
FESCA 2009

Analyzing a Pattern-Based Model of aReal-Time Turntable SystemDavor Slutej 1School of Innovation, Design, and Engineering,M�alardalen University,V�aster�as, SwedenJohn H�akansson 2Department of Information Technology,Uppsala University,Uppsala, SwedenJagadish Suryadevara, Cristina Seceleanu, Paul Pettersson 3M�alardalen Real-Time Research Centre,M�alardalen University,V�aster�as, SwedenAbstractDesigners of industrial real-time systems are commonly faced with the problem of complex system modelingand analysis, even if a component-based design paradigm is employed. In this paper, we present a case-study in formal modeling and analysis of a turntable system, for which the components are described inthe SaveCCM language. The search for general principles underlying the internal structure of our real-timesystem has motivated us to propose three modeling patterns of common behaviors of real-time components,which can be instantiated in appropriate design contexts. The bene�ts of such reusable patterns are shown inthe case-study, by allowing us to produce easy-to-read and manageable models for the real-time componentsof the turntable system. Moreover, we believe that the patterns may pave the way toward a generic pattern-based modeling framework targeting real-time systems in particular.Keywords: Components, real-time, embedded systems, speci�cation, veri�cation, modeling patterns, casestudy1 IntroductionDeveloping industrial real-time systems is diÆcult and sets high requirements tosystem safety and reliability. The short development cycles demand a reliable en-gineering method, with predictable costs. The state-of-the-art is dominated by an1 Email: davor@slutej.com2 Email: johnh@it.uu.se3 Email: paul.pettersson@mdh.se , jagadish.suryadevara@mdh.se, cristina.seceleanu@mdh.seThis paper is electronically published inElectronic Notes in Theoretical Computer ScienceURL: www.elsevier.nl/locate/entcs

mailto:davor@slutej.com
mailto:johnh@it.uu.se
mailto:paul.pettersson@mdh.se
mailto:jagadish.suryadevara@mdh.se
mailto:cristina.seceleanu@mdh.se


Slutej et alad-hoc mixture of methods and tools, and system validation is mostly done byextensive testing at the implementation level. However, testing is done alreadytoo late in the design process, and bugs may still exist even in well-tested models.In this context, techniques for managing complexity and ensuring critical systemproperties during design become a necessity.A promising design approach is to employ a formal component-based develop-ment technique. In such an approach, components are introduced as executablesoftware units that can be deployed into a system. One of the key issues of realizingthe component-based software paradigm is to ensure that the separately speci�edcomponents do not con
ict with each other when composed, resulting in block-ing the system. A potential solution to this issue is formal modular veri�cation ofcomponent-based software via model checking.In this paper, we present a case-study in formal modeling and analysis of a real-time, component-based turntable system, for which the components are described inthe SaveCCM language [8]. For veri�cation, we use an integrated development en-vironment for SaveCCM, connected via a plug-in with Uppaal port, an extensionof the model-checker Uppaal, which implements a partial order reduction technique[10] for eÆcient model-checking. The technique exploits the topology of the networkof components and consequently improves the scalability of the veri�cation method.Our experience with this case-study and other similar examples is that, besidemaking the model-checking eÆcient, an as demanding task is to produce manage-able and easy-to-grasp design models for components and their composition. Thishas motivated us to try to extract some common behavioral patterns that occurfrequently in the design of real-time systems, and represent them in a �nite-state-machine like notation. Such notation lets us apply these patterns at high-levelsof software development, as shown in the paper, while simplifying the producedmodels. We believe that employing patterns in designing component-based systemsmight also help in documenting the associated software, through pattern-based re-verse engineering. However, this is out of the scope of this paper.General purpose program design patterns are well-known in the object-orienteddesign community for a while now [9]. Nevertheless, in the design of component-based real-time systems, some di�erent aspects might need to be represented in themodeling patterns; for instance, the semantics of our SaveCCM components is aread-execute-write semantics, hence a run-to-completion pattern can prove bene�cialin the design. Similarly, the reusable modeling of the sequence of visited statesduring the execution of a component, or reducing the time-wise non-determinismof the real-time component behavior, by providing systematic means to associate adeadline with the behavior, through a pattern, might also help the designer in themodeling phase. In this paper, we introduce the just mentioned abstractions of com-mon real-time component behaviors, as the run-to-completion, history, and execution-time patterns, respectively. Next, we apply them in modeling the component-basedturntable production cell.The remainder of the paper is organized as follows. In section 2, we brie
y recallthe basics of the SaveCCM language used for modeling the components in our case-study. The three modeling patterns are introduced and described as �nite statemachines in section 3, after which we present the real-time turntable production2



