1

Software Engineering featuring the Zachman

Taxonomy
Pia Stoll, Anders Wall Christer Norstrom
Industrial Software Systems Computer Science and Elecson
ABB Corporate research Malardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

August 28, 2009

Abstract

Software engineering of today must consider organizatiara business is-
sues as well as architectural issues for fast manufactofiegftware. The seman-
tics in a taxonomic scheme including organizational-, heiss- and architecture
artifacts would help software engineers define explicétiehs between software
engineering artifacts at all software design-levels.

In this report, we present the Software Engineering Taxgnatarived from
the Zachman Enterprise Architecture Framework. The Soékagineering Tax-
onomy proved to be able to classify all software engineedrtgacts from the
IEEE Software Engineering Book Of Knowledge (SWEBOK) psbéd 2004.

The Software Engineering Taxonomy also proved to give uisesights into
how customer sites and development sites may interactgbirfaovation exempli-
fied with the companies Apple (AppStore) and Google. Thertarty also proved
to be useful for process analysis which is shown for the Sgtouess.

Introduction

This report investigates the possibility of classifyindte@re engineering artifacts for
industrial software systems. The classification shoultuohe artifacts related to busi-
ness and organization and therefore three Enterprise t&nthie frameworks were
considered. The three frameworks were: the Zachman frankewte Department
Of Defense Architecture Framework (DODAF) [1] and The Opeoup Architecture

Framework (TOGAF) [2].

The discipline of enterprise architecture is commonly adered to have its birth

in an academic article by John Zachman published 1987 byetfearch oriented IBM
Systems Journal [3]. Zachman saw the growing complexityhfifriation software
system that extended in scope and complexity to cover areatiterprise. He stated
that decentralization of system resources without streatesults in chaos and argued
for the need of information system architecture. Zachmamcked for an objective
independent basis upon which to build a framework for infatiom system architecture
and resolved to be inspired by classic architecture.

Enterprise architecture as defined by the Federal Architet¥/orking Group (FAWG)
[4] is: a strategic information asset base and describesitbgion (i.e. the business),
the information necessary to perform the mission and thentgogies necessary to
perform the mission, and the transitional processes foldmpnting new technologies
in response to changing mission needs. An enterpaisghitecture includes a baseline
architecturé, target architectufgand a sequencing plan

According to James N. Martin [5] enterprise architecturalslevith “Getting to
the Future” and has drivers and outcomes. The enterpribéecture is according to
Martin a means for transforming enterprise objectives tsiness plans and mission
needs.

In the mid 1990s the DoD determined that a common approachneeded for
describing its architectures, so that DoD systems couldieffily communicate and
inter-operate during joint and multinational operatiofie interoperability aspects
of the DODAF is reflected in its architectural views which &eused on describing
what's being communicated and how in the Operational View)(6f the DODAF.
The Systems View (SV) of DODAF identifies the systems thafpsupthe OVs and
the Technical View (TV) describes the criteria for each isgisystem that will sat-
isfy the interoperability requirements. DODAF is as sucharoarchitecture develop-
ment method or a classification framework, it's an architeetiescription development
framework focused on describing interoperability aspet/stems of systems.

TOGAP is developed and maintained by members of The Open Grougkjwgpr
within the Architecture Forum. The original developmentT®GAF Version 1 in
1995 was based on the Technical Architecture Frameworkrfimrination Manage-
ment (TAFIM), developed by the US Department of Defense (Pdbe DoD gave
The Open Group explicit permission and encouragement eaef@OGAF by building
on the TAFIM, which itself was the result of many years of depenent effort and
many millions of dollars of US Government investment.

TOGAF is more ambitious in scope than its defense counterp@DAF. TO-
GAF organizes architectures into four domain levels: Bessnarchitecture - defines
business strategy, governance, organization, and kendmssprocesses; Application
architecture - specifies individual application systentsddeployed; Data architecture
- defines structure of an organization’s logical and physleta assets and associated
data management resources; and Technology architectpezifies software infras-
tructure intended to support the deployment of core, missidtical applications.

As this report was searching for a enterprise architectuiigaet classification
framework, not an enterprise architecture descriptioretiggment framework or in-
house information system architecture development fraorieyvit resorted to study the
Zachman framework in more detail as the Zachman taxonomyighaweight ontol-
ogy that classifies enterprise architecture artifacts asriteed in Section 2.

