Applying the Software Engineering Taxonomy

Pia Stoll, Anders Wall Christer Norstrom
Industrial Software Systems Computer Science and Elacson
ABB Corporate research Malardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

September 24, 2009

Abstract

The Software Engineering Taxonomy is a derivative of thehdaan frame-
work. Being a derivative of the Zachman framework, the SafevEngineering
Taxonomy follows the Zachman consistency rules and ingatps traditional en-
terprise architecture views together with software ergyimg views. In this re-
port, the Software Engineering Taxonomy is applied as soréag framework in
three studies: the Influencing Factors method field stuéyiJgability-Supporting
Architecture Patterns field study, and the Sustainabledinidl Software Systems
case study.

Software engineering artifacts from the three studies smra&ed and classi-
fied in the Software Engineering Taxonomy. From the clasgifia of data from
the studies, it's shown that each one of the studies usessatsoitthe thirty views
in the Software Engineering Taxonomy to describe a speciéthod or theory.
What views are used, depends on the scope of the researcjeetl db the clas-
sification of the USAP study artifacts, eight views were ugedontrast to the
Sustainable System study, that used nineteen views. Thigssthat, the scope
and interrelation complexity of sustainable developmennuch higher than the
scope and interrelation complexity of the usability-supipg architecture pattern.
It also shows that the software engineering discipline seaterprise perspectives
to be able to include all aspects of sustainable indusifalvare system develop-
ment.

Classification of the USAP artifacts made use of the busicessept per-
spective for four of the twelve artifacts. The inclusion dafraditional enterprise
perspective led to new conclusions regarding the use ofrgkaetivities for pat-
tern creation. General domain application activities dmairttasks make use of the
domain’s role and work product as placeholder to make themgémctivity and
tasks domain application specific. The reusable task hasiée responsibilities
and by specifying what quality attribute the task suppdm, tesponsibilities can
be constructed to support that specific quality of the tagkis fias been shown
for usability in the USAP study. The USAP information deption-selection pro-
cess could be composed by following Zachman'’s consistareg in the Software
Engineering Taxonomy.

1 Introduction

For a software engineering researcher it can be useful twaarjeurnalistic questions
regarding the information collected in field studies andecstsidies. Journalistic ab-
stractions are typically: “What does the information dés=?”; “How is the informa-
tion used?”; “Where is the information used?”; “Who is usihg information?”; “Why
is the information used?”. Depending on the usage persgeatithe information, the
answers will differ. If the information is related to the ppective of the system’s de-
velopment organization, the answers will be different ttidine information is related
to the perspective of the system’s architecture.

How information from the development organization’s pexdjve and from the
system’s architecture perspective relate to each othéd edgp be helpful to describe.
For example, sustainable development of an industrialveoé system organization is
impacted by organizational patterns, architecture pagtand the knowledge transfer
in the organization. Conducting a case study exploringesuable development in the
domain of industrial software systems, will collect infation from many perspec-
tives. It would then be helpful for software engineeringei@shers to use a enterprise
architecture taxonomy where the journalistic abstrastiand the usage perspectives
act as classifier of the information.

In[1], a derivative of the Zachman framework called the @afie Engineering Tax-
onomy is suggested for the classification of software ergging information. The fol-
lowing sections describe how the Software Engineering fiarwy is applied to three
studies: the Usability Supporting Architecture Patterusly [2] [3], the Influencing
Factors method study [4], and the Sustainable Industritth@&oe Systems study [5].

2 Software Engineering Taxonomy

In a joint article [6] published 1992, Sowa and Zachman drpihat the Zachman
framework links the concrete things in the world (entitipspcesses, locations, peo-
ple, times and purposes) to the abstract bits in the comptherZachman framework
is not a replacement of programming tools, techniques, dhoa®logies but instead,
it provides a way of viewing the system from many differentgpectives and how
they are all related. The framework logic can be used forrilgiag virtually anything
considering its history of development. The logic was &iliyi perceived by observ-
ing the design and construction of buildings. Later it wakdeted by observing the
engineering and manufacture of airplanes. Subsequentigstapplied to enterprises
during which the initial material on the framework was pshgd [7] [8] [9]. Sowa and
Zachman write:

Most programming tools and techniques focus on one aspextf@w re-
lated aspects of a system. The details of the aspect theyt aedeshown
in utmost clarity, but other details may be obscured or fotgio. By con-
centrating on one aspect, each technique loses sight ofwbealb infor-

mation system and how it relates to the enterprise and itsosading
environment. The purpose of the ISA framework [Today, thehzan
framework A.R.]is to show how everything fits together. H taxonomy
with 30 boxes or cells organized into six columns and five romstead of
replacing other techniques, it shows how they fit in the dvecheme.