Slutej et al
A

B

C

p1

p2

p3

p4

(a)
l0 y � Ty = Ty := 0l1 y � Jlf (b)

z := 0l0 z �Maxz � Mina := 1� alf (c)Figure 1. An example of (a) a composition where components A, B and C are composed by connectingport p1 to p3, and p2 to p4, and timed behaviors: (b) a clock with period T and jitter J, (c) a computationupdating data variable a after between Min and Max time units.cell example, including the formal models of the constituent components, in section4. The system's formal requirements and veri�cation results are displayed anddiscussed in sub-section 4.3. We compare our approach to related ones, in section5. Finally, section 6 concludes the paper and outlines possible directions for futurework.2 SaveCCMIn this section we brie
y present the Save component modeling language [8], whichwill be used in the case study of this paper. The language is part of a larger frame-work, called SaveCCM, for component-based design of real-time and embeddedsystem [1]. The SaveCCM language consists of a graphical syntax and an associ-ated formal semantics. Due to space limitation, the presentation in this section isrestricted to a short informal overview of SaveCCM. For a complete description ofthe language we refer the reader to [8].In SaveCCM, systems are built from interconnected components with well-de�ned interfaces consisting of input and output ports. The communication styleis based on the pipes-and-�lters paradigm, but with an explicit separation of datatransfer and control 
ow. The former is captured by connections between data portswhere data of a given type can be written and read, and the latter by trigger portsthat control the activation of components. Figure 1(a) shows an example of thegraphical SaveCCM notation. Triangles and boxes denote trigger ports and dataports, respectively.A component remains passive until all input trigger ports have been activated, atwhich point it �rst reads all its input data ports and then performs the associatedcomputations over this input and an internal state. After this, the componentwrites to its output data ports, activates the output trigger ports, and returns tothe passive state again. This strict \read-execute-write" semantics ensures thatonce a component is triggered, the execution is functionally independent of anyconcurrent activity.Components are composed into more complex structures by connecting out-put ports to input ports of other components. In addition to this \horizontal"composition, components can be composed hierarchically by placing a collectionof interconnected components inside an enclosing component. From the outside,such a composite component is indistinguishable from other component where thebehavior is given by a single model or piece of code.To support analysis of SaveCCM models, it is required that each component3



Slutej et alis associated with a behavioral model consisting of a timed automaton [3] with adistinct exit location (see Figure 1(b-c)), and a mapping between component dataports and the internal automata variables. When a component is triggered, theport values are copied to the internal variables of the timed behavior which thenproceeds as speci�ed in the timed automaton. Whenever it reaches the exit location,variable values are copied to the output ports according to the given mapping, andthe output trigger port is activated.The timed automata modeling language used in SaveCCM is based on the lan-guage used in the Uppaal tool [16]. It extends the timed automata language origi-nally introduced by Alur and Dill [3] with a number of features that will be used inthe case study, including: global and local bounded integer variables and arithmeticoperations over such variables, arrays, and a small C-like programming languagethat can be used to de�ne functions and predicates. For a detailed description ofthe timed automata language, we refer the reader to [5].3 Component Modeling PatternsA modeling pattern is a way of designing a model with a clearly stated intentand structure. In this section, we propose three modeling patterns for commonbehaviors of real-time components, in order to ultimately provide the designer withuseful abstraction mechanisms for the high-level modeling and analysis of CB real-time systems. We chose to de�ne the patterns by a �nite-state-machine like (FSM)notation, which we call Pattern-FSM (or PFSM) in this paper. The patterns can beinstantiated, separately or in combination, in speci�c formal frameworks, to increasethe readability of the models and their suitability for veri�cation. To justify ourclaim, in section 4, we apply the proposed patterns, as combinations, to the CBmodeling of an industrial real-time turntable system (see for instance Figure 10).The analysis framework is the Timed Automata (TA) language of Uppaal [5,16].Generic PFSM De�nition and Graphical Notation. Let V be a set of datavariables, G be a set of boolean conditions (guards) over V , and A a set of actionsthat update the variables. Then PFSM is a tuple hS; start; exit; E;Atti, where S isa set of states, start is the entry state, exit is the exit state, E � S � G � A � Sis the set of transitions between states, and Att is a set of timing attributes, e.g.execution time, deadline, etc.The execution of a PFSM starts in the special control state start. At a givenstate, an outgoing transition may be executed only if its associated guard evaluatesto true; in this case we say that the transition is enabled. In case more than oneoutgoing transitions are enabled, one can be executed non-deterministically. A �lledcircle denotes the start control state and a semi-�lled circle denotes the exit controlstate (see Figure 2). Di�erent attributes of a PFSM, e.g. execution time, deadlineetc. can be added to the graphical representation of a PFSM model (e.g. Figure 7).3.1 Run-to-Completion PatternIn the run-to-completion (RTC) execution model, the component is executing inindivisible steps, without interruption from any concurrent activity. The key ad-4



