
Models Transformation between UML and a Domain
Specific Language

Ana Petričić, Ivica Crnković

Mälardalen University
Mälardalen Research and Technology Centre
PO Box 883, SE-721 23 Västerås, Sweden

+46 21 {15 17 28, 10 31 83}

{ana.petricic, ivica.crnkovic}@mdh.se

Mario Žagar
University of Zagreb

Faculty of Electrical Engineering and Computing

HR-10000 Zagreb, Unska 3, Croatia

mario.zagar@fer.hr

ABSTRACT
As complexity of software systems is increasing, using a proper
modelling language for designing and analysing a system is
becoming more and more important. Over the recent years there is
a tendency for using domain-specific languages which enable
expressing design solutions in the idiom and the level of
abstraction of the specific problem domain. Since a design
process passes through different levels of abstractions and
different properties of systems are being modelled, different
modelling languages are used. While this approach enables an
efficient and accurate design, it suffers from a problem of
transformation between the models. This paper addresses a
challenge of transformation between UML, a modelling language
widely used, to a domain-specific language SaveComp component
model (SaveCCM) intended for real-time embedded systems. In
this paper we discuss a possible solution for achieving
interoperability between SaveCCM and UML. The challenge of a
transformation is to keep all necessary information including the
semantics of the models. The paper presents the strategy for the
transformation, its implementation and an analysis of the results.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
modules and interfaces,

General Terms
Design, Languages

Keywords
Software component models, models transformation, UML,
domain-specific languages

1. INTRODUCTION
Over the recent years, as information technologies have evolved,
the role of models is becoming essential for dealing with the
numerous aspects involved in system's development and

maintenance processes. Therefore, it is particularly important to
use an appropriate modelling language when designing the system
in order to improve efficiency at the design phase, to provide
analyzability as well as to decrease the time-to-market.

A number of various modelling languages exist nowadays, each of
them using different abstractions and notations. However, there is
a continual aspiration for defining a universal modelling language
in order to standardize notations and accomplish tool
interoperability. With these objectives in focus, the Object
Management Group (OMG) developed the Unified Modeling
Language (UML) [11] which became a de facto standard for
modelling. UML is well suited for modelling the most common
aspects of software architecture, but it fails when it comes to more
specific cases e.g. modelling quality attributes of a system and its
components or a time analysis.

A common way of specialising UML to align it with important
design issues in different domains is to define a UML profile
suitable for the domain and then to apply that profile in addition
to general UML. UML profile specializes the standard UML
concepts by defining constraints on those concepts appending
them a unique domain-specific interpretation. The creation of
UML profiles is a way of producing what are now referred as
Domain Specific Languages (DSL).

Even though UML presents a good starting point for creation of
DSL, this does not imply that any DSL should be realized using
UML profiles. There are many cases where UML may lack the
requisite foundation elements that can be cast into corresponding
DSL elements. For example, UML does not provide solutions for
handling of typical properties important in embedded systems and
safety-critical systems, such as resource efficiency, predictability
and safety. For such cases there is a need for specialized
modelling languages which will provide more expressiveness at
the design time and efficiency in analysis and testing.

One of such DSL is the SaveComp Component Model
(SaveCCM) [2], a research component model intended for
embedded control applications in vehicular systems. SaveCCM is
a simple model in which flexibility is limited to facilitate analysis
of real-time characteristics and dependability. SaveCCM as a
domain specific language, lacks the power of a general purpose
language (GPL) such as UML, but is very productive for
designing safety-critical subsystems responsible for controlling
the vehicle dynamics, including power-train, steering, braking,
etc. A disadvantage of a DSL is paradoxically, its specificity – it
can be inappropriate for modelling different properties and it may
require additional efforts to be used. In particular it can provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SERPS'08, November 4-5, 2008, Karlskrona, Sweden.

obstacles in communication of the design decisions between
different stakeholders. Therefore we found a motivation for
joining of GPL and DSL, in order to provide the possibility of
creating a model of a system in one language and then
transforming it into another language, thus making a good use of
advantages of both languages. This approach can combine two
different modelling languages in different design stages. In an
early design stage, a model of the system can be designed using
UML which provides the user a great efficiency of the
development process. After creating a model in UML the
subsequent step is transforming the UML model of the system
into SaveCCM model for further analysis of non-functional
properties that can not be tested in UML. The latter design phase
takes advantages of SaveCCM which is intended for modelling of
safety-critical embedded systems and testing of run-time
properties, namely, timing and resource usage characteristics.