Abstraction INVENTORY PROCESS NETWORK | ORGANIZATION TIMING MOTIVATION
SETS TRANSFORMATIONS NODES GROUPS PERIODS REASONS

Perspective (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
SCOPE e.g. Inventory |e.g. Process Types e.g. Networje.g. Organization|e.g. Timing |e.g. Motivation
CONTEXTS Types Types Types Types Types
(Strategists)
BUSINESS e.g. Business |e.g. Business e.g. Business|e.g. Business e.g. Business|e.g. Business
CONCEPTS Entities & Transform & Input Locations & |Role & Work Cycle & End & Means
(Executive Relationships Connections Moment
Leaders)
SYSTEM e.g. System |e.g. System e.g. System [e.g. System e.g. System |e.g. System
LoGIC Entities & Transform & Input [Locations & |Role & Work Cycle & End & Means
(Architects) Relationships Connections Moment
TECHNOLOGY Je.g. e.g. Technology eg. e.g. Technology |e.g. e.g. Technolog)
PHYSICS Technology [Transform & Input Technology |Role & Work Technology |End & Means
(Engineers) Entities & Locations & Cycle &

Relationships Connections Moment
COMPONENT e.g. e.g. Component e.g. e.g. Component |e.g. e.g. Componen
ASSEMBLIES ~ JComponent | Transform & Input | Component (Role & Work Component [End & Means
(Technicians) Entities & Locations & Cycle &

Relationships Connections Moment

Figure. 1: The Zachman Framework

According to Zachman, “Architecture” is the set of desdviptepresentations rele-
vant for describing a complex object (actually, any objeath that the instance of the
object can be created and such that the descriptive repatiess serve as the baseline
for changing an object instance.

The columns of the framework represent different abstastifrom or different
ways to describe information of the complex object. Thewader isolating one vari-
able (abstraction) while suppressing all others is to donitee complexity of the design
problem. Abstractions classifying the description foctes a

Inventory Sets - Describes ‘what” information is used

Process Transformations- Describes “How” the information is used
Network Nodes - Describes “Where” the information is used
Organization Groups - Describes “Who” is using the information
Timing Periods - Describes “When” the information is used
Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” clgsgifthe description us-
age. The perspectives are:

Scope Contexts- perspective descriptions corresponds to an executivensugnfor
a planner or investor who wants an estimate of the scope cfytstem, what it
would cost, and how it would perform.

Business Concepts perspective is the perspective of the owner, who will haMése
with the constructed object (system) in the daily routineusiness. This per-
spective descriptions correspond to the enterprise (basjrmodel, which con-
stitutes the design of the business and shows the busintitéssszind processes
and how they interact.

System Logic - perspective is the designer’s perspective. The Systenclpmyspec-
tive descriptions correspond to the system model desigpeddystems analyst
who must determine the data elements and functions thagsept business en-
tities and processes.

Technology Physics- perspective descriptions correspond to the technologgeto
which must adapt the system model to the details of the progniag languages,
I/0 devices, or other technology. This is the perspectiverelthe four views of
the “4+1” model by Kruchten [10] can be used to describe saftvarchitecture.

Component Assemblies- perspective descriptions correspond to the detailedispec
fications that are given to programmers who code individuadintes without
being concerned with the overall context or structure ofsystem.

The relevant descriptive representations would necégseve to include all the
intersections between the Abstractions and the Perspsdtiigure. 1). “Architecture”
would be the total set of descriptive representations (isddelevant for describing
the complex object and required to serve as a baseline foigahgithe complex object
once it is described. Zachman’s complex object is the erigarpbut principally he
states that the complex object can be any object.

The Zachman framework is a structure, not a methodologyrisating the imple-
mentation of the object. The Zachman Framework does notjiam}thing about how
architecture is done (top-down, bottom-up, etc). The le¥eletail is a function of a
cell not a function of a column. The level of detail neededdsdatibe the Technology
Physics perspective may be naturally high but it does nolyirtiyat the level of detail
of the Scope Contexts descriptions should be lower or thesifg

The framework is normalized, that is adding another row durom to the frame-
work would introduce redundancies or discontinuities. @osite models and process
composites are needed for implementation. A composite hisame model that is
comprised of elements from more than one framework modelaFthitected imple-
mentations, composite models must be created from priitiedels and diagonal
composites from horizontally and vertically integratedrptives. The structural rea-
son for excluding diagonal relationships is that the calluélationships are transitive.
Changing a model may impact the model above and below in the salumn and any
model in the same row.

The rules of the framework are [8]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s genericehod
Rule 3 Corollary: Level of detail is a function of a cell, not@lumn
Rule 4: No meta concept can be classified into more than ohe cel
Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

The model, the view, in the Zachman framework can be alignigdtive ISO/IEC
42010:2007 viewpoints according to the ISO/IEC 42010:2@8ion [11]:

An organization desiring to produce an architecture frarnewfor a par-

ticular domain can do so by specifying a set of viewpointsraa#ling the
selection of those viewpoints normative for any ArchitedtDescription

claiming conformance to the domain-specific architectimaiework. It
is hoped that existing architectural frameworks, such asI®0O Refer-
ence Model for Open Distributed Processing (RM-ODP) [1BE Enter-
prise Architecture Framework of Zachman [7]), and the agwb of Bass,
Clements, and Kazman [13] can be aligned with the standatdisiman-
ner.

Zachman's framework does not describe what language toarsad model de-
scriptions or how to do the actual modeling for each cell. réfare each view of the
Zachman's framework is free to use the viewpoint selectethbyresponsible of the
description. It should therefore be possible to use the pigmts from the ISO/IEC
42010:2007 to describe a model,a view, within the framework

For manufacturing a process composite would be necessheyprbcess compos-
ite describes the working process of creating the modelrgit®ns of the composite
model, typically ending with the descriptions of the comeots in the Component
Assemblies perspective, e.g. a service or framework. Al ttimension of the frame-
work, called science, has been proposed by O’'Rourke et dl. [This extension is
known as the Zachman DNA (Depth iNtegrating Architectute)addition to the per-
spectives and aspects the z-axis is used for classifyingriaices and activities used
for producing all the cell representations.

