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Abstract.
Static timing analyzers, which are used to analyze real-time systems, need to

know the minimum and maximum number of iterations associated with each loop
in a real-time program so accurate timing predictions can be obtained. This paper
describes three complementary methods to support timing analysis by bounding
the number of loop iterations. First, an algorithm is presented that determines the
minimum and maximum number of iterations of loops with multiple exits. Even
when the number of iterations cannot be exactly determined, it is desirable to know
the lower and upper iteration bounds. Second, when the number of iterations is de-
pendent on unknown values of variables, the user is asked to provide bounds for these
variables. These bounds are used to determine the minimum and maximum number
of iterations. Specifying the values of variables is less error prone than specifying the
number of loop iterations directly. Finally, a method is given to tightly predict the
execution time of inner loops whose number of iterations is dependent on counter
variables of outer level loops. This is accomplished by formulating the total number
of iterations of a loop in terms of summations and solving the resulting equation.
These three methods have been successfully integrated in an existing timing analyzer
that predicts the performance for optimized code on a machine that exploits caching
and pipelining. The result is tighter timing analysis predictions and less work for
the user.

Keywords: Hard Real-Time Systems, Worst-Case Execution Time, Static Analysis

1. Introduction

To be able to predict the Best-Case Execution Times (BCETs) and
Worst-Case Execution Times (WCETs) of a program, one must know

y Part of this work has be previously published in the Proceedings of IEEE Real-
Time Technology and Applications Symposium, June 1998, under the title \Bounding
Loop Iterations for Timing Analysis".
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2 Healy, Sj�odin, Rustagi, Whalley and van Engelen

the number of iterations that can be performed by the loops in the
program. Under certain conditions, such as a loop with a single exit,
many compilers statically determine the exact number of loop iterations
(Benitez and Davidson, 1988). Applications for determining this num-
ber include loop unrolling (Hennessy and Patterson, 1996), software
pipelining (Lam, 1988), and exploiting parallelism across loop iterations
(Stone, 1990). When the number of iterations cannot be exactly deter-
mined, it is desirable in a real-time system to know lower and upper
bounds on the number of iterations. These bounds can be used by a
timing analysis tool to more accurately predict BCETs and WCETs.

Many existing timing analyzers require that a user specify the num-
ber of iterations of each loop in the program. This speci�cation may be
requested interactively (Park and Shaw, 1991; Li et al., 1995). Thus,
each time the timing analyzer is invoked for a program, the bounds
for every loop in the program must be speci�ed, which is error prone
and tedious for the user. Alternatively, one could specify this infor-
mation as assertions in the source code to prevent repeated speci�ca-
tions of the same information (Burns et al., 1996; Puschner and Koza,
1989; Kligerman and Stoyenko, 1986).

However, there are still several disadvantages. First, the user is still
required to write the assertions. Second, there is no guarantee that
the user will specify the correct minimum and maximum number of
iterations. This problem may easily occur when a user changes the
loop, but forgets to update the corresponding assertion. Also, code
generation strategies, such as whether to place instructions for the loop
exit condition code at the beginning or end of the loop, may cause the
number of loop iterations of the transformed loop to vary by one itera-
tion from the loop in the source code. Finally, compiler optimizations,
such as loop unrolling or software pipelining, may a�ect the number
of times a loop iterates. Inhibiting di�erent code generation strategies
or compiler optimizations to more easily estimate loop bounds would
sacri�ce performance, which is quite undesirable.

It would be more appropriate to have the compiler automatically
and eÆciently determine the bounds for each loop in a program when
possible. This paper describes three methods that support timing anal-
ysis by bounding the number of loop iterations. First, an algorithm
is presented that determines bounds on the number of iterations for
loops with multiple exits. Second, support is provided for loops whose
number of iterations is dependent on loop-invariant variables. Finally, a
method is given to accurately predict the number of iterations for inner
loops, whose number of iterations varies depending upon the values of
counter variables of enclosing outer loops. All three of these methods
are eÆciently implemented and result in less work for a user. The

paper.tex; 23/09/1999; 15:55; p.2



Supporting Timing Analysis by Automatic Bounding of Loop Iterations 3

last method also results in tighter timing analysis predictions. These
methods were implemented by modifying the vpo compiler (Benitez and
Davidson, 1988) to analyze loops and the information about number of
loop iterations is passed to a timing analyzer (Arnold et al., 1994; Healy
et al., 1995; White et al., 1997; Healy and Whalley, 1999a) to predict
performance. Note that these methods applied in vpo could be used in
other compilers or on assembly or machine code �les as well.

2. Related Work

Previous work to bound the number of loop iterations has used ab-
stract interpretation (Ermedahl and Gustafsson, 1997) and symbolic
execution (Lundqvist and Stenstr�om, 1998; Liu and Gomez, 1998) to
automatically derive the number of loop iterations. These approaches
are quite powerful, but e�ectively requires simulating all paths of a
loop for every loop iteration. Thus, they require signi�cant analysis
overhead, which would be undesirable when analyzing long running
programs.

Our work on bounding iterations for nested loops was inspired by
the work of Sakellariou (Sakellariou, 1997; Sakellariou, 1996). He cal-
culated the total number of iterations for loops that are dependent
on counter variables of outer loops in order to obtain better load bal-
ance by assigning approximately the same number of loop iterations
to each processor. The approach used was to formulate summations
representing the number of loop iterations by hand and to interface to
a mathematical package o�-line to solve the equations. In this paper,
we describe a method to automatically calculate the average number of
times that a loop will iterate and how to use this information to obtain
tighter timing predictions.

3. Bounding Iterations for Loops with Multiple Exits

In this section we present a method to determine a bounded number of
iterations for natural loops with multiple exits. The method includes
the following steps. (1) First, the conditional branches within the loop
that can a�ect the number of loop iterations are identi�ed. (2) Next,
we calculate when each of the identi�ed branches can change its result
based on the number of loop iterations performed. (3) Afterwards, the
range of loop iterations when each of these branches can be reached
is determined. (4) Finally, the minimum and maximum number of
iterations for the loop is calculated. These steps are described in the
following subsections.
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3.1. Identifying the Branches That Can Affect the

Number of Loop Iterations

In this subsection some terms are de�ned to facilitate the presentation
of the methods in this paper. A more complete description of these
terms can be found elsewhere (Aho et al., 1986). We de�ne the number
of loop iterations as the number of times the header is executed once
the loop is entered (Arnold et al., 1994). A basic block is a sequence
of instructions with a single entry point at the beginning and a single
exit point at the end. A natural loop is a loop with a single entry point.
The header of a natural loop is the single basic block where the loop is
entered. Transitions from within the loop to the header are called back

edges. Block A dominates block B if every path from the initial node
of the control 
ow graph to B has to �rst go through A. For instance,
the header of a natural loop dominates all blocks in the loop. Similarly,
block B postdominates block A if all control paths from block A to the
exit node of the graph contains block B. A block always dominates and
postdominates itself.

