
Software Engineering featuring the Zachman
Taxonomy

Pia Stoll, Anders Wall Christer Norström
Industrial Software Systems Computer Science and Electronics

ABB Corporate research Mälardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

August 28, 2009

Abstract

Software engineering of today must consider organizational- and business is-
sues as well as architectural issues for fast manufacturingof software. The seman-
tics in a taxonomic scheme including organizational-, business- and architecture
artifacts would help software engineers define explicit relations between software
engineering artifacts at all software design-levels.

In this report, we present the Software Engineering Taxonomy, derived from
the Zachman Enterprise Architecture Framework. The Software Engineering Tax-
onomy proved to be able to classify all software engineeringartifacts from the
IEEE Software Engineering Book Of Knowledge (SWEBOK) published 2004.

The Software Engineering Taxonomy also proved to give useful insights into
how customer sites and development sites may interact for fast innovation exempli-
fied with the companies Apple (AppStore) and Google. The taxonomy also proved
to be useful for process analysis which is shown for the Scrumprocess.

1 Introduction

This report investigates the possibility of classifying software engineering artifacts for
industrial software systems. The classification should include artifacts related to busi-
ness and organization and therefore three Enterprise Architecture frameworks were
considered. The three frameworks were: the Zachman framework, the Department
Of Defense Architecture Framework (DODAF) [1] and The Open Group Architecture
Framework (TOGAF) [2].

The discipline of enterprise architecture is commonly considered to have its birth
in an academic article by John Zachman published 1987 by the research oriented IBM
Systems Journal [3]. Zachman saw the growing complexity of information software
system that extended in scope and complexity to cover an entire enterprise. He stated
that decentralization of system resources without structure results in chaos and argued
for the need of information system architecture. Zachman searched for an objective
independent basis upon which to build a framework for information system architecture
and resolved to be inspired by classic architecture.

1

Enterprise architecture as defined by the Federal Architecture Working Group (FAWG)
[4] is: a strategic information asset base and describes themission (i.e. the business),
the information necessary to perform the mission and the technologies necessary to
perform the mission, and the transitional processes for implementing new technologies
in response to changing mission needs. An enterprise1 architecture includes a baseline
architecture2, target architecture3, and a sequencing plan4.

According to James N. Martin [5] enterprise architecture deals with “Getting to
the Future” and has drivers and outcomes. The enterprise architecture is according to
Martin a means for transforming enterprise objectives intobusiness plans and mission
needs.

In the mid 1990s the DoD determined that a common approach wasneeded for
describing its architectures, so that DoD systems could efficiently communicate and
inter-operate during joint and multinational operations.The interoperability aspects
of the DODAF is reflected in its architectural views which arefocused on describing
what’s being communicated and how in the Operational View (OV) of the DODAF.
The Systems View (SV) of DODAF identifies the systems that support the OVs and
the Technical View (TV) describes the criteria for each required system that will sat-
isfy the interoperability requirements. DODAF is as such not an architecture develop-
ment method or a classification framework, it’s an architecture description development
framework focused on describing interoperability aspectsof systems of systems.

TOGAF5 is developed and maintained by members of The Open Group, working
within the Architecture Forum. The original development ofTOGAF Version 1 in
1995 was based on the Technical Architecture Framework for Information Manage-
ment (TAFIM), developed by the US Department of Defense (DoD). The DoD gave
The Open Group explicit permission and encouragement to create TOGAF by building
on the TAFIM, which itself was the result of many years of development effort and
many millions of dollars of US Government investment.

TOGAF is more ambitious in scope than its defense counterpart, DODAF. TO-
GAF organizes architectures into four domain levels: Business architecture - defines
business strategy, governance, organization, and key business processes; Application
architecture - specifies individual application systems tobe deployed; Data architecture
- defines structure of an organization’s logical and physical data assets and associated
data management resources; and Technology architecture - specifies software infras-
tructure intended to support the deployment of core, mission-critical applications.

As this report was searching for a enterprise architecture artifact classification
framework, not an enterprise architecture description development framework or in-
house information system architecture development framework, it resorted to study the
Zachman framework in more detail as the Zachman taxonomy is alight-weight ontol-
ogy that classifies enterprise architecture artifacts as described in Section 2.

