
Best-Effort Simulation-Based Timing Analysis using Hill-Climbing with Random

Restarts

Markus Bohlin1,2, Yue Lu1, Johan Kraft1, Per Kreuger2, and Thomas Nolte1

1Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
2Swedish Institute of Computer Science (SICS), Kista, Sweden

markus.bohlin@sics.se

Abstract

Today, many companies developing real-time systems

have no means for accurate timing analysis, as the soft-

ware violates the assumptions of traditional analytical

methods for response-time analysis, and are too complex

for exhaustive analysis using e.g. model checking. This

paper presents an efficient best-effort approach for timing

analysis targeting such systems, where simulations of a

detailed system model are controlled by a simple yet novel

optimization algorithm, based on hill climbing with ran-

dom restarts (HCRR). Using a simulation-based approach

implies that the result is not guaranteed to be the worst-

case response time, but on the other hand, the method can

handle in principle any software design. Unlike previous

approaches, the new algorithm directly manipulates sim-

ulation parameters such as execution times, arrival jitter

and input stimulus.

A thorough evaluation is also presented, where HCRR

is compared to Monte Carlo simulation (the current state-

of-practice) and a previously proposed method. The eval-

uation is performed using a set of simulation models con-

structed from existing systems in the robotics and vehicular

domain, and shows that for the three models investigated,

the proposed method was 4-11% more accurate and vastly

more efficient than the other methods. In our evaluation,

HCRR found the second-best result on average 42 times

faster than the second-best method. For the largest model,

HCRR used only 7.6 % of the simulations needed by the

second-best method to reach the same result, implying

that HCRR scales to larger systems. For the most realistic

model, our new method found the highest-known response

time 1 628 times faster than the second-best method.

1. Introduction

Today, most existing embedded real-time systems have

been developed in a traditional code-oriented manner.

Many of them are also maintained over extended periods of

time, sometimes spanning decades, during which they be-

come larger and more complex due to the iterative changes

made as part of the system evolution and maintenance. The

increasing complexity makes these systems increasingly

hard and expensive to maintain and verify.

One specific problem with such systems is the risk for

introducing timing-related errors. A natural approach to

avoid timing-related errors in real-time software would

be to use established analytical methods for response-

time analysis (RTA, [1], [2]), which provides exact worst-

case response times of tasks, given correct worst-case

execution times (WCET). Thereby, a system’s correctness

with respect to temporal requirements can be guaranteed.

The ability to perform timing analysis, using RTA or

other means, does not only improve the quality of the

system verification, but can also reduce development and

maintenance costs significantly as potential timing-related

errors can be identified early, during the design of new

features, and thereby avoided. Timing errors can otherwise

only be detected in late verification phases, where detected

bugs often case major costs and delays. Moreover, timing

errors often only occur under very specific conditions,

which are hard to detect using testing.

Sadly, it is not possible to make practical use of RTA on

a large quantity of existing industrial software systems, as

they violate the assumptions of the method. Such systems

might have been initially designed without timing analysis

in mind, or development personnel may have introduced

violations of RTA during the system evolution, and thereby

lost the analyzability.

The authors have observed several issues with respect

to RTA in existing industrial/embedded software systems.

Some relevant examples are:

• Tasks communicate and trigger other tasks in complex

undocumented patterns.

• Task WCET often depends on input.

• The task priority is sometimes changed dynamically.

• Deadlines are not always defined explicitly, but man-

ifest as functional errors when different timeouts

expire.

Moreover, some implementations observed in industrial

code makes it very hard to perform static WCET analysis.

Consider the following example, where a task reads all

messages in a message queue and process them accord-

ingly:

do {

msg = receiveMessage(MyMessageQueue);

process_msg(msg);

} while (msg != NO_MESSAGE);

There are at least two aspects in this example which are

hard to analyse statically. First, even though the maximum

allowed queue size is usually known, the actual maxi-

mum at runtime is not; the developers may have over-

dimensioned the queue as a safety margin. Second, and

more importantly, other tasks may preempt the execution

of the loop and refill the queue. When this happens, the

number of loop iterations is no longer bounded by the

maximum queue size.

The impact of mechanisms like buffered queues and

priority changes can cause very intricate scenarios, where

the worst-case is counter-intuitive and extremely hard to

predict manually. For instance, in one of the simulation

models (Model 1, described in Section 4.1) used for

evaluation of our approach, the worst-case response time of

the task in focus surprisingly did not occur when the model

received the maximum amount of input events. Instead,

the worst case turned out to occur when the input events

formed a completely different and very intricate pattern.

The details of this case is described in [3]. The system

model used by analytical methods such as RTA is too

simplistic to allow accurate timing analysis of such systems

with such behaviors, instead a detailed model is required,

where also relevant task behavior can be described.

An example of an industrial real-time system where

RTA is not applicable is the control system for industrial

robots developed by ABB. This system has a very complex

temporal behavior, where some tasks have execution times

varying radically due to input-dependent IPC and globally

shared state variables, and where tasks may even change

scheduling priority. The analytical methods’ use of a task-

level WCET attribute will in such cases be very pessimistic

since the tasks are not independent; there are often depen-

dencies which result in mutual exclusion between different

tasks’ WCET scenario.

A more detailed system model is therefore necessary

for timing analysis of such systems. Ideally, the model

should describe the detailed execution control flow on a

code level with respect to resource usage and interaction,

e.g., inter-process communication, CPU time and logical

resources. Simulation-based methods has previously been

shown to work well in analysing such large and detailed

models, since they only sample the system state space

rather than attempting to search it exhaustively. Moreover,

simulation-based analysis is far more efficient in finding

potential timing problems than system-level testing, the

dominating method in industry today. Several frameworks

already exist for timing simulation of real-time system

models, e.g., the commercial tool VirtualTime [4] and the

academic tool ARTISST [5]. These solutions rely on Monte

Carlo simulation, which can be described as keeping the

highest results from a set of randomized simulations.

