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Abstract

Simulation-based analysis methods make few restric-
tions on the system design and scale to very large and
complex systems, therefore they are widely used in timing
analysis of complex industrial embedded systems. This pa-
per presents a statistical approach to validation of tem-
poral simulation models extracted from complex real-time
embedded systems, by introducing existing mature statisti-
cal methods to the context. The proposed approach first
collects sampling distributions of response time and execu-
tion time data of tasks in both the modeled system and the
model, based on simple random samples (SRS). The sec-
ond step of the approach is to compare the sampling dis-
tributions, regarding interesting timing properties, by using
the non-parametric two-sample Kolmogorov-Smirnov test.
The evaluation using a fictive system model inspired by a
real robotic control system with a set of change scenarios,
shows a promising result. The proposed algorithm can iden-
tify temporal differences between the target system and its
extracted model, i.e., the algorithm can assess whether the
extracted model is a sufficiently accurate approximation of
the target system.

1 Introduction

To date, most existing embedded real-time software sys-

tems have been developed in a traditional code-oriented

manner, over extended periods of time, sometimes spanning

decades. As a result, many such systems become large and

increasingly complex. Further, to maintain, verify and reuse

these systems is difficult and expensive. There are many in-

dustrial embedded systems having a very complex runtime

behavior, due to that they are highly configurable and event-

triggered. Such systems consist of millions of lines of C

code, and contain 50 - 100 tasks or more, out of which many

tasks have real-time constraints. One example of such sys-

tems is the robotic control systems developed by ABB [1].

Further, the temporal dependencies between tasks in such

systems vary the execution time and response time of tasks

radically. We refer to such systems as Complex Real-Time
Embedded Systems (CRTES).

Simulation-based analysis of CRTES has the potential

of not only allowing for response-time analysis of such sys-

tems [2], [3], but also facilitating migration toward a com-

ponent based real-time system by e.g., analyzing the timing

properties of the existing code and wrapping it into com-

ponents. Moreover, simulation-based methods can also be

used in timing impact analysis [4], i.e. to analyze the im-

pact of changes on a system’s temporal behavior, before in-

troducing changes to the system.

A major issue when using simulation-based timing anal-

ysis is how to obtain the necessary analysis model, which

should be a subset of the original software program focus-

ing on behavior of significance for task scheduling, commu-

nication and allocation of logical resources. For many sys-

tems, manual modeling would be far too time-consuming

and error-prone. Two methods for automated model extrac-

tion are proposed in [5]. A tool for automated model extrac-

tion is in development, named MXTC - Model eXtraction

Tool for C. The MXTC tool targets large implementations

in C, consisting of millions of lines of code, and is based

on program slicing [6]. The output of MXTC is simulation

models for the RTSSim simulation framework [7].

However, there is one important issue to be raised, i.e.

model validity, which is defined as the process of deter-
mining whether a simulation model is an accurate repre-
sentation of the system, for the particular objectives of the
study [8]. As a model is an abstraction of the system, some

system details may be omitted in the model, for instance

when using probabilistic execution time modeling. Thus,

the results from a simulation of such models may not be

identical to the recordings of the system, e.g., with regard

to the exact task response time. In order to convince system

experts to use simulation-based methods, the models should

reflect the system with a satisfactory level of significance,
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i.e., as a sufficiently accurate approximation of the actual

system. Moreover, other threats to model validity are the

configuration of the model extraction tool and bugs in the

model extraction and analysis tools. Therefore, an appro-

priate validation process should be performed before using

the models.

In this paper, we present a statistical approach for valida-

tion of temporal simulation models extracted from real in-

dustrial control systems containing intricate task execution

dependencies. That is, to consider this particular problem as

a statistical problem, then, which could be solved by using

existing, mature methods from the field of statistics.

The proposed method StatiVal collects sampling distri-

butions by combining using simple random samples (SRS)

[9] with our presented mechanism to eliminate dependen-

cies among raw Response Time (RT) and Execution Time

(ET) data caused by task execution dependencies in the sys-

tem. Next, our method will produce results concerning

whether the model is a sufficiently accurate approximation

of the target system, from the perspective of relevant tim-

ing properties such as response time and execution time of

tasks in the modeled system and the extracted model, by us-

ing the non-parametric two-sample Kolmogorov-Smirnov

test [10]. Since our tool for model extraction (MXTC) is

not yet ready, in this work, we evaluate StatiVal by using a

manually created simulation model inspired by an industrial

robotic control system. Then, the original model is com-

pared with different variants of the model, each of which

variant corresponds to a particular change scenario. Our

evaluation of this method shows the promising results, i.e.,

StatiVal can identify timing differences between the mod-

eled system and models, and should be applicable in a non-

trivial industrial evaluation and deployment of our frame-

work for simulation-based analysis.

