Work-in-Progress Session

Towards Response-Time Analysis of Complex Real-Time Systems by using
Parametric Worst-Case Execution-Time Estimate on Tasks — A Case Study for
Robotic Control System

Yue Lu, Antonio Cicchetti, Mikael Sjodin, Jukka Maki-Turja, Stefan Bygde and Christer Norstrom
Milardalen Real-Time Research Centre
Milardalen University, Visteris, Sweden
{yue.lu, antonio.cicchetti, mikael.sjodin, jukka.maki-turja, stefan.bygde, christer.norstrom} @mdh.se

Abstract

Avoiding timing-related errors in complex industrial
real-time software systems becomes more and more impor-
tant. In our target domain, such complex software systems
are developed in C and realized with periodic tasks, exe-
cuted on a single processor under fixed-priority preemptive
scheduling. The tasks exhibit intrinsic dependencies with
respect lo execution times; often the execution time of a task
is dependent from inter-process communication or globally
shared variables. Thus, the execution time is highly vari-
able and using a pessimistic, safe, upper bound on the ex-
ecution time (worst-case execution time, WCET) in analy-
sis of the system would give unacceptable pessimistic re-
sults. However, existing techniques for schedulability anal-
ysis, such as the well known Response-Time Analysis (RTA),
typically use WCET as their input.

In this paper, we illustrate the problem by using a timing
model inspired by a robotic control system from ABB. We
show how models of tasks whose execution time is depen-
dent on asynchronous message-passing and globally shared
state variables, and how we can model this execution time
as a parametric WCET (PWCET). Further, we show how
we, in this example can use TIMES to formally derive the
parameters for the PWCET in order to obtain a concrete
WCET to be used in the RTA.

1 Introduction

Most existing embedded real-time software systems to-
day have been developed in a traditional code-oriented man-
ner. Many such systems are maintained over extended pe-
riods of time, sometimes spanning decades, during which
the systems become larger and increasingly complex. The
result is that these systems are difficult and expensive to
maintain and verify. In our target domain, robotic control

systems, such complex systems often consist of millions of
lines of C code.

The typical software architecture is based on periodic
tasks, executed on a single processor under Fixed-Priority
Preemptive Scheduling (FPPS) and stringent real-time con-
straints. However, contrary to the assumption in most real-
time theory, the tasks exhibit strong dependencies between
them. Often, the execution time of a task is heavily depen-
dent on data generated by other tasks, such as the number
of messages sent to a task via Inter-Process Communication
(IPC) primitives, or data placed in globally shared variables
and buffers.

One specific problem when maintaining such complex
systems is the risk for introducing timing-related errors. A
desirable approach to avoid timing-related errors in real-
time software would be to use schedulability analysis meth-
ods, such as Response-Time Analysis (RTA), that provide
information on timing behavior of execution in worst-case
scenarios. However, RTA (and other schedulability analysis
techniques) use the Worst-Case Execution Time (WCET) of
tasks as input. The quality of the analysis is directly corre-
lated to the quality of the WCET estimates. Hence, using
overly pessimistic WCET estimates would yield unaccept-
able pessimistic RTA results.

Unfortunately, the above described systems may not
have any easy computable WCET. Sometimes a pessimistic
WCET bound can be calculated based on maximum queune
or buffer lengths. In contrast, in other cases the WCET

. is completely unbounded before we know the behavior of

dependent tasks. Let us consider the following simplified
example in Figure 1, taken from an industrial robotic con-
trol system, where a task reads all messages buffered in a
message queue and processes them accordingly: to find the
exact number of messages actually consumed in the worst-
case scenario by inspecting the code is very hard since other
tasks (with more significant priority) may preempt the exe-
cution of the loop and refill the queue at runtime. Moreover,



Work-in-Progress Session

6

msg = recvMessage (MyMessageQueue);
while {msg != NO_MESSAGE) {
process_msg(msg) ;
msg = recvMessage (MyMessageQueue) ;

1

Figure 1. Iteration-loop wrt. message passing

this worst-case behavior is also nonintuitive: the number of
loop iterations is not supposed to be bounded by the maxi-
mum queue size when preemption occurs. Surprisingly, our
evaluation work presented later in Section 4 shows a differ-
ent result, i.e., such number is bounded and even smaller
than the maximum queue size.