An iteration branch in a loop is a conditional transfer of control,
where the choice between the two outgoing transitions can directly or
indirectly a�ect the number of loop iterations. The iteration branches
in the loop that can directly a�ect this number are branches that have
(1) a transition to a basic block outside the loop or (2) a transition to
the header block of the loop or to a block that is postdominated by the
header. Iteration branches that can indirectly a�ect the number of loop
iterations are those branches whose two successors are postdominated
by di�erent iteration branches. Figure 1 shows an algorithm to calculate
the set of iteration branches I for a loop. The worst-case complexity of
the algorithm is O(B2I2), where B is the number of basic blocks in the
loop and I is the number of iteration branches. However, we believe
that the average complexity would be closer to O(B) since iteration
branches that indirectly a�ect the number of loop iterations are not
common, particularly in numerical applications.

Figure 2(a) contains the code for a toy example C function that
will be used to illustrate the algorithm for calculating loop iteration
bounds for loops with multiple exits. Figure 2(b) depicts the RTLs,
representing SPARC assembly instructions, that the vpo compiler has
generated for this function. Note that the relational operator in the
conditional branches are sometimes reversed from the relational ex-
pressions in the source code. (No delay slots have been �lled in order
to simplify the example.) Figure 2(c) explains the RTL notation used.
The loop consists of basic blocks 2, 3, 5, 6, 7, and 8. The header of
the loop is block 7. The algorithm shown in Figure 1 identi�es block 5
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//Find the iteration branches that can directly a�ect the number of iterations
I = fg
FOR each block B in the loop L DO

IF (B has two successors S1 and S2) THEN
IF (S1 62 L) OR (S2 62 L) OR

(S1 2 PostDom(Header(L))) OR (S2 2 PostDom(Header(L))) THEN
I = I [B

END IF

END IF

END FOR

//Find the iteration branches that can indirectly a�ect the number of iterations
DO

FOR each block in B in the loop L DO

IF (B has two successors S1 and S2) AND (B 62 I) THEN
IF (there exists J;K 2 I AND J 6= K AND

S1 2 PostDom(J) AND S2 2 PostDom(K)) THEN
I = I [ B

END IF

END IF

END FOR

WHILE (any change to I)

Figure 1. Finding the Set of Iterations Branches for a Loop

as containing an iteration branch since it has a transition to block 6,
which is postdominated by the loop header. Blocks 3, 5, and 7 are
identi�ed as having iteration branches since they have a transition to
block 4, which is not in the loop. Block 2 is added to the set of blocks
containing iteration branches since it can indirectly a�ect the number
of iterations by transferring control to either block 3 or block 5, which
both have been identi�ed as containing iteration branches.

Once the blocks containing iteration branches for the loop have
been identi�ed, a precedence is established that represents the order
that these blocks can be executed on any given iteration of the loop.
This precedence relationship can be represented as a Directed Acyclic
Graph (DAG). The nodes in the DAG represent the blocks contain-
ing the iteration branches and two additional nodes, continue and
break. Figure 3 shows the DAG depicting the precedence relationship
between the blocks containing exit conditions from Figure 2. The con-
struction of the DAG can conceptually be accomplished by starting
with the graph representing the loop, replacing all back edges with
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r[10]=0; 1
r[9]=1;
r[11]=HI[_somecond];
PC=L18;

2IC=r[9]?75;L19
PC=IC<=0,L21;

3r[8]=R[r[11]+LO[_somecond]];

L21 5

IC=r[8]?0;
PC=IC==0,L21;

4PC=RT;

IC=r[9]?300;
PC=IC>0,L17;

L17

r[10]=r[10]+1;

L18

6
r[9]=r[9]+3;

IC=r[10]?100; 7
PC=IC>=0,L17;

8PC=L19;

(a) Source Code

   for (i = 0, j = 1; i < 100; i++, j += 3)
      if (j > 75 && somecond || j > 300)
         break;
}

main()
{
   int i, j;
   extern int somecond;

(b) Corresponding RTL Instructions

r[9]
: register allocated to variable ir[10]
: high portion of addressHI[<address>]
: low portion of addressLO[<address>]
: integer memory referenceR[<address>]
: comparisonIC=<item>?<item>;
: conditional branchPC=IC<relop>0,<label>;
: returnPC=RT;
: unconditional jumpPC=<label>;

(c) Explanation of RTL Notation

: register allocated to variable j

Figure 2. Example Loop with Multiple Exits

transitions to continue, replacing each transition out of the loop with
a transition to break, and collapsing all nodes that do not represent
iteration branches. The actual implementation of the DAG construc-
tion started with only nodes representing continue, break, and blocks
containing iteration branches and used domination and postdomination
information to establish the edges between the nodes. This algorithm
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7

2 break

break 5

3

continue break
Figure 3. Precedence Relationship between Iteration Branches from Figure 2

is essentially a sort and requires O(I log I) complexity, where I is the
number of iteration branches in the loop.

3.2. Determining When Each Iteration Branch Changes

Direction

In this subsection a technique is presented that calculates when each
iteration branch can change its result based on the number of loop
iterations performed. This technique is similar to those used by other
compilers that can calculate the number of iterations of a loop with a
single exit (Benitez and Davidson, 1988). For each iteration branch we
derive the information shown in Table I. When all of the requirements
listed in Table I are satis�ed, the iteration branch is classi�ed as known.
Otherwise, the iteration branch is classi�ed as unknown. Note that
detection of unknown iteration branches in a loop does not mean that
the number of iterations of a loop cannot be bounded. Using the derived
values, we apply Equation 1 to straightforwardly calculate on which
iteration, Ni, that a known iteration branch i will change direction.
Table II shows the values derived for the example in Figure 2. The
iteration branch in block 3 is classi�ed as unknown since the variable

somecond is not a basic induction variable. The complexity of this
algorithm is O(I), where I is the number of iteration branches, since
each iteration branch need only be examined once.

Ni =

�
limit i � (initial i + before i) + adjust i

beforei + after i

�
+ 2 (1)

In addition, we have to select a value for adjust and checks have to
be made in case the iteration branch will always or never be satis�ed.
Table III shows under what conditions we can use Equation 1 to de-
termine when an iteration branch changes direction. The column \Test
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Table I. Information Calculated for Each Iteration Branch

Term Explanation Requirement

variable The control variable on which
the branch depends, i.e., the
variable being compared in the
block containing the iteration
branch.

The control variable must be a basic induc-
tion variable, that is a variable v whose only
assignments within the loop are of the form
v := v � c where c is a constant. In addi-
tion, we require that the variable change by
a constant integer amount on every loop iter-
ation. We ensure this by checking that each
basic block containing an assignment to a ba-
sic induction variable dominates all of the
blocks containing the tails of the back edge
transitions.

limit The value being compared to
the variable in the block con-
taining the branch.