In this paper, we show that a detailed representation of

the simulation parameters in combination with a focused

optimization algorithm can yield substantially better results

than both Monte Carlo simulation (which is the current

state-of-practice) and another previously proposed method,

MABERA [6]. Specifically, we propose a new approach

where key aspects of the system at hand are encoded

directly as parameters in the algorithm. We then use a fairly

straightforward optimization method based on the well-

known hill-climbing algorithm [7]. Surprisingly enough,

nobody seems to have tried this before.

The paper contains the following contributions: 1) We

give an explicit representation of simulation instances in

the form of inputs such as execution time, arrival jitter and

external input stimulus is defined, 2) we present a novel

algorithm for manipulating simulation parameters, based

on the simple idea of hill-climbing with random restarts

(HCRR), and 3) we give a thorough experimental evalua-

tion of performance, scaling and convergence of the new

algorithm, comparing the results to those obtained from

MABERA and Monte Carlo simulation. In the evaluation,

we show that the new algorithm is significantly better than

previous approaches in identifying extreme response times

using a limited number of simulations.

The paper outline is as follows. Section 2 presents

related work and the new input representation. Section 3

presents the new approach proposed in this paper, and

Section 4 describes a set of case-study models used to

evaluate the approach. The evaluation is presented in

Section 5, and finally, Section 6 concludes.

2. Best-Effort Response-Time Analysis

Response-time analysis is certainly not something new,

and besides the standard approaches such as RTA [1], [2],

formal analysis tools like UPPAAL [8], [9] can also be

used for exhaustive analysis of software systems, but for

industrial-sized models, the state space can grow too large

for them to be practically useful.

The use of evolutionary algorithms for different types

of test case generation has also been studied for quite some

time. In [10], genetic algorithms were used to generate test

cases for a software relay system used in electrical net-

works. The purpose of the genetic algorithm is to provoke

high response times for the software, which executed in a

simulation environment. Nossal et al [11] describe various

extensions of the traditional genetic algorithm [12] to better

suit the type of problems in the real-time domain. More

recently, Mueller and Wegener [13] gave a comprehensive

comparison of static analysis techniques and evolutionary

algorithms, with regard to schedulability, for several real-

time applications.

In [14], Samii et al aim to find extreme response times

for distributed systems by optimizing a set of simulation

parameters for models containing temporal attributes and

communication. They use a genetic algorithm to explore

combinations of task execution times in order to maximize

end-to-end response time. Flow of control within tasks

is not considered. Their results depend on the method

developed by Racu and Ernst [15] for identifying situations

where decreased execution times can lead to increased

response times. The analysis framework by Kim et al [16]

also has a similar basis of temporal task attributes.

In [6], we presented MABERA, a meta-heuristic ap-

proach for best-effort response-time analysis of models of

complex legacy systems using ideas from genetic algo-

rithms [12].

The approach is based on a simulator using a schedule

of random number generator seeds, in turn used to generate

random numbers for the parameters of the adhering system

model. The seed of the random number generator can be

changed at arbitrary time points, and thus provide a crude

control mechanism. Due to the seed schedule representa-

tion, only mutation is used in the evolutionary algorithm,

which inserts randomly selected new seeds at specific

simulation time points. The effect of seed switching is that

the entire execution trace for the rest of the simulation is

changed. Unfortunately this implies that it is not possible to

modify a restricted subset of the simulation parameters, for

example the execution time for a specific code segment,

that might on its own severely affect the response time.

For heuristic methods to work well, small changes in a

candidate solution should have small but noticeable effects

on the objective function. This clearly doesn’t hold for

MABERA, where a newly inserted seed makes the rest

of the simulation behave completely different. Readers

can refer to [6] for a more thorough description of the

MABERA approach.

2.1. Simulation of Complex RealTime Systems

The analysis method presented in this paper is based

on the simulator framework RTSSim, [3], which allows

for simulating models describing both the functional and

temporal behaviour of tasks. An RTSSim simulation model

consists of a set of tasks, sharing a single processor. Each

task in RTSSim is a C program, which executes in a

“sandbox” environment with similar services and runtime

mechanisms as a normal real-time operating system, e.g.,

task scheduling, inter-process communication (message

queues) and synchronization (semaphores). The scheduling

policy or RTSSim is preemptive fixed-priority scheduling

and each task has scheduling attributes such as priority,

periodicity and offset. It is possible to change these param-

eters dynamically, in the task model code, to implement a

custom scheduling policy, on top of the default schedul-

ing policy of RTSSim, which is fixed priority preemtive

scheduling (FPPS).

In RTSSim, time is represented in a discrete manner

using an integer simulation clock, which is only advanced

explicitly by the tasks in the simulation model, using a

special routine, EXECUTE. Calls to this routine models the

tasks’ consumption of CPU time.

All time-related operations in RTSSim, such as time-

outs and activation of time-triggered tasks, are driven by

the simulation clock, which makes the simulation result

independent of process scheduling and performance of the

simulation computer. The response time of tasks is mea-

sured whenever the scheduler is invoked, which happens

for example at IPC, task switches, EXECUTE statements,

operations on semaphores, task activations and when tasks

end. This, together with the simulation clock behaviour,

guarantees that the measured response time is exact.

The simulation framework allows for three types of

selections which are directly controlled by simulator input

data.

1) selection of execution times (for EXECUTE),

2) selection of task-arrival jitter, and

3) selection of task control flow.

A simulation in RTSSim is completely deterministic given

a specific input, in this paper referred to as a simulation

instance. Monte Carlo simulation is realized by providing

a randomly generated simulation instance.

