algebra are in�uenced by work in
the area of active databases [9, 11, 12]. The use of in-
terval semantics to avoid unintended semantics for some
operation combinations was proposed by Galton and Au-
gusto [10]. Our restriction policy, used to achieve resource
bounds, resembles the concept of event contexts found in
e.g., Snoop [9] and Solicitor [19], but is different in that
we apply it once to the whole expression rather than to
each operator individually.

3. Event Pattern Triggered Tasks

A straightforward way to construct an embedded sys-
tem that reacts to a particular event pattern is to include
a task which performs pattern detection implicitly within
the code and then performs the desired reaction if the pat-
tern is detected.

The drawback of this straightforward approach is that
the execution time of the task varies a lot, since the re-
sponse code is only executed when the full pattern is de-
tected. If pattern occurrences are rare compared to the oc-
currences of individual events, analysis techniques based
on a single WCET value will be very pessimistic, mean-
ing that the system must be signi�cantly underutilised in
order to statically guarantee timeliness of all tasks.

Alternatively, pattern detection and response can be
split into two tasks. This allows tighter WCET informa-
tion, but does not solve the utilisation problem. With no
information about the nature of the pattern, it must be as-
sumed that the response task is executed as often as the
detection task.

We propose a task model where triggering patterns are
de�ned explicitly rather than implicitly in the task code.
This separation of concerns facilitates both design and
analysis. Complex event patterns can be speci�ed on a
high level of abstraction, independently from the rest of
the application in which they are used, and the rest of the
system is free from detection related code and information
about partially completed patterns.

With a formal syntax and semantics, the detection code

can be automatically generated from pattern speci�ca-
tions, relieving the programmer of this error prone task.
Also, the patterns are available for analysis, in particular
to establish how frequently the pattern can occur in the
worst case, which allows a more ef�cient use of resources
compared to assuming that the complicated event occurs
as often as its constituent simple events.

3.1. Example task model and assumptions
For the sake of presentation, we adopt a relatively sim-

ple task model including both periodic tasks and tasks that
are triggered by particular patterns of sporadic events. The
system is fully preemptive and scheduled according to ei-
ther EDF or FPS. Ordinary sporadic tasks are treated as
a special case of pattern-triggered tasks where the pattern
consists of just a single event. Extending the task model to
include precedence constraints, blocking caused by shared
resources, etc., should be straightforward.

A task, τi, is characterised by the following parameters:

• Worst case execution time (Ci) The longest time
it could take to execute the code of the task, assuming
that it is not interrupted.

• Relative deadline (Di) The time, relative to acti-
vation, when the task must be �nished.

Each task also has one of the following parameters, de-
pending on if it is periodic or pattern-triggered:

• Period (Ti) The time between two consecutive ac-
tivations of a periodic task.

• Event expression (Ei) A speci�cation of the situ-
ation under which a pattern-triggered task should be
activated.

Note that for pattern-triggered tasks, Ci refers to the
execution time of the user provided response code. The
worst case execution time associated with the generated
detection code of an event expression Ei is denoted by
wcet(Ei).

Under FPS, the following parameter also applies:

• Priority (Pi) The static priority of the task.

Task instances that have the same priority are assumed to
be served in the same order as they are released. Ties are
broken arbitrarily.

Example For the running example, we let the system
consist of three tasks, two of which are periodic (τ1 and
τ3). The third task, τ2, is triggered by the event pattern
�both alarms (P and T) occur without the button B being
pressed in between�. In the event algebra, elaborated in
Section 4, this situation is speci�ed by the event expres-
sion (P+T)−B. The parameters of this example task set
are:
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Task Pi Ci Ti Di Ei

τ1 High 10 50 30 �
τ2 Mid 20 � 100 (P+T)−B
τ3 Low 30 200 200 �

3.2. Realisation
Allowing pattern-triggered tasks to be directly used in

an application would require an underlying real-time op-
erating system (RTOS) with pattern detection capabilities.
Instead, we propose an indirect approach where pattern-
triggered tasks are realised by constructs found in tradi-
tional RTOSes.