The limit must be an integer constant. We will
describe how this requirement can be relaxed
in Section 4.

relop The relational operator used to
compare the variable and the
limit. I.e., the iteration condi-
tion is: \variable relop limit".

Our initial description requires that the rela-
tional operator be an inequality operator (i.e.
<, <=, >=, and >). We will describe how to
relax this requirement in Section 3.5 to more
accurately handle the equality operators (i.e.
== and !=).

initial The value of the variable when
the loop is entered.1

The initial value must be an integer constant.
We will describe how this requirement can be
relaxed in Section 4.

before The amount by which the vari-
able is changed before reaching
the iteration branch in each
iteration.

The amount by which the control variable is
incremented or decremented must be an inte-
ger constant and these changes must occur on
each complete iteration of the loop.2

after The amount by which the vari-
able is changed after reaching
the iteration branch in each
iteration.

The amount by which the control variable is
incremented or decremented must be an inte-
ger constant and these changes must occur on
each complete iteration of the loop.

adjust An adjustment value of -1,
0, or 1, which compensates
for the di�erence between re-
lational operators (e.g. < and
<=).

1This value is found by searching backwards in the control 
ow for assignments to
variable. The search starts with the preheader, which is the block outside the loop
preceding the loop header.
2In other words, the basic blocks containing these changes must dominate every
predecessor block of the header that is in the loop.
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Table II. Derived Information for Each Iteration Branch in Figure 2

branch variable register limit relop initial before after adjust class N

block 2 j r[9] 75 <= 1 0 3 0 known 26

block 3 somecond r[8] 0 == N/A 0 0 N/A unknown N/A

block 5 j r[9] 300 > 1 0 3 0 known 101

block 7 i r[10] 100 >= 0 0 1 -1 known 101

Table III. How to Determine When a Branch with an Inequality Test Changes Direction

Operator Condition Test Result adjust

<= �rst � limit & incr > 0 is false on the Nth iteration 0
<= �rst � limit & incr � 0 always true
<= �rst > limit & incr � 0 always false
<= �rst > limit & incr < 0 is true on the Nth iteration 1

< �rst < limit & incr > 0 is false on the Nth iteration � 1
< �rst < limit & incr � 0 always true
< �rst � limit & incr � 0 always false
< �rst � limit & incr < 0 is true on the Nth iteration 0

> �rst � limit & incr > 0 is true on the Nth iteration 0
> �rst � limit & incr � 0 always false
> �rst > limit & incr � 0 always true
> �rst > limit & incr < 0 is false on the Nth iteration 1

>= �rst < limit & incr > 0 is true on the Nth iteration �1
>= �rst < limit & incr � 0 always false
>= �rst � limit & incr � 0 always true
>= �rst � limit & incr < 0 is false on the Nth iteration 0

Where �rst = initial + before , incr = before + after ,
N is de�ned in Equation 1, and adjust is used in Equation 1.

Result" shows under what conditions we can conclude that the iteration
condition will always/never be true and when we should use Equation 1
to determine at which iteration the branch changes direction, as well as,
what value to use for adjust in Equation 1. Note that when before+after

= 0 we need not use Equation 1 and thus we do not cause a divide by
zero exception.

Figure 4 shows two loops where Equation 1 cannot be applied. Our
implementation detects that the loop in Figure 4(a) exits after a single
iteration. Recall that the number of iterations is the number of times
that the loop header block (i.e. testing i > 100 in the example) is exe-
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cuted once the loop is entered (see Section 3.1). The loop in Figure 4(b)
is classi�ed as unbounded since the loop may never exit depending on
how over
ow of negative integer values is handled.

for(i = 0; i > 100; i++) for(i = 0; i < 100; i--)

A; A;

(a) Loop That Exits Immediately (b) Loop That May Never Exit

Figure 4. Two Loops Which are Handled Without Equation 1

3.3. Determining the Iterations When Each Iteration

Branch Can Be Reached

The next step is to determine the iterations on which it is possible to
execute each node of the DAG. Calculating these ranges requires O(I)
complexity, where I is the number of iteration branches. We record this
information as a range of iterations and attach a range to each node
and edge. The DAG is processed top-down.

The head of the DAG is assigned the range [1..1]. All other nodes
are assigned a range that is the union of the ranges of all incoming
edges. The outgoing edges of a node i are assigned ranges using one of
the following two rules:

1. If iteration branch i is known, then relopi and the direction of
the increment (i.e. the sign of beforei+after i) is used to determine
which edge is taken on the �rst Ni � 1 iterations. That edge is
assigned the range that is the intersection of [1..Ni � 1] and the
range of node i. The other outgoing edge is assigned the range that
is the intersection of [Ni..1] and the range of node i. If a range
assigned to an outgoing edge is empty, then this edge corresponds
to an infeasible transition and is deleted from the DAG.

2. If iteration branch i is unknown, then both outgoing edges are
assigned the same range as node i.

Figure 5 shows the DAG of iteration branches in Figure 3 on page 7
with the range of possible iterations for each node and edge also de-
picted. Nodes with known iteration branches are marked with a K and
unknown iteration branches are marked with a U. Iteration branch 7
will take the transition to branch 2 on the �rst 100 iterations. Note this
iteration range of [1..100] corresponds to the variable i's value range
of [0..99]. At this point, all values of variables have been abstracted as
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ranges of loop iterations. Node 5's transition to a break is deleted since
the range associated with that transition is empty (i.e. the transition
is not possible).

[101..     ]

7

[1..   ]

K

2

[1..100]

K break

3

[26..100]

U

break

[26..100]

5

[1..100]

K

[1..100]

continue

[26..100]

[26..100]

[1..100]

[1..25]

Figure 5. DAG of Branches with Ranges of Iterations

3.4. Determining the Minimum and Maximum Loop

Iterations

The ranges of iterations associated with each node and edge of the DAG
can be used to calculate the minimum and maximum number of itera-
tions for the loop. To determine the minimum and maximum iteration
value for each iteration branch, the DAG is processed in bottom-up
order. The algorithm requires O(I) complexity, where I is the number
of iteration branches. The minimum and maximum iteration values
for the root node of the DAG will be the minimum and maximum
iteration values for the entire loop. Figure 6 de�nes the notation used
in this subsection. Note that the range has been calculated using the
technique presented in Section 3.3.

The following rules are used to assign minimum and maximum
iteration values to edges.

1. If an edge is pointing to a break, then both the edge exit min and
edge exit max are assigned the value of edge range min. (If there
is a transition to a break, then the loop can only make that tran-
sition once.) This is the only point where a bounded value can be
introduced since these are the only points where the loop can exit.

