2009 35th Euromicro Conference on Software Engineering and Advanced Applications

Using JavaBeans to Realize a Domain-Specific Component Model

Juraj Feljan, Jan Carlson
Miilardalen Real-Time Research Centre
Modlardalen University, Sweden
{juraj feljan, jan.carlson} @mdh.se

Abstract—SaveCCM is a domain-specific component
model developed specifically for safety-critical hard real-
time embedded systems in the vehicular domain. This paper
expands the scope of SaveCCM to make it usable also
outside this narrow domain, as the general concepts behind
SaveCCM are applicable for a wider range of embedded
systems. We describe the extensions made to SaveCCM in
order to adjust it to a broader scope, focusing on a new re-
alization mechanism. In its original form, SaveCCM systems
are realized by components being grouped and transformed
into real-time tasks. We propose an alternative realization
of SaveCCM — by transformation to JavaBeans, which
makes the executable system more general and portable, and
maintains the structure of the component-based design.

Keywords-component-based software engineering; embed-
ded systems; SaveCCM; JavaBeans

I. INTRODUCTION

SaveCCM [1] is a component model developed at
Malardalen University, intended to provide support for
designing, analyzing and implementing safety-critical hard
real-time embedded systems in the vehicular domain. In
the design phase, SaveCCM systems are built by con-
necting components, according to the component-based
software engineering (CBSE) approach. In the realization
phase these systems are realized by transforming compo-
nents to real-time tasks, to meet the requirements in the
targeted domain.

In this paper we describe how SaveCCM can be ex-
tended for a wider domain, for instance embedded sys-
tems with soft real-time requirements. With this broader
scope in mind, we investigate an alternative realization of
SaveCCM, more fitting the intended new domain than the
original realization.

Component model is a paramount concept in CBSE,
as it provides a means for component specification and
component interoperability. Currently among the most
widely adopted component models are general-purpose
component models, such as JavaBeans [2] and .NET [3].
In the embedded systems domain, CBSE is utilized to
a lesser degree. Most embedded systems have features
(e.g. limited memory and processing power) which are
not considered by general-purpose component models,
thus emphasizing the necessity to develop domain-specific
component models, such as Koala [4], PECOS [5] or
SaveCCM [1].

Our work is related to that of Akerholm et al. [6] and
later Dannmann [7], where a realization of SaveCCM is
defined by grouping components and transforming them

978-0-7695-3784-9/09 $26.00 © 2009 IEEE
DOI 10.1109/SEAA.2009.22

Mario Zagar
Faculty of Electrical Engineering and Computing
University of Zagreb, Croatia
mario.zagar @fer.hr

into tasks of a real-time operating system. Their run-time
architecture emphasizes resource efficiency, at the cost of
not retaining the component structure in the final system.
Contrasting that approach, our realization is component-
based, and is applicable for Java compliant platforms.

The paper is organized as follows: In Section II we
present key aspects of SaveCCM, and Section III presents
how the scope of SaveCCM was extended. The new
realization is described in Section IV and exemplified in
Section V. Section VI concludes the paper.

II. SAVECCM PRELIMINARIES

The main architectural elements of SaveCCM are com-
ponents, switches and assemblies. The interface of an
architectural element is defined by a set of input- and
output ports, and systems are built from architectural
elements by connecting ports.

SaveCCM is based on the control flow (pipe-and-filter)
paradigm, but data transfer and control flow are separated.
The former is captured by typed data ports that act as one-
place buffers with overwrite semantics, and the latter by
trigger ports. There are also combined ports that have both
triggering- and data functionality.

An example of the SaveCCM notation is given in
Figure 1. Trigger ports are denoted by triangles, and data
ports by small rectangles. Circles and semicircles mark
input- and output ports, respectively.

Components represent basic units of encapsulated be-
havior. For basic components the functionality is typically
defined by an entry function written in C. There are
also composite components, for which the functionality
is defined by an internal composition of subcomponents
(and possibly delays and switches, described below).

A component is initially idle and remains in that state
until all its trigger input ports are activated. At that point it
is triggered and changes to the active state. This initiates
the read phase, in which the data input port values are
stored internally to ensure consistent computation. Next,
computations are performed in the execute phase, followed
by the write phase, in which data are written to the
data output ports. Finally, the output trigger ports are
activated, and the component returns to the idle state. This
strict “read-execute-write” semantics ensures that once
a component is triggered, the execution is functionally
independent of any concurrent activity.