The remaining part of the paper is organized as follows:

Section 2 introduces the simulation model used in this work.

Section 3 presents the related work about model valida-

tion at first, and then gives problem formulation, descriptive

statistics of raw RT and ET data of tasks in the evaluation

model, and the problems with using parametric statistics,

respectively. Section 4 and Section 5 introduce our pro-

posed method and evaluation results, and finally, Section 6

concludes the paper and discusses future work.

2 RTSSim Simulation Models

The proposed validation method primarily targets simu-

lation models for the RTSSim simulation framework, which

is quite similar to ARTISST [11] and VirtualTime [12].

An RTSSim simulation model consists of a set of tasks,

sharing a single processor. Each task in RTSSim is a

C program, which executes in a “sandbox” environment

with similar services and runtime mechanisms as a nor-

mal real-time operating system, e.g., task scheduling, inter-

process communication (message queues) and synchro-

nization (semaphores). The default scheduling policy of

RTSSim is Fixed-Priority Preemptive Scheduling (FPPS)

and each task has scheduling attributes such as priority, pe-

riod, offset and jitter. RTSSim allows for three types of

selections which are directly controlled by simulator input

data: Selection of execution times in execute statements;

Selection of task jitter; Selection of task behaviors, depend-

ing on the system environment, e.g., random number of

external events generated by sensors. In RTSSim, Monte

Carlo simulation is realized by providing randomly gener-

ated input data. A more thorough description of RTSSim

can be found in [7].

3 Model Validation

3.1 Related Work

For the sake of space, we only briefly introduce the re-

lated work concerning the model validation process. There

are various methods to do the comparison; these methods

are either objective or subjective. Subjective methods are

often used for validation of simulation models; examples

of subjective methods are Face Validation, Graphical Com-

parisons and Sensitive Analysis [13], which are highly de-

pendent on domain expertise and hence error-prone. Objec-

tive methods use mathematical methods to compare outputs

from the real system with output from the simulation model.

In [14], the authors presented a notation of model equiv-

alence based on observable property equivalence which is

used to compare results of a model and an actual system.

A method in [15] is presented for automated validation of

models extracted from real-time systems by checking if

the model can generate the same event sequences as the

recorded event sequences from the system using a model

checker.

3.2 Problem Formulation

We are given a model S
′

which is extracted from a

real system (or modeled system) S containing a task set

Γ including n tasks, where n ∈ N. Let RTsamples(S
′
, τi),

RTsamples(S , τi), ETsamples(S
′
, τi) and ETsamples(S , τi) de-

note the sampling distributions of the response time and ex-

ecution time measured for a task τi in S
′
and S respectively.

The goal of the problem is then to find: whether there are

statistically significant differences between the system and

model distributions with respect to response times and exe-

cution times of the adhering tasks, or can they be considered

statistically equal (i.e., from the same population).
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3.3 Descriptive Statistics of Raw RT and ET Data

Table 1 shows the numerical summary of the center and

the spread (or variability) of sampling distributions of the

response time (RT) data of tasks in Model 1 (M1) contain-

ing intricate execution dependencies, used for the evalua-

tion in Section 5. In Table 1, Std. Dev, Q1 and Q3 repre-

sents standard deviation, first quartile and third quartile of

the sampling distribution respectively. As we can see, the

skewness of sampling distributions for all the tasks except

for the IO task are right (positive) skewed (i.e., the numer-

ical representation of tasks’ skewness are positive; in the

view of graph, the sampling distribution has relatively few

high values, and the mass of the distributions is concen-

trated on the left of the figure). Further, the outliers existing

in raw RT data as well as ET data of all tasks cannot be

removed since they are not generated due to system errors

or hardware failures. Therefore, we have the reasoning to

add the five-number summary introduced in [9] consisting

of Min, Q1, Median, Q3 and Max to Table 1. Due to lim-

ited space, we only show the sampling distribution of raw

RT data of one task i.e., the CTRL task when the number of

samples is large enough i.e. 199 990 in one simulation run

(refer to row Samples for the CTRL task in Table 1), as an

example shown in Figure 1. Further, note that the outliers

in the picture might not be clear enough to see, though in

fact, they approximately exist in the range of [3 000, 6 829]

along with the horizontal axis.