2. If an edge is pointing to a continue, then the edge exit min and
edge exit max values for that edge are marked as unbounded, which
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12 Healy, Sj�odin, Rustagi, Whalley and van Engelen

[edge_range_min..edge_range_max]

<edge_exit_min, edge_exit_max>

<node_exit_min, node_exit_max>

highest loop iteration when this edge can be reached

lowest loop iteration when this edge can be reached

first iteration when this edge may lead to a break

first iteration when this node may lead to a break

first iteration when this edge must lead to a break

first iteration when this node must lead to a break

(on subsequent iterations it must also lead to a break)

(on subsequent iterations it must also lead to a break)
node_exit_max:

node_exit_min:

edge_exit_max:

edge_exit_min:

edge_range_max:

edge_range_min:

Figure 6. Notation Used in Rules for Assigning Iteration Values

we will represent with ` '. (These transitions do not supply any
information about when the loop exits.)

3. If the iteration branch associated with a node is classi�ed as known,
then the node exit max for the node is set to the smallest of the
bounded edge exit max values on the outgoing edges or is denoted
as unbounded if both outgoing edges have unbounded edge exit max

values. (The loop has to exit when it will encounter a break.)

4. If the iteration branch associated with a node is classi�ed as un-

known, then the node exit max for the node is set to the largest
of the edge exit max values on the outgoing edges of the node or
is denoted as unbounded if either outgoing edge has an unbounded

edge exit max value. (Use the largest value when it is not guaran-
teed that the node will actually reach the exit associated with a
lower value.)

5. The node exit min for a node is set to the smallest of the bounded

edge exit min values on the outgoing edges of the node or is denoted
as unbounded if both outgoing edges have unbounded edge exit min

values. (The smallest value represents the �rst possibility to exit
the loop.)

6. An edge not leading to a break or continue is an edge leading to
a node representing an iteration branch. The edge exit min and
edge exit max values assigned to the edge depend upon one of
three possible relations between the range of the edge and the
iteration values of the node. These relations and the corresponding
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edge assignments are depicted in Table IV. For example, the edge
assignment when node exit min satis�es case 1 and node exit max

satis�es case 2 would be hedge range min, node exit max i. Case 1
depicts that the edge exit is set to edge range min since this is the
�rst iteration the edge can be traversed when the edge may lead
to a break. Case 2 shows that the edge exit is set to the node exit

when it is within the range of iterations that the edge is executed.
Case 3 illustrates that the edge exit is set to unbounded when there
is no iteration on which the edge will be traversed after the edge
can lead to a break.

Table IV. Rules for Assigning Iteration Values to an Incoming Edge

Case Condition Test Edge Exit

1 � node exit < edge range min edge range min

2 �
edge range min � node exit &
node exit � edge range max

node exit

3 � edge range max < node exit

Legend: = [edge range min .. edge range max]

� = node exit (i.e. node exit min or node exit max)

7 K

<26,101>
<26,_> <101,101>

break2 K

<26,_>

3 U

<26,_>

break 5 K

<_,_>

continue

<_,_><26,26>

<_,_>

<26,_>

<_,_>

Figure 7. DAG of Iteration Branches with Minimum and Maximum Iteration Values

Figure 7 shows the same DAG as in Figure 5 on page 11, but with
minimum and maximum iteration values assigned to edges and nodes.
Node 5 and its incoming edges are assigned unbounded values since
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14 Healy, Sj�odin, Rustagi, Whalley and van Engelen

(c) Unbounded Loop

(a) Bounded Loop (b) Potentially Unbounded Loop

for (i = 0; ; i++) {
   if (i < 100 && somecond)
      continue;
   if (i == 50)
      break;
   }

for (i = 0; i != 100; i += 3)
   A;

for (i = 0; i != 100; i++)
   A;

Figure 8. Examples of Loops with Iteration Branches Using Equality Operators

there is no transition to a break for the range of loop iterations in
which they are executed. Node 3 is assigned a minimum iteration value
of 26 since that is the �rst possible iteration at which the node can take
a transition to a break. Node 3's maximum iteration value is unbounded
since node 3's iteration branch is classi�ed as unknown and there is
no guarantee that the transition to the break from node 3 will ever be
taken. The minimum and maximum iterations for the entire loop is 26
and 101, respectively, since these are the iteration values in node 7,
which is the root exit condition.

3.5. Supporting Iteration Branches Using Equality

Operators

As stated in Table I on page 8, an iteration branch using an equality
operator (i.e. == or !=) was earlier described as always being treated as
an unknown branch. This may result in looser, but safe iteration bounds
for loops containing equality operators. One reason for not addressing
iteration branches that use the equality operators is that they may
cause loop iteration ranges to become noncontiguous and would compli-
cate the algorithms for bounding the number of iterations. However, in
many cases iteration branches with equality operators can be handled
using only contiguous ranges of iterations. For instance, Figure 8(a)
contains a loop with an equality operator that our implementation
was able to successfully bound. Our implementation classi�es iteration
branches with equality operators as known when the following three
additional requirements to those speci�ed in Table I are satis�ed:

1. First, every path ending in a back edge in the loop must include
the iteration branch with the equality operator. Figure 8(b) shows
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Table V. How to Determine When an Equality Test Changes Direction

Operator Condition Test Result adjust

== �rst < limit & incr > 0 is true on the Nth iteration �1
== �rst > limit & incr < 0 is true on the Nth iteration 1
== �rst = limit & incr = 0 always true
== �rst = limit & incr 6= 0 is false on the 2nd iteration
== otherwise always false

!= �rst < limit & incr > 0 is false on the Nth iteration � 1
!= �rst > limit & incr < 0 is false on the Nth iteration 1
!= �rst = limit & incr = 0 always false
!= �rst = limit & incr 6= 0 is true on the 2nd iteration
!= otherwise always true

Where �rst = initial + before , incr = before + after ,
N is de�ned in Equation 1, and adjust is used in Equation 1.

an example of a loop that may not execute the test for equality on
the iteration in which the loop could exit.

2. Next, one of the outgoing transitions of the iteration branch with
an equality operator must be to a break.

3. Finally, the following expression, which is part of Equation 1, must
result in an integral value.

limit i � (initial i + before i)

before i + after i

In other words, the variable must equal the limit of the iteration
branch on some iteration. Figure 8(c) depicts a situation where the
variable i will be assigned values (0, 3, : : : 99, 102, : : : ) that will
skip over the limit (100).

When the above requirements are ful�lled we have to check the
initial value and increments to the variable, similar to Table III on
page 9, and also choose a value for adjust. Table V shows when we can
use Equation 1 on page 7 to determine on which iteration an equality
test will change direction. Note that when before+after = 0 we need
not use Equation 1 and thus we do not cause a divide by zero exception.
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16 Healy, Sj�odin, Rustagi, Whalley and van Engelen

4. Supporting a Non-constant Loop-Invariant Number of

Iterations

Sometimes a bounded number of iterations for a loop cannot be de-
termined since the loop exit conditions involve the values of variables.
Traditionally, timing analyzers have resolved this problem by requiring
a user to specify the maximum number of iterations for a loop inter-
actively (Park and Shaw, 1991; Li et al., 1995) or as an assertion in
the source code. (Burns et al., 1996; Puschner and Koza, 1989) Unfor-
tunately, there is no guarantee that the user will specify the correct
number of iterations. Compilers may employ di�erent code generation
strategies or compiler optimizations that can a�ect the number of loop
iterations. Thus, even an astute user may specify the number of loop
iterations incorrectly.