In the concrete system, the response code of a pattern-
triggered task is merged with code for detecting the event
pattern, automatically generated based on the detection al-
gorithm presented in Section 5. Together, they form an
event triggered task, which is triggered individually by all
events in the pattern speci�cation.

When an event occurs, the interrupt handler activates
all tasks with patterns including that event, providing the
ID of the event and a time stamp in the activation. When
selected for execution by the scheduler, the task �rst exe-
cutes the detection code with the event ID and time stamp
received from the interrupt handler at activation. If the
detection algorithm signals a successful detection of the
whole pattern, the task proceeds with executing the re-
sponse code, otherwise it terminates. Figure 1 shows the
realisation of the pattern triggered task τ2 from the run-
ning example.

Auto. code

Interrupt handlers Pattern triggered task

User code

P

T

B

Carry out

response

Detect 

(P+T)-B

Figure 1. Realisation of the pattern-
triggered task τ2 triggered by the pattern
(P+T)−B.

In a situation when several events occur before the
�rst has been processed, multiple instances of a pattern-
triggered task will be active at the same time. Under
FPS, they have the same priority, but the ��rst-come-�rst-
served� assumption guarantees that the events are pro-
cessed in the correct order. For EDF, this is ensured by
the fact that the absolute deadlines of the instances follow
the order in which the events arrived.

The reason for including the conceptually different ac-
tivities of event detection and response in the same task is
related to the fact that the original deadline of a pattern-
triggered task is relative to the pattern occurrence, not
the time at which the pattern is detected [4]. If detection
and response were handled by separate tasks, the response

task could not be statically assigned a deadline relative to
its activation, which is prescribed by the traditional task
model.

4. The Event Algebra

This section presents the event algebra used to specify
triggering patterns, focusing on aspects that are most rele-
vant to the scope of this paper. For an in-depth treatment,
including examples motivating the use of interval seman-
tics, comparisons with alternative approaches, and formal
proofs of properties, complexity and correctness, see [6].

The particular characteristics of this event algebra is
the combination of satisfying a number of intuitive alge-
braic laws while at the same time permitting any event ex-
pression to be correctly detected with bounded memory.

4.1. Syntax
We denote by P the set of external events that the sys-

tem can react to. In the algebra, they are primitive event
expressions, representing the simple pattern of a single
event occurring. For more complex patterns, composite
event expressions can be built using the operators of the
algebra.

De�nition 1 If A ∈ P , then A is an event expression. If
A and B are event expressions, and if t is a time constant,
thenA∨B,A+B,A;B,A−B andAt are event expressions.

Informally, a disjunction A∨B represents that either
of A and B occurs. A conjunction means that both events
have occurred, in any order and possibly at different times,
and is denoted A+B. A sequence A;B is an occurrence
of A followed by an occurrence of B. The negation, de-
noted A−B, occurs when there is an occurrence of A dur-
ing which there is no occurrence of B. This description
of negation makes little sense when A is primitive, since
primitive occurrences are instantaneous. A more typical
usage of the negation operator is (A;B)−C, represent-
ing that there should be no occurrence of C between the
occurrences of A and B. Finally, there is a temporal re-
striction At which occurs when there is an occurrence of
A shorter than t time units. As with negation, the tem-
poral restriction is typically applied to sequences or con-
junctions, restricting the time between the constituent oc-
currences.

Example For the example system, we have P =
{B, P,T} and the triggering pattern is speci�ed by the
event expression (P + T)−B. For a more complex ex-
ample, consider the pattern �the button is pressed twice
within two seconds, and none of the alarms occurs in
between� which can be de�ned by the event expression
(B;B)2 sec−(P∨T).

4.2. Semantics
We represent a single event occurrence by its start- and

end time. Although primitive events are assumed to be
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instantaneous, occurrences of composite events must be
represented by intervals in order to achieve some of the
desired algebraic properties [6].

Formally, the interval of an event occurrence a is cap-
tured by the functions start(a) and end(a), where end(a)
denote the time of occurrence, and the full interval from
start(a) to end(a) represents the smallest interval con-
taining all primitive occurrences that caused a.