Table 1. Descriptive statistics of sampling distributions of

raw RT data of tasks in the system model M1 used in the

evaluation.

DRIVE IO CTRL PLAN

Samples 199994 400000 199990 199988

Mean 222.08 125.0 1967.3 2002.9

Std. Dev 14.291 45.576 389.98 412.46

Skewness 6.7334 0.00128 0.38184 7.0644

Min 220 0 1024 332

Q1 220 100 1594 1631

Median 220 125 1919 1931

Q3 220 150 2339 2376

Max 420 250 6829 45957

3.4 Dependencies between Raw RT and ET Data
of Tasks

In our case, due to intricate task execution dependencies

in the system, an upcoming RT data may not be indepen-

dent with the RT data previously recorded at each simula-

tion run (we refer to such RT and ET data as raw RT and

Figure 1. The sampling distribution of raw RT data of the

CTRL task in the evaluation model M1.

ET data). The same problem applies for raw ET data. Sec-

ond, in the conventional statistical procedure (parametric
test), e.g., t-test, analysis of variance (ANOVA) [16], one

important assumption is that the underline population is as-

sumed to follow a normal distribution. However, such as-

sumption cannot be made since the sampling distribution of

either raw RT data or raw ET data of all tasks often is con-

forming to a multimodal distribution having several peaks

(consider Figure 1 as an example). Specifically, because of

such distinctive feature of our target industrial control sys-

tem, it is difficult to bring conventional statistical methods

into the context. A new way of constructing the sampling

distributions of tasks’ RT and ET data has to be introduced,

in order to fulfill the basic requirement given by probabil-
ity distribution, i.e. the variable described by a probabil-

ity distribution is a random variable, of which value is a

function of the outcome of a statistical experiment that has

outcomes of equal probability. We will present the proposed

mechanism in the following Section 4.2.

4 Algorithm

4.1 Simple Random Samples

In order to eliminate bias on the sampling, which is a

key issue of selecting samples from the population of all in-

dividuals concerning the desired information, the technique

of simple random samples (SRS) [9] is adopted. SRS gives

every possible sample of a given size the same chance to

be chosen. For instance, Monte Carlo simulation is used

as a way of implementing SRS to collect sampling distribu-

tions of RT and ET data of tasks in the extracted RTSSim

model. This is done by an embedded random number gen-

erator rnd inst() in the RTSSim simulator, which is an

improved version of the Pseudo-random number generator

used in C, i.e., rand() in Algorithm 1. The detailed imple-

mentation of rnd inst() is shown in Algorithm 1. More-

over, empirical results showed that the distribution of ran-
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Figure 2. A new reconstructed sampling distribution of

RT data of the CTRL task in the evaluation model M1.

dom numbers given by rnd inst() is conforming to the

uniform distribution, which assures that for each selection

in RTSSim input data, all possible values in any range are

equally likely to be chosen. Analogously, the sampling dis-

tributions of RT and ET data of tasks in the real system

can be collected based on measurements given a random-

ized system input. Some of the outliers (extreme values)

which are caused, e.g. hardware failure or system errors,

have to be removed from the sampling distributions.

Algorithm 1 rnd inst()
1: temp1 ← rand()

2: temp2 ← rand()

3: ret ← temp1 × 32768 + temp2

4: return ret

4.2 Reconstruction of New RT and ET Sampling
Distribution

In order to eliminate dependencies between raw RT and

ET data of tasks due to intricate task temporal dependen-

cies, we propose a method by first running N Monte Carlo

simulations conforming to SRS as introduced previously.

Further, for each task in the task set Γ, the highest value

of m samples RT data and m samples ET data recorded by

each simulation, will be chosen to construct new sampling

distributions of RT data and ET data. By doing this, the

new constructed sampling distributions of RT and ET data

of tasks can be considered from a random variable, since

there are no dependencies between any maximum value of

RT and ET data of tasks between two independent simula-

tions. In other words, task intricate temporal dependencies

are kept in new sampling distributions of RT and ET data,

while the dependencies between any RT data and ET data

are eliminated. Refer to Figure 2 as an example.