In order to create a link between UML and SaveCCM and to
enable the development of UML models which could be
transformed to a SaveCCM model, a mapping from UML to
SaveCCM must be specified. This mapping can be achieved using
one of the UML extensibility mechanisms mentioned above –
creating a UML profile. Due to the universality of UML and a
strict syntax of SaveCCM, restrictions on UML semantic and
syntax have to be imposed, hence the application of the profile is
necessary for developing of a model which can be transformed to
SaveCCM domain.

The goal of our work is to obtain a simple solution for achieving
interoperability between two modelling languages. Further the
goal is to analyze the feasibility of the approach in terms of full
and unique transformation of models in both directions.

In this paper we describe a formal way of representing the
SaveComp component model using the UML 2.0 component
model. This is achieved through a specification of SaveCCM
elements in UML in the form of a UML profile named SaveUML.
Furthermore, a possible solution for an implementation of a model
transformation is proposed. The discussion on the usability of
created UML profile and the transformations is provided.

The rest of the paper is organized as follows: After a brief
description of SaveCCM in section 2, in section 3 and 4 we
present the SaveUML profile and a design of transformation of
system models between UML and SaveCCM. Section 5 discusses
the characteristics and applicability of the profile and the
transformations. Finally, section 6 presents related work and
section 7 gives our concluding marks.

2. THE SAVECCM OVERVIEW
SaveCCM is anticipated for designing safety-critical subsystems
responsible for controlling the vehicle dynamics. It uses the
component-based development (CBD) approach, thus enabling
assembling of systems out of components which are already
developed and prepared for integration. Contrary to many of the
current component technologies, SaveCCM focuses on
predictability and analysability more than on flexibility. In
addition SaveCCM supports the development of resource-efficient
systems. SaveCCM technology provides a support for a design of
subsystems and analysis of timing properties built in an integrated
development environment SaveIDE.

In SaveCCM, systems are built from interconnected elements with
well-defined interfaces consisting of input and output ports. An

important characteristic of SaveCCM is the distinction between
data transfer and control flow, which is achieved by
distinguishing two kinds of ports; data ports where data of a
given type can be written and read, and trigger ports that control
the activation of components. The separation of data and control
flow allows a model to support both periodic and event-driven
activities (execution can be initiated by a clock or external
elements). Due to this separation, the resulting design is
analysable with respect to temporary behaviour, thus allowing
analysis of schedulability, response time, execution time etc.

In addition to ports, the interface of an element may contain
quality attributes each associated with a value and possibly a
confidence measure. These attributes hold the information about
the worst case execution time, reliability estimates, safety models,
etc. The quality attributes are used for analysis, model extraction
and for synthesis.

The main architectural elements in SaveCCM are:
• Components, which are the basic units of encapsulated

behaviour with a functionality that is usually implemented by
a single entry function in C. Besides an entry function, each
component is defined by associated ports and optionally
quality attributes.

• Switches, which provide facilities to dynamically change the
component interconnection structure (at configuration or
run-time); this allows a conditional transfer of data or
triggering between components.

• Assemblies, which provide means to form aggregate
components from sets of interconnected components and
switches.

Contrary to components, assemblies and switches can not be
activated, they respond instantly at the arrival of data or trigger
signal on some of the input ports and they can both be considered
as special types of components, however due to the difference in
semantics they are treated as separate elements.

SaveCCM also provides a component composition mechanism in
a form of a special type of a component – composite component,
where the functionality of a component is specified by an internal
composition instead of using an entry function.

A subset of the UML 2.0 component diagram is adopted as
graphical representation language. The interpretation of the
symbols for provided and required interfaces, and ports are
somewhat modified to fit the needs of SaveComp. The symbols
used are depicted on Figure 1.

Figure 1. Graphical notation of the SaveComp component

model

The SaveCCM run-time framework provides a set of services,
such as communication between components, component
execution and control of sensors and actuators.

SaveCCM as a domain specific language brings some valuable
advantages:

• Enables expressing design solutions in the idiom and the
level of abstraction of the embedded systems problem
domain.

• Enhances quality, reliability and maintainability of the
model.

• Provides the possibility of model reusability, which is one
of the main concepts and vantages of CBD approach.

• Improves productivity of the development process.
• Allows validation and testing at the domain level.
• Reduces the time needed for developers to learn the

modelling language, since it uses similar concepts and
terms.

More information on SaveCCM with a detail description of model
elements and their attributes, as well as an overview of the
SaveCCM execution model can be found in SaveCCM reference
manual [2] and [1][3][5].

