
Reuse with Software Components –
A Survey of Industrial State of Practice

Rikard Land1, Daniel Sundmark1, Frank Lüders1, Iva Krasteva2, Adnan Causevic1

1Mälardalen University, School of Innovation, Design and Engineering, Västerås, Sweden
2Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria

{rikard.land, daniel.sundmark, frank.luders, adnan.causevic}@mdh.se, ivak@rila.bg

Abstract. Software is often built from pre-existing, reusable components, but
there is a lack of knowledge regarding how efficient this is in practice. In this
paper we therefore present qualitative results from an industrial survey on
current practices and preferences, highlighting differences and similarities
between development with reusable components, development without reusable
components, and development of components for reuse. Component reuse does
happen, but the findings are still partly disappointing: currently, many potential
benefits are not achieved. Still, the findings are encouraging: there are indeed
good, reusable components properly verified and documented, and mature
organizations who manage to reuse these components efficiently, e.g. by
leveraging the previous component verification. We also find that replacing one
component for another is not necessarily complicated and costly.

1 Introduction

The paradigm of component-based software engineering (CBSE) has a number of
perceived benefits [1] [2]: components may be developed independently of each other
and interact only through explicit interfaces, which open up the possibility for
component reuse in new contexts. It provides a framework for defining architectures
and facilitating ease of integration, when using pre-existing components as well as in
a top-down design decomposition system development [3]. By selecting pre-existing
components that have been proven in use and enhanced over time, it would be
possible to construct high quality systems more rapidly than ever. Moreover, research
is progressing towards the vision that system behaviour can be predicted from
component behaviour [4] [5], which would make reuse even more attractive, as the
consequences of selecting a particular component would be known in advance.

However, in practice, software reuse through components is difficult and not
entirely successful, for several reasons: first, components do not always live up to the
expectations, partly because it is inherently extremely difficult to verify a component
without a context. Second, it is seldom easy to exchange a component for another;
even though (part of) the interface is identical or similar. Thus, at least some of the
development time saved through reusing a component needs to be spent in the
selection, evaluation, and verification of components, and explicit management of the

2 Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, Adnan Causevic

relationships with component vendors. This typically also leads to vendor lock-in, and
reuse is thus often degraded to only an initial event in a system’s history.

We set out to study the state of the practice in the following general software
development activities, from a software component reuse perspective: requirements
elicitation and customer interaction, design and implementation, verification, and
component selection and evaluation. For this purpose, we constructed a web-based
survey and invited organizations reusing and integrating existing software
components, as well as organizations not reusing components, and component
builders, as respondents. Focus was on the technical staff (developers, testers,
architects, etc.) This paper presents the results of this survey, thereby providing an
insight in how well CBSE supports software reuse in current practice, how and to
what extent components are verified in isolation, and how component users test and
evaluate components before selecting them.

There are two main research questions reflected in the structure of this paper: first,
in Section 4, we investigate whether there are any differences in how development
activities are performed, depending on whether software development include the
reuse of components or not. Developers of components for reuse are included as a
third group in this comparison. Then, in Section 5, we investigate how component
selection and evaluation, is performed by projects developing software (partially) by
integrating reusable components.

First however, in Section 2 we describe the background, and in Section 3 we
present the research method used to perform and analyse the survey. Section 6
concludes the paper and presents ideas on future work.

2 Background and Related Work

Although software reuse has some potential benefits, practice has shown a great many
challenges, and not only technical aspects must be mastered. Any serious software
reuse attempt must permeate the organization and allow existing processes and
practices to be modified [6].

Other empirical studies of software reuse have been conducted (see e.g. [7] for a
review) and even some focusing specifically on reuse with components [8] [9]. The
study presented here adds to this body of work by investigating some specific
questions, in particular related to verification and component selection. Other related
work is referred to in context throughout the rest of the paper: Section 4 describes
existing approaches to requirements and customer interaction [10] [11], design and
implementation [11] [12], and verification [3] [13] [14], which has a bearing on
component reuse. Section 5 relates to literature with suggested methods for Off-the-
Shelf (OTS) component selection and evaluation [15] [16] [12] [17] [18] [19] [20]
[21] [22]. In these sections, we describe suggested methods, practices, and previous
observations found in literature, and relate our empirical survey results with them, to
investigate the extent to which suggested guidelines etc. are adopted in practice.