The models used for the evaluation in this paper were

manually designed to contain similar modeling and anal-

ysis challenges as the real systems, and contain only the

aspects which were considered interesting from a timing

analysis perspective. In general, however, a major issue

when using simulation for analysis of existing systems

is how to obtain the necessary simulation model, which

should be a subset of the original program focusing on

behaviour of significance for task scheduling, communica-

tion and allocation of logical resources. For many systems,

manual modeling would be far too time-consuming and

error prone. An approach for automated model extraction

are proposed in [17] and a tool implementing this approach

is in development, named MXTC – Model eXtraction Tool

for C. The MXTC tool targets large implementations in C,

consisting of millions of lines of code, and is based on a

form of program slicing [18]. The model extraction tool

was however not yet mature enough for producing real

models for the HCRR evaluation in this paper. Due to the

size of industrial systems, virtually all “dark corners” of

the C programming language will be encountered, which

leads to a quite complex tool, which must be very stable,

and at the same time scalable to large quantities of code.

However, an evaluation using MXTC and HCRR on a large

industrial system is planned during 2009.

Problem Definition. We can define the problem of

best-effort response-time analysis with explicit input as

follows. We are given a model of a real-time system, which

can be simulated on simulation instances S, consisting

of simulator parameters. Let R(S) denote the highest

response time measured for the task under analysis in the

simulation of instance S. The goal of the problem is then

to find a simulation instance S∗ that maximizes R, subject

to the constraints on S∗ outlined in Section 2.1.

2.2. Input Representation

A simulation instance is a set of parameters that exactly

determine the outcome of a simulation. In this paper, a

simulation instance is represented using a set of sequences

of integers, where each sequence is associated with ei-

ther an arrival jitter of a task, an execution time, or an

environmental input stimulus1. Each value then directly

decides a selection of either jitter, execution time, or state

in the task control flow. The advantage of this approach

is that the direct relationship between representation and

model properties makes it possible to locally refine specific

aspects of a given simulation instance.

Let Ji be a sequence of actual jitter values Jr
i ex-

perienced by instance r of a task τi. We restrict Jr
i to

integer values in the interval [0,ub(Ji)], where ub(Ji) is

an upper bound on jitter for task i in units of the smallest

measurable time interval (clock ticks) for the target system.

Furthermore, let Xk be a sequence of values for a certain

environmental input stimulus or execution time in the

simulated program, and Xj
k be the jth such input value.

We assume that all stimulus and execution times Xj
k are

of integer type and have upper and lower bounds, so that

1. Such environmental input stimulus is represented as various number
of events generated by environmental task in Model 1 and Validation
Model, and various execution time of Software Circuits (SWCs) in Model
2 in Section 4.

lb(Xk) ≤ Xj
k ≤ ub(Xk) for all k, j. Execution times

are used only for deciding CPU time consumption of

EXECUTE primitives. Bounds on execution times can be

analysed using static analysis [19] or estimated through

measurements.

A simulation instance S, defining a fully deterministic

simulation of the model, is therefore a set

{J1,J2, . . . ,Jn,X1,X2, . . . ,Xm} (1)

where n is the number of tasks which have non-zero

jitter and m is the number of environmental stimulus and

EXECUTE statements. Denote by Ni and Mk the number

of values that are used to represent jitter sequence Ji

and input sequence Xk. Ni and Mk can be determined

empirically by tracing how many values the simulator uses

for each value. In theory, Ni and Mk can be unbounded,

and for some long simulations, Ni and Mk may grow

to unacceptable levels. In such cases, we suggest to set

Ni and Mk to a fixed acceptable level. If there are not

enough input values in the sequence, the simulator should

report a warning, and start reuse values from the start of

the sequence. For the evaluated models in this paper, Ni

and Mk were long enough to represent all values used.

3. The Optimization Algorithm

In the rest of this paper, we focus on analysing the

response time of a specific given task by varying the sim-

ulation instances used as input for the simulator. Analysis

of an entire system can easily be done by performing our

analysis several times, once for each task in the system.

3.1. Random Restart Hill Climbing

Our initial idea was to use a representation of the input

parameters to RTSSim, which more directly corresponded

to simulation parameters, in a full genetic algorithm [12].

However, initial experiments with the crossover operator,

which is the operator most often associated with genetic

algorithms, proved unsuccessful and did not show any sig-

nificant improvement over MABERA. Instead of focusing

on the crossover operator, we chose to investigate iterative

improvement of a single individual as an alternative. It

turned out that hill-climbing [7], augmented with random

restarts whenever a local minimum was detected, gave

much better performance than MABERA.

The proposed new optimization algorithm, HCRR, is

therefore based on hill climbing using random-restarts.

Hill-climbing has the advantage of being one of the

simplest metaheuristics available, and is based on the

idea of starting at a random point, and then repeatedly

taking small steps pointing upwards (wrt. the objective

function, which in this paper is the measured response

time) whenever such search directions exist. If no such

steps exist, a local minimum may have been reached.

Several techniques for escaping local minima exist (for

example Tabu Search [20] and simulated annealing [21]),

but a set of limited experiments conducted did not show

any significant performance advantage over hill-climbing

with random restarts.
Advantages of HCRR come from the combination of a

strictly local improvement part, which quickly converges

to high response times, with diversification mechanisms

(jump-back to equal candidates, and full restarts) that are

important to avoid local maxima. In contrast, MABERA

doesn’t employ such a mechanism, and consequently can

easily get stuck in local optimas. In addition, the local

improvement functionality of MABERA is inefficient in

that it is not clearly connected to existing critical features

of the solution candidate. Monte Carlo search, on the other

hand, has no mechanism at all for local improvement, and

therefore exhibits unsatisfactory convergence.
HCRR works by iteratively changing a small portion of

the model parameter set, and restarts after a fixed number

of non-improving simulations have been tried.