The operator ⊕ is used to construct occurrences of
composite event expressions from occurrences of the con-
stituents. E.g., each occurrence of A;B will be con-
structed from one occurrence of A and one occurrence of
B. The start- and end time of composite occurrences are
de�ned as follows:

start(a⊕ b) = min(start(a), start(b))

end(a⊕ b) = max(end(a), end(b))

The following de�nition formalises the algebra seman-
tics:

De�nition 2 For A ∈ P , [[A]] is the set of all occurrences
of A. For composite event expressions, the semantics is
de�ned as follows:

[[A∨B]] = [[A]] ∪ [[B]]

[[A+B]] = {a⊕ b | a ∈ [[A]] ∧ b ∈ [[B]]}
[[A;B]] = {a⊕ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)}

[[A−B]] = {a | a ∈ [[A]] ∧ ¬∃b∈[[B]](start(a) ≤ start(b)∧
end(b) ≤ end(a))}

[[At]] = {a | a ∈ [[A]] ∧ end(a)− start(a) ≤ t}

This de�nition results in an algebra with simple se-
mantics and intuitive algebraic properties. However, the
memory required to perform the detection is unbounded
for some expressions. For example, when detecting A;B
each occurrence of A must be remembered forever, since
it should be combined with all future occurrences of B.
To deal with resource limitations, we introduce a formal
restriction policy that de�nes a subset of occurrences that
must be detected. The basic idea is to ignore simultaneous
occurrences, while at the same time retaining the desired
properties of the semantics.

The restriction policy is de�ned as a binary relation res.
Rather than computing the full [[A]] for a given event ex-
pression A, an implementation of the algebra is expected
to detect a set of event occurrences S such that res(A,S)
holds.

Informally, from the occurrences with the same end
time, exactly one with maximal start time must be de-
tected. For the user of the algebra, this means that at any
time when there is one or more occurrences of A, one of
them will be detected.

De�nition 3 For an event expression A and a set S of
event occurrences, res(A,S) holds if:

1. S ⊆ [[A]]

2. ∀a∈[[A]](∃s∈S(start(a)≤start(s) ∧ end(a)=end(s)))

3. ∀s,s′∈S (end(s) = end(s′)⇒ s = s′)

4.3. Properties
Next, we present a selection of algebraic laws show-

ing to what extent the operators behave according to in-
tuition. Moreover, the laws facilitate formal and informal
reasoning about the algebra and about tasks triggered by
patterns de�ned by the algebra. For example, they could
form a basis for rewriting event expressions to minimise
the resources required for detection.

For this, we �rst de�ne expression equivalence as fol-
lows:

De�nition 4 For two event expressions A and B we de-
�ne A ≡ B to hold if [[A]]=[[B]] independently of how the
primitive events occur.

Now, the laws can be formulated. For proofs and a
more extensive set of laws, see [6].

Laws 1 For arbitrary event expressions A, B and C, and
any time constant t, the following laws hold:

A∨A ≡ A

A∨B ≡ B∨A
A+B ≡ B+A

At ≡ A if A ∈ P

(At)t′ ≡ Amin(t,t′)

A∨(B∨C) ≡ (A∨B)∨C
A+(B+C) ≡ (A+B)+C

A;(B;C) ≡ (A;B);C

Laws 2 For arbitrary event expressions A, B and C, and
any time constant t, the following laws hold:

(A∨B)+C ≡ (A+C)∨(B+C)

(A∨B);C ≡ (A;C)∨(B;C)

A;(B∨C) ≡ (A;B)∨(A;C)

(A−B)−C ≡ A−(B∨C)

(A∨B)−C ≡ (A−C)∨(B−C)

(A∨B)t ≡ At∨Bt
(A−B)t ≡ At−B

These laws identify expressions that are semantically
equivalent, but in order to deal with resource limitations,
we expect an implementation of the algebra to compute an
event stream S such that res(A,S), rather than computing
[[A]]. As a result, detectingAmight potentially yield a dif-
ferent result than detecting B, even when A ≡ B. Con-
sequently, it should be clari�ed to what extent the laws
presented above are applicable when the restriction policy
is applied.
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Theorem 1 If A ≡ B and res(A,S), then res(B,S).