Slutej et al
Figure 2. PFSM speci�cation of a component behavior

start

l3

exit

l2
l1

x>5x<5

x==3 update()

x<=5 activate()x>=5 sense()

Figure 3. An equivalent timed automata model with run-to-completion patternvantage of the RTC semantics is simplicity and guaranteed absence of deadlocks.Another advantage is that it might prune away unnecessary interleavings, thusspeeding up formal veri�cation and bringing the model closer to implementation.The pattern is commonly used in high-level behavioral modeling languages like Stat-echarts and its variants [12,17]. In Statecharts, the events are handled in an RTCmanner, along possibly compound transitions (i.e., paths of adjacent arrows).Pattern description. In this pattern, we assume that the component executionproceeds with changing states by �ring enabled transitions until it reaches a statefor which no outgoing transitions are enabled. At such a point, the executionterminates.To implement the pattern, one needs to translate the corresponding PFSM intoa timed automaton (TA). Run-to-completion can be implemented by introducingnew edges in the automaton, which describe termination of component execution.Let L be the set of locations li; i 2 f1; ::; ng in the corresponding TA. For eachlocation li 2 L, we assume that gj ; j 2 f1; ::;mg are the guards of the respectiveoutgoing edges. The exit edge from li connects li with the exit location. The guardof the li exit edge is :(Wj gj).Example. Figure 2 represents a PFSM speci�cation of a simple component be-havior obeying our run-to-completion pattern. Figure 3 describes the equivalentbehavior as a timed automaton, which serves as the pattern implementation. Thestates S1, S2, and S3 of the PFSM are mapped onto locations l1, l2, and l3, respec-tively, in the equivalent TA.3.2 History PatternExecution history is a core feature of behavior modeling techniques [2,12]. Thehistory mechanism of a behavior remembers which state was last visited duringexecution, before exiting. This state can then be re-entered next time the executionre-starts. In the hierarchical state-machine modeling of Statecharts [12], an innerstate may be exited and re-entered directly, by using the history mechanism. Asimilar approach is adopted in CHARON, a formal modeling framework for hybrid5



Slutej et al
Figure 4. PFSM speci�cation of a component behavior with history

exitstart

321

x==3 update()

H==2

H==1

x>=5 activate(),H=1x>=5 sense(),H=2

Figure 5. A timed automata behavior with history patternsystems [2].Pattern description. The pattern provides a mechanism to remember the execu-tion history in the behavioral models of components. Assuming the execution as asequence of states, the pattern has means of remembering the last state, or a par-ticular state for that matter, reached during execution. Hence, the next time, theexecution can resume from the state stored through the history mechanism. Similarto Statecharts, in a PFSM representation, the history mechanism is denoted as anH within a circle, and acts as the start state.The pattern is implemented as a TA, by using an integer variable H, which isupdated along each edge connecting any states di�erent from the start, and exitstates, with the corresponding location identi�er. Special edges connect the startstate to each of the states of interest, while appropriately testing the variable H. Inaddition, exit edges connect each state of interest to the exit control state. VariableH can be re-initialized appropriately when entering a speci�ed �nal location.Example. Figure 4 represents a component behavior with history pattern. Thehistory is denoted by the encircled H symbol, in the start state. In Figure 5, wegive the equivalent behavioral model as a TA, which implements the history pattern.The states in Figure 4 are mapped onto locations 1, 2, 3 in the TA. Variable H isinitialized to an initial location, i.e., H = 1. The edges that connect the start locationto locations 1, and 2 are due to the pattern, and are guarded by conditions H==1,and H==2, respectively. Also, the history variable H is updated with the locationidenti�er along each edge entering that respective location (edges that leave andenter the same location may be skipped, e.g., location 2 in Figure 5). Finally, H isre-initialized at location 3 of Figure 5.3.3 Execution-Time PatternFor embedded and real-time systems, it is often interesting to specify and analyzethe best or worst execution time of components. The variation in execution time alsogives rise to, e.g., non-deterministic timing, jitter, and varying end-to-end timing,which represent phenomena that are important to analyze (and master) at designtime. In the following, we introduce a pattern for specifying the best and worst6