The remainder of this report is organized as follows; Secfiaescribes the Zach-
man Framework, Section 2.1 describes the Software Engmge€axonomy and the
classification of the SWEBOK software engineering artéa@ection 2.3 and Sec-

1Enterprise - an organization supporting a defined businessesand mission. An enterprise includes
interdependent resources (people, organizations, ahddkgy) who must coordinate their functions and
share information in support of a common mission.

2Baseline architecture - the architecture as it is today, eddled as-is architecture

STarget architecture - the (planned) future architectuss ealled to-be architecture or goal architecture

4Sequencing plan - the strategy for changing the baselingitacture to the target architecture, also
called the transition plan

Shttp://www.opengroup.org/architecture/togaf9-doctfdr

tion 2.4uses the Software Engineering Taxonomy from Setib to analyze the cases:
AppStore, Google and Scrum, and Section 3 presents theusioies of the work with
the Software Engineering Taxonomy and its usefulness fistiftware engineering
discipline and future work.

2 Zachman Framework

In a joint article [6] published 1993, Sowa and Zachman drpihat the Zachman
framework links the concrete things in the world (entitipspcesses, locations, peo-
ple, times and purposes) to the abstract bits in the comptiterZachman framework
is not a replacement of programming tools, techniques, dhoa®logies but instead,
it provides a way of viewing the system from many differentgpectives and how
they are all related. The framework logic can be used for riteag virtually any-
thing. The logic was initially perceived by observing thesigm and construction of
buildings. Later it was validated by observing the engiimgpand manufacture of air-
planes. Subsequently it was applied to enterprises durimighithe initial material on
the framework was published.

The objective to use the Zachman framework [7] [3] [8], ad@og to Zachman, is
to reduce time-to-market for anything substantive and thg t® do this is to create
primitive re-usable model descriptions designed to beagirs more than one imple-
mentation (composite) anywhere in the enterprise. ZacHuorémrer states that the only
way of managing the impact of change is to manage verticahanizontal relation-
ships in the framework.

According to Zachman, “Architecture” is the set of desadviptepresentations rele-
vant for describing a complex object (actually, any objeath that the instance of the
object can be created and such that the descriptive repatissis serve as the base-
line for changing an object instance. Descriptive repregams (of anything) typi-
cally include “Abstractions” classifying the descriptiéocus: Inventory Sets(What),
Process Transformations(How), Network Nodes(Where)a@iration Groups(Who),
Timing Periods(When), Motivation Reasons(Why). Desdrgtepresentations also
include “Perspectives” classifying the description usageope Concepts, Business
Contexts, System Logic, Technology Physics, and Compsané@ihie relevant descrip-
tive representations would necessarily have to includinalintersections between the
Abstractions and the Perspectives (Figure. 1). “Archite€t would be the total set
of descriptive representations (models) relevant for idleisg the complex object and
required to serve as a baseline for changing the complexibiee it is described.
Zachman’'s complex object is the enterprise, but princjadl states that the complex
object can be any object.

The Zachman framework is a structure, not a methodologyriating the imple-
mentation of the object. The Zachman Framework does notjia}thing about how
architecture is done (top-down, bottom-up, etc). The le¥eletail is a function of a
cell not a function of a column. The level of detail neededésdatibe the Technology
Physics perspective in row four may be naturally high butiesi not imply that the
level of detail of the row one descriptions should be lowetheropposite.

The framework is normalized, that is adding another row durom to the frame-
work would introduce redundancies or discontinuities. @osite models and process
composites are needed for implementation. A composite medme model that is
comprised of elements from more than one framework modelaFthitected imple-
mentations, composite models must be created from primitiedels and diagonal

Abstraction INVENTORY PROCESS NETWORK | ORGANIZATION TIMING MOTIVATION
SETS TRANSFORMATIONS NODES GROUPS PERIODS REASONS

Perspective (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
SCOPE e.g. Inventory |e.g. Process Types e.g. Networje.g. Organization|e.g. Timing |e.g. Motivation
CONTEXTS Types Types Types Types Types
(Strategists)
BUSINESS e.g. Business |e.g. Business e.g. Business|e.g. Business e.g. Business|e.g. Business
CONCEPTS Entities & Transform & Input Locations & |Role & Work Cycle & End & Means
(Executive Relationships Connections Moment
Leaders)
SYSTEM e.g. System |e.g. System e.g. System [e.g. System e.g. System |e.g. System
LoGIC Entities & Transform & Input [Locations & |Role & Work Cycle & End & Means
(Architects) Relationships Connections Moment
TECHNOLOGY Je.g. e.g. Technology eg. e.g. Technology |e.g. e.g. Technolog)
PHYSICS Technology [Transform & Input Technology |Role & Work Technology |End & Means
(Engineers) Entities & Locations & Cycle &