Proof: Since A ≡ B implies that [[A]] = [[B]], this holds
trivially. �

Thus, A ≡ B ensures that for any implementation con-
sistent with the restriction policy, the occurrences detected
for A are always a valid result for B as well. Thus, any
reasoning based on the algebra semantics and restriction
policy, and not on details of a particular detection algo-
rithm, will be equally valid for equivalent expressions.

5. Implementation

A primary ambition when designing the algebra has
been to allow an implementation for which bounds on
memory footprint and processing time can be determined
statically. This section presents how a concrete online de-
tection algorithm can be generated automatically from an
event expression. The detection algorithm has a memory
and time complexity of O(m2) where m is the size of the
expression.

This is an improved version of the algorithm compared
to what has been previously published [7], where bounds
on memory and time could only be established for a subset
of expressions.

5.1. Detection algorithm
Figure 2 presents an algorithm that detects occurrences

of a given event expression A. The numbers 1 . . .m
are assigned to the subexpressions of A in an arbitrary
bottom-up order, and we let Ai denote subexpression
number i. Consequently, we have Am=A.

The symbol ε is used to represent a non-occurrence,
and we de�ne start(ε) = end(ε) =−1 to simplify the al-
gorithm. The algorithm is executed every time tick when
at least one primitive event occurs, and at the end of exe-
cution, the variable am contains the current occurrence of
A, or ε if A did not occur.

The variables used in the algorithm can be divided into
three categories. Persistent variables (l, r, Q and t) store
information that must be remembered from one time tick
to the next in order to detect the event properly. Since
each subexpression requires its own persistent variables,
they are indexed from 1 to m.

Auxiliary variables (a and S) are used to pass informa-
tion from a subexpression to its parent node in the expres-
sion tree, and are indexed in the same way as the persistent
variables. In short, ai is used to store the current instance
of subexpression Ai, and Si contains possible start times
of future occurrences of Ai.

There are also temporary variables (t, e, e′ andQ′) that
are used locally within a single subexpression in a single
tick. These are not indexed, indicating that the content is
never used outside that scope.

Persistent and auxiliary variables are initialised as fol-
lows: ti=−1, li=ri=ε and Si=Qi=∅ for 1≤ i≤m.

for i from 1 to m
if Ai ∈ P then
ai := the current occurrence of Ai.

if Ai = Aj∨Ak then
if start(aj)≤start(ak) then ai := ak
else ai := aj
Si := Sj ∪ Sk

if Ai = Aj+Ak then
if start(li)<start(aj) then li := aj
if start(ri)<start(ak) then ri := ak
if li=ε ∨ ri=ε ∨ (aj =ε ∧ ak=ε) then ai := ε
else if start(ak)≤start(aj) then ai := aj ⊕ ri

else ai := li ⊕ ak
Si := Sj ∪ Sk ∪ {start(li), start(ri)}\{−1}

if Ai = Aj ;Ak then
e′ := ε
foreach e in Qi ∪ {li}

if end(e)<start(ak) ∧ start(e′)<start(e)
then e′ := e

if e′ 6=ε then ai := ak ⊕ e′ else ai := ε
Q′ := ∅
foreach t in Sk
e′ := ε
foreach e in Qi ∪ {li}

if end(e)<t ∧ start(e′)<start(e)
then e′ := e

Q′ := Q′ ∪ {e′}
Qi := Q′
if start(li) < start(aj) then li := aj
Si := Sj ∪ {start(e) | e ∈ Qi ∪ {li}}\{−1}

if Ai = Aj−Ak then
if ti<start(ak) then ti := start(ak)
if ti<start(aj) then ai := aj else ai := ε
Si := Sj

if Ai = (Aj)t then
if end(aj)−start(aj)≤ t then ai := aj
else ai := ε
Si := Sj

Figure 2. General detection algorithm.

Theorem 2 Assume that the algorithm is executed every
tick when some primitive event occurs, and let S denote
the set of detected occurrences, i.e., the contents of am
after executing the algorithm, except when am = ε. Then
res(A,S) holds.