3. THE SAVEUML PROFILE – A UML

SPECIFICATION OF SAVECCM
In this section we provide a comparison of UML and SaveCCM
and propose a set of UML extensions to support the dependability
analysis of real-time and embedded systems. Since our goal is to
be compliant with the SaveComp component model, our main
guideline is the SaveCCM language specification [2].
Furthermore, the profile notation and design decisions were
specified to be as much as similar as the ones defined in the
SaveIDE design tool [9][14], with a view to avoid inconsistency.

We have identified the UML 2.0 subset that addresses the
concepts used in component-based development as well as the
ones existing in SaveCCM. It includes the UML 2.0 Components
and Composite Structures packages and we call this subset a
UML 2.0 component model.

3.1 Differences between SaveCCM and UML

2.0 component model
When contemplating the differences between UML and
SaveCCM, the cardinal difference that needs to be emphasized is
a distinction between domain specific and general purpose
modelling language. A DSL is created specifically to solve
problems in a particular domain and can be used to directly model
concepts in that domain using an appropriate level of abstraction.
One of the causes that make DSL specific and very powerful is the
ability to express relationships between concepts of the domain.
In basic UML, the relationships are applied generically (e.g. a
UML association can relate any type of class). In SaveCCM many
relationships are constrained (e.g. two components in a
component-based system can only be connected if the data types
they exchange are compliant).

UML provides a great efficiency of the development process. On
the other hand, experience has shown that for many embedded
system domains efficiency in run-time resources consumption and
prediction of system behaviour at least as important as efficiency

in the software development. Contrary to UML, SaveCCM
focuses on predictability and analysability more than on
flexibility.

Apart from unique modelling elements, such as switches or
assemblies that provide specific behaviour, as well as clock and
delay components, SaveCCM introduces several valuable
concepts that can not be found in UML.

• The distinction between data transfer and control flow, which
is achieved by distinguishing two kinds of ports; data ports
and trigger ports.

• When considering interfaces, UML has created a special
metaclass for this purpose. On the other part, in SaveCCM
the functional interface of every modelling element is defined
by a set of ports associated to the element and optionally,
quality attributes.

• One of the important capabilities of SaveCCM is model
analysis and verification. SaveCCM uses quality attributes
for defining non-functional properties of a component and a
system. Each quality attribute is associated with a value and
possibly a confidence measure.

• In order to provide run-time model analysability, SaveCCM
defines the execution model of active model elements. The
execution model is rather restrictive; the basis is a control-
flow (pipes and filter) paradigm in which executions are
triggered by clocks or external events, and where
components have finite, possibly variable, execution time.
The component execution semantics is defined by a sequence
of activities: start by trigger, read, execute, and write.

3.2 SaveUML profile overview
We have chosen to develop a UML profile which is a standard
UML extensibility mechanism. UML profiles provide an ability to
customize the language by adding new building blocks, creating
new properties and specifying new semantics in order to tailor
UML to a specific problem domain in a controlled way.
Considering that UML profiles are a standard UML extension
mechanism and are therefore a part of UML’s metamodel, they are
as widely recognized as UML itself and should be supported by
all standard modelling CASE tools. This possibility of
customizing UML for specific domain purposes while remaining
within boundaries of the UML standard and keeping the
possibility of using UML CASE tools, presents a reasonable
motivation for customizing and using UML instead of a specific
modelling language.

The UML profile we developed, named SaveUML profile, is to
provide an equivalent language to SaveCCM language. It aims at
modelling systems in UML but using SaveCCM semantics, and
supporting the unique transformations between the UML and
SaveCCM models preserving the SaveCCM semantics.

The process of defining SaveCCM language elements using UML
2.0 elements consisted of three phases:

1. Identification of SaveCCM and UML component model
elements. We have made a detail analysis of UML 2.0
component model (a subset of UML concerning UML
components), which allowed us to survey the similarities
between component models and identify compatible
elements. In addition we defined the transformation rules for
all elements from SaveCCM that need to be translated to

UML elements and corresponding UML elements that can be
used for mapping.

2. Identification of SaveCCM language constraints. Designing
SaveCCM elements with UML 2.0 elements brought up
various problems resulting from a strict syntax of SaveCCM
and the universality of UML. Therefore, we had to create a
set of constraints to refine the UML 2.0 component model
semantics to be suitable for designing SaveCCM modelling
elements. This phase included defining a set of constraints
that covered the SaveCCM semantics as well as additional
restrictions that had to be imposed upon the UML model to
prohibit the usage of elements and concepts that do not fit in
the SaveCCM semantics.