Frequently the variables on which the number of loop iterations
depend are loop invariant. In this case, a loop-invariant expression is
calculated to represent the number of loop iterations. Essentially, we
will still use Equation 1 on page 7, but relax the requirement that
the limit and initial values have to be constants. Figure 9 shows an
example function and it's corresponding SPARC RTLs. (Some compiler
optimizations, such as loop strength reduction, have not yet been per-
formed to simplify the example.) In this example, the control variable
for the loop is r[13] and the limit is r[12], which is loop invariant.
The block preceding the loop is examined to determine the expression
associated with the limit, which is expanded in the following steps:

1. r[12] # from instruction 12

2. r[9]+r[10] # from instruction 5

3. r[9]+R[r[10]+LO[ n]] # from instruction 4

4. r[9]+R[HI[ n]+LO[ n]] # from instruction 3

5. m+n

The register r[9] has been allocated to the argument m, whose value
was also passed to the function in the same register. The compiler
remembers the register and the blocks where each live range of a local
variable or argument is allocated to a register. Thus, the compiler was
able to associate the register r[9] with the argument m and that the
memory reference is to the global variable n. We use Equation 1 to
generate a symbolic expression (containing the local variable m and
global variable n) to represent the number of iterations, as shown in
Figure 10.

When the compiler can determine that the number of iterations is
non-constant and loop invariant, the loop-invariant expression is passed
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: address of array a

: argument m

: variable sum

: variable i

r[8]

r[9]

r[11]

r[13]

int sumarray(a, m)
int a[], m;
{
   int i, sum;
   extern int n;

   sum = 0;

   for (i = 1; i < m+n; i++)
      sum += a[i];
   return sum;
}

(a) Source Code

1r[11]=0; # instruction 1
# instruction 2r[13]=1;

r[10]=HI[_n];
r[10]=R[r[10]+LO[_n]];
r[12]=r[9]+r[10];
IC=0?r[12];
PC=IC>=0,L25;

# instruction 3
# instruction 4
# instruction 5
# instruction 6
# instruction 7

L18 2r[10]=r[13]<<2; # instruction 8
r[10]=R[r[8]+r[10]];
r[11]=r[11]+r[10];
r[13]=r[13]+1;
IC=r[13]?r[12];
PC=IC<0,L18;

# instruction 9
# instruction 10
# instruction 11
# instruction 12
# instruction 13

L25 3PC=RT; # instruction 14

   valuebnd m[10:100] n[20:80]

Variable Mapping
(b) Register to

(c) SPARC RTLs

Figure 9. Loop with a Non-constant Loop-Invariant Number of Iterations

to the timing analyzer. The user is prompted by the timing analyzer
for the minimum and maximum values for each variable in this expres-
sion. To simplify identi�cation of these variables, the timing analyzer
also informs the user of the function and line number associated with
the loop. After receiving the minimum and maximum values for these
variables, the timing analyzer automatically calculates the minimum
and maximum number of loop iterations.3

3 Note that the timing analyzer will not permit the number of iterations to be
fewer than 1. In the above example, a user may indicate that the minimum values of
m and n are both 0. Simply substituting these values in the expression would result
in the number of loop iterations being �1. But if the loop is entered, then it has to
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N =

�
limit � (initial + before) + adjust

before + after

�
+ 2

=

�
m+ n� (1 + 1) +�1

1 + 0

�
+ 2

= m+ n� 1

Figure 10. Finding a Symbolic Bound for Example in Figure 9

The authors also modi�ed the compiler to allow the user to specify
assertions about the minimum and maximum values of variables asso-
ciated with loops. The boldface line in Figure 9(a) contains assertions
for the minimum and maximum values of the variables m and n. The
compiler uses the loop-invariant expression and replaces the variables
with the minimum and maximum speci�ed values. The minimum num-
ber of iterations of 29 and the maximum number of iterations of 179 is
automatically passed to the timing analyzer and no user intervention
is required. Of course, the analysis will only be as accurate as the
assertions themselves.

When a loop-invariant expression cannot be calculated, the timing
analyzer will prompt the user for the minimum and maximum number
of iterations instead of values of variables. However, we have found
that a constant or loop-invariant number of iterations can be typically
calculated for most loops in the numerical benchmarks and applications
we have examined.

5. Bounding Iterations for Non-Rectangular Loop Nests

The previous sections described approaches to determine the minimum
and maximum number of iterations for a loop, given that the number of
iterations depends only upon either constant or loop-invariant values.
Unfortunately, many nested loops do not ful�ll this requirement.

In this section we will describe a novel method to determine the
number of iterations for a nested loop whose iteration bound depends
upon the loop index of an outer loop. Such a loop nest is called non-

rectangular. A typical example of a non-rectangular loop nest is the
loop nest of the bubble sort program in Figure 11.

execute at least one iteration since the number of iterations is de�ned as the number
of times the loop header block is executed.
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for(i = 0; i < 99; i++)

for(j = i+1; j < 100; j++)

if(a[i] > a[j]) swap(a,i,j);

Figure 11. A Typical Non-Rectangular Loop Nest

Non-rectangular loop nests have long presented a problem for timing
analyzers since the resulting timing predictions are typically quite loose
(Healy et al., 1995; Hur et al., 1995; Li et al., 1995). In fact, these overly
pessimistic predictions may indicate that a program does not meet its
timing constraints, when it actually does.

This section describes a general and eÆcient method for obtaining
tight timing predictions for non-rectangular loop nests usually encoun-
tered in programs. This is accomplished by formulating the number
of loop iterations in terms of summations, where each summation rep-
resents the number of iterations to be executed by a loop. Such an
equation can be eÆciently solved given that certain restrictions are
met.

5.1. Formulating the Number of Iterations

In this subsection we describe how a loop nest may be formulated in
terms of summations. The framework we present was based on work
by Sakellariou (Sakellariou, 1997; Sakellariou, 1996). The number of
iterations of a single loop, where the loop variable is incremented by
one (so called unit stride), can be represented by a summation when
the lower bound (a) is less than or equal to the upper bound (b), as
shown in Equation 2.