Proof: A detailed formal proof is given in [6]. �
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a1 := the current occurrence of P
a2 := the current occurrence of T
if start(l3)<start(a1) then l3 := a1

if start(r3)<start(a2) then r3 := a2

if l3 =ε ∨ r3 =ε ∨ (a1 =ε ∧ a2 =ε) then a3 := ε
else if start(a2)≤start(a1) then a3 := a1 ⊕ r3

else a3 := l3 ⊕ a2

a4 := the current occurrence of B.
if t5<start(a4) then t5 := start(a4)
if t5<start(a3) then a5 := a3 else a5 := ε

Figure 3. Concrete detection algorithm for
(P+T)−B.

5.2. Code generation
The detection algorithm in Figure 2 is formulated for

arbitrary expressions, and the main loop selects dynam-
ically which part of the algorithm to execute for each
subexpression. When the expression is known at compile-
time, the main loop can be unrolled and the top-level con-
ditionals, as well as all indices, can be statically deter-
mined. Also, assignments of Si variables can be removed
for all subexpressions except those appearing somewhere
in the second argument of a sequence operator.

Example The concrete detection algorithm for the event
expression in the example system is presented in Figure 3.
Initially, t5 = −1 and l3 = r3 = ε.

5.3. Time and memory requirements
The worst part of the algorithm, from a complexity

point of view, is the nested foreach constructs in the se-
quence part. However, this source of complexity can be
avoided, without compromising the correctness of the al-
gorithm, if the set variables Si and Qi are represented as
ordered structures. This means that the nested foreach
constructs can be changed into a single while-loop travers-
ing Si and Qi together. For details, and for the proof of
the following theorem, see [6].

Theorem 3 The time and memory complexity of the algo-
rithm is O(m2), where m denotes the number of subex-
pressions in A.

The generated code does not utilise any dynamic mem-
ory management, neither by explicit memory allocation,
nor by function calls or parameter passing via the runtime
stack. Furthermore, the code is characterised by a very
simple control �ow. For example, there are no subroutine
or function calls, and all loops are trivially bounded by
the size of some static data structure. Thus, existing tech-
niques and standard tools for execution time analysis, e.g.,
SWEET [28], aiT [1] or Bound-T [5] should be applica-
ble.

6. Schedulability Analysis

For the analysis we assume that events are sporadic,
i.e., that the minimum interarrival time, denoted mint(A)
is known for each A ∈ P .

Example Before analysing the example task set, we
make the following assumptions about minimum inter-
arrival times and worst case detection execution time:
mint(P) = 70, mint(T) = 200, mint(B) = 60 and
wcet((P+T)−B) = 5.

With the straightforward approach described initially,
where pattern detection is performed implicitly within
the task code, this task set would be considered non-
schedulable even if the detection overhead is disregarded.
During any time interval of length 4200, 84 instances of τ1
and 21 instances of τ3 are released for execution. Further-
more, there can be 60, 21 and 70 occurrences of P, T and
B, respectively, potentially triggering 151 instances of τ2.
Thus, the total amount of execution that is released during
the interval is 84 ∗ 10 + 21 ∗ 30 + 151 ∗ 20 = 4490. Since
4490 units of computation can be released in any interval
of length 4200, the task set is clearly non-schedulable.

Introducing pattern-triggered tasks with explicit pat-
tern speci�cations, however, permits a more accurate anal-
ysis. We will show later that this particular task set is in
fact schedulable.

The occurrences of a pattern are in general not spo-
radic even though the primitive events are. For a simple
example, consider two sporadic events P and T. Regard-
less of the minimum interarrival times of the two events,
an occurrence of P can be immediately followed by an oc-
currence of T, resulting in two occurrences of the pattern
P∨T separated by just a single clock tick.

Nevertheless, the frequency at which a pattern oc-
curs can be bounded, but in a more general way than
with a single minimum interarrival time. For exam-
ple, we can safely state that in any interval of length
min(mint(P),mint(T)), there can be at most two occur-
rences of the pattern P∨T.

This resembles the concept of bursty aperiodic
tasks [14] which are triggered by events that can occur
arbitrarily close in time, but which are bounded by a con-
straint specifying that there can be at most n occurrences
within any interval of length l.