Reuse with Software Components – A Survey of Industrial State of Practice 3

3. Research Method

To study how the component-based software paradigm support reuse in practice, we
constructed a web-based questionnaire. Invitation emails were sent to companies that
were part of our joint research projects such as FLEXI1 and NESSI2 , among others.
We thus received a total of 93 responses, 30 of which seem to have quit the
questionnaire after providing only some background information. We believe the
main reason is that they perceived the questionnaire would take too long time, and we
cannot know if this poses a particular threat to validity, i.e. if some particular types of
answers were thus systematically excluded.

However, since the respondents are anonymous we cannot know how many
organizations these represent. Also, as we sent the invitation to participate to some
email lists, and encouraged every recipient to further spread the invitation we can
neither know the response frequency, nor exactly which organizations are
represented. Hence, during any statistical treatment of the data we must bear in mind
the limitations imposed by this type of convenience sampling to the external validity
of the results. More information about the questionnaire, as well as all data, is
available as a technical report [23].

In much of our analysis, we explore any differences between development with
reusable components, development without reusable components, and development of
components for reuse. These three groups are defined as illustrated in Fig. 1, based on
three specific questions in the questionnaire: we consider two complementary subsets
of development projects: with or without reusable components. Orthogonal to this
division, we also consider projects developing components for reuse (which we study,
as indicated in the figure), and projects developing (non-reusable) products and
systems used by end users.

Fig. 1. Groups of respondents

For each respondent, based on the responses to some mandatory initial questions in
the questionnaire, some later sections of questions were shown or hidden. As this
caused the number of respondents to vary between sections, the number of
respondents in each survey section is specified in Table 1, both per group and the total

1 http://www.flexi-itea2.org/
2 http://www.nessi-europe.com/

4 Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, Adnan Causevic

(which is the sum of the first two columns, i.e. the groups representing development
with and without reusable components).

Table 1. Number of responses in each respondent group for each section in the survey

 Development...
Survey
Section

...with reusable
components

...without
reusable
components

...of
components
for reuse

Total

Agile practice preferences 32 18 8 50
Testing 24 12 6 36
Component development 8 5 8 13
System development with
reusable components

29 0 5 29

System development 25 0 6 25

4 Development with, without, and for Reuse

In this section, we analyze the activities requirements elicitation and customer
interaction, design and implementation, and verification. In particular, we explore the
differences, if any, between development with reusable components, development
without reusable components, and component development for reuse.

4.1 Requirements Elicitation and Customer Interaction

Interaction with customers and feedback [11] affect how requirements are formulated,
how fixed they are, and how often deliveries are made. Generally, our results show
that regardless of the level of component reuse in development, incremental delivery
is a widespread practice, but requirement handling and collection of customer
feedback varies between development of, with, and without reusable components.

Regular interaction. For development without reuse, regular interaction between
developers and customers/business people is in general encouraged by management,
while for development with and for reuse, there is no consensus. However, there is a
consensus among the respondents that they would like such regular interaction to be
increased.

Changing requirements. For development with reusable components, there is a
slight tendency to discourage customers from changing requirements once they are
specified. For development without reusable components, the tendency is the
opposite: customers have more possibilities to change their requirements. A possible
explanation is that when a decision has been made to use a reusable component,
requirement changes may have a larger impact on the existing design [10] [12].
However, both groups seem to be dissatisfied with the current state: respondents in
the development with reusable components group would like to allow their customers
to change their requirements, while respondents in the development without reusable
components think customers should be allowed to change less. For the above
questions, the development of components for reuse group provides answers without
any clear preferences.

Reuse with Software Components – A Survey of Industrial State of Practice 5

Incremental delivery. In all groups, the general practice is to deliver software to
customers incrementally, and all respondents think this practice should be even more
emphasized. All groups in general also provide users with early versions (alpha/beta)
of the software, but this tendency is stronger among system development than
component development for reuse. One interpretation of this difference is that it more
useful feedback can be collected from end users using an incomplete or buggy user
interface application, than from component users using an unreliable component.

Delivery of source code. Sometimes, the software is delivered as source code, and
sometimes in binary format, without any particular tendency or any difference
between the groups. This may indicate that the domain determines what is convenient,
rather than for example different types of business relationships in the groups, or any
difference in the desire to keep the implementation secret.

Customer feedback. In development of systems for end users, the respondents
almost uniformly state that end customer feedback is collected and evaluated through
different mechanisms. This can be contrasted to development of components, where
the respondents are more varied in their responses, but still with a slight overweight in
support for this practice. One partial interpretation is that for at least reusable
components developed for the mass-market, the distance to customers is large
(although this distance can be decreased: we are aware of one COTS vendor which
presents the current state to their key customers in web conferences every second
week, and allow interaction in these virtual meetings).