This work relies on the observation that many of the
tasks in these systems can be characterized by a Parametric
WCET (PWCET) (we will later show an example in Sec-
tion 3), where, for instance, the PWCET is a function of
the number of messages a task may need to handle during
one invocation. We show how to calculate response time
of such a task with PWCET, based on models of the other
tasks in the system. In order to have a better understanding,
we use a concrete example inspired by a control system for
industrial robots developed by ABB.

2 System modeling of complex real-time sys-
tem

OQur target system, i.e., a robotic control system, is quite
large, and contains around 3 millions lines of code. In or-
der to construct PWCET estimates on each task in the sys-
temn, a system model which describes the detailed execu-
tion control flow on a code level is needed. In particu-
lar, information with respect to resource usage and inter-
action, e.g., inter-process communication (IPC), CPU time
and logical resources., can be extracted from the real sys-
tem based on program slicing. In this work, such model
is described by the modeling language used in RTSSim,
which can be considered as a domain-specific language de-
scribing both architecture and behavior of task-oriented sys-
tems, running on a single processor and developed in C. Its
syntax and semantics are as expressive as C programming
language, but are extended with typical RTOS services to
the task models, such as task scheduling (e.g. FPPS), IPC
via message passing! and synchronization (semaphore), for
instance. For the purpose of this work, it is sufficient to
know that RTSSim employs a hierarchical model to spec-
ify the system structure consisting of a number of fasks®.
A task may not be released for execution until a certain

IRefer to code line 25 and 38 in Figure 2 as the examples.

2We intentiopally missed out some details of the language for the sake
of space. The interested reader is referred to [1] for a thorough description
of RTSSim

time, called offset, has elapsed after the arrival of the ac-
tivating event. Each task is characterized by a period, a
maximum jitter, and a prioriry. Periods and priorities can
be changed at any time by any task in the application, the
lower numbered priorities are more significant. Finally,
each task is composed of a number of jobs and invoked
RTOS services. Each job in RTSSim task is represented
by the modeling primitive execute based on static WCET
estimate. E.g., execute(tcb, 100, 10) means the
adhering task will consume 10 model-time units with 100
percent possibility.

3 RTA using PWCET

Model 1, as described in this section, is designed to in-
clude some behavioral mechanisms from the robotic control
system, which make to predict tasks’ WCET estimates very
difficult. Moreover, it is used as a concrete example to illus-
trate the proposed way of modeling tasks’ execution time as
PWCET:s.

Model 1 contains a First-In-First-Out (FIFO) buffer I0Q
with queue size 13 and three periodic tasks i.e., ENV_IO,
10 and CTRL task with the parameters shown in Table 1 (a
lower valued priority is more significant). The scheduling
policy in Model 1 is FPPS, and all the tasks are running on
a single processor. ENV_IO task is an environmental task
which generates 2 external events that are stored in the glob-
ally shared variable no fEvent s as shown in code line 7 in
Figure 2. 10 and CTRL tasks have a complex temporal be-
havior due to input-dependent data placed in queve IOQ and
to the globally shared variable nofEvents, which varies
their execution times radically:

1. TO task sends an uncertain number (from O to 6) of
messages to queue I0Q depending on the value of the
global variable nofEvents : if the value is bigger
than 6, then there will be at most 6 messages sent to
queue I0Q;otherwise, the number of messages sent
by 10 task is the same as the value of nofEvents.
Once a message is sent to queue I0Q, the value of
nofEvents is accordingly decreased by 1, in order
to denote that one external event is successfully stored
in queue IOQ. Moreover, the number of messages sent
by 1O task is counted by the local variable k (see 15-27
lines of code in Figure 2);

2. When CTRL task starts running, it will at first consume
all the messages stored in quene JOQ. However, due to
its lower priority, CTRL task may be preempted in the
loop do while by IO task, which refills an uncertain
number of messages in the way described previously.
This will increase the number of messages consumed
by CTRL task, which is counted by the local variable i
(see 37-44 lines in Figure 2). After consuming all the



EEEEREEEEEESEEESEEEESEEREEEREREREER

‘Work-in-Progress Session

messages in queue I0Q, CTRL task may continue its
execution with 10 model-time units more and increase
the value of the local variable j, depending on whether
the value of the globally shared variable nofEvents
is bigger than 5 (lines 46-52 in Figure 2).