In order to be able to use the Zachman framework for softwag@eering artifacts,
two basic assumptions were done:

1. The software engineering classification framework,\éerifrom the Zachman
framework, describes the software system’s developmeyatnization and the
customer’s scope and business related to the need of systgrars.

2. The software engineering classification framework,\a@etifrom the Zachman
framework, is three-dimensional where site is the thirdefision. The site might
be the software development organization, external dpwedmt organization or
the customer’s enterprise as long as the site has a part isygtem usage or
system development.

The assumptions are illustrated in Figure 2. With theseraptions, the system
development’s Business Concepts perspective will desthib software development
artifacts, e.g. software development activities, sofevdevelopment team locations
and connections, software developmentroles and work ptegdsoftware development
schedules, and software development strategies. The siodee customer’s Business
Concepts perspective will describe the customer’s pradigelated to the need of
system support. The resulting software engineering ¢leason framework is called
the Software Engineering Taxonomy.

The Software Engineering Taxonomy is described furthet]jn [

Customer(s)’s Software Development Organization(s)'s

perspectives perspectives
\ y4
/ System Customer(s)'s \ / Software Development \
Business Concepts Organization(s)'s
[Customer(s)'s: system related Business Concepts
production activities, system related [Software Development
production team locations and Organization(s)’s: software
connections, system related production development activities,
roles and work products, system software development team locations
related production schedules, system and connections, software
related production strategy ...] development roles and work products,
software development schedules,
K /O\ software development strategy M
s N

System Logic
[e.g. Requirements, System activity diagram, Systedomain
\ model, System State chart...])
| |

Technology Physics
[e.g. Class entities, Timing entities, Design rulgs

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Figure. 2: The Customer’s and the Software Developmenti@zgtion’s perspectives

3 Software Engineering Taxonomy and System Sustain-
ability

The sustainable industrial software systems theory pteden paper [5] introduces
some insights into the importance of time dynamics for thetagnability of industrial
software systems. The time dynamics is discussed not ontgétinology factors but
also for organizational and business related factors, waie enterprise architecture
factors. Change of business goals and their co-existenttecanges in organiza-
tion and market environments are also discussed leadinglé®zper exploration of a
broader spectrum of the enterprise architecture and aioalto system- and software
architecture. The case study’s units of analysis were campawith the following
software development characteristics:

e The company’s software development involved at least 2@ldeers
e The company had software systems with a life-time of 10 yearsore

e The company developed industrial automation applications

From May 2008 through December, 2008, three automatiorisysbmpanies with
these characteristics were visited. Three roles werevietged at each company: se-
nior software developer, senior software architect, amiosgroduct manager. The
same questions based on the theory in [5] were asked to alieohine intervie-
wees. Structured individual interviews were conductedictviwere approximately
three hours long, on site. Participants were guaranteeayamty, and the information

reported was sanitized so that no individual person or compauld be identified.
The questions were open-ended and allowed participantsraulate answers in their
own terms. The preliminary case study findings were predetatéhe participating
companies and additional companies in an architecture dalshop where software
architects and management were invited to discuss the fjadin

3.1 Sustainable Industrial Software System Development

Pollan [15] has defined an unsustainable system simply asdt&tipe or process that
can’t go on indefinitely because it is destroying the verydittons on which it de-
pends”. Unruh [16] has argued that numerous barriers t@asaddility arise because
today’s technological systems were designed and builtéomanence and reliability,
not change.

“A global agenda for change” - was what Gro Harem Brundtlasithe chairman
of the World Commission on Environment and Development, ask®d to formulate
in 1987 [17]. As a result, the Brundtland commission definestainable development
as:

Sustainable developmentis development that meets the oftbe present
without compromising the ability of future generations teantheir own
needs. It contains within it two key concepts: the concefeéds”, in
particular the essential needs of the world’s poor, to whaeglrriding pri-
ority should be given; and the idea of limitations imposedtisy state of
technology and social organization on the environmentiitglio meet
present and future needs.

Dyllick and Hockerts [18] transpose the definition to theibass level:

Corporate sustainability is meeting the needs of a firm’sctiand indirect
stakeholders (such as shareholders, employees, cliemssyre groups,
communities etc), without compromising its ability to mibet needs of
future stakeholders as well.

Following the reasoning of the Brundtland commission [1f] ®yllick and Hock-
erts [18], sustainable industrial software developmentldibe defined as:

Sustainable industrial software development meets thdsnekthe soft-
ware development organization’s direct and indirect stakders (such
as shareholders, employees, customers, engineers etbputvicompro-
mising the organization’s ability to meet its future stasdelers’ needs as
well.

In this report, the term “Corporate Sustainability” is uselten the work referred
to uses the term. Otherwise the term “Sustainable develognseused.

Three dimensions of corporate sustainability is outlingdlyllick and Hockerts:
Environmental sustainability, Economic sustainabilepd Social sustainability, the
“triple-bottom-line” in Figure 3. Dyllick and Hockerts calude that a single-minded
focus on economic sustainability can succeed in the shiortirowever, in the long-run
sustainability requires all three dimensions to be satidfimultaneously.

Sustainable development of industrial software systenspitkechanges in con-
cerns originating from: new technology, new stakeholdexdse new organizations,

Economic
Sustainability

Environmental Social
Sustainability Sustainability

Figure. 3: Three dimensions of corporate sustainability

and new business goals during decades is a true challengehdilenging since it
has not been researched for industrial software systemshandomain need an un-
derstanding of the success-critical concerns relatede@thievement of sustainable
development of systems as the complexity of organizatipraesses, and architec-
tures increase.