There are two additional types of components — clock
and delay — which are in charge of manipulating trigger

_IEEE
474 @computgr "

society

<<Clock>>
Cc

button

<<Component>>
Pressed

<<Switch>>
s

_{ c ¢ LED
<<Component>>,
<<Assembly>> @, } Blink l
A

Figure 1. Example of a SaveCCM system

signals. A clock is a trigger generator, while a delay
detains a trigger signal for a certain amount of time.

Switches enable dynamic modification of the connec-
tions between components by providing means for condi-
tional transfer of data and/or triggering. A switch consists
of a number of conditional connections, each representing
a mapping between an input- and an output port of the
switch (either data or trigger), guarded by a logical expres-
sion. If this expression evaluates to true, the connection
holds, otherwise it is broken. Data input ports of a switch
which are part of an expression are called setports.

Assemblies are encapsulated subsystems. As an assem-
bly can break the “read-execute-write” semantics, it should
only be viewed as a mechanism for naming a collection of
components and hiding the internal structure, rather than
a mechanism for component composition.

III. BROADENING THE SCOPE OF SAVECCM

SaveCCM is mainly intended for safety-critical hard
real-time embedded systems, which has impact on a
number of its characteristics. For instance, the communica-
tion between components follows the pipe-and-filter style,
and a component can not freely access its ports at any
time during its execution. However, although developed
with this very specific domain in mind, SaveCCM has
potential to be useful in a somewhat broader scope, e.g.
in embedded systems with soft real-time requirements and
more moderate resource constraints.

Separating domain specific aspects of SaveCCM from
those that are domain independent, the domain specific
aspects are found in: (i) the implementation of basic com-
ponents, (ii) the realization, and (iii) particular analysis
techniques.

The implementation of basic components: The behav-
ior of basic components is currently implemented using C,
which is the expected solution in the original SaveCCM
domain. To cover more application types we propose Java
instead of C. Although C is still the dominant language
for embedded systems, employment of Java in this domain
is increasing thanks to growing processor and memory
resources of embedded devices, and the availability of edi-
tions of Java tailored for resource constrained devices (e.g.
Java Micro Edition [8]). Examples of embedded devices
running these special Java editions include TINI [9] and
Sun SPOT [10].

The realization: SaveCCM makes no explicit as-
sumptions in its specification about the realization. Hav-
ing the safety-critical hard real-time embedded systems
domain in mind, the envisioned approach is realization
by allocating components to tasks [6], [7]. This enables

high run-time efficiency and detailed timing analysis using
standard real-time analysis techniques. For the wider do-
main we propose JavaBeans as the realization technology.
The motivation for this comes from JavaBeans being a
highly platform independent technology compatible with
the proposed component behavior implementation in Java.

Analysis: The original SaveCCM approach relies
heavily on different analysis techniques to determine or
estimate properties of the system beforehand, in order to
ensure predictability. Some of these techniques require
detailed information about the underlying platform to
be accurate, and would thus be categorized as platform
specific. Investigating these methods further, however, is
outside the scope of this paper.

IV. A JAVABEANS REALIZATION OF SAVECCM

As the basis of the new realization, we have devel-
oped an object-oriented representation of the SaveCCM
elements and mechanisms in terms of JavaBeans, named
SaveJava. Based on SaveJava, we are building a tool to au-
tomatically perform the transformation from a SaveCCM
system definition to its JavaBeans realization.

SaveJava consists of two categories of classes: the
generic classes and specific classes. The former make up
the core of SaveJava, as they represent features common to
all SaveCCM systems, and are unmodified across different
realized systems. This category includes the executor class
which is in charge of component scheduling and execution.
Specific classes represent aspects of a particular SaveCCM
system, such as individual components or data ports of
a given type. This category encompasses a system class
responsible for setting up the run-time architecture of a
system realization. Its main method instantiates objects
from the generic classes and specific classes, according
to the structure of the SaveCCM system. Figure 2 shows
a UML diagram of the generic classes (attributes and
methods are omitted for the sake of readability).

The main SaveCCM constructs (basic- and composite
components, clocks, delays, switches) are represented by
Java beans. Thus, the SaveCCM component notion is
maintained in our realization. Each port is realized by an
individual object, and components hold references to their
ports.

