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Abstract By utilizing the power of hardware we can make
a versatile, real-time system capable of both navigation and
object gripping, based on basic feature detectors. By using
an FPGA together with two cameras we can remove the
need for descriptors for navigation by performing what we
call spurious matching and the use of 3D landmarks. The
approach bypasses the problem of outliers and reduces the
time consuming task of data association, which slows many
matching algorithms. We also present an approach to object
gripping by taking advantage of the full capability of the
feature detector.

1. Introduction

The goal of the project Robotics for Small and Medium-
sized Enterprises (SMEs) is to develop a system for automa-
tion with focus on �exibility, interactive instruction and re-
con�gurability. Such an intelligent, semi-autonomous and
mobile system requires sensors for analysis of the surround-
ings. The perfect �t is vision, probably the most versatile
sensor available today.

The possible applications with vision are endless, but
they all require analysis of the image. For this analysis to
be possible we need to classify the image content with fea-
ture detectors. The fundamental task of these detectors is
the reduction of image complexity. In order to reduce the
image information, the feature detector �nds lines, edges or
corners, or a combination thereof. Various approaches have
been made on adapting these principle feature detectors into
more complex, high-level detectors with different sets of
descriptors. The idea is to increase the invariant properties
of the detector and thereby increase the repeatability.

The frame rate of these feature detectors rarely approach
real-time when implemented in software on standard work-
stations. We are now in a situation where it is possible to
embed highly sophisticated algorithms in hardware (FPGA;
Field Programmable Gate Arrays - or recon�gurable hard-
ware) that can manage the high resolution and the high
bandwidth of Mega-pixel sensors in real-time, in this con-
text de�ned as a frame rate of around 30Hz. The advantages

of an FPGA is manifold; the parallel properties of an FPGA
makes for a high-throughput, small footprint system, and
the comparatively low power consumption makes it ideal
for mobile applications.

When features have been extracted, some sort of match-
ing needs to be done, e.g., by tracking a feature in subse-
quent images. The general idea is that if this is to be per-
formed in real-time it requires a high repeatability detector
and a computationally light matching algorithm with mini-
mal dynamic properties.

In this work we intend to show that the middle approach
is possible. We suggest that it is possible to produce ade-
quate matching for navigation and object recognition by a
lower performance detector and by performing the match-
ing in a 3D, as opposed to a 2D, environment.

2. Related Work

Robot navigation is a well-explored subject with vision
based navigation being where the current focus lies. The
approach of using an FPGA for the system is also becom-
ing widely adopted as it enables real-time image process-
ing [1] [6], which is a crucial part in mobile applications [4].
For certain applications, FPGAs are better suited than desk-
top computers due to their parallel structure. In [15] an
FPGA implementation outperforms a PC by one order of
magnitude for the SIFT detector [8]. The power of the
FPGA is further evident when comparing our implemen-
tation with [11] where they are unable to run Harris corner
detector in real-time on a computer with an Opteron pro-
cessor running at 2.6 GHz.

Both navigation and object detection by vision requires
matching of images, or rather features in separate images.
Tracking features in real-time in subsequent images from
a camera is not a trivial task, partially due to the fact that
it requires a very stable feature detector with high repeata-
bility [3]. The current feature detectors with the highest
repeatability, such as SIFT [8] and SURF [2], create de-
scriptors for each feature in order to simplify the matching
task. Unfortunately, the high dimensionality of such a de-



scriptor means that it is computationally intense [9].
All matching algorithms are faced with the correspon-

dence problem, i.e., how to match corresponding features
in two images without assigning any incorrect matches.
The approaches differ, from cross-correlation to the sum of
squared differences, but there will always be outliers, fea-
tures not correctly matched, or not matched at all. Many
have tried to minimize the occurrence of outliers, and
in [13] a comparison, and yet a new approach, is presented.

3. Experimental platform

We have produced a system intended to work as a
general-purpose research platform for FPGA-based vision.