The remainder of this report is organized as follows; Section 2 describes the Zach-
man Framework, Section 2.1 describes the Software Engineering Taxonomy and the
classification of the SWEBOK software engineering artifacts, Section 2.3 and Sec-

1Enterprise - an organization supporting a defined business scope and mission. An enterprise includes
interdependent resources (people, organizations, and technology) who must coordinate their functions and
share information in support of a common mission.

2Baseline architecture - the architecture as it is today, also called as-is architecture
3Target architecture - the (planned) future architecture, also called to-be architecture or goal architecture
4Sequencing plan - the strategy for changing the baseline architecture to the target architecture, also

called the transition plan
5http://www.opengroup.org/architecture/togaf9-doc/arch/

2

tion 2.4uses the Software Engineering Taxonomy from Section 2.1 to analyze the cases:
AppStore, Google and Scrum, and Section 3 presents the conclusions of the work with
the Software Engineering Taxonomy and its usefulness for the software engineering
discipline and future work.

2 Zachman Framework

In a joint article [6] published 1993, Sowa and Zachman explain that the Zachman
framework links the concrete things in the world (entities,processes, locations, peo-
ple, times and purposes) to the abstract bits in the computer. The Zachman framework
is not a replacement of programming tools, techniques, or methodologies but instead,
it provides a way of viewing the system from many different perspectives and how
they are all related. The framework logic can be used for describing virtually any-
thing. The logic was initially perceived by observing the design and construction of
buildings. Later it was validated by observing the engineering and manufacture of air-
planes. Subsequently it was applied to enterprises during which the initial material on
the framework was published.

The objective to use the Zachman framework [7] [3] [8], according to Zachman, is
to reduce time-to-market for anything substantive and the way to do this is to create
primitive re-usable model descriptions designed to be reused in more than one imple-
mentation (composite) anywhere in the enterprise. Zachmanfurther states that the only
way of managing the impact of change is to manage vertical andhorizontal relation-
ships in the framework.

According to Zachman, “Architecture” is the set of descriptive representations rele-
vant for describing a complex object (actually, any object)such that the instance of the
object can be created and such that the descriptive representations serve as the base-
line for changing an object instance. Descriptive representations (of anything) typi-
cally include “Abstractions” classifying the descriptionfocus: Inventory Sets(What),
Process Transformations(How), Network Nodes(Where), Organization Groups(Who),
Timing Periods(When), Motivation Reasons(Why). Descriptive representations also
include “Perspectives” classifying the description usage: Scope Concepts, Business
Contexts, System Logic, Technology Physics, and Components. The relevant descrip-
tive representations would necessarily have to include allthe intersections between the
Abstractions and the Perspectives (Figure. 1). “Architecture” would be the total set
of descriptive representations (models) relevant for describing the complex object and
required to serve as a baseline for changing the complex object once it is described.
Zachman’s complex object is the enterprise, but principally he states that the complex
object can be any object.

The Zachman framework is a structure, not a methodology for creating the imple-
mentation of the object. The Zachman Framework does not imply anything about how
architecture is done (top-down, bottom-up, etc). The levelof detail is a function of a
cell not a function of a column. The level of detail needed to describe the Technology
Physics perspective in row four may be naturally high but it does not imply that the
level of detail of the row one descriptions should be lower orthe opposite.

The framework is normalized, that is adding another row or column to the frame-
work would introduce redundancies or discontinuities. Composite models and process
composites are needed for implementation. A composite model is one model that is
comprised of elements from more than one framework model. For architected imple-
mentations, composite models must be created from primitive models and diagonal