4.3 Problems with Using Parametric Statistics

So as to determine if the conventional statistical proce-

dure (parametric test), e.g., t-test, ANOVA, can be applied

to infer parameters of new tasks’ RT and ET sampling dis-

tributions used for validation purpose, the conclusion, that if

such sampling distributions1 are from a normal distribution,

has to be drawn at first. In this work, it is done by using a

commercial statistic analysis software EasyFit [17], accord-

ing to the results given by a Goodness of Fit (GOF) test, i.e.,

Chi-squared test at α-value of 0.052. The obtained results

clarify that new sampling distributions of RT and ET data

of all tasks do not conform to any of the 65 known distribu-

tions, e.g., Normal, Uniform, Student’s t, Lognormal. The

null and alternative hypotheses used in Chi-squared test, at

significance level 0.05, are as follows.

1. H0: the sampling distribution concerning the RT or ET

data of task τi follows a specific distribution;

2. Ha: the sampling distribution concerning the RT or ET

data of task τi does not follow a specific distribution.

Note that the 65 known distributions can be found in

[17]. Further, in t-test, the mean value μ0 of the popu-

lation has to be known beforehand, which is not the fact

in our case. Because a parametric test cannot be reason-

ably applied in this work, we thereby use the two sam-

ple Kolmogorov-Smirnov (hereafter KS test) which is non-

parametric and makes no assumptions on the underline pop-

ulation of a sampling distribution.

4.4 StatiVal

The proposed method, StatiVal, is shown in Algorithm 2.

The algorithm returns the result concerning if there exist a

statistically significant difference between the two data sets

that are from the modeled system S and the model S
′
, in

the view of system timing properties including tasks’ re-

sponse time and execution time. Further, in this work, since

we cannot perform the validation between the real modeled

system and the extracted model, we will instead compare

a system model S inspired by a real industrial robotic con-

trol system (considered as the modeled system) with a set

of models S
′

where a specific change scenario (as shown in

Table 3) is applied. Both of S and S
′
, are in this case simula-

tion models, analyzed using Monte Carlo simulation which

in Algorithm 2 is modeled as a function, MTC, with four

parameters: m - the number of samples drawn from each

simulation trace, τk - the task on focus in KS test, Property
- either RT or ET of the task τk and rnd inst() - a random

number generator in RTSSim simulator. When the refer-

ence for comparison is a real system, the sampling distri-

bution is built by using random measurement (e.g., by ran-

domizing inputs to the system) at first, and then removing

1In our case, the number of samples i.e., 20 000 in sampling distribu-

tions of RT and ET data of tasks is statistically enough to represent the

underline population.
2α = 0.05 means that we are requiring that the RT and ET data of tasks

give evidence against H0 so strong that it would happen no more than 5%

of the time when H0 is true.
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outliers from the sampling data that are caused by hardware

failure or system errors during each system runtime obser-

vation, and finally, choosing the highest value of RT and ET

data of tasks in the system. Further, because such activity is

also application-specific, we therefore will not discuss it in

details in this work. The outline of StatiVal is as follows:

1. Construct the sampling distribution of N RT and ET

data of all the tasks in both the system S and the model

S
′

by Monte Carlo simulation MTC() respectively (re-

fer to lines 1 to 16 in Algorithm 2).

2. Use KS test to compare if sampling distributions of

RT and ET data of each task τk in the task set Γ in

both S and S
′

are statistically significant iteratively. If

the result given by KS test is Ha, then Algorithm 2

draws the conclusion C1, i.e. the model S
′

is not a suf-
ficiently accurate approximation of the system S due
to an improper model extraction process, and finally,

stops the validation process; Otherwise, the entire val-

idation process will terminate after all the tasks are

evaluated by KS test (refer to lines 18 to 33 in Algo-

rithm 2). In practice, KS test is conducted by using

a commercial software XLSTAT [18], which is a plug-

in to EXCEL and returns the result by comparing two

sampling distributions containing 20 000 samples per

each, in a few seconds.