Relationships Connections Moment
COMPONENT e.g. e.g. Component e.g. e.g. Component |e.g. e.g. Componen
ASSEMBLIES ~ JComponent | Transform & Input | Component (Role & Work Component [End & Means
(Technicians) Entities & Locations & Cycle &

Relationships Connections Moment

Figure. 1: The Zachman Framework

composites from horizontally and vertically integratedrptives. The structural rea-
son for excluding diagonal relationships is that the calluélationships are transitive.
Changing a model may impact the model above and below in the salumn and any
model in the same row.

For manufacturing a process composite would be necessaeypibcess compos-
ite describes the working process of creating the modelrgit®ns of the composite
model, typically ending with the descriptions of the comeots in the Component
Assemblies perspective, e.g. a service or framework. Al ttimension of the frame-
work, called science, has been proposed by O’Rourke et &l. TBis extension is
known as the Zachman DNA (Depth iNtegrating Architectute)addition to the per-
spectives and aspects the z-axis is used for classifyingriaices and activities used
for producing all the cell representations.

The Zachman Framework has been used almost exclusivelyfilmiation sys-
tem modeling. The reason is to find in the integration betwkerBusiness Concepts
perspective and the System Logic perspective. Zachmamrrijres that the Scope
Contexts perspective and the Business Concepts perspshtiuld describe the enter-
prise’s own scope and business. The System Logic perspetttevTechnology Physics
perspective, and the Components perspective should bdedbe system’s support of
the enterprise’s Scope Contexts perspective and Businasse@ts perspective. For
an enterprise that builds an in-house information systemishnatural since infor-
mation systems’s goal is to support in-house business gsese Enterprises building
information systems to support their own business prosdsas control over all five
perspectives in line with Zachman’s argumentation thaétiterprise should only enter
controllable model descriptions into the framework.

Being in control of a model translates into having the powethange the model
description. If a person is in control of the model descigiine system’s technology
processes, this person has the power to change e.g. thesctagstheir relations in the
system.

Customer(s)’s Software Development Organization(s)'s

perspectives perspectives
\ y4
/ System Customer(s)'s \ / Software Development \
Business Concepts Organization(s)'s
[Customer(s)'s: system related Business Concepts
production activities, system related [Software Development
production team locations and Organization(s)’s: software
connections, system related production development activities,
roles and work products, system software development team locations
related production schedules, system and connections, software
related production strategy ...] development roles and work products,
software development schedules,
K /O\ software development strategy M
s N

System Logic
[e.g. Requirements, System activity diagram, Systedomain
\ model, System State chart...])
| |

Technology Physics
[e.g. Class entities, Timing entities, Design rulgs

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Figure. 2: The Customer’s and the Software Developmenti@zgtion’s perspectives

2.1 Software Engineering Perspectives

In order to be able to use the Zachman framework for softwagineering artifacts,
two basic assumptions were done:

1. The classification framework, derived from the Zachmamework, describes
the software development organization and the descriptiodrthe customer’s
enterprise that relates to the usage of the system

2. The classification framework, derived from the Zachmamiework, is three-
dimensional where site is the third dimension. The site migghthe software
development organization, external development orgéinizar the customer’s
enterprise as long as the site has a part in the system usagstem develop-
ment.

The assumptions are illustrated in Figure 2. With theseraptions, the system
development’s Business Concepts perspective will desc¢hié software development
artifacts, e.g. software development activities, sofevdevelopment team locations
and connections, software development roles and work ptedgoftware develop-
ment schedules, and software development strategies. ®delsin the customer’s
Business Concepts perspective will describe the custgrpeoduction related to the
need of system support. The resulting classification fraomkevs called the Software
Engineering Taxonomy.