3. Translation of previously identified elements during which a
suitable UML element is found for every SaveCCM language
elements and it was then further customized through the use
of necessary stereotypes, properties and constraints.

The process result is the profile specification which describes the
generated UML profile as a list of its stereotypes, the basic UML
elements they extend and the source SaveCCM elements they
represent. The diagram of the SaveUML profile is depicted in
Figure 2.

Essentially, the concepts of the metamodel are reflected onto
stereotype attributes and constraints. The SaveUML profile
specifies a set of stereotypes which extend elements of the UML
2.0, namely UML Component, Port, Property, Artifact,

Usage and Dependency. Each element from SaveCCM
domain has its corresponding element in the SaveUML profile.
For introducing the properties of SaveCCM elements (e.g. jitter
and period attributes of SaveCCM clock component etc.) we used
the tagged value mechanism. The SaveCCM semantics is imposed
upon the UML model using Object Constraint Language (OCL).

During the process of creating the SaveUML profile, after a
comprehensive analysis of both component models, we have made
several design decisions considering representing of SaveCCM
architectural elements within the profile, the method of defining
substructure of components and different concepts of interfaces in
SaveCCM and UML. These design decisions are presented below.

Components

Since SaveCCM is intended for modelling of component-based
systems, the basis for main architectural elements in SaveCCM is
a component. SaveCCM introduces three main architectural
elements; component, assembly and switch. In addition, three
subtypes of SaveCCM component are defined; clock, delay and
composite component. All together, this makes six different kinds
of components in context of CBD. UML 2.0 component model
provides only one kind of a component. For the needs of
SaveCCM it is necessary to distinguish between six types of
components, therefore it is required to define six virtual
metaclasses – stereotypes that will extend the UML Component
metaclass. This will allow applying those stereotypes to
components within the user model to distinguish between

Figure 2. Diagram of the SaveUML profile

SaveCCM architectural elements.

Subcomponents
SaveCCM offers two elements that may have an internal structure
defined, assembly and composite component. In UML 2.0, there
are two ways of specifying an internal structure of a component:
using metaclass Property either using metaclass
PackageableElement.

The advantage of the first approach is defining of subcomponents
outside the owning element at one place, which can then be
referred to as a type of the part (in UML internal sub elements that
are defined using metaclass Property are called parts). This
way, as many parts as needed can refer to the same component at
the same time. The changes made to the component will reflect to
all parts referring that component. However, this approach has a
drawback. Since a metaclass Property is not a subtype of an
EncapsulatedClassifier, it may not have an internal
structure. This means that it is not possible to nest the components
to arbitrary depth. A component can have only one-level internal
structure (the only solution to this problem is to define internals of
a subcomponent outside the owning component). In addition,
using Property for defining subcomponents is not semantically
correct regarding the CBD.

Considering disadvantages of using the Property metaclass, the
latter approach – using PackageableElement, was chosen.
This method enables defining a hierarchical composition of
components and its nested subcomponents to an arbitrary depth at
one place with no need to define internals of subcomponents
outside the owning component. Such a definition of
subcomponents is called embedded definition of components.

Interfaces

In SaveCCM the functional interface of every modelling element
is defined by a set of ports associated with the element. UML 2.0
provides an Interface metaclass for this purpose and supports
two ways of specifying provided and required interfaces. Interface
provides a way to partition and characterize groups of properties
and operations that a component possesses. Because of semantic
differences of interface in the SaveCCM and UML, we decided
not to use UML interfaces in SaveUML profile. It is supposed that
when modelling a user model in UML using the SaveUML
profile, the interface of a component will be determined by its
ports, as it is done in SaveCCM.

3.3 Using OCL for user model validation
In order enforce the SaveCCM semantics to the SaveUML profile,
we defined a number of constraints within the profile using the
Object Constraint Language (OCL) [10] which is an OMG
standard language used to describe expressions on UML models.
Besides the SaveCCM semantics, OCL constraints are also
defined to enforce the restrictions on UML model to proscribe the
usage of UML concepts that do not have equivalent elements
within SaveCCM. Constraints are intended to be used for
validating a user model in order to ensure that the model is valid
in consideration of SaveCCM.

We divided the implemented constraints into two main groups –
″Restrictions on UML″ and ″SaveCCM semantics″. Each group
has several sub-groups which are described in the following table.
For each group number of constraints within the group is
displayed.

Table 1. Constraints implemented in SaveUML profile

Constraint group Description Count

Restrictions on UML 56

forbidden
connections

Restrictions on UML 2.0
considering using various
types of connectors (only
Usage and Dependency

are used within the profile).
Also, connectors should not
connect elements directly etc.