The system uses the MT9P031 5-megapixel CMOS
camera sensor from Micron. The imaging sensor is capable
of running at 96 MHz, with the frame rate being dependent
on the clock frequency and the frame size.

The FPGA board has a size of 70×55mm and is
equipped with a Xilinx Virtex II XC2V8000 FPGA together
with 256 Mbit �ash, 512 Mbit SDRAM and a CPLD. The
�ash memory is for storing FPGA con�gurations and is ac-
cessed at power on by the CPLD which loads the FPGA.
The FPGA board is mounted on a carrier board that incor-
porates power supply, and a USB controller.

4. Feature detectors

A feature can be a corner, edge or any salient region
which can be extracted from an image.

One of the �rst feature detectors is Moravec's corner de-
tector [10] from 1977. Since then, many other feature de-
tectors have been developed with different qualities [12].
Most detectors are designed with repeatability in mind,
although some are designed for other properties, such as
speed [11]. Repeatability, as de�ned in [12], is an impor-
tant property, however, for our application, speed is equally
important.

4.1. Stephen and Harris detector
The Stephen and Harris combined corner and edge de-

tector [7] was presented in 1988 and expands on the work
of Moravec. In [12] the authors concluded that, among the
tested feature detectors, (Foerstner, Cottier, Heitger, Ho-
raud, Harris and Improved Harris), the improved version
of the Harris corner detector performed best regarding re-
peatability and information content. The original imple-
mentation of the same detector was, however, not far be-
hind.

Moravec's corner detector calculates the variation in in-
tensity in an image and looks for low self-similarity in a
point. A corner is de�ned as a point with low similarity to
the surrounding region in all directions, i.e., a point where
the minimum change in intensity, in any direction, is large
(above a certain threshold) [7].

Stephen and Harris improved on the problem of
anisotropy and noise in Moravec's detector by introducing

an analytic expansion about the shift origin together with
a smoothing Gaussian �lter. They also introduced a re-
sponse function, that includes a structure matrix calculated
from image derivatives, which indicates the quality of the
detected feature and allows for the �ltering out of less dis-
tinctive features with the use of a threshold.

4.2. FPGA implementation of Harris corner detector
We have a VHDL implementation of the Stephens and

Harris combined corner and edge detector. It was originally
implemented as an undergraduate thesis for a previous vi-
sion system. We have adapted it to a new, larger FPGA,
allowing us to increase the parallelism and thus improve
the speed.

Figure 1. A block diagram of our VHDL implementation of
the Harris corner detector.

The corner detector uses 3×3 and 5×5 pixel windows.
This is the only buffering required, all other processing is
performed as the pixel data arrives. In the block diagram
in �gure 1, our implementation of Harris corner detector
can be seen. The process consists of 7 major internally
piped blocks. The �rst block creates a 3×3 sliding win-
dow. When two pixel rows plus one pixel have been ex-
tracted from the camera the �rst window is passed on to the
�Derivative Mask� block.

The derivative block calculates the intensity x- and y-
gradients. These values, the �rst derivatives, are then
passed onto the window generator for the multiplication/-
Gaussian stage, which creates a 5×5 sliding window.

In the multiplication stage, the structure matrix is calcu-
lated and then run through a Gaussian �lter. The �lter is
not a true Gaussian function as the values are selected to
enable shifting, but no performance degradation has been
observed for the approximation, which can be supported
by [5] that shows that Gaussian weighting need not be the
optimal weighting function.

The �ltered value is then used in the response function
and its result is �ltered so that only the local maxima within
the 3×3 sliding window generates a corner response, as
long as it exceeds the current threshold.

5. Interest point location

We de�ne an interest point as a stereo-matched feature
that can be located in a coordinate system as a landmark,



which a robot can use for navigation. In this section we
describe how we can calculate the location of a landmark
from two stereo-matched features. The same procedure, in
reverse order, can be followed to calculate the pixel coor-
dinate at which a landmark should appear, given the robots
current location and attitude.