For patterns, however, it is possible to be more speci�c
than the two parameters of bursty tasks permit. First, we
note that a pattern always occur at the same time as one of
the constituent primitive events. In fact, only a subset of
the constituent events can directly result in an occurrence
of the pattern. For example,A;B always occur at the same
time as some B occurrence. The following de�nition for-
malises this idea.

De�nition 5 For an event expressionA, prim(A) denotes
the set of primitive event expressions in A and term(A)
denotes the set of terminating primitive events of A, de-
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�ned as follows:

term(A) = {A} if A ∈ P
term(A∨B) = term(A) ∪ term(B)

term(A+B) = term(A) ∪ term(B)

term(A;B) = term(B)

term(A−B) = term(A)

term(At) = term(A)

The central idea in the schedulability analysis of sys-
tems with pattern-triggered tasks is that a task respond-
ing to occurrences of a pattern requires the same amount
of computation resources over time as a particular set of
sporadic tasks. A pattern-triggered task is realised by one
task which is activated by all events in the pattern, as de-
scribed in Section 3.2. During the schedulability analysis,
however, we view task instances that were activated by
one event as instances of a different task than those acti-
vated by another event. For example, when τ2 is activated
by P, this is viewed as an instance of a separate task than
when activated by T or B. This also allows taking into
consideration the information provided by the explicit pat-
tern speci�cations, by treating separately those instances
that only ever execute the detection code and never the
response code.

Formally, from the original task set of periodic and
pattern-triggered tasks, we construct a �ctive, auxiliary
task set which is used for schedulability analysis:

De�nition 6 Given a task set Γ, the auxiliary task set Γaux

is the smallest set of tasks such that

• all periodic tasks in Γ are in Γaux;

• for each pattern-triggered task τi ∈ Γ, and each
primitive event A ∈ prim(Ei), Γaux contains a spo-
radic task τiA with TiA = mint(A), DiA = Di,
PiA = Pi and

CiA =
{

wcet(Ei) + Ci if A ∈ term(Ei)
wcet(Ei) if A 6∈ term(Ei)

Example The auxiliary task set for the running example,
constructed according to De�nition 6, is shown below:

τi Pi Ci Ti Di

τ1 High 10 50 30
τ2P Mid 25 70 100
τ2T Mid 25 200 100
τ2B Mid 5 60 100
τ3 Low 30 200 200

Since prim((P+T)−B) = {P,T,B}, the pattern trig-
gered task τ2 results in three sporadic tasks in the auxil-
iary task set (τ2P, τ2T and τ2B), with minimum interarrival
times given by these primitive events, respectively. From
term((P+T)−B) = {P,T} it follows that the WCET of
the response code should be included only in τ2P and τ2T.

Theorem 4 If Γaux is schedulable then Γ is schedulable.

Proof: We show that any sequence of Γ task instances can
be mirrored by a sequence of Γaux task instances with the
same arrival times, priorities, execution times and dead-
lines. Since the periodic tasks are the same in both task
sets, we only need to consider the pattern-triggered tasks.

Every instance of a pattern-triggered task τi from Γ is
triggered by an occurrence of some event in prim(Ei).
Thus, the activation times of τi can be mirrored by activa-
tions of the corresponding sporadic tasks in Γaux.

Next, consider an individual instance of τi, triggered by
an occurrence of the primitive event A. If A 6∈ term(Ei),
then an occurrence of A can never result in a full occur-
rence of the pattern, and thus the τi instance only exe-
cutes the detection algorithm and not the response. This
is consistent with the WCET of τiA, which is de�ned
as CiA = wcet(Ei) when A 6∈ term(Ei). For events
in term(Ei), Γaux safely approximates Γ by assuming
that they can result in a full occurrence of the pattern.
Clearly, the execution time of the τi instance can not ex-
ceed wcet(Ei) + Ci.

Altogether, this means that any sequence of Γ task in-
stances can be mirrored by an instance sequence of tasks
from Γaux with the same arrival times, priorities and exe-
cution times. Thus, if Γaux is schedulable, so is Γ. �

The tasks in the auxiliary task set are either periodic or
sporadic, which means that existing schedulability anal-
ysis theory [24] for EDF and FPS, respectively, can be
applied.