HCRR(nofsims ,m,k ,best)

curr ← MONTECARLO(min(m,nofsims), rnd_inst())
nofsims ← nofsims −m
if R(curr) > R(best) then best ← curr

E← {curr}
nonimp ← 0
while nofsims > 0

if nonimp > nR

return HCRR(nofsims ,m,k ,best)

else if (nonimp + 1) mod nB = nB

curr ← random element in E

nb ← NBH(curr , bk · len(curr)c)
SIMULATE(nb)

nofsims ← nofsims − 1
if R(nb) > R(best) then best ← nb

if R(nb) > R(curr)
curr ← nb

E← {nb}
nonimp ← 0

else

nonimp ← nonimp + 1
if R(nb) = R(curr) then E← E ∪ {nb}

return best

Figure 1. Hill Climbing with Random Restarts

The implementation of HCRR is given in Figure 1.

Here, the simulation budget is denoted nofsims , and

RT(q) denotes the end time of the task under analysis

in the simulation instance q when the worst response time

occurred. The consumption time point of a simulation input

Xj
i of any type (jitter, execution time, or environmental

input stimulus) is expressed as TMj
i . q [Xj

i] is the current

value of Xj
i in the simulation instance q . The function

rnd(l, u) returns a random number between l and u if

l < u; otherwise, it returns l. A completely random

simulation instance can also be generated using the call

rnd_inst().

HCRR takes a currently best candidate (best) as input,

which should be a random simulation instance when first

called. It then begins by choosing as starting point the best

simulation instance from min(m,nofsims) randomly se-

lected candidates using the MONTECARLO method. Then,

in each iteration, k ·len(curr) random values of the current

simulation instance curr (which has len(curr) input val-

ues) used before RT(curr) are selected and modified using

the neighborhood procedure NBH, shown in Figure 2.

NBH(inst , n)

for k = 1 to n
Q = {Xj

i ∈ inst | TMj
i < ET(inst)}

Xj
i ← random input variable in Q

V = {lb(Xi) . . . ub(Xi)} \ {inst [Xj
i]}

v ← random value in V
inst [Xj

i]← v

Figure 2. Neighborhood procedure

The response time for the task under analysis is mea-

sured by running RTSSim using the SIMULATE(nb) call

on a neighbor nb. Modifications suggested by NBH that

increase response time are accepted, and changes that

decrease response time are rejected. Modifications that

have equal response time are rejected but saved for future

reference, as described below.

A pure hill-climbing procedure is susceptible to getting

stuck in local maxima, and can therefore exhibit less than

satisfactory performance on many problems. In order to

avoid convergence to locally optimal areas and to improve

the probability of finding a true global maximum, two dif-

ferent diversification mechanisms were implemented. First

of all, after nB non-improving iterations, the algorithm

jumps back to a previously encountered, randomly selected

simulation instance with an equal response time to the

current instance. This distributes focus over a number of

equal instances, which can help in avoiding small local

maxima. The second technique is a common method for

avoiding local maxima by restarting the hill-climbing pro-

cedure from a random location after a number of iterations.

In HCRR, a random restart is performed after a sequence

of nR non-improving iterations.

4. Case Studies

This section describes two industrial cases and one val-

idation case in the form of simulation models. The models

have similar architecture and analysis problems as two

industrial real-time applications in use at ABB [22] and

Arcticus Systems [23]. Although the simulation models

contain relatively few tasks, at most 11, their behavioural

complexity is significant due to e.g., shared variables,

sporadic events and dynamic priority changes.

Model 1 (M1) is representing a control system for

industrial robots developed by ABB Robotics, which is

not possible to analyse using analytical methods such as

RTA [24], [2]. This model has previously been used to

evaluate MABERA in [6]. Model 2 (M2) is constructed

from a test application used by Arcticus Systems [23],

which develops the Rubus RTOS used in many vehicular

systems. We also use a simplified version of Model 1 for

validation (MV), where the code violating the assumptions

of RTA has been removed. The purpose of this model is to

investigate how close the response times found by HCRR

are to the true worst-case response times derived by RTA.

The scheduling policy used is preemptive priority-based

scheduling for all models. Models 2 and 3 use preemp-

tive fixed-priority scheduling. Model 1 uses a preemptive

scheduler and mainly static priorities, but contains one task

that changes priority dynamically.

4.1. Model 1

This model describes a fictive system designed to be

representative for a control system for industrial robotics,

developed by ABB. The ABB system is quite large,

containing around 3 millions lines of code and is not

analysable using traditional analytical methods, such as

RTA. Model 1 is of much smaller scale, but is designed

to include some behavioural mechanisms from the ABB

system which RTA can not take into account:

• tasks with intricate dependencies in temporal be-

haviour due to IPC and shared state variables;

• the use of buffered message queues for IPC, where

triggering messages may be delayed;

• tasks that change scheduling priority or periods dy-

namically, in response to system events.

The modeled fictive system controls a set of electric

motors based on periodic sensor readings and aperiodic

events. The calculations necessary for a real control sys-

tem are, however, not included in the model; the model

only describes behaviour with a significant impact on the

temporal behaviour of the system, such as resource usage

(e.g., CPU time), task interactions and important state

changes. The model contains four periodic tasks with the

parameters shown in Table 1 (a lower valued priority is

more significant).

Table 1. Task parameters for Model 1.
Task Priority Period Depends on
PLAN 5 40000 UI
CTRL 4 or 2 10000 or 20000 PLAN, IO, UI
IO 3 5000 Sensor
DRIVE 1 2000 CRTL, UI

The environmental input stimulus in this problem is a

sequence of integers from zero to two, denoting the number

of external events that are generated by a sensor, measured

in one IO task period. The IO task then sends equally

many messages to the CTRL task. The CTRL task may

change priority and periodicity in response to two specific

events in the model. The PLAN task is responsible for

planning the movement of the physical object connected

to the motors. The CTRL task calculates control signals

for the motors with respect to coordinates sent from the

PLAN task and IO events provided by the IO task. The

DRIVE task actuates the motors based on the CTRL task

output, which impact the execution time of the CTRL task.