We use the right-handed coordinate system with positive
X to the right, positive Y in front and positive Z above.

The full de�nition of the robot absolute vector de�nes
the position in three dimensions and the attitude in three
dimensions (5.1). The robot center is located at the �oor in
the center of the robot in the x, y plane.

R = (Xr, Yr, Zr, αr, βr, γr) (5.1)

Since the robot is moving in a controlled indoor environ-
ment without slopes, we can consider Zr constant and zero.
The same applies for αr and βr. The stereo camera rig has
a �xed location on the robot and the constant relative vector
of each camera is de�ned in (5.2), where n marks the cam-
era, left or right. The vector is relative to the robot center.
To simplify the stereo matching the β̂ factor should be zero
and the α̂ should be the same for both cameras, resulting
in that line j in the left camera corresponds to line j in the
right camera.

cn =
(
xn, yn, zn, α̂n, β̂n, γ̂n

)
(5.2)

The absolute vector of each camera can be calculated
by adding the relative camera vector to the absolute robot
vector:

Cn = (Xr + xn, Yr + yn, Zr + zn,

α̂n, β̂n, γr + γ̂n) (5.3)
= (Xn, Yn, Zn, αn, βn, γn) (5.4)

Every pixel in an image corresponds to a two dimen-
sional direction which can be calculated from the focal
length of the lens f and the pixel separation on the cam-
era chip Pwidth and Pheight. The two angles θ and φ and
an unknown length r form a polar vector (5.7).

(Xp, Yp) denotes the pixel coordinate, with the camera
center at (0, 0), and Q is the transformation from pixel co-
ordinates to a polar vector.

θ = arctan
(
Xp ∗ pwidth

f

)
(5.5)

φ = arctan
(
Yp ∗ pheight

f

)
(5.6)

Q(Xp, Yp) = (r, θ, φ) (5.7)

By using (5.5) and (5.6) we can �nd the angular distance
between every pixel.

Figure 2. The angles from each camera to a feature point. θ
for the left and right camera, the camera separation Sc and
φ, which should be the same for both cameras.

Lets consider the case where we know which feature in
the left camera corresponds to which feature in the right
camera. We can calculate the cartesian coordinate of the in-
terest point according to (5.8-5.14) and �gure 2. The cam-
era separation is known and denoted Sc.

λ = π − θl − (π − θr) (5.8)
ϑn

sin(θn)
=

Sc
sin(λ)

(5.9)

ϑn =
Sc ∗ sin(θn)

sin(λ)
(5.10)

C and P marks the cartesian and polar coordinate sys-
tem respectively or a transformation between the two.
The cartesian location of camera n.

C(Cn) = (Xn, Yn, Zn) (5.11)

The attitude of camera n as a polar unit vector.

P (Cn) = (1, α, γ) (5.12)

The direction and distance to the interest point k.

P (Ik) = (ϑn, φn, θn) (5.13)

The space location of the interest point.

C(Ik) = C(Cn) + C(ϑn ∗ (rotφn,θnP (Cn))) (5.14)



The conversion from polar vector to cartesian coordinate
are simple sin and cos transformations.

5.1. Image sequence feature tracking
To track features in an image sequence is not a trivial

problem when using feature extractors such as the Harris
corner detector [12].

Tests have shown that a simple tracker, like nearest
neighbor, is not reliable enough [3]. Using feature descrip-
tors can simplify the tracking problem substantially, how-
ever, they require more computation in the feature extrac-
tion phase, and still do not solve the problem completely.
Implementations of the SIFT algorithm [8], often do not
manage more than a few frames per second.

In real-time applications, direct matching seems like the
best approach, as it is desirable to match features on a real-
time basis. However, if the frame rate is suf�ciently high,
intermediate matching can be more than adequate. Statis-
tical approaches for handling outliers by con�dence values
are well-explored, but they are normally time-consuming
and can be problematic when matching in a 2D environ-
ment [13]. By moving the matching part onto the 3D coor-
dinates from a stereo-vision camera system, it is possible to
eliminate the uncertainty of 2D pixel coordinates.