3

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Perspective

SCOPE
CONTEXTS
(Strategists)

e.g. Inventory
Types

e.g. Process Types e.g. Network
Types

e.g. Organization
Types

e.g. Timing
Types

e.g. Motivation
Types

BUSINESS
CONCEPTS
(Executive
Leaders)

e.g. Business
Entities &
Relationships

e.g. Business
Transform & Input

e.g. Business
Locations &
Connections

e.g. Business
Role & Work

e.g. Business
Cycle &
Moment

e.g. Business
End & Means

SYSTEM
LOGIC
(Architects)

e.g. System
Entities &
Relationships

e.g. System
Transform & Input

e.g. System
Locations &
Connections

e.g. System
Role & Work

e.g. System
Cycle &
Moment

e.g. System
End & Means

TECHNOLOGY
PHYSICS
(Engineers)

e.g.
Technology
Entities &
Relationships

e.g. Technology
Transform & Input

e.g.
Technology
Locations &
Connections

e.g. Technology
Role & Work

e.g.
Technology
Cycle &
Moment

e.g. Technology
End & Means

COMPONENT
ASSEMBLIES
(Technicians)

e.g.
Component
Entities &
Relationships

e.g. Component
Transform & Input

e.g.
Component
Locations &
Connections

e.g. Component
Role & Work

e.g.
Component
Cycle &
Moment

e.g. Component
End & Means

Figure. 1: The Zachman Framework

composites from horizontally and vertically integrated primitives. The structural rea-
son for excluding diagonal relationships is that the cellular relationships are transitive.
Changing a model may impact the model above and below in the same column and any
model in the same row.

For manufacturing a process composite would be necessary. The process compos-
ite describes the working process of creating the model descriptions of the composite
model, typically ending with the descriptions of the components in the Component
Assemblies perspective, e.g. a service or framework. A third dimension of the frame-
work, called science, has been proposed by O’Rourke et al. [9]. This extension is
known as the Zachman DNA (Depth iNtegrating Architecture).In addition to the per-
spectives and aspects the z-axis is used for classifying thepractices and activities used
for producing all the cell representations.

The Zachman Framework has been used almost exclusively for information sys-
tem modeling. The reason is to find in the integration betweenthe Business Concepts
perspective and the System Logic perspective. Zachman prescribes that the Scope
Contexts perspective and the Business Concepts perspective should describe the enter-
prise’s own scope and business. The System Logic perspective, the Technology Physics
perspective, and the Components perspective should describe the system’s support of
the enterprise’s Scope Contexts perspective and Business Concepts perspective. For
an enterprise that builds an in-house information system this is natural since infor-
mation systems’s goal is to support in-house business processes. Enterprises building
information systems to support their own business processes has control over all five
perspectives in line with Zachman’s argumentation that theenterprise should only enter
controllable model descriptions into the framework.

Being in control of a model translates into having the power to change the model
description. If a person is in control of the model describing the system’s technology
processes, this person has the power to change e.g. the classes and their relations in the
system.

4

System Customer(s)’s
Business Concepts

[Customer(s)’s: system related
production activities, system related

production team locations and
connections, system related production

roles and work products, system
related production schedules, system

related production strategy …]

Software Development
Organization(s)’s
Business Concepts

[Software Development
Organization(s)’s: software

development activities,
software development team locations

and connections, software
development roles and work products,

software development schedules,
software development strategy …]

System Logic
[e.g. Requirements, System activity diagram, System domain

model, System State chart…]

Technology Physics
[e.g. Class entities, Timing entities, Design rules]

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Customer(s)’s
perspectives

Software Development Organization(s)’s
perspectives

Figure. 2: The Customer’s and the Software Development Organization’s perspectives

2.1 Software Engineering Perspectives

In order to be able to use the Zachman framework for software engineering artifacts,
two basic assumptions were done:

1. The classification framework, derived from the Zachman framework, describes
the software development organization and the descriptions of the customer’s
enterprise that relates to the usage of the system

2. The classification framework, derived from the Zachman framework, is three-
dimensional where site is the third dimension. The site might be the software
development organization, external development organization or the customer’s
enterprise as long as the site has a part in the system usage orsystem develop-
ment.

The assumptions are illustrated in Figure 2. With these assumptions, the system
development’s Business Concepts perspective will describe the software development
artifacts, e.g. software development activities, software development team locations
and connections, software development roles and work products, software develop-
ment schedules, and software development strategies. The models in the customer’s
Business Concepts perspective will describe the customer’s production related to the
need of system support. The resulting classification framework is called the Software
Engineering Taxonomy.