The model also describes a user interface (UI) which

generate sporadic events which impacts the system be-

haviour. There are three types of user interface events:

START, STOP and GETSTATUS. The START and STOP

events makes the system change between two system

modes, IDLE and WORKING, with different temporal

behaviours. The GETSTATUS event makes PLAN, CTRL

and DRIVE send a status message to the user interface,

which increases the execution time of those task instances.

The task in focus of analysis is the CTRL task.

4.2. Model 2

This model describes a fictive system based on a test

application from Arcticus systems, developers of the Rubus

RTOS [23] which is used in heavy vehicles. This model

uses a pipe-and-filter architecture, and contains 3 periodic

transactions and one interrupt-driven task, in total 11 tasks.

The inter-arrival time of the interrupt is 5000 simulation

time units, with the offset and maximum jitter 500 and 100

simulation time units respectively. Tasks may trigger other

tasks using trigger ports. The parameters of tasks and their

execution times are given in Table 2.

This model is less complex than the two earlier models

in that there exist no shared variables or IPC via message

passing which can impact the tasks’ timing and functional

behaviour. Instead, the tasks have large variations in execu-

tion times, which makes the state space of this model very

large. For this model, the evaluation focuses on the end-

to-end response time of the transaction with a periodicity

Table 2. Task parameters for Model 2.
Task Period Off. Jitter Prio. Execution
swcIT_1 5000 500 100 0 [100, 200]
swcIT_2 5000 500 100 0 [100, 200]
swcA_1 5000 0 0 1 [400, 500]
swcA_2 10000 0 0 1 [400, 500]
swcA_3 30000 0 0 1 [400, 500]
swcB_2 10000 0 0 1 [400, 500]
swcB_3 30000 0 0 1 [400, 500]
swcA_et2 10000 0 0 2 [500, 600]
swcA_et3 30000 0 0 2 [500, 600]
swcB_et2 10000 0 0 2 [500, 600]
swcC_et1 30000 0 0 2 [500, 600]

of 30 000 simulation time units, which also contains the

tasks with the lowest priority.

4.3. Validation

Simulation-based methods for response-time analysis

have in common that the result is not guaranteed to be

a safe upper bound on the response time. We therefore

constructed a validation model, analysable using RTA,

with the purpose to investigate how close the response

times given by HCRR are to the worst-case response

times derived using RTA. Hence, RTA should provide an

upper bound on the worst-case response time, which the

simulation-based results should approach but not exceed.

The validation model is based on Model 1, but with the

following simplifications:

• Selected shared state variables are removed.

• Dynamic changes of priority and period are removed,

only static attributes are used.

• Iteration loop bounds are added manually.

As a consequence, the validation model has consider-

ably lower complexity, and exhibit quite different timing

properties when compared to Model 1. For instance, the

worst-case response time of the CTRL task (which as in

Model 1 is the task under analysis) is only 52 % of the

highest response times found for this task in Model 1.

Due to our extensive knowledge of this specific model,

we could deduce that in order to improve the accuracy

of the RTA (without being optimistic), the DRIVE task

should be modeled as two separate tasks. These two

tasks represent two different WCETs of the DRIVE task,

depending on a rare sporadic event, where the minimum

inter-arrival time is known. However, it is important to

realize that such model refinements are hard to apply

in practice, for real industrial systems, as the temporal

behavior of such systems are rarely documented in detail.

This refinement of the model had a major impact with

respect to RTA, yielding a worst-case response time of

4432 (refined model) instead of 5982 (without refinement).

5. Experimental Evaluation

This section presents an evaluation of accuracy, con-

vergence and scaling properties of HCRR, using in total

7 different versions of the models described in Section 4.

The experiments were done by running HCRR, a reimple-

mentation of MABERA (MAB) and Monte Carlo (MC)

simulation, on the three models previously described. Ta-

ble 3 highlights the types of input parameters for the three

models, i.e., the decision variables controlled by HCRR,

MABERA or the Monte Carlo method.

Table 3. Simulator input parameters for the
considered models.

Model Input
Stimulus

Arrival
Jitter

Execution
Time

Model 1 Variable Variable Constant
Model 2 N/A 0 Variable
Validation Model Variable Variable Constant

The goal of the analysis is to find extreme response

times for a specific task in the model. The results are,

with the exception of Figure 3, obtained from running

100 samples of each algorithm and test case, each sample

being allowed to run 10 000 simulations, in order to get a

good comparison for a fixed time length. The simulation

budget was considered reasonable due to the convergence

of HCRR on our most realistic model (Model 1). The

experiments were performed on an Intel Core 2 Duo, 2.33

GHz with 2 GB of RAM.

For MABERA, the population was obtained by scaling

the population size of 10 000 used in [6] to reflect the

change in number of simulations per sample. The ratio

is 81 400 in [6] to 10 000 in this paper. As a result,

we use a population size of 1 250, which is 1/8 of the

original population size. The same fraction of parents as

for the original method is used, which translates to a

selection of 12 parents in each generation. For each of

these, 104 mutations are generated. In order to ensure that

MABERA used exactly 10 000 simulations in total, the

original termination threshold was disabled.

For the parameters in HCRR, the jump-back threshold

(nB) should be relatively small to spread the search over

the set of equal candidate solutions found so far. However,

the random restart threshold (nR) should be larger in order

not to erase any progress made so far, but small enough to

force restart from a local minimum as soon as possible. The

fraction k of input values changed in each iteration should

provide a good balance between power (larger fractions)

and low dimensionality (smaller fractions).