Slutej et alexecution times of components.
Figure 6. Annotation of time attributes on PFSM models for execution-time patternPattern description. In this pattern, we assume that the total accumulatedtime of executing a component is within an interval where the lower and upperbounds are the shortest and longest possible execution times, respectively. Hence,the component will produce output (data and trigger) at some time instance, in theinterval.We also assume that the component is annotated with an interval specifying thelower and upper bound on the execution time. To implement the pattern, we use adedicated clock, say exec, which is used to measure the time since the componentwas triggered. The clock is reset on the edge outgoing from location start. Wefurther introduce a location, say delay, and an edge from location delay to the exitlocation. Location delay is annotated with an invariant over exec, corresponding tothe upper bound of the execution interval, whereas the exit edge is decorated witha guard corresponding to the lower execution bound.Example. Figure 6 represents a PFSM speci�ed using the execution time pattern.Its execution time is in the (closed) interval [l;m]. Figure 7 shows a timed automatonimplementing the pattern. Note that when the exit location is reached, the valueof clock delay is in the interval [l;m].4 Turntable Production CellIn industry automation, a production cell is a part of an overall production system| a factory. In this section, we present a formal model of a turntable productioncell, previously described in [6,19]. The case study is designed using the componentframework described in Section 2 and the patterns introduced in Section 3. Byemploying the patterns, we get simple and understandable component models forour case-study, as shown in the following subsections.The turntable cell is illustrated in Figure 8. It consists mainly of a rotary discwith four product slots. A product is loaded into a slot at position 0, and is thenrotated to position 1 where it is drilled. It is then rotated into position 2 where it is

exit
start delay

exec<=m

l3l2l1

exec>=1

exec=0

x==3 update()

x>=5 activate()x>=5 sense()

Figure 7. A timed automata behavior with execution-time pattern7



Slutej et al
���������	 
��




��

Figure 8. Schematic diagram of a Turntable system

Figure 9. Software architecture design layout of Turntable systemtested, and �nally to position 3 where it is unloaded (or possibly left to be redrilledin the next cycle). The positions are aligned with various tools for loading, drilling,testing, and unloading.Drilling and testing are the most critical tool positions, as the overall purposeof the production cell is the veri�ed drilling of products that 
ow through the cell.All slots of the rotary disc may be occupied at the same time, and products areprocessed in parallel. When a cycle completes, meaning that all positions completetheir functionality, the rotary disc rotates 90 degrees thus positioning the productsfor the next phase of processing. As the rotation is initiated by signals from toolsthat are not time deterministic, there is no �xed period between rotation of theslots.4.1 System DesignFollowing the informal description of the system, we can identify the system asconsisting of �ve main software components: Turntable, Loader, Driller, Tester, andUnloader, corresponding to the functionalities of the cell. The components interactwith several sensors and actuators, such as position sensors, clamping, and drillingdevices, which do not require explicit modeling. Further, as we focus on modeling8



Slutej et alTable 1Common interface for components Loader, Driller, Tester, and UnloaderPort Data type Descriptionstatus int An input representing the current known status of the product in thetool position (0 indicates an empty slot).result int An output that holds the status of the product after processing.start bool An input that initiates tool processing.�nished bool An output that signals when the tool controlled by the componenthas completed its processing.and analysis of the functional and timing behavior of the system, we make assump-tions regarding error situations, e.g., no fault situations like broken tools, etc. Thissimpli�es the system model without loss of generality.We now describe in detail the software components in terms of their interfacesand behaviors. Figure 9 shows the software architecture of the turntable system. Aninterface of a component de�nes the access point to its behavior, in our case in termsof data ports and trigger ports. The Turntable component acts as a central controllerin the system, and all other components are independent of each other and have asimilar interface with Turntable. The common interface approach supports reuse,as well as the 
exibility to extend or modify the system architecture. We de�ne acommon interface for each component, except Turntable, as shown in Table 1.Data 
ow is de�ned by connections between data ports, within the commoninterfaces and with external sensors and actuators. The control 
ow is modeledseparately from the data 
ow, by connections between triggering ports. As illus-trated by Figure 9, the 
ow starts from the Clock component and ends at theUnloader.The component behaviors are modeled as �nite state machines under the as-sumption of the modeling patterns de�ned in previous section. The history and therun-to-completion patterns are combined to achieve the modeled �nite state ma-chine behavior of the components, eventhough the components will be executed ina time-triggered fashion. The execution time pattern is applied to model the timerequired to execute each component. As such, the models present intuitive con-ceptual modeling retaining the analysis capability of the underlying formalism, i.e.,timed automata. The modeled behaviors execute under the semantics of SaveCCMcomponent model and the semantics of the patterns. In the following, we describeeach of the component behaviours along with their associated functions and pred-icates, de�ned in terms of variables associated with the data and trigger ports ofthe corresponding component.4.1.1 The Turntable ComponentThe interface of the turntable controller consists of two trigger ports, a sensor input,an actuator output, and four instances of the common interface. A clock componentgenerates trigger signals to periodically activate Turntable, which in turn activatesthe Loader component. The actuator output aRotate is connected to a motor turningthe rotary disc, and the sensor inputsRotated senses when the rotation is completed.The behavior of the Turntable component coordinates the rotation of the disc withthe execution of other components.Initially it rotates the disc, and sets ports of other components appropriately.9