4.2 Design and Implementation

This section reports on some findings related to design and implementation from the
perspective of the three groups defined above. Our findings point out that incremental
design and coding is a preferred practice among the respondents, but also that there
are differences between the preferred and the actual practice.

Interleaving of design and programming. The responses are very varied as to
what degree programming should be allowed to start before design is completed. The
current practice varies across the scale for all groups of respondents, although those
doing development without reuse has a slight tendency towards being more
permissive of starting programming early. When asked about their preference, all
three groups are less permissive when compared to the current practice, although this
is not the case for each individual respondent.

Incremental design and coding. This is often viewed as a good way to discover
design problems early and to get early customer feedback [11]. Our findings show
that it is widely used in current practice, independently of whether development is
done with, without or for reuse. When asked about their preference, the respondents
unanimously agreed that the incremental approach is desirable.

Return on investment of designing components for maintainability. The group
of respondents representing development of software components for reuse
unanimously agreed that if enough efforts for building a good and maintainable
design of a component are not spent in advance, the cost of change for a component is
really high. Respondents outside this group were not asked this question.

6 Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, Adnan Causevic

Redesigning component-based systems. Design lock-in has been identified as a
potential side-effect of building systems from pre-existing software components [12].
However, the majority of respondents agreed that redesigning a system is not a big
issue when building a system out of components. The group representing
development without software components were not asked this question.

4.3 Verification

Ease of verification is one of the main arguments for software reuse through
components [3] [14]. The main idea is that components that have been verified in
previous settings and deployments will not require as much verification effort as
software developed from scratch. Such savings would be highly relevant, since
verification is widely known to consume significant portions of the resources in
software development projects [13]. In this section, we investigate system and
component verification from the perspective of current practice in software
development with, without and for reuse.

General opinions. Regardless whether the system is built with or without reusable
components, most respondents find themselves having less time for testing than they
would like to. Looking at the ideal verification practices, in the eyes of the
respondents, unit testing still has a high degree of preference. Moreover, respondents
generally feel that both functional black-box testing and testing based on code
analysis should be increased compared to current practice, and functional black-box
testing is preferred over testing based on code analysis.

Unit testing and component testing. In system development with and without
reuse, most respondents report a high level of use of unit testing. The same goes for
functional black-box testing of components. This trend is even more apparent when
looking at functional black-box testing on system-level. Answers are similar for
performance and security testing, but we feel that these types of testing are too
domain-specific to consider generally. In component development for reuse, both
functional black-box testing and testing based on code analysis (e.g. statement or path
coverage) are present in some projects. For all these verification methods, there is a
noticeable difference between the current practice and the perceived ideal level of
usage, which in general is significantly higher.

Integration testing. To a large extent, respondents find themselves in projects that
allow code changes during integration testing. Interestingly, respondents developing
systems with reusable components find this less problematic than those developing
systems without reuse. In addition, the respondents do not consider it easier to test
systems built out of reusable components which are previously tested in isolation,
than to test systems built without reuse.

Testing of documentation. In all groups, testing of documentation is something
that is perceived to be largely neglected, and most respondents, except those
developing components for reuse, would like a significant increase in this practice.
However, out of the 8 developing components for reuse, only 2 explicitly agree that
the documentation provided with the components is sufficient for the needs for the
component users.

Reuse with Software Components – A Survey of Industrial State of Practice 7

In-house vs. Subcontracted vs. OTS. Among the respondents, there are stronger
explicit demands on the documentation and verification of subcontracted components
compared to the documentation and verification of in-house or OTS components.
Component creators and component users both think that the current state of
documentation and verification fulfil the needs of component users, for subcontracted
and OTS components, but not for in-house components. This is also reflected in a
stronger dissatisfaction with the documentation and verification of in-house
components, compared to that of subcontracted or OTS components.

One possible explanation for this is that the distance from a subcontractor or OTS
vendor to the component user is greater, and also that the amount (and quality) of
documentation is regulated by contracts (for subcontractors), or implicitly required in
order to have an attractive product (for OTS vendors). Whatever the reason, this
points us in a direction where component reuse could be improved by providing more
efficient and practically useful documentation.

5 Component Selection and Evaluation

In this section, we describe the current state of practice concerning the selection of
reusable components to use during software development, and the challenges of
evaluating reusable components in a system context.