The models in the Software Engineering Taxonomy might beeshacross devel-
opment and customer sites but it is the software developarganization that controls

the degree of openness. For example if the customer is areangmber in the re-
quirements handling team at the software development @gigon, then the require-
ments handling activity is shared across sites. This wowddmthat the model with
the Business Concepts perspective and Process Transimmsabstraction is partly
shared since this model contains the requirements handtitigity. Another exam-
ple of shared models across sites is the open source devehdprim open source
development, several software development sites shateasefdevelopment model
descriptions across sites. Not only the development &iesvcan be shared across
sites, but also the testing activities. Google lets thegtamers test the Google soft-
ware applications before the final release, which makesubtomers part of the test
team.

2.2 Software Engineering Descriptions

The Software Engineering Body Of Knowledge, SWEBOK, guids the objective to
promote a consistent view of software engineering worldévadd was published 2004
[10]. SWEBOK has references to a very large number of soéiveaigineering theo-
ries. The IEEE SWEBOK has divided the software engineerimgain into a set of
knowledge areas; software requirements, software desidtware construction, soft-
ware testing, software maintenance, software configuratianagement, software en-
gineering management, software engineering processyareftengineering tools and
methods, and software quality. The knowledge areas act@sl&dge for the persons
working in that specific area. In contrast to the work destim [11] [12] the clas-
sification of the SWEBOK software engineering artifactshis treport does not try to
reflect the software engineering professions but insteekl aelassification approach
similar to the building engineering [13] .

The software engineering artifacts are not physical likénabuilding engineering
but differ in their descriptions, not in their physical dingons. A software engineering
description can be very complex, e.g. a domain model inolydilarge set of entities
and their relations, and it can be less complex, e.g. thadistf reports. Some of the
software engineering artifacts from SWEBOK could be dedioms of their own. For
example, the artifact “System Class diagram” could be a deramlescription of the
model with the Inventory Sets abstraction and the TechrydRitysics perspective.

The process used to classify the descriptions from the SWEBGs:

1. Anything resembling an artifact was extracted from theEB@K.
2. The artifact duplicates were removed when all of theaotd were extracted.

3. The non-duplicate artifacts were analyzed and groupedrding to their de-
scriptions. For example, the “Release Schedule” artifaag grouped together
with “Construction Schedule”, “Project Schedule and nidegs”, and “Test
Schedule”.

4. The grouped artifacts were translated into general maetadriptions. For exam-
ple, the group of schedules in the previous step was geredslito the model
description “Schedules for projects, releases and pres&ss

5. The general model descriptions were classified accotditige perspectives and
abstractions from the Software Engineering Taxonomy. Wbenfiorming the
classification it was important to distinguish between thetemer’s perspec-
tives and the development organization’s perspectives ekample, the model

description “Schedules for projects, releases and preségas classified with a
Timing Periods abstraction and Software Development Qrgdinn’s Business
Concepts perspective.

The software engineering artifacts which describe the Idpweent of a software
system and the system itself were expected to be straighifd to classify in Zach-
man’s System Logic perspective since this perspectiveagmtnodel descriptions of
software system architecture, e.g. use cases, activiyalas, requirements.

It was also expected that Zachman'’s Business Conceptsquéingpwould be dif-
ficult to use for Software Engineering artifacts since thésspective is typically used
to model the customer’s business processes in need of sgstgport, e.g. produc-
tion processes. The classification showed that the devaoporganization’s Busi-
ness concepts as e.g. software testing, development debefdrototype analysis etc
could easily be classified in the Software Engineering Taronwhen the taxonomy
perspectives were the software development organizadimsppctives.

Non of the SWEBOK software engineering artifacts descrthec¢tustomer’s Scope
Contexts or customer’s Business Concepts perspective@ametihe classification of
the SWEBOK artifacts is done using only the software devalept organization’s
perspectives. The resulting classification of the SWEBQHKaats is two-dimensional
and shown in Figure 3 and in Figure 4.