Table 1. Task parameters for Model 1

Task Priority Period Parameters
ENV_IO 0O 200 No

10 1 500 k

CTRL 2 800 13

Clearly in Model 1, the value of the local variables k,
i and j are vital to calculate the WCET estimates on the
adhering tasks since they count the number of times of
primitives (e.g., sendMessage(tcb, I0Q, 1, 0),
recvMessage {tcb, I0Q, 0) and execute (tcb,
100, 10) being executed in basic control structures such
as loop while, do while, for, and if/else state-
ment. However, the complexity of obtaining the exact value
of such local variables is very high, e.g., the value of 1 is
difficult to predict since the number of messages consumed
by CTRL task when preemptions occur may not be bounded
by the maximum queue size. Even worse, to trace the value
of the globally shared variable nofEvents along with
tasks’ execution is difficult since all of the three tasks have
the dependency with it. Adopting non-parametric WCET
analysis to estimate WCET on tasks in Model 1 cannot cap-
ture such intricate dependencies. Whereas, if variables X,
i and j are considered as parameters, tasks’ intricate de-
pendencies through data placed in globally shared variables
and queues can be represented in PWCET formula for each
task. By using these PWCET formula in RTA, such com-
plex dependencies are preserved, which discloses the pos-
sibility to perform optimistic and safe RTA. By inspecting
code in Model 1, the PWCET estimate on 10 and CTRL
task can be expressed as two following linear equations, re-
spectively, which are function of parameters (or local vari-
ables) k, 1 and 7:

Equation 1. C(I0) = k x C(sendMessge)

Equation 2. C(CTRL) = i x C(recuMessage) + 2 +
jx C(10)

where C{sendMessage) and C(recuMessage)
are 2 model-time units consumed by primi-
tives sendMessage (tcb, I0Q, 1, 0) and
recvMessage (tch, I0Q, 0); C(10) is 10 model-
time units consumed by primitive execute (tcb, 100,
10). Once the values of the parameters are obtained, the
WCET estimate on each task will be used in Equation 3 in
RTA .

1
2
3
4
5
3
7
]

4
10
11
12
13

#define IOQSIZE 13
int nofEvents = 0;

void RTSSim ENV_IO(TCB* tcb)
{

nofBvents += 23
}

void RTSSim_IO({TCB#* tch)

{
int eventsToProcess = 0;
int k = .0;

1 -

15
16
17
1
19
20
21
2z
23
za
25
26
21
28
29
ki)
n
3z
33
kT
5
36
37
3B
g
40
a1
42
43
a4
45
46
47
48
49
50
L3E
52
53
54

if (nofEvents > &)
{
eventsToProcess = 6;
Jelse(
eventsToProcess = nofEvents;

)

while (eventsToProcess—- > 0)
{
nofBEvents—;
sendMessage (tch, I0Q, 1, 0);
k++;
)
}

void RTSSim_CTRL(TCB* tcb)
{
int sc_varl = 0;
int “iocevent = 0;
int i = 0;
int 3 = 0y
do]
ioevent = recvMessage(tch, IOQ, 0);
if (icevent > -1)
7
it+;
}
}while (icewvent > =1);
sc_varl = nofEvents;

if{sc_varl > 5)

{
execute(tcb, 100, 10});
J++2

}

Figure 2. An RTSSim model case study for
method illustration

R™
Equation 3. R =C; + i B Y o
T T j

Vi€hp(i) 7

where the set of values { R°, R, R%, R®, ...} is monoton-
ically non-decreasing.

In order to ensure the exact value of parameters can be
derived, formal analysis such as model checking will be
used, which is presented in the following Section 4.