5.1 Component Selection

The commonly suggested practice for OTS selection is to first filter away many
component candidates in a high-level evaluation phase, based on information and
documentation about the components, and only later perform a prototyping hands-on
evaluation of a final few components by writing test cases and create prototypes [15]
[16].

Roles involved in component selection. The survey responses indicate that in
some projects, only the development unit is involved in the component evaluation and
selection process, while other projects heavily involve customers or internal staff with
a responsibility to know the market and customers. Although it is true that some
components are not directly visible to customers and end users, more often than not,
the decision to use a specific component does have a business impact; it may for
example strongly affect the possibilities for future extensions of the systems [12] [17].
Thus, it appears that, in some companies, the current state of practice needs to be
improved.

Interleaving system requirements elicitation and component selection. The
respondents tend to formulate requirements on components fully prior to evaluation
and selection. However, they generally find it difficult to break down system
requirements to component requirements. This indicates that many organizations have
not yet implemented the practice [15] to interleave component selection with the
requirements elicitation process, as suggested by e.g. the methods PORE
(Procurement-Oriented Requirements Engineering) [18], CRE (COTS-Based
Requirements Engineering) [19] and CARE (COTS-Aware Requirements

8 Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, Adnan Causevic

Engineering) [20]. However, as said, the majority of the respondents assert that
customers or business people are involved during component selection and
evaluation. One interpretation is therefore that requirements elicitation and
component selection and evaluation are often in practice interleaved, albeit not
formalized as a process.

5.2 Component Evaluation

Prototyping evaluation. After some initial, high-level evaluation, based on
information about OTS components (or existing knowledge of the potential
components) [8], the suggested practice is to create prototypes, or simulate the
system’s usage of the component through testing [15]. There are two main goals for
this: To examine technology or architecture [15] [16]; the survey results clearly show
this type of prototyping activity is widely performed in practice. To evaluate
component assemblies (rather than individual components) [15] [16] [21] [22]; the
result varies with no clear tendency.

Usage of provided test cases. Our responses vary concerning whether test cases
provided with the components are used to evaluate them. The respondents who use
test cases provided with the components report that they also develop their own test
cases for components in order to evaluate them, and surprisingly, those that do not use
test cases provided with the components do not write their own test cases. Even more
surprising is perhaps that this is true not only for subcontracted or in-house developed
components – where one could expect the detailed functionality, level of quality, and
responsibility for quality assurance to be specified by contracts – but also for OTS
components.

Insufficient evaluation. High-level component evaluation and prototyping
evaluation complement each other; however, if the components to select from are
known, it may be sufficient to do a brief hands-on evaluation in the new context [8],
which could partly explain that some of our respondents do not evaluate components
prior to selection. However, some of the respondents who do not test their
components believe testing is more efficient than documentation (this is true also for
all respondents who do use test cases), which makes us lean towards the following
conclusion: there are organizations and projects where OTS components are selected
without proper evaluation – and that they are aware of this. However, there are also
indeed organizations that perform systematic evaluation of OTS components.

6 Conclusion and Future Work

This paper presented an empirical, qualitative study of reuse with software
components. Our data indicate that reuse of components does not make design
decisions as permanent as might be feared. The impact of requirements changes are
inconclusive. Regarding verification, the general opinion in our study is that it is not
done to a sufficient extent, independent of component reuse. Separate verification of
reusable components in isolation does not in general make system verification or

Reuse with Software Components – A Survey of Industrial State of Practice 9

component evaluation easier. Known good practices for component selection and
evaluation are implemented in some organizations but not all.

In conclusion, as for the current state of the practice of component reuse in
industry, we can claim that components are as a matter of fact built for reuse, and
those components are in fact being reused. The main reasons (which we have not
studied) are probably those of cost and time for system development: through
component reuse systems can be built cheaper and faster. However, some other
potential benefits (which we have studied) are not in general experienced: in
particular system verification is not necessarily made easier, and requirements
engineering, and ultimately the ways system developers interact with their customer,
need to change further than is the case in general today. Nevertheless, our study
clearly shows that there are organizations where these benefits are indeed
experienced, but this is apparently hard to achieve without explicit attention and
effort. Further research includes studying the organizations which manages
component reuse the best in order to identify good practices and how to implement
them in different circumstances. Many such practices and potential benefits are
already known, but are, according to our results, not yet widely adopted in industrial
practice. As this generally confirms previous studies, it is useful as it adds to the body
of knowledge and may provide additional insights.