Abstraction = INVENTORY PROCESS NETWORK
SETS TRANSFORMATIONS NODES
Software (WHAT) (HOW) (WHERE)
Development
Organization
Perspective ‘
SCOPE [Reports, Standards, [Requirement Handling/ Design/ |[Internal & External
CONTEXTS Stakeholders, Tools, Construction/ Testing/ Development Team
Products] Maintenance/ Networks, Supplier
)) Networks]
Configuration Management/
Engineering Management]
BUSINESS [Estimations, Prototypes, [[Activities for: Requirement [Internal & External
CONCEPTS Analysis, ..., Decisions and [Handling/ Design/ Construction/ |Development Team
their Relations] Testing/ Locations &
Maintenance/ Connections]
Configuration Management/
Engineering Management]
SYSTEM [System Domain Model] [System Activity Diagram] [Syseém Deployment
LOGIC Diagram]
TECHNOLOGY |[Development View, Class [[Logical View, Interface [Physical View,
PHYSICS Diagram] Specification] Deployment Diagram]
COMPONENT [Database Configuration, [[Algorithms, Languages, [Communication
ASSEMBLIES |Build Configuration] Code Modules, Protocols, Port
Frameworks] Configurations]

Figure. 3: The SWEBOK software engineering artifacts dfeskin the Software En-

gineering Taxonomy. The figure shows the three first columns.

The generalized model descriptions are enclosed by bradaketach cell of the
Software Engineering Taxonomy in Figure 3 and Figure 4. kangle, the cell with

ORGANIZATION TIMING MOTIVATION <— Abstraction
GROUPS PERIODS REASONS
(WHO) (WHEN) (WHY) Software
Development
‘ Organization
Perspectivg
[External Regulatory [Internal & External [Business Goals, Process| SCOPE|
Bodies, Development Releases, Scopes, Policies, CONTEXTS
Internal & External Global Economy Events, ...] |Culture, Principles,
Development Teams] Missions]
[Internal & External [Schedules for Projects/ Releasef/Strategies for: BUSINESS
Development Team Roles [Processes] Processes'/ Projects'/ CONCEPTS
& their Work Products] Staffing/ System and
Projects’ Objectives]
[System Use Cases] [State Charts] [Requirements, SYSTEM
Constraints, Qualities] LOGIC
[User Interfaces] [Sequence Diagrams] [Design Rules, TECHNOLOGY
Design Principles PHYSICS
[Security Control, Safety [[Concurrency Model] [Explicit Design Rules/ COMPONENT
Control] Design Principles ASSEMBLIES
Configuration]

Figure. 4: The SWEBOK software engineering artifacts dfeeskin the Software En-
gineering Taxonomy. The figure shows the three last columns.

the Inventory Sets abstraction and Scope Contexts peigpeontains descriptions of
reports, stakeholders, standards, tools and productshysine software development
organization. The cell with the Process Transformatiorstrabtion and Scope Con-
texts perspective contains model descriptions of prosesserequirement handling,
design, construction, testing, maintenance, configuratianagement, and engineer-
ing management. In the Software Engineering Taxonomy, thegsses do not dictate
the classification; they are a part of the classification seheThe Scope Contexts-
and Business Concepts perspectives with the Process draradfons abstraction got
a large number of artifacts classified since SWEBOK contailzsge amount of pro-
cess descriptions and activity definitions for the procesfbe models description are
instantiated for each software development organizakonexample, an organization
doing Scrum [14] processes would instantiate the model thighBusiness Concepts
perspective and Process Transformations abstractioreditriptions of typical Scrum
activities: “Sprint Review”, “Planning”, etc.

2.3 Apple and Google Process Composite Models

We have re-engineered the interactions between develditesiand customer/utilization
sites into our Software Engineering Taxonomy for two conmgsinApple (AppStore)
[[15], [16], [17]] and Google [18]. The companies are woldéding [19] in estab-
lishing new ways of interacting with their customers dursodtware development and

Customer(s)’s Software Developmen
site Organization(s)’s site
|

/ System Customer(s)'s \

Business Concepts
[Network Nodes: Application commercial distribution through mobile
phones and the Internet]
[Organization Groups: Test Team,
Development Team]

System Logic
[Network Nodes: Application interactions through mdile phones and
Internet]

___[Motivation Abstraction: Requirements, Constraints, Design rules])
| | | |

\- J
- ~

Technology Physics
[Not shared]

Component Assemblies
[Process Transformations: Services, Frameworks]
[Network Nodes: Communication protocols]

Figure. 5: Bridges between Customer Site(s) and Develop®its(s) for Apple and
Google.

therefore highly interesting for creating composite medehich bridge the gap be-
tween customer/utilization site(s) and development degdion site(s) in the Software
Engineering Taxonomy.