The models in the Software Engineering Taxonomy might be shared across devel-
opment and customer sites but it is the software developmentorganization that controls

5

the degree of openness. For example if the customer is an active member in the re-
quirements handling team at the software development organization, then the require-
ments handling activity is shared across sites. This would mean that the model with
the Business Concepts perspective and Process Transformations abstraction is partly
shared since this model contains the requirements handlingactivity. Another exam-
ple of shared models across sites is the open source development. In open source
development, several software development sites share software development model
descriptions across sites. Not only the development activities can be shared across
sites, but also the testing activities. Google lets their customers test the Google soft-
ware applications before the final release, which makes the customers part of the test
team.

2.2 Software Engineering Descriptions

The Software Engineering Body Of Knowledge, SWEBOK, guide has the objective to
promote a consistent view of software engineering worldwide and was published 2004
[10]. SWEBOK has references to a very large number of software engineering theo-
ries. The IEEE SWEBOK has divided the software engineering domain into a set of
knowledge areas; software requirements, software design,software construction, soft-
ware testing, software maintenance, software configuration management, software en-
gineering management, software engineering process, software engineering tools and
methods, and software quality. The knowledge areas act as knowledge for the persons
working in that specific area. In contrast to the work described in [11] [12] the clas-
sification of the SWEBOK software engineering artifacts in this report does not try to
reflect the software engineering professions but instead seek a classification approach
similar to the building engineering [13] .

The software engineering artifacts are not physical like inthe building engineering
but differ in their descriptions, not in their physical dimensions. A software engineering
description can be very complex, e.g. a domain model including a large set of entities
and their relations, and it can be less complex, e.g. the listing of reports. Some of the
software engineering artifacts from SWEBOK could be descriptions of their own. For
example, the artifact “System Class diagram” could be a complete description of the
model with the Inventory Sets abstraction and the Technology Physics perspective.

The process used to classify the descriptions from the SWEBOK was:

1. Anything resembling an artifact was extracted from the SWEBOK.

2. The artifact duplicates were removed when all of the artifacts were extracted.

3. The non-duplicate artifacts were analyzed and grouped according to their de-
scriptions. For example, the “Release Schedule” artifact was grouped together
with “Construction Schedule”, “Project Schedule and milestones”, and “Test
Schedule”.

4. The grouped artifacts were translated into general modeldescriptions. For exam-
ple, the group of schedules in the previous step was generalized into the model
description “Schedules for projects, releases and processes”.

5. The general model descriptions were classified accordingto the perspectives and
abstractions from the Software Engineering Taxonomy. Whenperforming the
classification it was important to distinguish between the customer’s perspec-
tives and the development organization’s perspectives. For example, the model

6

description “Schedules for projects, releases and processes” was classified with a
Timing Periods abstraction and Software Development Organization’s Business
Concepts perspective.

The software engineering artifacts which describe the development of a software
system and the system itself were expected to be straight-forward to classify in Zach-
man’s System Logic perspective since this perspective contains model descriptions of
software system architecture, e.g. use cases, activity diagrams, requirements.

It was also expected that Zachman’s Business Concepts perspective would be dif-
ficult to use for Software Engineering artifacts since this perspective is typically used
to model the customer’s business processes in need of systemsupport, e.g. produc-
tion processes. The classification showed that the development organization’s Busi-
ness concepts as e.g. software testing, development schedules, prototype analysis etc
could easily be classified in the Software Engineering Taxonomy when the taxonomy
perspectives were the software development organization perspectives.

Non of the SWEBOK software engineering artifacts describedthe customer’s Scope
Contexts or customer’s Business Concepts perspective and hence the classification of
the SWEBOK artifacts is done using only the software development organization’s
perspectives. The resulting classification of the SWEBOK artifacts is two-dimensional
and shown in Figure 3 and in Figure 4.