5.2. Spurious matching and landmark evaluation
To match a feature in the left image with a feature in

the right image is known as the correspondence problem.
A common approach is to use a correlation window around
the features and calculate a matching score, using a statis-
tical method. The matching score can be calculated with
methods like cross-correlation, sum of squared differences
and χ2, for example [13]. In order to successfully use sta-
tistical methods, it is necessary to calculate the matching
score for many different pairs to �nd the match with the
highest score. Additionally, it is also necessary to �nd the
outliers, or false matches.

Our approach is adapted for a real-time vision system
where the data is processed as a stream. No image is stored
as a whole, line buffers, however, are used.

A feature appearing at pixel row n in the left camera
must appear, if existing, on row n ±m, where m = 1 un-
der the condition that the camera distortion is corrected and
that the cameras are perfectly aligned. The horizontal limi-
tations can be found by knowing the attitude of the cameras.
The search window denoted Wm(Fi) represents the maxi-
mum area in which a feature in the right image must be
located to correspond to feature Fi in the left image.

By matching every feature Fi in the left image with ev-
ery feature withinWm(Fi) in the right image we get a set of
possible landmarks LMK(Fi). Within this set of 3D coor-
dinates there can be only one that corresponds to the actual
landmark, which one is unknown. We call this spurious
matching. Instead of trying to �nd the correct stereo corre-
spondences, we try to �nd which landmarks in the environ-
ment are the correct ones. While moving the robot, mea-

suring the location of the robot using wheel based odome-
try, and continuously calculating the possible landmark lo-
cation for every feature Fi, the reappearing landmarks are
then put in a landmark database with an increasing con�-
dence related to uniqueness and stability of the landmark
location.

To rely on odometry can be risky because it is a relative
measurement system with no point of calibration. As soon
as enough landmarks have been located with good con�-
dence, the odometry system can be used solely as a support
system and is no longer required for the navigation, which
can use visual odometry.

By predicting the robots location and attitude before
each iteration, using for example a Kalman �lter, we can
�nd the pixel coordinate for each possibly visible landmark
and exclude those features from the images. This reduces
the amount of features that need to be matched.

5.3. Computational requirements
Calculating the space location of a feature pair, as seen in

(5.5-5.14), requires 25 operations. Harris extracts approx-
imately 300 corners from a 320×480 pixel frame without
being too cluttered. In average this means less than one
corner per line, the maximum number of corners possible
on a single line is 320

3 = 106, though very unlikely (see
section 4.2).

A pessimistic number of matches per feature could be
around 20, which would render in 6000 landmark calcula-
tions per frame. 25 operations on 6000 landmarks would
result in 150'000 operations per frame, which is rather low.

6. Object Recognition

The term object recognition means to identify an object
as something of which one has prior knowledge. This re-
quires some sort of model of the object to be stored with
associated feature points. Matching of live feature points
against stored ones can be a dif�cult task, especially as the
Harris detector is not scale-invariant [14] and its localiza-
tion performance average.

Object recognition, according to the above de�nition,
might be desirable, but for our target application, pick-and-
place, it is not crucial. For companies that require handling
of thousands of articles in a dynamic manufacturing envi-
ronment, the task of creating a model for each article can
be daunting and maybe even an impossible feat. Instead
of recognizing the object, it should be suf�cient to recog-
nize the way to handle the object, in this case, a gripping
scheme.

The setup is two cameras mounted on a robot arm be-
hind the gripper, with known displacements. In order to
grip an object, one needs to know, at least, the shape of the
object. The most straight-forward approach is to identify
two opposing surfaces suitable for the gripper in question.
Surface detection can be dif�cult with a detector created for
sharp discontinuities, normally associated with contours, as



opposed to the uniform nature of surfaces. Even if most sur-
faces produce corner responses, the corner density is usu-
ally too low for surface modeling.