Organizational complexity involves many success-ciitgtakeholders, often lo-
cated all over the world, who have to reach a consensus artenchost important
business goals for the system now and in the next future abiadtie systems has the
built-in legacy heritage and have to consider the presdtware architecture and de-
sign when introducing new business goals. Stakeholdedisidimg the architects, need
an understanding of how the organization’s business géfelstarchitectural qualities
and vice versa. For example, industrial software systemeféen affected by company
mergers and acquisitions, where two or more systems hawe¢orsolidated into one
system or the systems have to share a core part. The effegtlfdecision on soft-
ware quality is hard to overlook. Sustainability is therefoelated not only to software
structures and their interactions but also to the systemvg@ment in terms of the
enterprise aspects as organization, business, tacticscapé. Enterprise aspects have
not been putin relation to software architecture and imeletation for industrial soft-
ware systems in an explicit way earlier. As organizatioahplexity grows when the
systems are distributed developed, the impact of the etideraspects on the software
system is significant.

3.2 Case Study Questions and Propositions

The theory presented in paper [5] was the base for the thaniplguof a case study
intended to investigate the definition of a sustainable $trikl software system and
the sustainability success-factors of three companiesldeing sustainable industrial
software systems. The case study design followed the peopdssign by Yin [19].
The quality of the case study was tested by the four testsestigd by Yin:

Construct Validity:The case study’s units of analysis were companies thativiedo
at least 20 developers; had software systems with a life-tifi 0 years or more;
and developed industrial automation applications. Frony RI208 through De-
cember, 2008, three automation system companies with ttiesmcteristics
were visited. Three roles were interviewed at each compaawgior software
developer, senior software architect, and senior produmtager. The same
guestions based on the theory in [5] were asked to all of the initerviewees.

Internal Validity: Not applicable since the case study is not a explanatory usata

case study.

External Validity: The domain to which the case study findings can be generadizes

the domain of long-lived industrial software systems. Tasscstudy's three units
of analysis were companies that: involved at least 20 deesy had software
systems with a life-time of 10 years or more; and developddstrial automa-

tion applications. Comparison of the findings has been maitte the theory

proposed by Curtis et al. [20] [21]. Curtis et al. conductaceatensive field

study involving 19 projects in the domain of large compleftware systems

ranging from aerospace contractors to computer manufastwith real-time,

distributed, or embedded applications. To further strieagthe external validity
the case study interview should be conducted with e.g. antisencompanies
which also develops large complex long-lived softwareeyst.

Reliability: Structured individual interviews were conducted which evapproxi-

mately three hours long on site. Participants were guagdra@onymity, and
the information reported has been sanitized so that noitheé person or com-
pany can be identified. The questions were open-ended awvdeallparticipants
to formulate answers in their own terms. One person had #ukds questioner
in each interview and one person had the responsibilityahing notes. After

the interview the person who had the lead responsibilitytd&ing notes wrote
the interview protocol and send it to the other person foiesev Then the lead
responsible for taking notes revised the protocol and astardédidation sent the
protocol to the interviewee for review. The preliminaryeasudy findings were
presented to the participating companies and additiomapamies in an archi-
tecture day workshop where software architects and managtenere invited

to discuss the findings.

The case study propositions were:

A W N P

. We believe sustainable systems can control the develojost
. We believe the customers expect the system to be lond-live
. We believe that offering a sustainable system is a matketraage

. We believe that sustainable systems must cope with chiangeganizations,

technology, business goals, and stakeholders’ conceittgw losing control
over its cost, quality and schedule output

. We believe sustainable system will have an organizatitmavhigh communi-

cation interaction

. We believe that organizations that manage sustainabterag will have an or-

ganization with clear defined roles and clear hand-overfofimation

. We believe that organizations that manage sustainalskerag will plan for

changes by forward feeding them upon detection into thenitgyof next major

steps of the system

. We believe that organization that manage sustainabteragswill have stated

long-term business goals communicated to the entire argton.

9. We believe that major organizational changes are the diffisult changes for
a sustainable system

10. We believe sustainable systems can do major architdaianges without the
customers noticing any major changes to the product. Ftanee, migrating to
a product-line architecture without changing the esseotts product

11. We believe sustainable systems have high-frequentaiomter development
progress in between release dates

The case study questions were formulated in a way that theeasgould provide
data to verify or reject the propositions. The case studyss\eers to the question “What
is system sustainability to you?” was asked to all of therinésvees to let them define
the concept of a sustainable industrial software systendddyg so, the interviewees
could relate to their own definition when answering the réshe questions regarding
system sustainability.

3.3 Classification of Case Study Data

Concerns related to sustainability were extracted fromati@wvers. When doing so,
sustainability concerns were extracted which the inteveies thought they had metin a
good way. Additionally sustainability concerns were estea which the interviewees
wanted to meet in a better way because they believed meéiisg ttoncerns would

improve the sustainability of the system. The resultingoawns were mapped in the
Software Engineering Taxonomy with the Scope and Businessppctives being the

perspectives of the system development organization. ddtrof the mapping of the

collected data in the Software Engineering taxonomy is shiovFigure 4.

3.4 Analysis of Classified Case Study Data

The product managers had exhaustive answers around ceneignrScope Contexts-

and Business Concepts perspectives. Surprisingly, thersggvelopers and the archi-
tects did not have the corresponding exhaustive answensdmmncerns with System

Logic- and Technology Physics perspective. This could wal relate to the reported

unclear developer role- and architect role descriptionsther the answers described
how the developers and architects did not have documenteasse architecture, de-

fined software architecture or an architecture design pcEne developers and archi-
tects, according to the interview answers, simply lack mafrtye model descriptions

from the System Logic perspective and the Technology Physcspective.