N =

bX
i=a

1 =

(
b� a+ 1 if a � b

0 otherwise
(2)

Figure 12 shows how two di�erent loop nests can be formulated in
terms of summations. The total number of iterations to be executed
by the innermost loop in each loop nest are calculated by solving the
corresponding equation. The Bernoulli formula shown in Equation 3,
where p � 1 and n � 1 and Bk is the Bernoulli number of order k, can
be used to evaluate terms in a summation.

nX
i=1

ip =
1

p+ 1

pX
k=0

�
p+ 1

k

�
Bk(n+ 1)p�k+1 (3)
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for (i=1; i<99; i++)

for (j=i+1; j<100; j++)

A;

N =

98X
i=1

99X
j=i+1

1

=

98X
i=1

0
@ 99X

j=1

1�

iX
j=1

1

1
A

=

98X
i=1

(99� i)

=

98X
i=1

99�

99X
i=1

i

= 4851

(a) Loop Nest from
Sort Program

for (j=1; j<=100; j++)

for (i=j; i<=100; i++)

for (k=1; k<j; k++)

A;

N =

100X
j=1

100X
i=j

j�1X
k=1

1

=

100X
j=1

100X
i=j

(j � 1)

=

100X
j=1

 
100X
i=1

(j � 1)�

j�1X
i=1

(j � 1)

!

=

100X
j=1

 
100X
i=1

j �

100X
i=1

1

j�1X
i=1

j +

j�1X
i=1

1

!

=

100X
j=1

�
102j � j2 � 101

�

= 102

100X
j=1

j �

100X
j=1

j2 � 101

100X
j=1

1

= 166650

(b) Loop Nest from LU Decom-
position Program

Figure 12. Deriving the Total Number of Iterations for Two Loop Nests

The constraint on the bounds in Equation 2 results from the fact that
the value of the sum must equal 0 if the lower bound a is greater than
the upper bound b. The explicit constraint is necessary to accurately
count the number of iterations of so-called zero-trip loops. Zero-trip
loops do not execute the loop body when the lower bound exceeds the
upper bound, given that the stride is positive.

We can represent summations with non-unit strides, where the stride s
is speci�ed along with the lower bound a and upper bound b. Equation 4
shows how a non-unit stride can be used in a conventional summation,
where E is an expression and E[i si+ a] denotes the substitution of
all free occurrences of i by si+a. This is e�ectively a change in variables
and does not change the value of the summation. The change allows
summations with strides to be represented by normalized summations
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(summations with stride 1).

I =

b;sX
i=a

E =

b(b�a)=scX
i=0

E[i si+ a] (4)

Summations with non-unit strides are more diÆcult to evaluate since
one has to deal with summations of 
oors. Equation 5 shows how a 
oor
can be converted to an expression involving a modulo operation (%). A
modulo operation can often be simpli�ed using Equation 6 (Sakellariou,
1996).

j n
m

k
=

n� n%m

m
, if m > 0 & n > 0 (5)

nX
i=0

(i%d)p =

8>>>><
>>>>:

nX
i=0

ip if n < d

bn=dc�1X
j=0

d�1X
i=0

+ip
n%dX
i=0

ip if n � d

(6)

However, summations involving modulo operations are more diÆ-
cult to simplify when two or more loops have non-unit strides and the
bounds are symbolic. Fortunately, this situation rarely occurs. Equa-
tions 2{6 can be used to correctly determine that the total iterations
for the loop nest in Figure 13 is 1717. Unfortunately, sometimes an
expression in a summation may contain a product of two or more
terms containing modulo operations. In this case, an approximation
of the iteration count is used, which is shown in Equation 7.

b;sX
i=a

E �

bb=scX
i=a

E=s (7)

for (i=0; i<100; i++)

for (j=i; j<100; j+=3)

A;

Figure 13. A Loop Nest Containing a Non-unit Stride

As suggested by Sakellariou (Sakellariou, 1996; Sakellariou, 1997), a
computer algebra system can be exploited o� line to solve the equations

paper.tex; 23/09/1999; 15:55; p.21



22 Healy, Sj�odin, Rustagi, Whalley and van Engelen

of summations. However, computer algebra systems, such as Maple

(Char et al., 1988), give inaccurate results when the bounds restriction
on the summation is violated in Equation 2. In general, every loop
iteration count problem that is cast as a summation should evaluate
to zero if the lower bound is greater than the upper bound. However,
it is not always possible to evaluate the test when the bounds are
symbolic. For example, consider the loop nest in Figure 14. The inner
loop is a zero-trip loop for values of i greater than 2. We de�ne a
partially zero-trip loop to be a loop that is zero-trip depending on
values of index variables of outer loop(s). By applying Equation 2, the
iteration count of the partially zero-trip loop can be de�ned as shown
in Figure 14. Clearly, the result is N = 3. However, a naive evaluation
without the bounds test results in N = �7. This means that when a
computer algebra system is to be used o� line, the summations should
be guarded with bounds tests. Unfortunately, computer algebra systems
cannot e�ectively deal with the simpli�cation of nested summations
with additional tests on the bounds of inner summations. The reason
is that the test may be symbolic, as shown in Figure 14. The solution is
to isolate possible conditions on the iteration variable from the test and
to simplify summations as shown in Equation 8 for any expression e.
Note that c may not necessarily lie within the range [a..b] and relations
besides < may be used.

bX
i=a

(
E if i < c

0 otherwise
=

(Pmin(b;c)
i=a E if a < c

0 otherwise
(8)

for (i=1; i<8; i++)

for (j=i; j<3; j++)

A;

N =

7X
i=1

(
3� i if i < 3

0 otherwise

Figure 14. A Partially Zero-Trip Loop
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5.2. Implementation

The implementation for evaluating the summations described in the
previous section was accomplished by using the algebraic simpli�er por-
tion of the Ctadel system (van Engelen et al., 1996; van Engelen et al.,
1997). The authors' timing analyzer (Healy et al., 1999) and Ctadel
were compiled separately, but Ctadel is directly integrated into the
timing analyzer by linking the object �les. This avoids unnecessary
overhead that would result from passing expressions between the tim-
ing analyzer and Ctadel by operating systems calls. The summations
are formulated in the timing analyzer and Ctadel is invoked as a C
function with the summation parameters as arguments.4

Another complication when dealing with zero-trip loops in the tim-
ing analyzer is due to the way the timing analyzer counts iterations. As
mentioned in Section 3.1, the number of loop iterations is the number
of times the loop header is executed, as opposed to the number of
times the loop body is encountered. Thus, when a loop is entered, it
is guaranteed to iterate at least once. The zero-trip case in Equation 8
can be modi�ed to indicate a single iteration, as shown in Equation 9.

bX
i=a

(
E if i < c

1 otherwise
=

(Pmin(b;c�1)
i=a E if a < c

0 otherwise
+

(Pb
i=max(a;c) 1 if c � b

0 otherwise
(9)

Figure 15 shows how the loop nest in Figure 14 can be formulated as
a summation and solved to produce an accurate number of iterations.
Note that the test in Figure 15 has iteration variable i isolated to the
left of the relation. An isolation algorithm is used byCtadel to analyze
the test and isolate the variable.

It is known that the detection of zero-trip loops in the general case
is NP-complete, because it amounts to solving a integer linear pro-
gramming problem. Similarly, adjusting the bounds of loops to avoid
partially zero-trip loops is NP-complete. This normalization process
can be performed with the Fourier-Motzkin (FM) elimination method
(Wolfe, 1996). However, one can argue that real-world algorithms rarely
exhibit (partially) zero-trip loops, because algorithms with partially
zero-trip loops are deemed to be ineÆcient.