Slutej et al
Figure 10. Behavioural model Turntable component.rotateSlots() istemp : int := status0aRotate := truestatus0 := status3 ; status3 := status2status2 := status1 ; status1 := tempendstartWork() isfor positions i do starti := trueend

getResult() isfor positions i do statusi := resultiendclear() isfor positions i do starti := falseendallCompleted i� 8i : �nishediFigure 11. Functions and predicates used by Turntable.It then waits for the other components to signal that their processing has stopped,before restarting the main loop by turning the disc again 4 . Starting from an emptysystem, it will take at least four rotations for all components to work in parallel.The �rst rotation only starts processing of the Loader, which then loads the �rstproduct onto the table. In addition to controlling the rotation of the disc, the com-ponent also maintains status information for each position. The status informationis shifted one step each time the table rotates. The detailed behavior is modeledin Figure 10, in terms of associated functions and predicates (listed in Figure 11).The internal variables statusi; starti; �nishedi; resulti represent the data values of thecorresponding common interface ports of position i.4.1.2 The Loader ComponentAs mentioned, Loader shares a common interface with, and receives a trigger, fromTurntable. It also has a trigger output to the Driller, sensor input sLoaded, andactuator output aLoad. The behavioral model is shown in Figure 12. When triggeredthe component checks the status of the slot at position 0. If a previous product ispresent, forwarded by the Unloader for reprocessing, the product is left in the slotfor repeated drilling. Otherwise a new product is loaded into the slot, to be drilledin the next cycle.4.1.3 The Driller ComponentFigure 13 shows a model of the Driller component behavior, which interacts withactuators and sensors for clamping and drilling the product. When triggered thecomponent checks the status of the slot at position 1. If empty, the driller doesnothing, otherwise the product in the slot is �xated (clamped), the drill starts4 Hence, even though Turntable is triggered periodically, the period of the rotation of the disc depends onthe processing time in the four slots. 10



Slutej et al
Figure 12. Behavioral model of Loader component.

Figure 13. State machine model of the Driller component.
Figure 14. State machine model of the Tester component.

Figure 15. State machine model of the Unloader component.spinning and is lowered. When the drilling is completed, the drill is lifted andstopped, and the status of the slot is updated accordingly.4.1.4 The Tester ComponentThe behavioral model of Tester is shown in Figure 14. Its input trigger is receivedfrom Driller, and its output trigger output is sent to Unloader. Similar to the driller,it interacts with actuators and sensors to move a tool into the product. The tool ofthe tester is a sensor sTesterDown, that measures the hole within 2 time units sincethe beginning of the test process. When triggered the component checks the statusof the slot at position 2. If empty, it does nothing, otherwise it measures the holedrilled in the product, and updates the status according to its verdict.4.1.5 The Unloader ComponentFigure 15 shows a model of the Unloader behavior. The status of the drilled productat position 3 indicates the verdict determined by the previous tester component.11



Slutej et al

Figure 16. Control structure and system architecture of the turntable system as modeled in Save-IDE.If the product was faultily drilled, it is not unloaded, otherwise, the componentactivates an actuator to unload the product. If the slot is empty, as in initialrotations, the Unloader does nothing.4.2 Modeling a Closed SystemFor veri�cation purposes we de�ne a closed system, that is, a system with no inputsor outputs. A closed model of the turntable is created by composing the turntablecontroller software with anUppaal timed automata model of the environment that isa�ected by actuators, and a�ects sensors. The software architecture of the turntablecontroller is presented in Figure 16 (as it appears in the SaveCCM syntax in theSave-IDE). The behavior of each component, as modeled in the previous section, istranslated into TA, following the modeling patterns presented in section 3.The environment of the turntable control software is modeled with appropriateabstractions of the complex real world aspects, in such a way that the behavior(and timing) of the real physical environment is included in the model. Further,as mentioned earlier, the model is done under the assumption of normal behavior,meaning no exception handling or error conditions such as faulty sensors or actuatorsmay occur. The environment of the turntable system is modeled as timed automata(TA) in the Uppaal tool. The environment essentially consists of the actuators andsensors associated with the system and its components. Due to space limitation, weleave out some of the environment automata, and we refer the reader to our recentwork [19] for a more detailed environment model.The communication interface between the system and its environment is facili-tated by shared variables. These variables correspond to the communication portsbetween the modeled system software and its sensors and actuators, as well as test12