It's evident that even if the term software engineering wared in the 1968 NATO
Software Engineering Conferertaand Dijkstra described software structures the same
year [22], the usage of software engineering and softwarkitacture concepts and
tools in the domain of industrial software systems is low.

Basili and Musa write in an article 1991, that “...we musiase and categorize
the components of the software engineering disciplinendefotations for represent-
ing them and specify the interrelationships among them eg #ne manipulated in
[23]. Jackson claims that: “...there will never be softwangineering. As these spe-
cializations flourish (e.g. compiler engineering, opergisystems [author’'s remark])
they leave software engineering behind ... A professor fifveme engineering must,

Ihttp://homepages.cs.ncl.ac.uk/brian.randel/NATONM@Reports/index.html

10

Abstraction Inventory Process Network Organization Timing Motivation
Sets Transformations Nodes Groups Periods Reasons
Developmen (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
Perspective
Scope 'Well-known Flexible Project Comply with Minimal target Keep track of |Sustainable
Contexts sustainable key Management standardization |market competitors’ revenue
competences - Process; organizations competition; v releases strategy;
,,,,,,,,,,,,,,,,,,,,,,,,,,, Elexible in-house |and federal v Sustainable
Well-known key software agencies v Sustainable 3d- N target marketsg
stakeholders; Well development party software;
documented system | Process; SustainableHmt | |
knowledge; Formal technology technology vendors; Open and
Sustainable HMI evaluation process; Sustainable communicative
technology; Formal & development organization
Documented role& architecture organization groups culture &
descriptions evaluation process
Business Short-term based Excellent High-frequent Long system | Strategy for
Concepts decisions balanced technology communication life cycle keeping
with long-term scouting; between 3d v sustainable key-
considerations; Few customer- party product
Feature-driven and |tailored projects; |Supplierand (|
quality-driven ROL; | Quality development Release cycle, | Cultural
Maintenance cost improvement in balance with | Poundaries
separated from projects balanced . customer- communication
development cost; with development [High-frequent desired system strategy;
Globally applicable projects; communication update-rate; Well-
development KPIs; Keep close contact| between Product High-frequent | communicated
Objective time- with target market [Management project follow- | system-related
prediction algorithm | customers; and architects; up cycles customer goals
for development Analyze target High-frequent and development]
projects market needs f communicati goals
& new 1echno|og£ 1 Ebetween A C 1 5 &
distributed
development
teams;
System Don't mimic Reliability;
Logic organizational
groups’ interfaces
when designing
system /AN 1 | T .
components’ Maintainability;
interfaces; Portability;
Minimum of Modifiability;
complexity in Scalability,
architecture Understandable
requirements
Technology Jlsolated Business Logi¢ Sustainable Stable system | Low-frequent
Physics Business Logic interoperation changing HMI
. ’ supporting interfaces,
Sustainable HMI sustainable -
technology customer business v & &
processes
components
Component JRe-usable components Standardized
Assemblies & communicatio
protocols q

Figure. 4: The Enterprise-wide concerns related to cotp@uastainability: The check
signs indicate that the concerns are met by the companiesywaming signs indicate

that the companies want to meet the concerns in a better way

11

by definition, be a professor of unsolved problems” [24]. fEHe an unclear definition

of what software engineering is and what the important camepts of the software en-
gineering discipline are. Industrial software system aigations lack clear guidance
on what kind of descriptions would give the best return oestment in their domain.

One questions asked in the case study was “What is a majdtentthial change?” to

let the interviewees describe their perception of architecand changes to it. The
answers varied from the question being an philosophicastipreto an architectural

rule change. But no two persons’ answers were the same.

According to Garlan and Shaw [25], the definition of softwarehitecture is:

software architecture involves the description of elerméigim which sys-
tems are built, interactions among those elements, pattiat guide their
composition, and constraints on these patterns

Bass, Clements, and Kazman [13] define software architetur

The software architecture of a program or computing systethe struc-

ture or structures of the system, which comprise softwamenhts, the ex-
ternally visible properties of those elements, and thetieteships among
them.

According to Gacek, Abd-Allah, Clark, and Boehm [26], a s@fte system archi-
tecture comprises:

e A collection of software and system components, connestiand constraints.
e A collection of system stakeholders’ need statements.

e A rationale which demonstrates that the components, caioms¢ and con-
straints define a system that, if implemented, would satiséy collection of
system stakeholders’ need statements.

Johnson has in his PhD thesis [27] investigated the defirstid software architec-
ture to find a general consensus among the definitions buttsesoconclude that “It
is not generally agreed upon what a component or entity is,ribt generally agreed
upon what a structure is, or even if it is to be called strustand it is not generally
agreed upon what else comprises software architecture”.

Considering Johnson’s conclusion, the question is howitferences in agreement
upon what comprises software architecture affect a notwiling industry’s adapta-
tion of software architecture’s concepts. When each ingust application area has
to define its own understanding of the meaning of softwarkitecture, it might lead
to that traditional software-intensive domains take a leatie adaptation of software
architecture concepts and the non-traditional softwatenisive domains have a long
way to go to reach the same software quality maturity. Ifwgafe quality maturity
affects the sustainability of the software system, thissgm@ous issue without an ob-
vious solution. Each software application domain can lyadéfine its own software
engineering research discipline as Jackson discussed]in [2

The case study questions were analyzed to find out if sontetiad been missed
that would have scattered some light on the absent softwatetecture concerns.
However, the interview contained several questions rél&tethe relation between
architecture and technology for system sustainabilitysekkms like the case study’s
findings confirm Curtis’ reasoning. In [21], Curtis writesthhe software production

12

efficiency is not a function of only software engineering huets and quality thinking
but to a larger extent a function of organizational issue s behavior and commu-
nication.