To select the parameters for HCRR, we performed

a small number of sequential experiments on Model 1,

varying one parameter at a time. For each parameter set,

we measured the convergence as the average best result in

any iteration (i.e., simulation) for 20 sample runs, or more

formally:

C =

∑20
i=1

∑S

j=1 Rj
i

20 · S

where S is the number of simulations and Rj
i denotes the

response time found after j simulations in sample run i.
The number of simulations was 500 for nB and k and

3000 for nR. The parameters giving quickest convergence

(nB = 2, nR = 300, and k = 0.02) were then used for

all experiments. The results of the experiments are shown

in Table 4.

Table 4. Parameter selection.
nB = nR =∞ k = 0.02,nR =∞ k = 0.02,nB = 2

k C nB C nR C

0.01 7796.76 100 7931.37 1000 8308.11
0.02 8010.90 50 7902.86 300 8312.05
0.03 7988.83 20 7939.70 100 8304.17
0.04 7976.14 10 7972.72 50 8254.26
0.05 7961.80 7 7992.25
0.07 7944.69 5 7944.27
0.10 7761.59 4 8001.89
0.15 7645.62 3 7919.24
0.20 7604.48 2 8024.98
0.30 7483.33 1 7944.27

To show the effects of scaling on the three algorithms,

Model 1 is used to create larger systems by instantiating

several independent instances of it, thereby creating inde-

pendent “subsystems” where each subsystem is a complete

model as described in Section 4, including tasks, input

events, state variables and message queues. The subsys-

tems are completely independent, except that they share

the same CPU. The model setup can be described using

the following parameters:

SUBSYSTEMS: The number of subsystems to use, varied

between 1 and 4.

CPU_SPEED: The scale factor for all execution times.

Let C be the original execution time for a

single EXECUTE statement in the model,

then C/CPU_SPEED is the resulting

execution time in the multiply instanti-

ated model.

OFFSET: The relative offsets between subsystems,

allowing for different "phasings" be-

tween subsystems. Throughout the ex-

periments, a phasing of 20000 time units

has been used.

To avoid priority clashes, new priorities are assigned

using the formula Pn = 10P o + I , where Pn is the new

priority, P o is the old priority, and I is the subsystem

index. For CPU_SPEED we use factors of 1.0, 1.5, 1.8

and 2.2 when having 1, 2, 3 and 4 subsystem instances

respectively.

5.1. Timing Results

The obtained lower bounds on worst-case response time

are illustrated by the following labels:

MC: The traditional Monte Carlo approach to generate

simulation instances using random input data.

MAB: The MABERA approach, using a population size

of 1 250 of which 12 parents are selected for

reproduction, unless stated otherwise. The algo-

rithm is modified to run for a limited number of

simulations.

HCRR: The new algorithm based on random restart hill

climbing. The algorithm is given in Figure 1.

 0.2
 0.4

M
C

 0.2
 0.4

R
el

at
iv

e
fr

eq
u
en

cy

M
A

B

 0.4

 0.8

 7200 7400 7600 7800 8000 8200 8400 8600

H
C

R
R

Response time

 7400
 7600
 7800
 8000
 8200
 8400
 8600

 0 2000 4000 6000 8000 10000M
ea

n
 r

es
p
o
n
se

 t
im

e

Simulations

MC MAB HCRR

Figure 3. Final RT distributions and conver

gence (mean RT and 95% confidence inter
vals) for model 1.

Figure 3 shows the results obtained for Model 1

from Section 4.1. The top of the figure contains the

response time distributions of the three algorithms, where

the MABERA results are taken from [6]. Results were

obtained using 200 sample runs for MABERA, 200 runs

for MC, and 100 runs for HCRR. For MABERA and

MC, each sample required on average 81 400 simulations.

Each HCRR sample was allowed 10 000 simulations. The

bottom of Figure 3 shows convergence (mean RT and

95 % confidence intervals), using the standard parameters

of 10 000 simulations, for the three algorithms with 100

samples for each algorithm.

The upper part of Figure 3 shows that HCRR managed

to find the highest known response time, 8474, in all

100 sample runs. The highest response time found by

MABERA was 8349, and this value was only found one

single time. The MC approach managed to find a maximum

response time of 8390, which is also found once. Note

that HCRR was only allowed approximately 12 % of

the number of simulations used by MC and MABERA.

If we compare the number of simulations done when

the highest known response time was found, HCRR was

approximately 1 628 times faster than MABERA and MC.

The runtimes for one sample of all algorithms were less

than 3 minutes.

 0.1
 0.2

M
C

 0.1
 0.2

R
el

at
iv

e
F

re
q
u
en

cy

M
A

B

 0.1

 0.2

 5800 5900 6000 6100 6200 6300 6400

H
C

R
R

Response time

 5900
 6000
 6100
 6200
 6300
 6400

 0 2000 4000 6000 8000 10000M
ea

n
 r

es
p
o
n
se

 t
im

e

Simulations

MC MAB HCRR

Figure 4. Final RT distributions and conver
gence (mean RT and 95% confidence inter
vals) for model 2.

Figure 4 shows the obtained results for Model 2 (Sec-

tion 4.2) using the standard parameters. In this model, the

tasks have large variations in execution times, which makes

the state space very large. We can see that HCRR yields a

result approximately 5 % higher than what is obtained from

the two other methods. Interestingly, it looks like HCRR

was still slowly progressing towards higher response times

at 10 000 simulations, while both MABERA and MC

seems to have converged quite early to a much lower result.

For Model 2, all algorithms finished in less than one minute

per sample.

In Figure 5, we can see the results for the validation

model described in Section 4.3, again using the standard

parameters. In addition, we show the RTA results. Here,

HCRR could find a response time of 4432 in every sample

run, which was also confirmed by RTA to be the worst-

case response time. As before, the difference between

MABERA and MC appears to be quite small. MABERA

found the worst case in a few samples, while MC did

not, but it is questionable if the difference is statistically

significant. For the validation model, MC took less than

50 seconds, MABERA less than 130 seconds, and HCRR

less than 90 seconds for one sample run.