Since SaveCCM assemblies, switches and combined
ports are semantically redundant, they are not given direct
SaveJava counterparts in the form of beans or classes.
Instead, they are first replaced by simpler SaveCCM
constructs. Assembly borders are removed by directly
connecting the internals of an assembly with elements
on the outside. Switches are broken down into individual
conditional connections, and a combined port becomes one
data- and one trigger port.

Data ports are realized using Java Generics, allowing a
single class hierarchy to represent data ports of different
types. As an example, a data input port holding a value of
string type would be represented by the StringDatalnPort
specific class which extends the DatalnPort<String>
generic class.

475

TriggerEvent

DataEventListener

1| I 1| |

Executor
=)

1]

1

+|ConditionalDataConnection

1] Comp

DataEventListener

e

+| ConditionalConnection

@
c
| DataEvent %
TriggerPort =
2 2 @
g S
2 g
z =
o TriggerOutPort TriggerinPort
T
2 111 1 1 |1
*_T"'
e ,t|11
—
B — (I 1
teComp |:1 il Delay | | Clock |
1

l TriggerEventListener

¥

[«

ConditionalTriggerConnection |«

Figure 2. The SaveJava generic classes

Each component defined in a SaveCCM system is
realized by a specific class which extends either the Com-
ponent or CompositeComponent abstract generic class.
Clock components and delay components are realized by
the Clock and Delay beans, respectively.

SaveCCM connections are realized using the Java event
model, which is the standard way to achieve communica-
tion between Java beans. Connecting one port to another is
done by registering the destination port as a listener of the
source port. An event type is realized by an event class and
an event listener interface. In SaveJava there are two event
types, one for data port connections and one for trigger
port connections. Data connections use the DataEvent
class and the corresponding DataEventListener interface.
Trigger connections use the TriggerEvent class and the
TriggerEventListener interface.

A conditional connection between two data ports or
two trigger ports is realized by the ConditionalData-
Connection and ConditionalTriggerConnection classes,
respectively. Each conditional connection listens to all its
setports, and when a change is detected the condition is
retested. According to the condition state, the connection
is left unchanged, set or broken.

The proposed component execution mechanism is a
variant of the one used by Lednicki et al. [11]. Every
realized SaveCCM system has one executor, an object
instantiated from the executor class. This object holds a
queue of triggered components and executes them one by
one, in the same order as they got triggered.

A component is registered as a listener of all its trigger
input ports. When one of them is activated, the component
inspects the state of its other input triggers. If they are all
active, the component is triggered, meaning that it saves
the state of data input ports internally (i.e. performs the
read phase) and adds itself to the executor’s queue for
execution. The component then waits for its turn to be
executed. When it comes, the execute phase is performed,

followed by the write phase. The component then returns
to idle state and resets its triggers. Each of these phases
(read, execute, write, reset triggers) is realized by calling
a corresponding method.

The scenario is somewhat different for composite com-
ponents. When a composite component becomes triggered
it does not add itself to the executor’s queue. Rather,
it performs the read phase and then forwards data and
triggering to its subcomponents according to the internal
connections. To discover the end of execution, the com-
posite component keeps track of the number of currently
active subcomponents. When a subcomponent gets trig-
gered or finishes executing, this number is increased or
decreased accordingly. When it reaches zero, the compos-
ite component has finished executing, and the write phase
is performed.

V. REALIZATION EXAMPLE

In this section we present the realization of a simple
SaveCCM system with a button as its input, and a LED
for output. When the button is pressed, the LED blinks.
Otherwise, the LED keeps its previous state.

A SaveCCM definition of the system is given in Fig-
ure 1. The system consists of a clock and an assembly
encompassing two basic components and a switch. All
data ports in the system are of boolean type. The data
ports of the assembly represent the state of the button and
the state of the LED. The Pressed component is used to
make the button signal more robust — the button has to
remain pressed/released for a number of consecutive clock
cycles to be interpreted as pressed/released. According
to the interpreted button state received at its setport,
the switch establishes or breaks the trigger connection
between Pressed and Blink. If this connection is estab-
lished, Blink outputs true for a number of clock cycles,
then false for as many cycles, which makes the LED blink.
If the connection is broken, the previous value is preserved

476

public class SystemExample {
public static void main(String[] args) {

Executor executor = new Executor();

// components
Clock ¢ = new Clock (100, 0,
new TriggerOutPort(”cTrig”));
Component pressed = mew Pressed(executor, null);
Component blink = new Blink(executor, null);