Work-in-Progress Session

4 Obtaining parameter values

In the following, we propose an approach to formally
derive the value of parameters in PWCET formula by rely-
ing on a concrete semantic anchoring process as presented
in [2]. In particular, Model 1 is firstly transformed to a
target representation, which is formally analyzable by the
model checking tool TIMES [3]. Such a translation is per-
formed at the meta-model level, thus allowing to preserve
the original semantic®. Thereby, the exact value of param-
eters can be ensured to be derived by analyzing all the pos-
sible values in the entire search space*. Due to page limit,
we won’t introduce the rules used for such transformation,
since the details of such transformation go beyond the scope
of this work. In contrast, we show how the parameters look
like after the transformation by referring to Figure 3, which
shows the translation of CTRL task (from code line 32 to 52
in Figure 2) to its counterpart, i.e., a task automata model
in TIMES. For instance, the counterpart of the parameter
i in CTRL task is a bounded integer recvIOQ_i_ctrl
in TIMES model preserving the same semantics, that is, it
counts for the number of times of primitive recvMessage
being executed.

Then, by manually checking the reachability property
wrt. recvIOQ_i_ctrl, such as E<> recvIOQ_i _ctrl
== 1] (with verification result Not satisfied) and
E<> recvlOQ_i_ctrl == 10 (with verification result
Satisfied) in TIMES, the exact value of parameter i
is found to be 10. This highlights an interesting point that
the number of loop iterations counted by the parameter (or
the local variable) i is bounded and even smaller than the
maximum queue size when preemption occurs, although in-
tuitively it is not supposed to be like that.

5 Conclusions and future work

In this paper we present an idea about using Parametric
Worst-Case Execution-Time (PWCET) estimate on tasks in
Response-Time Analysis of complex real-time systems. By
using a concrete example inspired by ABB robotic control
system, tasks intricate dependencies are firstly introduced.
In particular, input-dependent data placed in globally shared
variables and buffers, which vary tasks’ execution time rad-
ically, have been highlighted. Then, the way of modeling
such tasks’ execution time as PWCET centre around a num-
ber of parameters, is proposed. Later, the way of formally
deriving the value of parameters in PWCET by using model
checking tool TIMES is illustrated.

3The RTSSim model and its counterpart in TIMES describe the same
system behavior and valued data.

4This is under the assumption that the entire search space is reasonably
big as not raising state space explosion issues.

ctri_rel?
ctri_loevent=-1recviOQ]1_ctr:=0.exec_cCTRLVar1_10:=0

APP_START

recvMsg_lOQ_c7
h

Param_0_lOQ
refvMessage 100
recviMeg_10OQ_fin?,

E_ctn_toevsm_ﬁe

-

ctrl_joevent<=1
ctri_loevent_negi_xi ctrl_joevent>-1
o ctri_joeveni_neg1_di

—
CI&ECK_NO?EQNTS

nofEvents}s
exec_cCTRLVar1_5_di
exec_cCTRLYar1_10:=1

nofEvents<=5
exec_cCTRLVarl_defl

¥

Bt

Figure 3. tat_tat for CTRL task (from code line
32 to 52 in Figure 2), after semantic anchoring

As part of the future work, we will validate our idea by
evaluating more complex models, by for instance increas-
ing the number of parameters, tasks and queued buffers. In
this respect, the possibility of using alternative analysis wrt.
obtaining the value of parameters will be explored. More
importantly, we will pursue the generalization of the current
proposal to different complex legacy system modeling ap-
proaches, and possibly different formal translations to sup-
port multiple forms of analysis.

References

[1] Johan Kraft. Rtssim - a simulation framework for complex embedded
systems. Technical Report, Milardalen University, March 2009.

[2] Yue Lu, Antonio Cicchetti, Stefan Bygde, Johan Kraft, Thomas
Nolte, and Christer Norstrém. Transformational specification of com-
plex legacy real-time systems via semantic anchoring. In 2nd IEEE
International Workshop on Component-Based Design of Resource-
Constrained Systems (CORCS 2009) @ COMPSAC. IEEE Computer
Society Press, July 2009.

[3] Website of times. www.timestool.com.



	ecrts09-wip-1
	ecrts09-wip-2
	ecrts09-wip-3
	ecrts09-wip-4