Apple has created a way to easily install applications intiome by structuring
application code into bundles [17]. The bundle structurpag of the Apple frame-
work. Apple shares the framework but in contrast to the opemcg community gives
external developers no access to the Apple core businesimgponents.

The shared composite model pattern for bridging the utittra and development
sites gap for Apple and Google is visualized in, Figure 5. Fim@vative integration
takes place in the Network Nodes abstraction in the SoftEagineering Taxonomy
for both AppStore and Google.

The AppStore describes the connections of internal- arereat developers, cus-
tomers, and the Apple organization through the Internethraigh the mobile phone
network.

The customers get a test/product strategy role when thesesity drive both the
internal and external development by downloading the vty and externally de-
veloped applications. The top-ten download list is visifile customers as well as
developers on the AppStore web page.

Google’s Ecosystem [18] describes the global locationcandections of Google’s
systems, services, advertisers, and customers overdosdtarriers world-wide. Google
makes services available for external sites to use in tigptiations via standard
protocols. Customers get a test/product strategy role whentest beta-versions of
Google’s products voluntarily.

The system design and deployment are crucial but not shared they are de-
scriptions of the core business logic. By considering whatlefs in the Software
Engineering Taxonomy are possible to share with extertes sve can find new ways
of bridging the gap between utilization and developmentiitould create faster in-

Abstraction — INVENTORY PROCESS NETWORK ORGANIZATION TIMING MOTIVATION
SEIS) TRANSFORM. NODES GROUPS PERIODS REASONS
(WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
Software
Development
Perspective|
SCOPE [Standards, [Planning [List of Scrum [[Customer team | [Competitors [[System vision]
CONTEXTS Expertise] process, team Development releases]
Closure locations] team
process] Management
team]
BUSINESS [Estimation, [Daily Scrum, [[Scrum Team |[Scrum Teams/ [Sprint dates, |[Release plan]
CONCEPTS Risks, Sprint, Review, | Locations Work ; Release date]
Prototype, Analyze, ...] & “Sprint backlog” ,
Funding] Connections] [“Product
backlog”]
SYSTEM [Domain [High level [Requirements]
LoGic model] application
model]
<—r—————————P_gi————--r—————————J
TECHNOLOGY OK T [[system desigi, _ OK | -
PHYSICS == oK | - = ~%
| == - o0N
- T 3
- " =X (o~ —
COMPONENT [Functionality] I - W - [Explicit
ASSEMBLIES W \ - Design rules/
Configuration]

Figure. 6: Scrum reverse engineered into the Software Eeging Taxonomy

novation of new or enhanced products.

2.4 Scrum Composite Process Model

When reverse-engineering the Scrum process into our Saféregineering Taxonomy
it becomes clear that the Scrum approach is rather exteinsilie scope- and business
perspective (Figure 6). To bridge the gap between customiiegdtion site and de-
veloper site, the Scrum process [14] includes the customettlze sales organization
as members of the development team. By integrating cusionsragement, release
management, and developmentin a set of teams, all the teams2rns are integrated
in a dynamic team work product called “product backlog”. Twiportant activities in
the Scrum development process is the cost estimations sindgiimations.

The requirements and qualities are described in the Taxgroath with the Mo-
tivation Reasons abstraction and System Logic perspecliie code or program is
described in the cell with the Process Transformationgatidn and Component As-
semblies perspective. The composite process model, thenStevelopment process
as described in [14], takes a step from requirements totaathial design and domain
modeling in the pregame phase. Would the Scrum compositepsanodel have taken
a direct step from requirements to code then the Zachmarofudensistency would
have been violated.

An interesting approach would be to integrate explicitlyniolated design rules
[20], described in the taxonomy cell with the Motivation Reas abstraction and the
Technology Physics perspective. This would be an altar@atay or additional step
to take from requirements to code.

3 Conclusions and Future Work

The Software Engineering Taxonomy derived out of the ZaghRramework relies on
two assumptions:

10

1. The classification framework, derived from the Zachmam&work, describes
the software development organization and the descriptidrthe customer’s
enterprise that relates to the usage of the system

2. The classification framework, derived from the Zachmamfework, is three-
dimensional where site is the third dimension. The site mighthe software
development organization, external development orgéinizar the customer’s
enterprise as long as the site has a part in the system usagstem develop-
ment.