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)Software
Development
Organization
Perspective

SCOPE
CONTEXTS

[Reports, Standards,
Stakeholders, Tools,
Products]

[Requirement Handling/ Design/
Construction/ Testing/
Maintenance/
Configuration Management/
Engineering Management]

[Internal & External
Development Team
Networks, Supplier
Networks]

BUSINESS
CONCEPTS

[Estimations, Prototypes,
Analysis, …, Decisions and
their Relations]

[Activities for: Requirement
Handling/ Design/ Construction/
Testing/
Maintenance/
Configuration Management/
Engineering Management]

[Internal & External
Development Team
Locations &
Connections]

SYSTEM
LOGIC

[System Domain Model] [System Activity Diagram] [System Deployment
Diagram]

TECHNOLOGY
PHYSICS

[Development View, Class
Diagram]

[Logical View, Interface
Specification]

[Physical View,
Deployment Diagram]

COMPONENT
ASSEMBLIES

[Database Configuration,
Build Configuration]

[Algorithms, Languages,
Code Modules,
Frameworks]

[Communication
Protocols, Port
Configurations]

Figure. 3: The SWEBOK software engineering artifacts classified in the Software En-
gineering Taxonomy. The figure shows the three first columns.

The generalized model descriptions are enclosed by brackets in each cell of the
Software Engineering Taxonomy in Figure 3 and Figure 4. For example, the cell with

7

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)

Abstraction

Software
Development
Organization

Perspective

[External Regulatory
Bodies,
Internal & External
Development Teams]

[Internal & External
Development Releases,
Global Economy Events, …]

[Business Goals, Process
Scopes, Policies,
Culture, Principles,
Missions]

SCOPE
CONTEXTS

[Internal & External
Development Team Roles
& their Work Products]

[Schedules for Projects/ Releases/
Processes]

[Strategies for:
Processes’/ Projects’/
Staffing/ System and
Projects’ Objectives]

BUSINESS
CONCEPTS

[System Use Cases] [State Charts] [Requirements,
Constraints, Qualities]

SYSTEM
LOGIC

[User Interfaces] [Sequence Diagrams] [Design Rules,
Design Principles]

TECHNOLOGY
PHYSICSDesign Principles]

[Security Control, Safety
Control]

[Concurrency Model] [Explicit Design Rules/
Design Principles
Configuration]

COMPONENT
ASSEMBLIES

Figure. 4: The SWEBOK software engineering artifacts classified in the Software En-
gineering Taxonomy. The figure shows the three last columns.

the Inventory Sets abstraction and Scope Contexts perspective contains descriptions of
reports, stakeholders, standards, tools and products usedby the software development
organization. The cell with the Process Transformations abstraction and Scope Con-
texts perspective contains model descriptions of processes for requirement handling,
design, construction, testing, maintenance, configuration management, and engineer-
ing management. In the Software Engineering Taxonomy, the processes do not dictate
the classification; they are a part of the classification scheme. The Scope Contexts-
and Business Concepts perspectives with the Process Transformations abstraction got
a large number of artifacts classified since SWEBOK containsa large amount of pro-
cess descriptions and activity definitions for the processes. The models description are
instantiated for each software development organization.For example, an organization
doing Scrum [14] processes would instantiate the model withthe Business Concepts
perspective and Process Transformations abstraction withdescriptions of typical Scrum
activities: “Sprint Review”, “Planning”, etc.

2.3 Apple and Google Process Composite Models

We have re-engineered the interactions between development sites and customer/utilization
sites into our Software Engineering Taxonomy for two companies: Apple (AppStore)
[[15], [16], [17]] and Google [18]. The companies are world-leading [19] in estab-
lishing new ways of interacting with their customers duringsoftware development and

8

System Customer(s)’s
Business Concepts

[Network Nodes: Application commercial distribution through mobile
phones and the Internet]

[Organization Groups: Test Team,
Development Team]

System Logic
[Network Nodes: Application interactions through mobile phones and

Internet]
[Motivation Abstraction: Requirements, Constraints, Design rules]

Technology Physics
[Not shared]

Component Assemblies
[Process Transformations: Services, Frameworks]

[Network Nodes: Communication protocols]

Customer(s)’s
site

Software Development
Organization(s)’s site

Figure. 5: Bridges between Customer Site(s) and Development Site(s) for Apple and
Google.

therefore highly interesting for creating composite models which bridge the gap be-
tween customer/utilization site(s) and development organization site(s) in the Software
Engineering Taxonomy.