 0.2
 0.4

M
C

 0.2
 0.4

R
el

at
iv

e
F

re
q
u
en

cy

M
A

B

 0.3
 0.6
 0.9

 4000 4100 4200 4300 4400 4500

H
C

R
R

Response time
RTA

 4000
 4100
 4200
 4300
 4400
 4500

 0 2000 4000 6000 8000 10000M
ea

n
 r

es
p
o
n
se

 t
im

e

Simulations

MC MAB HCRR RTA

Figure 5. Final RT distributions and conver

gence (mean RT and 95% confidence inter
vals) for the validation model.

Figure 6 shows how the different methods scale to larger

systems, by illustrating the convergence for Model 1 when

increasing the model size to 2, 3 and 4 subsystems (model

instances). As expected, since the state space increases

with number of subsystems, all three algorithms converge

slower when system size is increased. For two subsystems,

HCRR is consistently better than both MC and MABERA,

with all results reported being higher than the maximum

result found for both MC and MABERA. The results for

3 and 4 subsystems indicate that the difference between

the methods decrease as system size is increased, although

HCRR produced on average 4.7 to 11 % higher results

than both MC and MABERA. For 4 subsystems, neither

of the methods appear to have converged. However, during

the 10 000 simulations, HCRR progressed more quickly

to higher response times than both MC and MABERA.

Runtimes for a single sample when having 2 subsystems

were below 4, 7 and 5 minutes for MC, MABERA and

HCRR. Sample runtimes were below 5, 10 and 6 minutes

for 3 subsystems and below 8, 16 and 10 minutes for 4

subsystems.

Table 5. Average end result and point when

HCRR passes the second best end result.
MC MABERA HCRR Passes 2

nd best
M1-1 7682 8065 8474 224
M1-2 9693 9750 10844 238
M1-3 13555 13789 14672 521
M1-4 15235 15298 16013 764
M2 6031 6002 6299 634
MV 4286 4288 4432 89

 9600
 9800

 10000
 10200
 10400
 10600
 10800
 11000

 0 2000 4000 6000 8000 10000

M
ea

n
 r

es
p
o
n
se

 t
im

e

Simulations, 2 subsystems

 13250

 13500

 13750

 14000

 14250

 14500

 14750

 0 2000 4000 6000 8000 10000

M
ea

n
 r

es
p
o
n
se

 t
im

e

Simulations, 3 subsystems

 15000
 15200
 15400
 15600
 15800
 16000
 16200

 0 2000 4000 6000 8000 10000M
ea

n
 r

es
p
o
n
se

 t
im

e

Simulations, 4 subsystems

MC MAB HCRR

Figure 6. Convergence (mean RT and 95%

confidence intervals) for model 1 using 24
subsystems.

The average end results are summarized in Table 5. The

last column also shows the average number of simulations

needed for HCRR to obtain the end result of the second

best method (using 10 000 simulations). As we can see,

HCRR reached the second-best result 13 to 112 times

faster than the second-best method did. For all tried

models, HCRR on average outperformed the other methods

in less than 800 simulations, which corresponds to less than

1.5 minutes of computation time on the PC used for the

experiments.

5.2. Average Convergence

To measure average convergence more exactly, we use

the relative difference in average response-time results over

a time span of d simulations. We say that a method has

for practical purposes converged (on average) when

1−R
(k−d)

/R
(k)

≤ ε (2)

where R
(k)

is the average response-time result at simula-

tion k for a set of samples. Using this definition, conver-

gence will never be detected before at least d simulations

has been performed. In order to measure convergence for

the evaluation presented in this paper, d obviously needs to

be less than the number of simulations (10 000) performed

in each sample. We therefore use d = 1000 for the

convergence comparison. For the tolerance parameter, we

chose a value of ε = 0.001. In other words, if the average

progress in 1 000 simulations is lower than 0.1%, we

declare that the method has converged on average. It should

be pointed out that different parameters will give radically

different results on convergence, and true convergence is

reached and detected only when ε = 0 and d is sufficiently

large.

Table 6. Convergence on iteration k to re

sponse time R
(k)

for the different methods.
MC MABERA HCRR

k R
(k)

k R
(k)

k R
(k)

M1-1 7632 7670 7356 8062 4090 8466
M1-2 4806 9660 6518 9728 7093 10830
M1-3 3527 13502 7801 13773 5568 14578
M1-4 3410 15175 5104 15271 6948 15881
M2 3656 5997 3552 5991 9556 6295
MV – – – – 1661 4432

Table 6 summarizes the convergence results, obtained

from Equation. (2) with the parameters above, for Model 1

with 1-4 subsystems (M1-1 to M1-4), Model 2 (M2), and

the validation model (MV). In general, we can see that

HCRR converged to significantly higher response times

than MABERA and MC. For the validation model, the

only method to converge within 10,000 simulations was

HCRR. Overall, the results are mostly consistent with what

can be seen in Figure 3, 4 and 5, but also classified the

slow average progress for HCRR on M2 in Figure 4 as

convergence. Running the algorithm longer would either

yield slightly higher results or confirm convergence.

For M1-4, convergence of HCRR is also detected in

iteration 6948 after a slow progress between simulation

6000 and 8000, but as we can see in Figure 6, more average

progress is made after simulation 8000. Sampling more

than 100 runs for M1-4 would most likely even out the

slope after simulation 6000. In any case, HCRR has clearly

not converged after 10 000 simulations, and running the

algorithm longer would likely yield even higher results.

6. Conclusions

Simulation-based analysis of complex real-time systems

has the potential to provide engineers with timing prop-

erties of real-time systems not conforming to classical

real-time analysis models such as Response-Time Anal-

ysis (RTA). In this paper, a new best-effort approach for

simulation-based timing analysis has been presented, and

the new algorithm, based on Hill Climbing with Random

Restarts (HCRR), is shown in our evaluation to find more

accurate worst-case response time faster than alternative

methods such as MABERA and Monte Carlo simulation.