Additionally one could speculate in if the lack of model dgstions from these
perspectives in itself is a sustainability concern. Acaugdo the interview answers
this is the case. The lack of system documentation is mesdiby all roles at all com-
panies as a hinder for corporate sustainability. One ceiaiucould be that in order to
get the software engineering process artifacts, e.g. taathire descriptions, in place
the companies must get the organizational artifacts, eolg descriptions and com-
munication, in place first. Curtis study and the System $uestdlity case study point
toward a possible conclusion that a working software dgualent organization, with
model descriptions from the Business Concepts perspdntplkace, is a prerequisite
for software engineering tools and methods to have a sigmnifimpact on productivity
and sustainability.

Malveau and Mowray [28] suggests a Software Design-Leved®¢SDLM):

The Software Design-Level Model (SDLM) builds upon thetéanodel.

This model has two major categories of scales Micro-Desigphlacro-

Design. The Micro-Design levels include the more finely mgdidesign
issues from application (subsystem) level down to the desfigpbjects
and classes. The Macro-Design levels include system-tggbitecture,
enterprise architecture, and global systems (denotindiplalenterprises
and the Internet). The Micro-Design levels are those mawsilfar to de-

velopers. At Micro-Design levels, the key concerns are thgigion of

functionality and the optimization of performance. At thadw-Design
levels, the chief concerns lean more toward managemennhgblexity and
change. These design forces are present at finer grains reutat nearly
of the same importance as they are at the Macro-Design levels

Using the concepts of the Software Design-Level Model, thléected interview
data suggest that the interviewees have a vast majoritystdisability concerns at the
Macro-Design level, described in the Software Engineefimgonomy’s Scope Con-
texts perspective and in the Business Concepts perspediareagement of complexity
and change are tightly coupled to sustainability concesris auggested in the theory
in [5].

In the Pasteur research project at Bell Labs [29], Copliexl. ehvestigated organi-
zational structures. Coplien’s organizational studiestbtwo organizational patterns:

e Architecture Follows Organization, a restatement of Coyisvaaw [30].
e Organization Follows Location, no matter what the orgainrel chart says.

A discussion related to Coplien’s first organizational @attwith one architect in
the Sustainable Industrial Software System case study n@ag avhat was the best al-
ternative; to let the organization decide the architectute let the architecture decide
the organization.

Cain, Coplien and Harrison have described additional argdion patterns in [31].
Their conclusion is that: “If there is one consistent measiirsuccessful organization,
it is how well its members maintain relationships throughmeowunication.”

Dikel, Kane, Ornburn, Loftus, and Wilson developed orgatianal principlesin an
effort to predict the success or failure of software ardtitees for large telecommuni-
cations systems [32]. In the case study, reported on in {88}, realized that technical

13

factors, do not by themselves explain the success of a prdidearchitecture and that
only in conjunction with appropriate organizational belbas can software architecture
effectively control project complexity. The view of the swére architecture as a con-
trol instance working correctly only if the organizatioqelrameters are set correctly
led Dikel et al. to reflect on the law developed by W.R. Ashi3][8helaw of requisite
variety?, which suggests that a system should be as complex as itoement:

...in active regulation only variety can destroy varietyt. Idads to the
somewhat counterintuitive observation that the regulatoist have a suf-
ficiently large variety of actions in order to ensure a suffidly small va-
riety of outcomes in the essential variables E. This prileciias important
implications for practical situations: since the variet§gerturbations a
system can potentially be confronted with is unlimited, heusd always
try maximize its internal variety (or diversity), so as to dygtimally pre-

pared for any foreseeable or unforeseeable contingency.

Dikel et al. reason around that if a software architectureob®es more complex
than its environment, it may become too expensive for thamiggtion to support. In
the book [34], Kane, Dikel and Wilson describe 30 organtal patterns and and
anti-patterns using the principles; Vision, Rhythm, Aigtation, Partnering and Sim-
plification (VRAPS).

If the environment would include the organizational enmireent as well as the
business environmentthen both the micro design-levelga8grns (discussed by Beck
[35], Buschman [36] , Shaw [25], Gamma [37] and Fowler [3&eell as the macro
design-level [28] patterns (discussed by Fowler [38], @Gop]39] and Kane [34]) must
harmonize in their complexity with the complexity of the wedire architecture for a
sustainable software system. For industrial softwareesyst a domain model of the
business domain along with a measure of its complexity wbaldequired in order to
understand on what level the software architecture contglskould be.

Many attempts of measuring software architecture compléxave been made:
Boehm et al. [40] describes MBASE that considers architattomplexity.; Halstead
[41] proposes measures to predict understanding effoebas grammatical complex-
ity of code modules. McCabe [42] proposes a graph-theocgtitomatic complexity
measure etc. The question is if, and in that case what kindgafnizational and archi-
tectural complexity measure should be used in the law ofisggwariety if it were to
be applied to software engineering for the sustainabifiipdustrial software systems.