17

using interfaces

As discussed, using interfaces
is not allowed within the
SaveUML profile, these
constraints are dealing with
this issue.

12

substructure
definition

As mentioned above, internal
structure of an element may
only be defined using
packaged elements. Further,
the only allowed packaged
element is a Component (it
is the base for all SaveCCM
architectural elements). Also,
some SaveCCM elements are
not allowed to have internal
sub-structure at all.

6

number of
stereotypes

Even though UML has this
option, in SaveUML profile,
one element can have only one
stereotype applied.

21

SaveCCM semantics 61

owning attributes
These constraints are defining
attributes that main SaveCCM
elements may own.

6

owning ports

Since SaveCCM offers several
kinds of ports, each port must
have appropriate stereotype
applied in order to determine
its type. Further, some
SaveCCM elements have
restrictions on number of ports
that they own (clock and
delay).

13

bind port

These constraints introduce
semantic rules considering
special type of port – bind

port.

3

external ports

These constraints introduce
semantic rules considering
special type of port – external

port.

6

switch semantics

Switch component is specific
SaveCCM element. These
constraints introduce its
semantics. They deal with
concept of set port, switch

condition and switch

connection.

5

connections between Since SaveCCM offers two 23

SaveCCM elements kinds of connections, each
connector must have an
appropriate stereotype applied.
Also, depending on the
connection type, cyclic
connections are forbidden or
allowed. Finally constraints
ensure conformance of the
connected ports (their types
and directions).

Generally speaking, we found that identification and definition of
OCL constraints is the major part in creating a UML profile. An
important feature in OCL is using navigation expressions,
therefore it is expected that the developer is familiar with the
model, in our case with UML itself. We found that this can be a
challenging task for non-experienced UML user, as UML is a
complex language with a large number of elements and various
diagram types. Due to this reason, it requires experience in using
OCL and it takes a considerable amount of efforts to identify and
specify all constraints.

Also an important part in using OCL is the tool support. The
profile specification provided in previous section is a general
profile description and we have chosen IBM Rational Software
Modeler (RSM) [6] for implementing the profile prototype. RSM
is a commercial product of IBM supporting standard UML 2.0
functionality. It is built on top of the open and extensible Eclipse
platform that leverages several open industry standards to provide
a significant level of extendibility. RSM provides a standard
interface for the definition of profiles consequently stored in
XML. OCL is also supported for constraint authoring. The tool
facilitates constraint checking using the “Run Validation” option.
Furthermore, we used another rewarding feature that RSM offers;
two different kinds of constraints. In prototype we implemented,
constraints defined within the profile are divided into two groups,
constraints with live validation and constraints with batch

validation. Constraints with batch validation are checked when
the user runs a validation action. An example is a constraint which
requires that all ports owned by a component have an appropriate
stereotype applied. To meet this demand, it is necessary to take a
two-step process, therefore this constraint can not have a live

validation (the constraint would be violated after the first step).
Constraints with live validation are checked every time the model
element, to which the stereotype is applied, is modified. E.g. a
constraint that suppresses using any connectors directly on a
component (in SaveCCM no connections except the ones
explicitly captured by the ports are allowed). If a constraint with
live validation is violated an immediate notification arises. This
distinction of constraint categories and their handling, facilitates
model validation and allows the validation to be achieved already
during design time.

4. SAVEUML TRANSFORMATIONS
The purpose of creating UML profile is twofold; i) provide ability
of using UML to model SaveCCM systems in an early phase of
the design, and ii) enable bidirectional transformation from UML
to SaveCCM.

In this section we describe the conceptual idea of the
transformations between UML and SaveCCM models, named

SaveUML transformations. Further we present a case study
example used for verifying the transformations.

4.1 Conceptual design
The SaveUML transformations categorisation was inspired by
Visser’s classification for program transformation [15]; according
to this classification there are language translation and language

rephrasing. In the former, a model is transformed into a model of
a different language, i.e., a different model, and in the latter, a
model is changed in some way, which may involve producing a
new target model with the changes or changing the existing source
model. The SaveUML transformation fits into the first type, as it
transforms between two different models, UML and SaveCCM.
Furthermore, like in [15], language translation can be sub-
divided into migration: a model is transformed to another one at
the same level of abstraction; synthesis: a model is transformed to
another one at a lower level of abstraction; and reverse

engineering: a model is transformed to another language at a
higher level of abstraction. As the UML model which is
transformed is created using the appropriate UML profile, the
level of abstraction is not changed by the transformation which
places the SaveUML transformation within the migration
category.