Slutej et al
UnLocking

claCLK<=ClampTime Locked

Locking

claCLK<=ClampTime

UnLocked !aClamp
urgent
claCLK=0, sLocked=false

claCLK>=ClampTime
sUnlocked=true

claCLK>=ClampTime
sLocked=true

aClamp
urgent
claCLK=0, sUnlocked=false

Figure 17. Behavior of the Clamp environment model.
DrillerMovingUp

drillCLK<=MaxUpTime DrillDown

DrillerMovingDown

drillCLK<=MaxDownTime

DrillUp aDrillUp
urgent
drillCLK=0, sDrillDown=true

drillCLK>=MinUpTime
sDrillUp=true

drillCLK>=MinDownTime
sDrillDown=true

aDrillMoveDown
urgent
drillCLK=0, sDrillUp=false

Figure 18. Behavior of Drill of the environment model.automata that drive the veri�cation process. The interface, and its initialization,is given in Table 2. To simplify the modeling process, and reduce the state spaceof the model, all aspects of a system are not modeled explicitly. Instead, modelsfocus on critical aspects of the system. The environment model used for the for-mal veri�cation of the turntable consists of the behaviors Disc, Clamp, Drill, andTestTool.The drilling tool is modeled in terms of its two controllable parts: Clampand Driller. The behavior of these environment models are presented in Fig-ures 17 and 18, respectively. The function of the clamp is to lock the productin place so that the drilling can be carried out. The timed automaton is initiallyin the location UnLocked, and transitions to the location Locking when the edgeguard aClamp goes high (value becomes 1). It can remain in the location Lockingas long as the associated invariant claCLK 6 ClampTime holds. The same happenswhen the clamp is in location UnLocking. This models the continuous behavior ofthe Clamp.The function of Driller is to make holes in the product. The timed automaton(Figure 18) is initially in the DrillUp location, and transitions to DrillerMovingDownwhen the guard aDrillMoveDown goes high. It can remain in this location as long asthe associated invariant drillCLK 6 MaxDownTime holds to model the maximumtime the drilling can take place. The same happens when the drill is in locationDrillerMovingUp. The driller moves out from the continuous behavior of drillingdown or drilling up after MinDownTime or MinUpTime, respectively.Table 2Interface of the environment componentsTA Variables Data type InitiallyDisc aRotate, sCompleted bool falseClamp aClamp, bool falsesLocked, sUnlockedDrill aDrillDown, aDrillUp bool falsesDrillDown, sDrillUpTestTool aTesterDown, aTesterUp bool falsesTesterDown, sTesterUp13



Slutej et alThe TestTool works similarly to the drill, moving down by command from anactuator until a sensor is activated, and then moving up again by command from adi�erent actuator until the corresponding sensor is activated. Also Disc is modeledwith two states, wait and turning. The transition from wait to turning is initiated bythe actuator aRotate, clears the sensor value sCompleted, and resets a clock ensuringthe transition back to wait within TURN TIME time units, when the sensor valuesCompleted is also set.4.3 Requirements and Veri�cationIn this section, we present the veri�cation aspects of the turntable system. Thework has been performed in the SAVE-IDE, an integrated development environmentfor SaveCCM. For modeling, the Save-IDE provides graphical editors for architec-tural and behavioral modeling. For system (symbolic) simulation and veri�cationby model-checking, the tool Uppaal port [11,10], an extension of Uppaal [16], isintegrated through a plug-in. The representation of the system architecture andcomponent behaviors is represented in the SaveCCM XML �le format [8], and theenvironment is stored in an Uppaal XML �le. Uppaal port connects system inputsand output to global variables in the environment model.A set of properties concerning the safety and liveness of the Turntable controlsystem have been veri�ed. In Uppaal, liveness properties can be speci�ed as leadsto properties in the form P ; P 0, meaning that if a system has reached a statewith P satis�ed, it will eventually reach a state where P 0 is satis�ed. We discuss afew representative properties below. The �rst property speci�ed is:A2:deadlock (1)Property 1 is a safety property, specifying the absence of deadlock situations. Adeadlock occurs when the system can not progress further. In a real-time system,this is often caused by two tasks mutually excluding each other from acquiring aresource (e.g. semaphore). It can also be caused by a fault in the environmentmodel. The property is veri�ed as listed above. The A is a universal quanti�er,and refers to the property to be veri�ed on all execution paths of the statespace.The box 2 is a universal quanti�er over all states in a path. The states are de�nedby values of all variables as well as locations of automata. The keyword deadlockrepresents a state in the execution where there is no outgoing (delay or action)transition. The turntable system is veri�ed to be deadlock free.The absence of a deadlock does not mean that the system is guaranteed tomake progress. The control system could be continuing with the component triggerwithout the components progressing through their respective �nite state machines.The following set of properties verify that the turntable system is progressing. Itchecks that the central component Turntable continuously moves between Idle andTurning states. This is speci�ed using leads to properties. The diamond 3 is anexistential quanti�er over states in the path, meaning that the property is eventuallysatis�ed by a state in the path (all paths in this case).A3Turntable:Turning Turntable:Turning; Turntable:Idle (2)Turntable:Idle; Turntable:Turning14