In the following lists of the sustainability concerns, thencerns’ importance for
sustainability are marked with: *** for very high importaac** for high importance,
and * for importance. The ranking is done according to howyr&rthe interviewees
mentioned the concern as important for sustainability sirdbele for sustainability. If
four or more interviewees mentioned the concern, then irgoked as ***; if two or
three interviewees mentioned the concern, then it got iake**; and if only one
interviewee mentioned the concern, then it got ranked as *.

Concerns with Scope Contexts perspective:
1. Inventory Sets Abstraction

(a) Well-known sustainable key competences***

2http://pespmci.vub.ac.be/REQVAR.html

14

(b) Well-known key stakeholders*

(c) Well documented system knowledge***

(d) Sustainable Human Machine Interface (HMI) technology*
(e) Documented role descriptions***

N

. Process Transformations abstraction

(a) Formal in-house software development process*
(b) Formal technology evaluation process***
(c) Formal architecture evaluation Process***

3. Network Nodes Abstraction
(a) Comply with standardization organizations and fedagaincies***
4. Organization Groups abstraction

(a) Sustainable standards***

(b) Sustainable 3d-party software***

(c) Sustainable HMI technology vendors*

(d) Sustainable development organization groups***

5. Motivation Reasons abstraction

(a) Sustainable revenue strategy*
(b) Sustainable target markets in need of sustainableragsté
(c) Open and communicative organization culture***

It's striking that so many concerns with a Scope Contextsgestive are seen as
having high importance for corporate sustainability. Nbbathese concerns are tar-
gets for traditional software engineering but many of thetoally are, such as: stake-
holders, documented system knowledge, software develofmnecess, and architec-
ture evaluation process. Other concerns are dealt withirwtitle field of organizational
theory: key competences, role descriptions, project mamagt process, development
organization groups, and organization culture. Some dagekto the field of eco-
nomics: revenue strategy, target markets. Some concesn®lated to technology:
HMI technology, technology evaluation process, 3d-paotfivgare, HMI technology
vendors and standardization organizations. Compliantefeteral agencies’ regula-
tions processes may be a cross-cutting concern.

Concerns with Business Concepts perspective:
1. Inventory Sets abstraction

(a) Short-term and long-term gain in balance in cost-beanétysis***
(b) Feature-driven and quality-driven Return Of Investteiculation***
(c) Maintenance-phase cost separated from design-phat® co

(d) Globally applicable development Key Performance lattics (KPIs)**
(e) Objective time-prediction of software developmenksas*

15

2. Process Transformations abstraction

(a) Excellent technology scouting***
(b) Few customer-tailored architectural changes***
(c) Quality improvement projects balanced with featureafi@gment projects***

(d) High-frequent communication between target marketarusrs and prod-
uct managers***

(e) Analysis of target market need of new technology***
3. Network Nodes abstraction

(a) High-frequent communication between 3d party produppser and de-
velopment organization***

(b) High-frequentcommunication between product managearel architects***
(c) High-frequent communication between distributed dgyment teams***

4. Organization Groups abstraction
5. Timing Periods

(a) Long system life cycle***
(b) Release cycle in balance with customer-desired syspetata-rate***
(c) High-frequent project follow-up cycles*

6. Motivation Reasons abstraction

(a) Strategy for keeping sustainable key-competences***
(b) Cultural boundaries communication strategy***
(c) Well-communicated system-related customer goals andldpment goals*

Sustainability concerns with a Business Concepts perispegite seen as having
high importance by all roles. The Business Concepts petispen the Software En-
gineering Taxonomy, mapping the case study data, is theéssiperspective of the
development organization and deals with everyday worles$or all people working
in the development organization. The interviewees, withakception for one archi-
tect, had all worked for 10 years or more within their currerganization and in this
time they had collected Business Concepts concerns thegsskighly important for
the sustainability of the system they develop.

The Inventory Set perspective’s mapped concerns have intfigefrom software
engineering-, economics-, and management theory. Thevieweed product man-
agers asked for better ways of calculating the Return Ofdtmuent for quality-focused
projects and for long-term projects. The current calcatadibenefit feature-driven
projects as well as short-term projects resulting in dgaeis hiding quality-improvement
they see as necessary in the feature-driven projects. dhid be one reason for over-
optimistic time-prediction calculations done by the depelrs, since they only get ap-
proval for feature implementations. However, calculatingprrect development effort
for a proposed change request is difficult.

In [20] Curtis describe the time required for learning apation-specific informa-
tion as being buried under the traditional life cycle phasecsure of most projects
and unaccounted for. Thus, Curtis continues, the time redub create a design is

16

often seriously underestimated. By including the educai@spect into the devel-
opment effort estimations, the estimation might be moreemithan today. Some of
the interviewees reported on expert developers making@mbetttimations than non-
expert developers. The expert developer had long-timerep of the system and
probably of the application domain of the customers as \ildlese expert developers
hence would need less education effort than the othersrilbotihg to making their
time-estimates more correct.

None of the interviewees had a clear picture of how they nredsschedule align-
ment and development efficiency. The Key Performance ItolisgKPIs) mentioned
was the number of System Problem Reports related to qualige. The SPRs are
reported by customers and testers. The product managdrhsgiwould like to see a
globally applicable KPI that measures development perémee in distributed devel-
opment teams. Separating maintenance cost from desigmoosd be a prerequisite
for the use of a globally applicable KPI since maintenanat design have different
characteristics. According to the IEEE 610.12-90 definif#3], adopted by the IEEE
Software Engineering Book Of Knowledge (SWEBOK) [44], dgsis both “the pro-
cess of defining the architecture, components, interfacebpther characteristics of a
system or component” and “the result of [that] process”. BWK describes software
maintenance as “Once in operation, anomalies are uncowvgpedating environments
change, and new user requirements surface. The maintephase of the life cycle
commences upon delivery”.