The transformation approach is based on using the eXtensible
Stylesheet Language for Transformations (XSLT) [16].
Recommended by the World Wide Web Consortium (W3C),
XSLT is a flexible language for transforming XML documents
into various formats including HTML, XML, text, PDF etc. The
input to XSLT transformations are XML Metadata Interchange
(XMI) representations of models, which are based on XML
syntax. XMI eases the problem of tool interoperability by
providing a flexible and easily parsed information interchange
format. In principle, a tool needs only to be able to save and load
the data in XMI format. However, this is not yet accomplished,
and there are minor differences in generated XMI model
representations between various tools. Therefore the
transformations are still tool-dependent.

The conceptual design of SaveUML transformations is depicted
graphically in Figure 3.

Figure 3. Conceptual design of the SaveUML transformations

The UML CASE tool is used for creating a UML user model. By
applying the SaveUML profile, UML elements are stereotyped for

modelling SaveCCM elements. As already mentioned, the
application of the profile is necessary in order to create a model
which can be transferred into a SaveCCM model. After designing
the model, it is exported into an XMI file which is then used as
the input for the transformation. The SaveCCM design tool is
Save-IDE. SaveIDE uses several files for representing model
information. Those files are compatible with XML and are used
by the transformation tool to perform the SaveCCM to UML
transformation. The tool uses the transformation library to
perform translations. It contains XSLT style sheets for
transforming from SaveUML into SaveCCM and vice versa. Input
files based on XML are parsed through the XSL transformation
style sheets and then XML-based output files, compatible with the
desired tool, are generated.

The transformation tool we developed as a prototype can be used
either as an Eclipse plug-in or as a standalone application and
performs transformation in both directions, UML to SaveCCM
and SaveCCM to UML models.

4.2 Transformation example: an adaptive

cruise controller
The Adaptive Cruise Controller (ACC) [3] has been a recurring
example throughout the development of SaveCCM. The purpose
of this running case-study has been to continuously evaluate and
improve the component model. We demonstrate a simple design
of ACC [5] as an example for verifying the transformations.

The ACC system helps the driver to keep a desired speed and a
safe distance to a preceding vehicle. The ACC automatically
adapts the distance depending on the speed of the vehicle in front,
while keeping the gap large enough to avoid collisions. The
SaveCCM model of ACC system is presented on Figure 4 and
Figure 5, and it can be divided to three parts: input, control and
actuate.

Figure 4. ACC system design

Figure 5. ACC controllers design

The ACC system is designed as a SaveCCM assembly ("ACC
System" on Figure 4) built from three basic components ("Object
recognition", "ACC Mode Logic" and "HMI outputs") and one
sub-assembly ("ACC controllers"). Internal design of "ACC
controllers" sub-assembly is provided by two components
("Distance Controller" and "Speed Controller") and one switch
("Mode"). The detail description of functionality of those
elements can be found in [1][3][5].

To demonstrate the SaveUML transformation tool and to illustrate
the usage of SaveUML profile as well as to verify the
transformations, we created an ACC system UML model using
SaveUML profile. The model is presented on Figure 5.

Figure 5. UML model of ACC system

SaveUML transformation tool transforms this model into a
SaveCCM model consisting of one saveccm file. The screenshot
of this file form SaveIDE environment is shown on Figure 6.
After the transformation, using SaveIDE tool, it is possible to
generate diagram files for visual presentation of the model.

Figure 6. ACC system model after transformation

5. DISCUSSION
In this paper we have described one possible approach for
connecting two different modelling languages. However a
question arises on usability in practical cases of both the created
profile and the transformations. Even though there are numerous
advantages of combining UML and SaveCCM languages in
different development stages as well as for different purposes,
how many benefits comes from those advantages and can they
overwhelm the existing disadvantages and problems? In this
section we reveal and discuss those advantages and disadvantages
of using the SaveUML profile and transformations.

The UML profile for SaveCCM can be used to develop models
describing systems from SaveCCM application domain. It may
appear that defining the SaveUML profile is just reducing the
UML scope and specifying a component model which is an UML
subset with modified terminology. Yet the SaveUML profile
brings additional semantics through its constraints and introduces
SaveCCM abstraction level.

 The SaveUML profile brings SaveCCM semantics to UML, so
any knowledge of and experience with standard UML is directly
applicable. The DSLs built using profiles are built from the
ground up, so the modeller is not confused with extraneous UML
semantics or modelling elements. This is useful for users
accustomed to UML or if UML is a standard modelling language
within a company, so there is no need to switch to SaveCCM.