// conditional connections
ConditionalConnection condConn =
new ConditionalTriggerConnection (
blink . getTriggerInPort(”blinkTrigln”),
pressed. getTriggerOutPort(”pressedTrigOut”) ,
new BooleanSetPort(”setPort”, true));

// connections
c.getTriggerOutPort("cTrig”).
addTriggerEventListener (
pressed . getTriggerInPort(”pressedTrigln”));
pressed . getDataOutPort(”pressedDataOut”).
addDataEventListener (
condConn. getSetPort(”setPort”));

// input/output init and connection (omitted)

// start the system
executor.start () ;
c.start();

}
}

Figure 3. The system class

at the output port of the assembly, making the LED retain
its current state.

The system realization consists of, in addition to the
generic classes, six specific classes: a system class,
two classes for the basic components (Pressed, Blink),
two classes for the data ports (BooleanDatalnPort,
BooleanDataOutPort) and a class for the setport
(BooleanSetPort). In the system class, shown in Fig-
ure 3, objects are instantiated and connected, following
the structure of the input system. Port objects are created
in the constructor method of the element they belong to.
It is notable that the assembly borders are removed, by
connecting the trigger output port of the clock directly
with the trigger input port of pressed. After creating
and connecting the system’s objects, the external devices
are initialized and connected to the system (this code is
omitted from Figure 3). Finally, the threads of the executor
and the clock are started.

VI. CONCLUSIONS

The original aim of SaveCCM is to bring CBSE bene-
fits, such as reusability and alleviated maintenance, to the
development of vehicular control systems with resource
constraints and hard real-time demands. In this work, we
have extended aspects of SaveCCM to make it suitable for
a broader domain of embedded systems with soft real-time
demands and less severe resource constraints. In particular,
we have defined a new realization of SaveCCM, based on
JavaBeans instead of real-time tasks.

Having in mind the addressed issues, a systematic
evolution of SaveCCM has been achieved. Any platform

independent analysis that can be performed on SaveCCM
is valid also for our realization. As an additional benefit,
with our realization the component structure from design-
time is retained also in the final realized system.

Future work includes improving the executor mecha-
nism to allow more flexible scheduling than the current
non-interleaving first-in-first-out ordering, for instance by
identifying beans that can be executed in parallel. We also
want to investigate if a similar approach can provide a
JavaBeans realization for ProCom [12], a successor of
SaveCCM that is currently being developed.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation
for Strategic Research via the strategic research centre
PROGRESS, and the Unity Through Knowledge Fund via
the DICES project.

REFERENCES

[1] M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Hakansson, A. Moller, P. Pettersson, and M. Tivoli,
“The SAVE approach to component-based development
of vehicular systems,” Journal of Systems and Software,
vol. 80, no. 5, May 2007.

[2] Sun Microsystems, “JavaBeans technology,” http://java.sun.
com/javase/technologies/desktop/javabeans/.

[3] Microsoft, “.NET Framework,” http://www.microsoft.com/
Net/.

[4] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee, “The Koala component model for consumer
electronics software,” Computer, vol. 33, no. 3, 2000.

[5] M. Winter, C. Zeidler, and C. Stich, “The PECOS soft-
ware process,” in Workshop on Component-based Software
Development Processes, 2002.

[6] M. Akerholm, A. Méller, H. Hansson, and M. Nolin, “To-
wards a dependable component technology for embedded
system applications,” in 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems. 1EEE,
January 2005.

[7] K. Dannmann, “Synthesizing real-time components to run-
time tasks,” Master’s thesis, University of Oldenburg, 2009.

[8] Sun Microsystems, “Java Micro Edition,” http://java.sun.
com/javame/index.jsp.

[9] Maxim, “TINL”
microcontrollers/tini/.

http://www.maxim-ic.com/products/

[10] Sun Microsystems, “Sun SPOT,” http://www.sunspotworld.
com/.

[11] L. Lednicki, J. Carlson, and M. Zagar, “Uniform treatment
of hardware- and software components,” in Eight Confer-
ence on Software Engineering Research and Practice in
Sweden, November 2008.

[12] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and
I. Crnkovi¢, “A component model for control-intensive dis-
tributed embedded systems,” in 11th International Sympo-
sium on Component Based Software Engineering. Springer
Berlin, October 2008.

477