The classification of the IEEE SWEBOK artifacts uses onlysbfware develop-
ment organization’s perspectives, not the customer petigperesulting in the classi-
fication being two-dimensional. However, the three dimensiof the Software Engi-
neering Taxonomy can be used to describe a software develgprganization that
shares models with external software development sitegstomer sites, e.g. Google,
Apple and Open Source development as described in thistréfiw analysis of App-
Store and Google showed that the taxonomy’s Network Nodstsaattion and Orga-
nization Groups abstraction columns are important foriagamodels with external
development- and utilization sites for faster innovatibnew products.

The reverse engineering of the Scrum process into our Sadtagineering Tax-
onomy showed that all of the Scrum artifacts can be classietithat the focal point
of the Scrum is on the Scope Contexts perspective and the&ssConcepts perspec-
tive of the development organization. The descriptionfief3ystem Logic perspective
and the Technology Physics perspective are thin in the Sprogess.

The Software Engineering taxonomy can serve as a reasoaimgWork into which
artifacts and results of software engineering theories;gsses and case studies might
be mapped for further analysis. The consistency rules oZ#tthhman framework are
valid for the Software Engineering Taxonomy.

It remains to do a formal validation of the Software EngifgiTaxonomy. The
formal validation could be in the form of a more thorough eotlon of software en-
gineering artifact and their classification. Further, apek panel could judge the
classification’s correctness.

References

[1] DoD. Department of Defence Architecture Framework WogkGroup, DoD
Architecture Framework, DoDAF, version 1.0. Departmeribefence, 2003.

[2] TOG. The Open Group Architecture Framework, version 8/9, 2002/6. The Open
Group,.

[3] J. A. Zachman. A Framework for Information Systems Atebture | BM Systems
Journal, 26(3):276-292, 1987.

[4] R. C. Thomas. A Practical Guide to Federal Enterprise hKecture,.
www.gao.gov/bestpractices/bpeaguide.pdf, 2001. retdduly 11th 2009.

[5] J. N. Martin. An introduction to the Architectural Frameworks
DODAF/MODAF/NAF. Course given at the Royal Institute of Technology,
Stockholm, Sweden, 2006.

11

[6] J. F. Sowa and J. A. Zachman. Extending and formaliziregftamework for
information systems architecturdBBM System Journal, 31:590-616, 1992.

[7] J. A. Zachman. The Zachman Framework and Observatioridethodologies.
Business Rules Journal, 5(11), 2004.

[8] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A Primer
for Enterprise Engineering and Manufacturing. Zachman International, 2003.

[9] C. O'Rourke, N. Fishman, and W. Selkow. Enterprise Atetiure, Using the
Zachman Frameworklhomson Course Technology, 2003.

[10] P. Bourque, R. Dupuis, A. Abran, and J. W. Moore. lee@memended practice
for architectural description of software-intensive syss, 2004.

[11] O. Mendes and A. Abran. Software Engineering OntologyDevelopment
Methodology. Technical report, University from Quebec ioitreal, 2004.

[12] P. Wongthongtham, E. Chang, and |. Sommerville. Soft-
ware Engineering Ontology for Software Engineering Knalgle
Management in Multi-site Software Development Environinen
http://smi.stanford.edu/projects/protege/confer&2@@//presentations, 2007.

[13] ASTM. ASTM Standard C33, “Specification for Concretegkggates”, 2003.

[14] K. Schwaber. Scrum development process. Workshop iReBasiness Object
Design and Implementation. 10th Annual Conference on fjeented Pro-
gramming Systems, Languages, and Applications. AddenduinetProceedings.
ACM/SIGPLAN OOPS Messenger 6(4), October 1995.

[15] D. B. Yoffie and M. Slind. Apple computer, 2006, 2007.
[16] P. Tsarchopoulos. Innovation lessons from apphe Economist, 2007.
[17] Apple. About bundles, 2005.

[18] B. lyer and T. H. Davenport. Reverse engineering gdeghmovation machine.
Harvard Business Review, 2008.

[19] J. McGregor. The world’s 50 most innovative compankssiness Week, 2008.

[20] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnakolgtion analysis
of large-scale software systems using design structurdaestand design rule
theory. Harvard Business School Working Knowledge, 2007.

12