The UML profile is compatible with standard UML, thus any tool
that supports UML can be used for manipulating models based on
the UML profile. This brings the feature of portability to the
SaveUML profile among many CASE tools. Contrary to UML
models with SaveCCM semantics, SaveCCM models created with
the SaveIDE tool can only be managed by SaveIDE.

A number of UML CASE tools exist that provide a user friendly
interface and functionality which is a behalf on using UML and
the SaveUML profile instead of genuine SaveCCM in the
SaveIDE modelling environment. Although the tool and UML
itself provide a great efficiency at design time, using profiles is
not as efficient as using basic UML which is one of the
disadvantages of SaveUML profile. This inefficiency rises from
the fact that it takes many steps to accomplish a simple operation.
For example to add a SaveCCM component to the model, first a
UML component has to be added to the model, then an
appropriate stereotype from the UML profile has to be applied
and finally component attributes can be set. Consequently it is
ambiguous if using the profile brings any efficiency or not. Our
opinion is that this depends on the modelling tool used and its
support for UML profiles.

Having in mind that UML profiles are an upgrade to basic UML,
this can lead to an overly complicated model within what has been
described by many in the industry as an already complex
specification. Using standard UML notation, in which an existing
shape corresponding to SaveCCM element is reused, could
compromise the readability and clarity of the diagrams.

Finally, it is not an easy task to find a proper CASE tool that has a
good and accurate support of UML profiles, often this support is
poor or is missing entirely.

Combining UML and SaveCCM languages and using
transformations between them implies existence of at least two
models which represent the system design. After the
transformation, the source model and the target model do not stay
untouched but coexist and may evolve independently due to the
development process. Therefore, in order to preserve a coherent
description of the system in both models, it is necessary to
propagate certain changes between them. We implemented
transformations in both directions, from UML to SaveCCM model
and reverse, having in mind this request. Reverse transformation,
i.e. transforming the model from one language to another and
back to the starting language, should produce a model equivalent
to the initial one. SaveUML profile already provides a one-to-one
mapping from UML to SaveCCM. In addition, models are
transformed at the same level of abstraction which makes these
transformations injective. The transformation process itself comes
to transforming from one XML representation of a model to
another XML file. Therefore, the request for a unique
transformation is fulfilled.

6. RELATED WORK
Many researchers have tried to accomplish linking of UML with
some DSL. For instance, Polak and Mencl developed a mapping
from UML 2.0 to SOFA and Fractal research component models
[8][12]. The approach also uses UML profiles for designing UML
models and a tool prototype generates SOFA and Fractal source
code from UML model. Contrary to the SaveUML profile, the
UML profile they created is used only to define new UML
metaclasses using stereotypes and tagged values. Constraints on

model semantics are implemented in the source code generator.
OCL is a specification language and has some restrictions, and in
many tools the OCL support is weak. From this point of view,
implementing constraints in the source code generator is
reasonable. On the other hand, if constraints are not present in the
profile, the user can not validate the model during design-time,
which reduces design efficiency. Also, OCL is a standardized
language promoting interoperability between modelling tools.
Standard profile definition process in most of the tools supports
storage of the profile in an XML file using XMI including OCL
constraints, which can consequently be imported in another UML
2.0 modelling tool. This can not be applied for the suggested
approach as well.

The work by Malavolta et at. [7], is not limited to particular
modelling languages. The automated framework called DUALLy
creates interoperability among various Architecture Definition
Languages (ADL), as well as UML. DUALLy is partitioned to
two abstraction levels, separating meta-model definition process
and system development. At the meta-modelling level model
driven engineers provide a specification of the architectural
language in terms of its meta-model or UML profile Also, they
define semantic links between the meta-models and afterwards
DUALLY automatically instantiates these semantic links into
model-to-model transformations. At the modelling level, software
architects use generated transformations for translating the system
models among preferred languages. A significant feature of
DUALLy is its ″star architecture″. The transformations between
languages are not done directly but there is a central A0 model
using as a intermediate step of every transformation. A0 is a UML
profile and it represents a semantic core set of architectural
elements (e.g. components, connectors, behaviour). It provides the
infrastructure upon which to construct semantic relations among
different ADL and acts as a bridge among architectural languages.
The ″star architecture″ decreases the number of semantic links
that needs to be defined among modelling languages, as it is
necessary only to define relationships between the concerned
language and the A0 model. The disadvantage of this approach is
that defined mappings are not injective, thus the unique reverse
transformation is not ensured.