5 Evaluation

5.1 The Evaluation Model

Currently, we are not able to perform the model vali-

dation process concerning the extracted model and a real

system. Therefore, in this work, we examine the idea by us-

ing a simulation model Model 1 (M1) describing a fictive,

representative industrial robotic control system developed

by ABB. It is designed to include some behavioral mecha-

nisms from the ABB system:

1. tasks with intricate dependencies in temporal behavior

due to Inter-Process Communication (IPC) and glob-

ally shared state variables;

2. the use of buffered message queues for IPC, which

vary the execution time of tasks dramatically;

3. although FPPS is used as base, one task, i.e., the CTRL

task, changes its priority during runtime, in response to

system events.

Further, the task model is presented in Table 2. The de-

tails of the model are described in [7].

5.2 Change Scenarios and Results

The RT and ET data of tasks produced by the original

simulation model M1 is used as reference, for comparing

the impact of a set of change scenarios which are initially

introduced in [19] and outlined in Column Changes De-
scription in Table 3. Moreover, for Case 4, 5 and 6, there

Algorithm 2 S tatiVal(Γ)

1: for all τk such that 1 ≤ k ≤ n in Γ in both S and S
′ do

2: for all i such that 1 ≤ i ≤ N do
3: Xi ← xi,1, ..., xi, j, ..., xi,m ← MTC(m, τk, RT, rnd inst())
4: Xτk ,i ← Max(Xi)

5: Yi ← yi,1, ..., yi, j, ..., yi,m ← MTC(m, τk, ET, rnd inst())
6: Yτk ,i ← Max(Yi)

7: X
′
i ← x

′
i,1, ..., x

′
i, j, ..., x

′
i,m ← MTC(m, τk, RT, rnd inst())

8: X
′
τk ,i ← Max(X

′
i )

9: Y
′
i ← y

′
i,1, ..., y

′
i, j, ..., y

′
i,m ← MTC(m, τk, ET, rnd inst())

10: Y
′
τk ,i ← Max(Y

′
i )

11: end for
12: Xτk ← Xτk ,1, ..., Xτk ,i, ..., Xτk ,N

13: Yτk ← Yτk ,1, ..., Yτk ,i, ..., Yτk ,N

14: X
′
τk

← X
′
τk ,1, ..., X

′
τk ,i, ..., X

′
τk ,N

15: Y
′
τk

← Y
′
τk ,1, ..., Y

′
τk ,i, ..., Y

′
τk ,N

16: end for
17: ret ← 0

18: for all τk such that 1 ≤ k ≤ n in Γ in both S and S
′ do

19: ret ← kstest(Xτk , Xτ
′
k
, α)

20: if ret = H0 then
21: ret ← C0

22: else
23: ret ← C1

24: return ret
25: end if
26: ret ← kstest(Yτk , Yτ

′
k
, α)

27: if ret = H0 then
28: ret ← C0

29: else
30: ret ← C1

31: return ret
32: end if
33: end for
34: return ret

is a DUMMY task added to the model S
′

with different pri-

orities, execution times and periods (denoted as C and T
in Table 3 respectively). Finally, we compare the outputs

against the original model to investigate the performance of

the method. The results given by StatiVal are shown in Ta-

ble 3, which are in line with the expected results in [19].

More importantly, our evaluation shows a promising result,

i.e. the proposed algorithm can identify temporal differ-

ences between the target system and its extracted model by

showing the evidence whether the extracted model is a suf-

ficiently accurate approximation of the target system.

6 Conclusions and Future Work

This paper has presented our work on validation of tem-

poral simulation models extracted from real industrial con-

trol systems containing intricate task execution dependen-

cies. In particular, we have presented and evaluated the

method by using a fictive system model inspired by a real
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Table 2. Tasks and task parameters for M1. The lower

numbered priority is more significant, i.e., 0 stands for the

highest priority.

Task Period (μs) Offset (μs) Priority

DRIVE 2000 12000 2

IO 5000 500 5

CTRL 10000 or 20000 0 6 or 4

PLAN 40000 0 8

system with a set of change scenarios, which shows that

the proposed method has the potential to identify temporal

differences between the modeled system and the extracted

models. As part of future work, an effort will be spent on

evaluating more scenario changes on the evaluation model.

Moreover, we will evaluate the method on real systems.
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