Slutej et alThe properties 2 establishes that the component Turntable always progresses.This is possible only when the individual components too are progressing followingthe design strategy. The progress of individual components can be veri�ed as below.Loader:Ready; Loader:Finished (3)The above leads-to property 3 veri�es that Loader always progresses. We canverify a similar property for all other components. Further, we verify an importantsafety property stating that when the Turntable component is executing, no othercomponents are executing:A2(Turntable:Turning) (4)(Loader:Ready ^ Tester:Ready ^ Unloader:Ready ^ Driller:Ready))Property 4 models the fact that while the Turntable is turning the other compo-nents are just waiting in their Ready location, according to the design strategy.Property 5 establishes a state correspondence between an environment com-ponent and the corresponding SaveCCM component. The property ensures thatwhenever the Turntable is not turning, the Disc component is not turning either:A2(:Turntable:Turning) :Disc:Turning) (5)The next property (6) speci�es that the control model never sends two con
ictingsignals to its environment. Here, it checks that the system does not activate bothactuators associated with the Driller component, simultaneously, as they move theDrill in opposite directions:A2:(Driller:aDrillDown ^ Driller:aDrillUP) (6)5 Related WorkThere are a number of component based development (CBD) frameworks for em-bedded systems described in the literature. The BIP framework and the toolkitIF [4] are intended for predictable embedded systems development by support-ing correctness-by-construction and compositional veri�cation. While BIP o�ersbottom-up design of systems, our approach supports CBD in a bit more pragmat-ical traditional top-down design, with support of modeling in Save-IDE [18] andformal veri�cation using the Uppaal port toolkit [11,16].The Charon toolkit [2] supports modular speci�cation of embedded systems,based on the notions of agents and modes, for architectural and behavioral speci-�cations, respectively. Our behavioral speci�cation language of components sharessome features of the modes in Charon, but without hierarchy, and in our approachthe execution history of a component is provided by using a simple design pattern.The Statemate toolkit [14] is an early working environment for the developmentof complex reactive systems. Modularity of the system development is providedin terms of di�erent views, such as structure, functionality, and behavior. Our ap-proach for behavior speci�cation of components (modules in Statemate) is similar tothe Statecharts [13], the behavioral language of Statemate. Though not hierarchical,15



Slutej et alour FSM notation for component behaviors (see Section 3), combined with the pat-terns proposed in this paper, is similar to the Statechart features run-to-completionand execution history.The case study of Turntable production system, presented in this paper, has pre-viously been analyzed using di�erent methods and tools. In [7], a turntable model isspeci�ed in � [20], a simulation language for industrial systems, and translated intoPromela, the input language of the Spin model-checker to verify several propertiesof the model. In [6], a � model of the turntable system was translated into thespeci�cation languages of three model-checkers: CADP, Spin, and Uppaal compar-ing both the ease of conversion, the expressiveness of each of the speci�cation lan-guages, and the abilities and performances of the respective model-checkers. In [15],the turntable production system was implemented in the COMDES-II component-based software framework. The authors developed a semantic transformation of theCOMDESS-II model into an Uppaal timed automata model, allowing for formalveri�cation of a set of properties similar to those in [6].6 ConclusionIn this paper, we have presented how the SaveCCM component-based approach fordevelopment of embedded systems has been applied in a case study, to model andverify an industrial turntable production system. We have presented a component-based system architecture model, as well as the detailed behavioral models of thesystem components. To produce a manageable and easy-to-grasp design model ofthe turntable, we have used three simple, but useful, design patterns. The �nitebehaviors of components are speci�ed in a �nite state machine notation, using twodesign patterns for encoding run-to-completion semantics, and history states. Tim-ing is introduced using a third design pattern for specifying the execution timeand order of components. We also describe how the design speci�cations are syn-tactically transformed into the modeling framework used in SaveCCM, for furtheranalysis using Uppaal port.Throughout the case study, we have been using Save-IDE and its connection toUppaal port, for editing models, as well as for performing (symbolic) simulation,and veri�cation by model-checking. As a modeling result, we believe that we haveproduced a very intuitive component-based model of the turntable system. As veri-�cation results, we have shown that the system model satis�es all the requirementsspeci�ed for the system, formalized as safety and liveness properties in TCTL.As future work, we intend to develop an enriched behavioral modeling languageand formal analysis support for the successor of SaveCCM, called ProCom. Thelanguage will be based on the design patterns described in this paper, and possi-bly on other newly developed, more involved patterns that might prove useful insimplifying both the formal models and their veri�cation.References[1] Mikael �Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John H�akansson, Anders M�oller, PaulPettersson, and Massimo Tivoli. The SAVE approach to component-based development of vehicularsystems. Journal of Systems and Software, 80(5):655{667, May 2007.16