Apple has created a way to easily install applications in run-time by structuring
application code into bundles [17]. The bundle structure ispart of the Apple frame-
work. Apple shares the framework but in contrast to the open source community gives
external developers no access to the Apple core business logic components.

The shared composite model pattern for bridging the utilization- and development
sites gap for Apple and Google is visualized in, Figure 5. Theinnovative integration
takes place in the Network Nodes abstraction in the SoftwareEngineering Taxonomy
for both AppStore and Google.

The AppStore describes the connections of internal- and external developers, cus-
tomers, and the Apple organization through the Internet andthrough the mobile phone
network.

The customers get a test/product strategy role when they indirectly drive both the
internal and external development by downloading the internally and externally de-
veloped applications. The top-ten download list is visiblefor customers as well as
developers on the AppStore web page.

Google’s Ecosystem [18] describes the global locations andconnections of Google’s
systems, services, advertisers, and customers over locations barriers world-wide. Google
makes services available for external sites to use in their applications via standard
protocols. Customers get a test/product strategy role whenthey test beta-versions of
Google’s products voluntarily.

The system design and deployment are crucial but not shared since they are de-
scriptions of the core business logic. By considering what models in the Software
Engineering Taxonomy are possible to share with external sites we can find new ways
of bridging the gap between utilization and development which could create faster in-

9

Abstraction � INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORM.

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)
Software
Development
Perspective �
SCOPE
CONTEXTS

[Standards,
Expertise]

[Planning
process,
Closure
process]

[List of Scrum
team
locations]

[Customer team
Development
team
Management
team]

[Competitors
releases]

[System vision]

BUSINESS
CONCEPTS

[Estimation,
Risks,
Prototype,
Funding]

[Daily Scrum,
Sprint, Review,
Analyze, …]

[Scrum Team
Locations
&
Connections]

[Scrum Teams/
Work ;
“Sprint backlog” ,
“Product
backlog”]

[Sprint dates,
Release date]

[Release plan]

SYSTEM
LOGIC

[Domain
model]

[High level
application
model]

[Requirements]

TECHNOLOGY
PHYSICS

[System design]

COMPONENT
ASSEMBLIES

[Functionality] [Explicit
Design rules/
Configuration]

OK

OK

OK

Figure. 6: Scrum reverse engineered into the Software Engineering Taxonomy

novation of new or enhanced products.

2.4 Scrum Composite Process Model

When reverse-engineering the Scrum process into our Software Engineering Taxonomy
it becomes clear that the Scrum approach is rather extensivein the scope- and business
perspective (Figure 6). To bridge the gap between customer/utilization site and de-
veloper site, the Scrum process [14] includes the customer and the sales organization
as members of the development team. By integrating customer, management, release
management, and development in a set of teams, all the teams’concerns are integrated
in a dynamic team work product called “product backlog”. Twoimportant activities in
the Scrum development process is the cost estimations and risk estimations.

The requirements and qualities are described in the Taxonomy cell with the Mo-
tivation Reasons abstraction and System Logic perspective. The code or program is
described in the cell with the Process Transformations abstraction and Component As-
semblies perspective. The composite process model, the Scrum development process
as described in [14], takes a step from requirements to architectural design and domain
modeling in the pregame phase. Would the Scrum composite process model have taken
a direct step from requirements to code then the Zachman ruleof consistency would
have been violated.

An interesting approach would be to integrate explicitly formulated design rules
[20], described in the taxonomy cell with the Motivation Reasons abstraction and the
Technology Physics perspective. This would be an alternative way or additional step
to take from requirements to code.

3 Conclusions and Future Work

The Software Engineering Taxonomy derived out of the Zachman Framework relies on
two assumptions:

10

1. The classification framework, derived from the Zachman framework, describes
the software development organization and the descriptions of the customer’s
enterprise that relates to the usage of the system

2. The classification framework, derived from the Zachman framework, is three-
dimensional where site is the third dimension. The site might be the software
development organization, external development organization or the customer’s
enterprise as long as the site has a part in the system usage orsystem develop-
ment.