For the system to be versatile and cost-effective, it would
be an ideal solution to use the Harris detector for both the
navigation and object handling parts. In order to overcome
the limitations of the corner properties we use the often
overlooked part of the Harris detector - the edge detector.
The response function of the Harris detector indicates the
cornerness value [7] of the pixels - the higher the value, the
stronger the corner. On the opposite side of the scale is the
edge strength - the more negative the number, the stronger
the edge. We have not found any comparison between Har-
ris and other edge detectors, but its performance is adequate
for our needs.

The approach to object gripping is a combination of edge
and corner detection. Start off with detecting both corners
and edges. By setting the threshold at a high enough level
we receive a fairly limited number of corners and edges,
and this is important for two reasons. Firstly, the higher
order edges are most often the contours, i.e., the surface and
object boundaries. Secondly, parallel lines likely belong
to the same object, and a limited number of parallel lines
simpli�es the matching.

We do approximations of the edges that are near lin-
ear. Only edges above a certain length (even multiple small
edges adding up to this length), are approximated with a lin-
ear function, expanded across the image. Out of these ap-
proximated lines, parallel ones are grouped together. Next,
we match all the Harris corner points located between the
�rst two lines in a group between the two cameras using
the epipolar constraint together with neighborhood distri-
bution. The left-most line pairs of the right camera is the
starting position of the matching as this area is most likely
present in both cameras. The amount of corners is limited
due to the high threshold, hence the number of possible
matches are fairly limited.

After the corners have been matched, their 3D-
coordinates are compared in order to see if they are copla-
nar. If so, the edges encompassing the corners are surface
boundaries. We then proceed to �nd boundaries perpen-
dicular to the existing ones. The criteria here is that they
need to cover a certain degree of the distance between the
lines or be of suf�cient continuous length. If the corners
are deemed not coplanar, a new check is performed using
the recently discovered perpendicular boundaries as tem-
poral surface delimiters. If none of the areas are coplanar
we move on to another set of boundaries in the left camera
until the criteria is ful�lled or all areas exhausted. When
the regions are established, expansion of the newly detected
boundaries are made so that all coplanar corners are encom-
passed, and no others. The surface is stored and its bound-
aries de�ned by the 3D-coordinates of the area extremes,
i.e., the corners. This is then repeated for all parallel pairs
in a group, and for all groups.

Any neighboring, coplanar regions are merged into one.
Surfaces without any corners are treated as a non-surface,
i.e., a hole when surrounded by other surfaces. The cam-
eras then move into a new position in order to get more
information of the object and to identify a surface parallel
to already de�ned ones. With multiple surfaces available
for gripping the most suitable ones are selected according
to a volume based, mass distribution scheme. The de�nite
representation of object boundaries and the identi�cation of
the best suited gripping area are not possible until the object
has been gripped and moved.

7. Results

Our FPGA based stereo vision system is capable of real-
time feature extraction, using the implemented Stephen and
Harris combined corner and edge detector. To stereo match
these features, for landmark location, is not a trivial prob-
lem. We present an approach which we call spurious match-
ing allowing us to validate which matches correspond to
real landmarks by moving the robot and extracting the fea-
tures at different viewpoints.

For performance results of the corner detector see table
1, and table 2 for frame rates of Harris corner detector on
our system.

Table 1. Performance total of Harris corner detector at dif-
ferent frame rates

pixels/frame fps Instr./pix Cameras MIPS
148'800 27 286 2 2'298
148'800 34 286 2 2'894

Table 2. Performance of our implementation of Harris cor-
ner detector.

Frame size Cam freq. FPGA freq. FPS
320×480 96MHz 100MHz 65 fps*
320×480 50MHz 100MHz 34 fps
320×480 40MHz 100MHz 27 fps

* Theoretical value which we have not been able to verify.

8. Future work

The proposed spurious matching algorithm has not been
fully veri�ed yet, there are several performance factors
which need to be evaluated like, camera discrepancy, odom-
etry precision and landmark localization accuracy. The ob-
ject gripping application is not fully implemented yet.
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