Acknowledgements

This work was partially supported by the Swedish Foundation for Strategic Research
(SSF) via the strategic research centre PROGRESS, the Bulgarian Ministry of
Education and Science, and FLEXI. Thanks also to all the questionnaire respondents
and the people who have been involved in earlier phases of this research.

References

1. Szyperski, C.: Component Software 2nd edn. Addison-Wesley (2002)
2. Wallnau, K., Hissam, S., Seacord, R.: Building Systems from Commercial Components.

Addison-Wesley (2001)
3. Crnkovic, I., Chaudron, M., Larsson, S.: Component-based Development Process and

Component Lifecycle. In : International Conference on Software Engineering Advances
(ICSEA'06), Tahiti (2006)

4. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Packaging Predictable Assembly with
Prediction-Enabled Component Technology., Pittsburgh (2001)

5. Land, R., Carlson, J., Larsson, S., Crnkovic, I.: Towards Guidelines for a Development
Process for Component-Based Embedded Systems. In : Workshop on Software Engineering
Processes and Applications (SEPA), Yongin, Korea, vol. LNCS (2009)

6. Karlsson, E.-A.: Software Reuse : A Holistic Approach. John Wiley & Sons Ltd. (1995)
7. Mohagheghi, P., Conradi, R.: Quality, Productivity and Economic Benefits of Software

Reuse: A Review of Industrial Studies. Journal of Empirical Software Engineering 12(5),

10 Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, Adnan Causevic

471-516 (2007)
8. Li, J., Torchiano, M., Conradi, R., Slyngstad, O., Bunse, C.: A State-of-the-Practice Survey

of Off-the-Shelf Component-Based Development Processes. In Morisio, M., ed. : ICSR '06,
Torino, pp.16-28 (2006)

9. Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O., Morisio, M.: Development
with Off-The-Shelf Components: 10 Facts. IEEE Software 26(2), 80-87 (2009)

10. Cooper, K.: Can Agility be Introduced into Requirements Engineering for COTS
Component Based Development? In : International Workshop on Software Product
Management (IWSPM) (2006)

11. Beck, K.: EXtreme Programming EXplained: Embrace Change. Addison Wesley (1999)
12. Krasteva, I., Branger, P., Land, R.: Challenges for Agile Development of COTS

Components and COTS-Based Systems – A Theoretical Examination., Funchal, Portugal
(2008)

13. Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Testing.
(2002)

14. Aoyama, M.: New age of software development: How component-based software
engineering changes the way of software development. Proceedings of International
Workshop on Component-Based Software Engineering. (1998)

15. Land, R., Blankers, L., Chaudron, M., Crnkovic, I.: COTS Selection Best Practices in
Literature and in Industry. In : Proceedings of 10th International Conference on Software
Reuse (ICSR), Beijing, China (2008)

16. Oberndorf, P., Brownsword, L., Morris, E., Sledge, C.: Workshop on COTS-Based
Systems. (1997)

17. Krasteva, I., Land, R., Sajeev, A.: Being Agile when Developing Software Components and
Component-Based Systems – Experiences from Industry. In : EuroSPI, Madrid, Spain
(2009)

18. Maiden, N., Ncube, C.: Acquiring COTS Software Selection Requirements. IEEE Software
15(2) (1998)

19. Alves, C., Castro, J.: CRE: a systematic method for COTS components Selection. In :
Proceedings of the XV Brazilian Symposium on Software Engineering (SBES), Rio de
Janeiro (2001)

20. Chung, L., Cooper, K.: Defining Goals in a COTS-Aware Requirements Engineering
Approach. Systems Engineering 7(1) (2004)

21. Burgués, X., Estay, C., Franch, X., Pastor, J., Quer, C.: Combined Selection of COTS
Components. In : International Conference on Component-Based Software Systems
(ICCBSS), vol. LNCS 2255, pp.54-64 (2002)

22. Bhuta, J., Boehm, B.: A Method for Compatible COTS Component Selection. In :
International Conference on Component-Based Software Systems (ICCBSS), vol. LNCS
3412 (2005)

23. Causevic, A., Krasteva, I., Land, R., Sajeev, A., Sundmark, D.: An Industrial Survey on
Software Process Practices, Preferences and Methods. (2009)

24. Land, R., Alvaro, A., Crnkovic, I.: Towards Efficient Software Component Evaluation: An
Examination of Component Selection and Certification. In : Euromicro SEAA SPPI Track,
Parma, Italy (2008)