Slutej et al[2] R. Alur, D. Thao, J. Esposito, H. Yerang, F. Ivancic, V. Kumar, P. Mishra, G.J. Pappas, and O.Sokolsky. Hierarchical modeling and analysis of embedded systems. Proceedings of the IEEE, 91(1):11{28, January 2003.[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183{235, 1994.[4] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time components in bip.In SEFM, pages 3{12, 2006.[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Marco Bernardoand Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems: 4th InternationalSchool on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages 200{236. Springer{Verlag, September 2004.[6] E. Bortnik, N. Tr�cka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak, J.C.M. Baeten, W.J. Fokkink,and J.E. Rooda. Analyzing a � model of a turntable system using Spin, CADP and Uppaal. Journalof Logic and Algebraic Programming, 65(2):51{104, 2005.[7] V. Bos and J.J.T. Kleijn. Automatic veri�cation of a manufacturing system. Robotics and ComputerIntegrated Manufacturing, 17:185{198, 2001.[8] J. Carlson, J. H�akansson, and P. Pettersson. SaveCCM: An analysable component model for real-timesystems. In Proceedings of the 2nd Workshop on Formal Aspects of Components Software (FACS2005), Electronic Notes in Theoretical Computer Science. Elsevier, 2005.[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley Professional Computing. AddisonWesley Publishing Company,Reading, Massachusetts, 1995.[10] J. H�akansson and P. Pettersson. Partial order reduction for veri�cation of real-time components. InProc. of 1st International Workshop on Formal Modeling and Analysis of Timed Systems, LectureNotes in Computer Science. Springer{Verlag, 2007.[11] John H�akansson, Jan Carlson, Aurelien Monot, Paul Pettersson, and Davor Slutej. Component-baseddesign and analysis of embedded systems with uppaal port. In 6th International Symposium onAutomated Technology for Veri�cation and Analysis, pages 252{257. Springer{Verlag, October 2008.[12] D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31{42,July 1997.[13] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,8:231{274, 1987.[14] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sherman, Aharon Shtull-trauring, and D Mark Trakhtenbrot. Statemate: A working environment for the development of complexreactive systems. IEEE Transactions on Software Engineering, 16, 1991.[15] Xu Ke, P. Pettersson, K. Sierszecki, and C. Angelov. Veri�cation of comdes-ii systems using uppaalwith model transformation. Embedded and Real-Time Computing Systems and Applications, 2008.RTCSA '08. 14th IEEE International Conference on, pages 153{160, Aug. 2008.[16] K.G. Larsen, Paul Pettersson, and Yi. Wang. Uppaal in a nutshell. Int. J. on Software Tools forTechnology Transfer, 1(1-2):134{152, 1997.[17] Bran Selic. An eÆcient object-oriented variation of the statecharts formalism for distributed real-timesystems. In Proceedings of the 11th IFIP International Conference on Computer Hardware DescriptionLanguages and their Applications - CHDL '93, volume A-32 of IFIP Transactions, pages 335{344.North-Holland, 1993.[18] Sverine Sentilles, John H�akansson, Paul Pettersson, and Ivica Crnkovic. Save-ide an integrateddevelopment environment for building predictable component-based embedded systems. In Proceedingsof the 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008),September 2008.[19] Davor Slutej. Component-based modeling and analysis of embedded systems. Master's thesis,Department of Computer Science and Engineering, M�alardalen University, September 2008.[20] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schi�elers. Syntax and consistentequation semantics of hybrid chi. Journal of Logic and Algebraic Programming, 68(1-2):129 { 210,2006.
17


	Introduction
	SaveCCM
	Component Modeling Patterns
	Run-to-Completion Pattern
	History Pattern
	Execution-Time Pattern

	Turntable Production Cell
	System Design
	Modeling a Closed System
	Requirements and Verification

	Related Work
	Conclusion
	References