The timing analyzer veri�es that there are no zero-trip loops for an
inner loop by expanding its initial value and limit. Likewise, the timing

4 The authors have created a Web page demonstrating the functionality of the
Ctadel. It can calculate the number of loop iterations for a loop nest speci�ed by
the user. The URL is http://www.cs.fsu.edu/~engelen/iternum.cgi.
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N =

7X
i=1

(
3� i if i < 3

1 otherwise

=

2X
i=1

(3� i) +

7X
i=3

1

= 3 + 5

= 8

Figure 15. Deriving the Number of Iterations for the Loop Nest in Figure 14

analyzer is able to verify that there are no partially zero-trip loops in
the loop nest. However, if the veri�cation is inconclusive, the loop nest
may or may not contain (partial) zero-trip loops. For instance, consider
the loop nest in Figure 16. The expansion of the innermost loop initial
value and limit is depicted in Figure 17. The timing analyzer is able to
guarantee that the inner loop is not zero-trip since the initial value is
never greater than the limit.

for (i=0; i<10; i++)

for (j=i; j<11; j++)

for (k=i-3; k<j+8; k++)

A;

Figure 16. Innermost Loop Detected Zero-Trip Free by the Timing Analyzer

Initial Value Limit

i� 3 j + 8

[0::9] � 3 [i::10] + 8

[�3::6] [[0::9]::10] + 8

[0::10] + 8

[8::18]

Figure 17. Expanding Initial and Limit Values of Innermost Loop in Figure 16
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Now consider the loop in Equation 18 and the corresponding expan-
sion of the initial value and limit in Figure 19. The test is inconclusive.
However, the loop nest is not zero-trip due to the j < i condition in
the middle loop. Since the range analysis can be used to safely verify if
a loop is partially zero-trip, it is possible to use the results in deciding
which summation solver to use. For example, the loop in Figure 16
can be safely cast into a summation without a bounds tests, while
the summations for the loop in Figure 18 requires a bounds test (see
Figure 15 for an example bounds test). The disadvantage of having a
bounds test is that a loop with a stride poses problems for solving the
summation because the summation bounds test may contain modulo
operations on the iteration variable, which prohibits the application of
Equation 9.

for (i=1; i<10; i++)

for (j=0; j<i; j++)

for (k=j; k<i; k++)

A;

Figure 18. Innermost Loop Nest Detected Zero-Trip Free by Ctadel

Initial Value Limit

j i� 1

[0::i] [1::9] � 1

[0::[1::9]] [0::8]

[0::9]

Figure 19. Expanding Initial and Limit Values of Innermost Loop in Equation 18

The timing analyzer decides among three possible solution methods
to evaluate the summation representing a loop nest:

� Ctadel evaluates the summation while testing the bounds of the
index variables.

� Ctadel evaluates the summation without testing for bounds.

� The timing analyzer derives conservative lower and upper bounds
on the sum, based on constant bounds given in outer level loops.
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The algorithm for selecting the appropriate method is described in
Figure 20. The exact solutions are computed using safe assumptions in
the possible presence of partially zero-trip loops, using either method
(1) or (2). This algorithm will resort to method (3) only in the presence
of multiple loops with non-unit strides.

The timing analyzer veri�es that the loop nest is not (partially) zero-trip.
IF the check is successful THEN

The loop nest is formulated into summation without bounds tests and
presented to Ctadel.
IF Ctadel is able to solve the summation THEN

RETURN the integer count.
ELSE

Ctadel could not solve the summation in the presence of two or more
loops with non-unit strides.
RETURN conservative lower and upper bounds on the sum.

END IF

ELSE

The check is inconclusive and the loop nest is cast into a summation with
bounds tests.
The rewritten summation is presented to Ctadel.
IF Ctadel is able to solve the summation THEN

RETURN the integer count.
ELSE

Ctadel could not solve the summation in the presence of two or more
loops with non-unit strides.
RETURN conservative lower and upper bounds on the sum.

END IF

END IF

Figure 20. Algorithm for Selecting a Solution Method for Summations

The following approach is used in the timing analyzer to obtain
tight predictions of non-rectangular loop nests whose total iterations
in a loop nest are known. The timing analyzer calculates WCET and
BCET predictions based on the maximum and minimum number of
iterations, respectively, for the loop whose number of iterations varies.
These predictions are made in case a user requests the WCET or BCET
predictions for the loop. In addition to these absolute predictions, the
timing analyzer also calculates average WCET and BCET predictions
for each loop. To calculate the average number of iterations for a loop,
we divide the total iterations by the total number of times the loop is
entered. For instance, in the previous subsection we found that the total
number of iterations for the innermost loop from the sort program in
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Figure 12 on page 20 was 4851. We also calculate the number of times
the current loop is entered by calculating the total number of iterations
for the loop that encloses the current loop. In this example, the inner-
most loop is entered 98 times. Thus, the average number of iterations
for the loop is 49.5 (4851/98). The average number of iterations is
used to calculate the average WCET and BCET predictions. When a
non-integer is calculated, we round up for the WCET prediction and
truncate for the BCET prediction since our loop analysis algorithm is
designed to work on an integral number of iterations.

5.3. Results

Table VI shows programs that were evaluated using the approach of
calculating an average number of iterations for loops. These programs
bene�t from using this approach since they each contain one or more
non-rectangular loop nests. Note that the Sort program has been used
in the past as one of the test programs to evaluate our timing analyzer
(Arnold et al., 1994; Healy et al., 1995; White et al., 1997). The size
of a program is measured as number of assembly instructions in the
compiled and optimized program.

Table VI. Test Programs Containing Non-Rectangular Loop Nests

Name Description or Emphasis Size

Hes Reduces a 100x100 matrix to Hessenberg Form 221

Integ Evaluates a Double Integral over a Trapezoidal Region 45

Interp Polynomial Interpolation of 500 Points 178

LU LU Decomposition of a 100x100 Matrix 278

Sort Bubble sort of 500 Integers 130

Sym Tests If a 500x500 Matrix Is Symmetric 50

Table VII shows the best and worst-case cycles required for exe-
cuting with instruction caching and pipelining for the MicroSPARC I
(Texas Instruments, 1993). The previous ratio and current ratio columns
show that when the timing analyzer used the average inner loop predic-
tions, the predicted execution times were signi�cantly tighter. Interp
showed a signi�cant improvement in best case since the best case num-
ber of iterations for the inner loop of a non-rectangular loop nest was
1, which was signi�cantly lower than the average number of iterations.
If the timing analyzer did not use an average number of inner loop
iterations in worst case, then the number of loop iterations for the
triangular loops in Interp, Sort, and Sym would have been approxi-
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mately double. The WCET of these programs are nearly exact using
the average number of iterations. The Integ program had a higher best-
case previous ratio and a lower worst-case previous ratio since there
were other loops in this program that contributed more signi�cantly to
the total execution time. The Sort and Sym programs did not have a
signi�cant underestimation (i.e. previous ratio) in best case. In the best
case for Sort the values were initially sorted and the sort function exited
once the array has been detected to be in ascending order. Likewise,
the Sym program terminates when it �nds the �rst pair of values that
are not equal. Hes and LU are unlike the other programs in that they
contain some triply nested loops. In some loop nests the loop variables
of the innermost and middle loops depend on the outermost index
variable. In other loop nests the innermost loop variable depends on
the loop variable of the middle loop, which in turn depends on the
loop variable of the outer loop. Ctadel correctly determines the exact
number of loop iterations in all of these cases and the results are more
accurate WCET predictions compared to its previous ratios. However,
the improvement in BCET for LU was less substantial.5