7. CONCLUSION
In this paper we presented a simple approach for achieving
modelling language interoperability, particularly between UML
and SaveCCM. The main idea is creating a UML profile to allow
developing UML models with domain-specific semantics. Further,
the model is transformed to SaveCCM for time analysis and
testing. The transformation is achieved using XML
representations of models as an input for XSLT style sheets. The
proposed approach fosters combining of GPL and DSL at
different design stages. A characteristic of the approach is keeping
up with standards using technologies such as UML, XML, XMI,
XSLT and OCL. Some of the benefits are making a good use of
advantages of both languages which improves design
productivity, portability of the model as well as already mentioned
standardization.

8. ACKNOWLEDGEMENT
This work was partially supported by the Swedish Foundation for
Strategic Research via the strategic research centre PROGRESS,

and the Unity Through Knowledge Fund supported by Croatian
Government and the World Bank via the DICES project.

9. REFERENCES
[1] Akerholm, M., Carlson, J., Fredriksson, J., Hansson, H.,

Håkansson, J., Möller, A., Pettersson, P., and Tivoli, M.
2007. The SAVE approach to component-based
development of vehicular systems. J. Syst. Softw. 80, 5
(May. 2007), 655-667. DOI=
http://dx.doi.org/10.1016/j.jss.2006.08.016

[2] Åkerholm, M., Carlson, J., Håkansson, J., Hansson, H.,
Nolin, M., Nolte, T., and Pettersson, P. 2007. The
SaveCCM Language Reference Manual. MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-207/2007-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen
University, January, 2007.

[3] Akerholm, M., Moller, A., Hansson, H., and Nolin, M.
2005. Towards a Dependable Component Technology for
Embedded System Applications. In Proceedings of the 10th

IEEE international Workshop on Object-Oriented Real-

Time Dependable Systems (February 02 - 04, 2005).
WORDS. IEEE Computer Society, Washington, DC, 320-
328. DOI= http://dx.doi.org/10.1109/WORDS.2005.52

[4] Crnkovic, I., and Larsson, M. 2002 Building Reliable

Component-Based Software Systems. Artech House
Publishers, 2002, ISBN 1-58053-327-2

[5] Hansson, H., Akerholm, M., Crnkovic, I., and Torngren, M.
2004. SaveCCM - A Component Model for Safety-Critical
Real-Time Systems. In Proceedings of the 30th

EUROMICRO Conference (August 31 - September 03,
2004). EUROMICRO. IEEE Computer Society,
Washington, DC, 627-635. DOI=
http://dx.doi.org/10.1109/EUROMICRO.2004.72

[6] IBM Rational Software Modeller web page:
http://www.ibm.com/software/awdtools/modeler/swmodeler
/, April 2008

[7] Malavolta, I., Muccini, H. and Pelliccione, P. 2008.
DUALLY: a framework for Architectural Languages and
Tools Interoperability. 23rd IEEE/ACM International
Conference on Automated Software Engineering
(ASE2008). September 15-19 2008 L'Aquila, Italy. IEEE
Press.

[8] Mencl, V., and Polak, M. 2006. UML 2.0 Components and
Fractal: An Analysis. 5th Fractal Workshop (part of
ECOOP’06), July 3rd, 2006, Nantes, France, Jul. 2006.

[9] Monot, A., and Noyrit, F. 2007. SaveIDE – Developer
Documentation, October, 2007.

[10] OMG 2006. Object Constraint Language Specification.
Version 2.0, May, 2006.,
http://www.omg.org/technology/documents/formal/ocl.htm

[11] OMG 2007. Unified Modelling Language Superstructure
Specification. Version 2.1.1, February, 2007.,
http://www.omg.org/uml/

[12] Polak, M. 2005. UML 2.0 Components, Master Thesis,
advisor: Vladimir Mencl, Charles Univ., Prague,
September, 2005.

[13] Selic, B. 2007. A Systematic Approach to Domain-Specific
Language Design Using UML. 10th IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing, 2007

[14] Sentilles, S., Hakansson, J., Pettersson, P., and Crnkovic, I.
2008. Save-IDE – An Integrated development environment
for building predictable component-based embedded
systems. Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE
2008), L'Aquila, Italy, September, 2008.

[15] Visser, E. 2001. A Survey of Strategies in Program
Transformation Systems. Electronic Notes in Theoretical
Computer Science, eds. Gramlich and Lucas, vol. 57,
Elsevier, 2001.

[16] W3C 1999. XSL Transformations (XSLT). Version 1.0,
W3C Recommendation, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