The classification of the IEEE SWEBOK artifacts uses only thesoftware develop-
ment organization’s perspectives, not the customer perspective, resulting in the classi-
fication being two-dimensional. However, the three dimensions of the Software Engi-
neering Taxonomy can be used to describe a software development organization that
shares models with external software development sites or customer sites, e.g. Google,
Apple and Open Source development as described in this report. The analysis of App-
Store and Google showed that the taxonomy’s Network Nodes abstraction and Orga-
nization Groups abstraction columns are important for sharing models with external
development- and utilization sites for faster innovation of new products.

The reverse engineering of the Scrum process into our Software Engineering Tax-
onomy showed that all of the Scrum artifacts can be classifiedand that the focal point
of the Scrum is on the Scope Contexts perspective and the Business Concepts perspec-
tive of the development organization. The descriptions of the System Logic perspective
and the Technology Physics perspective are thin in the Scrumprocess.

The Software Engineering taxonomy can serve as a reasoning framework into which
artifacts and results of software engineering theories, processes and case studies might
be mapped for further analysis. The consistency rules of theZachman framework are
valid for the Software Engineering Taxonomy.

It remains to do a formal validation of the Software Engineering Taxonomy. The
formal validation could be in the form of a more thorough collection of software en-
gineering artifact and their classification. Further, an expert panel could judge the
classification’s correctness.

References

[1] DoD. Department of Defence Architecture Framework Working Group, DoD
Architecture Framework, DoDAF, version 1.0. Department ofDefence, 2003.

[2] TOG. The Open Group Architecture Framework, version 8/9, 2002/6. The Open
Group,.

[3] J. A. Zachman. A Framework for Information Systems Architecture.IBM Systems
Journal, 26(3):276–292, 1987.

[4] R. C. Thomas. A Practical Guide to Federal Enterprise Architecture,.
www.gao.gov/bestpractices/bpeaguide.pdf, 2001. retrieved July 11th 2009.

[5] J. N. Martin. An introduction to the Architectural Frameworks
DODAF/MODAF/NAF. Course given at the Royal Institute of Technology,
Stockholm, Sweden, 2006.

11

[6] J. F. Sowa and J. A. Zachman. Extending and formalizing the framework for
information systems architecture.IBM System Journal, 31:590–616, 1992.

[7] J. A. Zachman. The Zachman Framework and Observations onMethodologies.
Business Rules Journal, 5(11), 2004.

[8] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A Primer
for Enterprise Engineering and Manufacturing. Zachman International, 2003.

[9] C. O’Rourke, N. Fishman, and W. Selkow. Enterprise Architecture, Using the
Zachman Framework.Thomson Course Technology, 2003.

[10] P. Bourque, R. Dupuis, A. Abran, and J. W. Moore. Ieee recommended practice
for architectural description of software-intensive systems, 2004.

[11] O. Mendes and A. Abran. Software Engineering Ontology:A Development
Methodology. Technical report, University from Quebec in Montreal, 2004.

[12] P. Wongthongtham, E. Chang, and I. Sommerville. Soft-
ware Engineering Ontology for Software Engineering Knowledge
Management in Multi-site Software Development Environment.
http://smi.stanford.edu/projects/protege/conference/2007/presentations, 2007.

[13] ASTM. ASTM Standard C33, “Specification for Concrete Aggregates”, 2003.

[14] K. Schwaber. Scrum development process. Workshop Report: Business Object
Design and Implementation. 10th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications. Addendum to the Proceedings.
ACM/SIGPLAN OOPS Messenger 6(4), October 1995.

[15] D. B. Yoffie and M. Slind. Apple computer, 2006, 2007.

[16] P. Tsarchopoulos. Innovation lessons from apple.The Economist, 2007.

[17] Apple. About bundles, 2005.

[18] B. Iyer and T. H. Davenport. Reverse engineering google’s innovation machine.
Harvard Business Review, 2008.

[19] J. McGregor. The world’s 50 most innovative companies.Business Week, 2008.

[20] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnak. Evolution analysis
of large-scale software systems using design structure matrices and design rule
theory.Harvard Business School Working Knowledge, 2007.

12