Example (EDF) Under the EDF scheduling policy, a
given task set is schedulable if and only if no deadline
is violated during the busy period. This was shown by Liu
and Layland [16] for task sets where Di = Ti, and ex-
tended to less restricted task sets by Spuri [26] and Ripoll
et al. [23] independently. For the example system, we
have a busy period of length 190, and the following ab-
solute deadlines must be investigated:

{d | d = kTi +Di, d ≤ 190, τi ∈ Γaux, k ≥ 0} =

{30, 80, 100, 130, 160, 170, 180}

For each deadline in this set, the processor demand h(d)
up to that point is computed:

h(30) = 10 h(130) = 85 h(180) = 125
h(80) = 20 h(160) = 90
h(100) = 75 h(170) = 115

Since h(d) ≤ d for all deadlines within the busy period,
the task set is schedulable under EDF.

Example (FPS) In an FPS context, standard response
time analysis [25] can be applied, taking into considera-
tion that deadlines may be larger than periods [15, 27],
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and that tasks do not have unique priorities. For the exam-
ple task set, a worst-case response time ri is computed for
each τi in the auxiliary task set:

τi Pi Ci Ti Di ri

τ1 High 10 50 30 10
τ2P Mid 25 70 100 75
τ2T Mid 25 200 100 75
τ2B Mid 5 60 100 75
τ3 Low 30 200 200 190

Since ri ≤ Di for all tasks in Γaux, the original task set Γ
is schedulable under FPS.

At �rst, it may seem that approximating a pattern-
triggered task by a set of sporadic tasks introduces a lot
of pessimism. However, as a result of the algebra de-
tecting also partially overlapping occurrences of a pattern,
this over-approximation only happens for a relatively lim-
ited number of expressions. In fact, any expression that
does not contain negation or temporal restriction can in the
worst case occur exactly as often as the auxiliary taskset
counterpart. With negation or temporal restriction, it is
possible to construct expressions for which the auxiliary
taskset is an over-approximation. For example, P−P or
(P;P)t when t <mint(P) de�ne patterns which never oc-
cur, but which are assumed to occur as often as P in the
auxiliary taskset.

One way to reduce the over-approximation in such
cases would be to simplify the expression, based on the al-
gebraic laws exempli�ed in Section 4.3, before construct-
ing the auxiliary taskset.

7. Conclusion and Future Work

This paper introduces the concept of event pattern trig-
gered tasks, where tasks can be triggered by more com-
plex event patterns than the traditional periodic or spo-
radic event streams, and shows how such tasks can be
realised for existing real-time operating systems without
support for pattern detection. Furthermore, we propose an
event algebra that is able to express the activation criteria
of such tasks. The algebra exhibit several properties that
make it useful in a resource constrained real-time setting:

• Algebraic laws The laws show that the algebra
corresponds to what one might intuitively expect
from the operators, and facilitates analysis and op-
timisation of event expressions.

• Realisation and implementation The pattern de-
tection code can be automatically generated from the
triggering expressions. Moreover, the run-time foot-
print, in terms of CPU utilisation and memory con-
sumption, is low and statically bounded. The code
also exhibits properties that makes automatic WCET
calculation by existing tools feasible.

• Schedulability analysis Assuming that constituent
events are sporadic, the task set can be transformed
into a standard periodic/sporadic task model, which
means that standard scheduling theory can be ap-
plied. If the result of the transformation is schedu-
lable, then so is the original task set.

To simplify the presentation, we have assumed a fairly
simple task model, and shown how FPS and EDF schedu-
lability analysis can be applied. Extending the model
to consider precedence constraints, blocking caused by
shared resources, etc. should be straightforward, but the
details need to be formalised.

The future work also includes investigating alternative
ways to specify triggering patterns, for example timed au-
tomata [2] or RTL [17, 21]. The proposed algebra pro-
vides an intuitive high-level formalism for event pattern
speci�cation, but for some applications a more detailed
control might be required.
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