Table VIII shows the response time of the timing analyzer for each of
the test programs. To obtain these measurements, the timing analyzer
was invoked for each test program ten times on a Sun HPC 3000
processor. The �gures in the table represent the averages of the ten
trials. Note that the times reported here include the analysis of both
best and worst case predictions, which occurred in the same invocation
of the analyzer. We found that the number of conditional constructs
(e.g. if statements) rather than the number of loops and functions,
tends to have the biggest impact on the analysis time since it a�ects
the number of paths that must be analyzed.

6. Coding Conventions to Make Loop Bounds Predictable

We have found that a programmer can write code where the timing
analyzer can accurately determine the number of iterations when the
following conventions are used. We do realize that these conventions

5 The timing predictions for the Hes and LU programs are still fairly loose. This
is primarily due to the fact that several loops were preceded by guards resulting from
if statements and loop code generation strategies. Each of these guards tests the
value of a loop control variable. The authors have recently done work in detecting
this type of constraint (Healy and Whalley, 1999b) when dealing with rectangular
loop nests. We anticipate to extend this analysis to non-rectangular loop nests for
the �nal version of this paper. This ability to detect constraints on loop control
variables should substantially tighten both the WCET and BCET predictions for
the Hes and LU programs.
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Table VII. Timing Analysis Results

Best-Case Results

Observed Previous Previous Current Current

Name Cycles Estimated Ratio Estimated Ratio

Cycles Cycles

Hes 306,341 13,614 0.044 256,516 0.837

Integ 19,160,842 12,785,618 0.667 19,135,118 0.999

Interp 6,485,878 143,064 0.022 6,479,865 0.999

LU 13,792,698 278,683 0.020 637,383 0.046

Sort 19,966 19,950 0.999 19,950 0.999

Sym 160 160 1.000 160 1.000

Worst-Case Results

Observed Previous Previous Current Current

Name Cycles Estimated Ratio Estimated Ratio

Cycles Cycles

Hes 55,747,317 130,932,770 2.281 57,389,258 1.029

Integ 22,538,082 30,023,163 1.332 22,553,163 1.001

Interp 25,469,403 50,702,358 1.991 25,479,405 1.000

LU 22,436,763 141,900,455 6.324 26,410,255 1.177

Sort 7,672,281 15,251,603 1.988 7,672,292 1.000

Sym 2,747,654 5,481,220 1.995 2,747,698 1.000

cannot always be used for some programs, such as non-numerical ap-
plications. However, we believe these conventions can be followed for
most numerical applications.

1. When possible, make loop exit conditions only dependent on loop
counter variables.

2. Use local integer variables for loop counter variables.

3. Try not to increment or decrement loop counter variables in condi-
tionally executed code.

4. When possible, use integer constants for the initial value, limit,
and increments of loop counter variables. Otherwise, try to use
loop invariant values.

5. Try to avoid non-unit strides in non-rectangular loop nests.
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Table VIII. Analysis Response Times in Seconds

Name Analysis Time

Hes 0.73

Integ 0.14

Interp 0.36

LU 1.10

Sort 0.25

Sym 0.22

Average 0.47

6. Try to avoid conditionally executed loops in non-rectangular loop
nests.

7. Conclusions

In this paper we have presented three di�erent methods for bounding
the number of iterations of a loop. First, a method was described that
determines the minimum and maximum number of iterations of loops
with multiple exits and also detects infeasible paths. For instance, loops
of the form in Figure 21(a) that can exit prematurely when some
condition becomes true are quite common and the bounded number
of iterations of such loops can be detected by the general algorithm
presented in the paper.

Second, a method to derive a symbolic expression representing the
number of iterations is presented. The symbolic expression is used to
bound the number of iterations of loops which have a non-constant
number of iterations. Figure 21(b) shows an example of this common
type of loop. The user can specify the minimum and maximum values
of the variables in the symbolic expression by placing assertions in
the source code or by interactively responding to prompts from the
timing analyzer. These assertions are more reliable than specifying the
minimum and maximum number of loop iterations directly since the
user does not have to be aware of the code generation strategies or
optimizations performed by the compiler. Also, if value range analysis
of variables is deployed the bounds of the variables can be automatically
provided by the compiler.
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   ...
for (i = 0; i < n; i++) {

   }

(b) Loop with a Nonconstant
Number of Iterations

   ...

   if (somecond)

   ...

   }

for (i = 0; i < 100; i++) {

      break;

(a) Loop with Multiple Exits

      ...

      }

for (i = 0; i < 99; i++)
   for (j = i+1; j < 100; j++) {

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

Figure 21. Common Forms of Loops

Finally, timing analysis support is given to tightly predict the exe-
cution time of a non-rectangular loop nest, i.e. a loop nest where the
number of iterations of an inner loop is dependent on counter variables
of outer level loops. These loop nests, such as the one shown in Fig-
ure 21(c), appear frequently in programs and can result in signi�cant
overestimations in worst-case predictions (as well as underestimations
in best-case predictions). Our approach more tightly predicts the num-
ber of iterations when the initial value or limit of the control variable
in an inner loop depends on a control variable of an enclosing outer
loop.

IF A loop variable has a non-constant loop-invariant initial value, limit, or stride
that is not dependent on an outer loop variable AND

There are no other loop variables to bound the number of loop iterations THEN
Use information provided by the user (assertions or responses to queries) as
described in Section 4 to obtain bounds on these variables.

END IF

Calculate the minimum and maximum iterations as described in Section 3.
IF The value of the loop variable is dependent on an outer loop variable THEN

Calculate an average number of iterations for the loop,
using the techniques described in Section 5.

END IF

Figure 22. Algorithm for Selecting a Solution Method for Bounding Loop Iterations

Figure 22 shows the algorithm used to decide which of the techniques
presented in this paper use for a particular loop.
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These methods have been successfully integrated in an existing com-
piler and an associated timing analyzer that predicts the performance
for optimized code on a machine that exploits caching and pipelining.
The result is tighter and more reliable timing analysis predictions and
less work for the user.
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