In evaluating HCRR, three models of industrial real-

time systems have been simulated, and the results show

that HCRR was 4-11% more accurate than the second-

best method, and between 13 to 112 times quicker in

reaching the end result of the second-best method. In one

case, HCRR was 1 628 times quicker in finding its more

accurate result than the second-best method. An analysis

of convergence indicate that for two cases out of six, even

higher respones times could be achieved by letting HCRR

run longer.

Industrial deployment of HCRR requires an efficient

method for extracting simulation models from complex

software systems. A tool for that purpose, MXTC, is

currently in development. This uses mainly static analysis,

but also measurements in order to obtain execution-time

data for the model. The simulation model analyzed by

HCRR could however use data from WCET analysis tools

as well, for supported hardware platforms. The execution-

time measurements requires context-switch recording with

accurate timestamps. This is possible in most real-time

operating systems.

Acknowledgement

This work was supported by the Swedish Foundation

for Strategic Research via the strategic research centre

PROGRESS. We are grateful to Jan Carlsson, Mikael

Sjödin, and Björn Lisper for comments and improvement

suggestions.

References

[1] M. Joseph and P. Pandya, “Finding Response Times in a
Real-Time System,” The Computer Journal (British Com-
puter Society), vol. 29, no. 5, pp. 390–395, Oct. 1986.

[2] C. Liu and J. Layland, “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment,” Journal
of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[3] J. Kraft, “RTSSim – A Simulation Framework for Complex
Embedded Systems,” Mälardalen U., Tech. Report., Mar.
2009.

[4] “Website of Rapita systems,” 2008. [Online]. Available:
www.rapitasystems.com

[5] D. Decotigny and I. Puaut, “ARTISST: An Extensible
and Modular Simulation Tool for Real-Time Systems,” in
Proc. of the IEEE Int. Symp. on Object-Oriented Real-Time
Distributed Computing (ISORC ’02), 2002.

[6] J. Kraft, Y. Lu, C. Norström, and A. Wall, “A Metaheuristic
Approach for Best Effort Timing Analysis targeting Com-
plex Legacy Real-Time Systems,” in Proc. of the IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS 08), Apr. 2008.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. Prentice Hall, 2003.

[8] G. Behrmann, A. David, J. Håkansson, M. Hendriks, K. G.
Larsen, P. Pettersson, and W. Yi, “UPPAAL 4.0,” in In
Proc. of the Int. Conf. on Quantitative Evaluation of Systems
(QEST’06), 2006.

[9] “UPPAAL Website,” 2008. [Online]. Available:
www.uppaal.com

[10] J. Alander, T. Mantere, G. Moghadampour, and J. Matila,
“Searching Protection Relay Response Time Extremes Us-
ing Genetic Algorithm — Software Quality by Optimiza-
tion,” in In Proc. of the Int. Conf. on Advances in Power
System Control, Operation and Management (APSCOM-
97), vol. 1, 1997, pp. 95–99.

[11] R. Nossal and T. M. Galla, “Solving NP-Complete Problems
in Real-Time System Design by Multichromosome Genetic
Algorithms,” in Proc. of the SIGPLAN 1997 Workshop on
Languages, Compilers, and Tools for Real-Time Sys., 1997,
pp. 68–76.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley Professional,
Jan. 1989.

[13] F. Mueller and J. Wegener, “A Comparison of Static Analy-
sis and Evolutionary Testing for the Verification of Timing
Constraints,” in Real-Time Systems, vol. 21. Kluwer, 2001,
pp. 268–241.

[14] S. Samii, S. Rafiliu, P. Eles, and Z. Peng, “A Simulation
Methodology for Worst-Case Response Time Estimation
of Distributed Real-Time Systems,” in Proc. of Design,
Automation and Test in Europe (DATE’08), vol. 10-14.
IEEE, Mar. 2008, pp. 556–561.

[15] R. Racu and R. Ernst, “Scheduling Anomaly Detection
and Optimisation for Distributed Systems with Preemptive
Task-Sets,” in Proc. of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’06). IEEE,
Apr. 2006, pp. 325–334.

[16] K. Kim, J. L. Diaz, L. L. Bello, J. M. Lopez, C.-G. Lee, and
S. L. Min, “An Exact Stochastic Analysis of Priority-Driven
Periodic Real-Time Systems and Its Approximations,” IEEE
Transactions on Computers, vol. 54, no. 11, pp. 1460–1466,
2005.

[17] J. Andersson, J. Huselius, C. Norström, and A. Wall,
“Extracting Simulation Models from Complex Embedded
Real-Time Systems,” in Proc. of the Int. Conf. on Software
Engineering Advances, ICSEA’06. IEEE, Oct. 2006.

[18] M. Weiser, “Program Slicing,” in Proc. of the Int. Conf. on
Software Engineering (ICSE’81). IEEE Press, 1981, pp.
439–449.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström, “The Worst-Case Execution-Time
Problem—Overview of Methods and Survey of Tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp. 1–
53, 2008.

[20] F. Glover and M. Laguna, “Tabu Search,” in Modern
Heuristic Techniques for Combinatorial Optimization, C. R.
Reeves, Ed. McGraw-Hill, 1995, ch. 3, pp. 70–150.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimiza-
tion by Simulated Annealing,” Science, vol. 220, pp. 671–
680, 1983.

[22] “Website of ABB Group.” [Online]. Available:
www.abb.com

[23] “Website of Arcticus Systems.” [Online]. Available:
www.arcticus-systems.se

[24] N. Audsley, A. Burns, R. Davis, K. Tindell, and
A. Wellings, “Fixed Priority Pre-emptive Scheduling: an
Historical Perspective,” Real-Time Systems, vol. 8, no. 2/3,
pp. 129–154, 1995.