Globally applicable KPI could be based on the categoriesleiftified informa-
tion needs in the development organization suggested bgliarit5]: Schedule and
Progress; Resources and Cost; Product Size and Stabitiguft Quality; Process
Performance; Technology Effectiveness; Customer Satisfa The KPIs could also
be based on the complexity measures discussed: Boehm d0§| Halstead [41] or
McCabe [42].

The customer-specific architectural change projects wasstaigability concern
voiced by all developers and architects. This confirms tpetta finding in the Curtis
study [21] related to fluctuating requirements as a hindes@dtware development
productivity. One architect in the Curtis study said:

Software architect: The whole software architecture, tgibevith, was
designed around one customer that was going to buy a couph®o$and
of these. And it was not really designed around the ..., niplkee at all
...Another ..., customer had another need, so we're, triormgarrange
the software to take care of these two customers. And whehitdeone
comes along, we do the same thing. And when the fourth onesciorey,
we do the same thing.

A similar statement was voiced by some of the interviewedetipers and archi-
tects. This does not necessarily have to be a bad thing ibftveare system is designed
to have configuration possibilities for tailoring the systior a specific customer. But
for the system to be designed this way, the target markegpteast important business
processes have to be known and the system designed arosed theplien has sug-
gested the domain analysis [46] as one way of finding comnit@safor a system’s
target market. This relates to the sustainability concelitiigs: “Keep close contact
with target market customers” and “Analyze target markedsdfor new technology”.

Concerns with System Logic perspective:

17

1. Process Transformations abstraction
(a) Don’t mimic organizational groups’ interfaces whenigesg system com-
ponents’ interfaces*
(b) Minimum of complexity in architecture**

2. Motivation Reasons abstraction

(a) Reliability***

(b) Usability***

(c) Maintainability***

(d) Portability**

(e) Modifiability**

(f) Scalability**

(g) Understandable requirements**

Maintainability of the system is crucial for customers amelopers. Since the
system is an expensive long-term investment for both deeeland customer, the
maintenance phase is very long ranging from ten to thirtysiea

Portability, modifiability, scalability and maintainaibyl are seen as important qual-
ities to achieve. At the same time these qualities are cosdhat the companies in the
study have difficulties to implement in their systems. Ruailily, modifiability, scal-
ability and development maintainability are not obsergablruntime and are quality
concerns that the development organization have. Theroasd concerns are related
to run-time observable qualities as reliability, usapiind maintainability in form of
e.g. on-the-fly upgrades and easy integration of inter dipgraystems. The reliability
quality is seen as achieved by the case study’s particpattmpanies’ interviewees.

The development organization’s quality concerns not olzd®e in runtime are seen as
not fully achieved.

Concerns with Technology Physics perspective:
1. Inventory Sets abstraction

(a) Isolated Business Logic***
(b) Sustainable Human Machine Interface (HMI) technologmponents*

2. Process Transformations abstraction

(a) Sustainable Business Logic supporting sustainableees business pro-
cesses***

3. Network Nodes abstraction
(a) Stable system inter-operation interfaces***
4. Organization Groups

(a) Low-frequent changing HMI*

18

In the interviews, the importance of isolating the core bass logic from frequent
change impact was mentioned by several times. The coredssslogic is a market
differentiator and sustainable since it supports the eostgrocess needs that are sus-
tainable. Since these sustainable needs of the customeist @dbhange over decades,
the business logic handling these needs is especially sapicto identify, master and
isolate.

The “Stable system inter-operation interfaces” concerigdantified as growing in
importance due to the growing requirement on interopetgbiternally at the custome
rlocation through intranets and the Internet.

All of the interviews testified that the Human Machine Ingeé was the part of the
system with the most frequent changes. Only one intervieaxpeessed a desire for
sustainable HMI components which could support easy updatthe HMI. This was
a bit surprising. If the HMI is the subsystem with the mosgfrent changes then the
concern would logically be to find HMI technology that is sustble in order for the
frequent changes to be less challenging. Relating to thbilitgeSupporting Architec-
ture Patterns study [2][3] of the interplay between usgbdind software architecture,
isolating the user interface logic is not enough to achiavesdle system. Architectural
changes are necessary in order to support aspects of tisdfidiquent changes to the
user interface would hence correlate to some changes imt¢hiecture in order to get
the desired behavior of the user’s interaction with theesyst Architectural changes
are expensive since an architectural change in a complexyegystem has a series
of consequences for the system. The awareness of the epdyptween usability and
software architecture is however low in the software engjiimg community. The IEEE
Software Engineering Body Of Knowledge (SWEBOK) publisB804 [44], mentions
the word usability six times but refer to the software erguoits discipline for how to
work with usability. Rozanski and Woods only suggest théatson of user interface
logic as a usability tactic, in contrast to their thorougBsatétions of ten security tac-
tics in their book “Software Systems Architecture: Workingh Stakeholders using
Viewpoints and Perspectives” published 2005 [47].

Concerns with Components Assemblies perspective:
1. Inventory Sets abstraction
(a) Re-usable components*
2. Network Nodes abstraction
(a) Standardized communication protocols***

The issue with re-usable components was a concern for oryobthe intervie-
wees. Jacobson et al. discusses the reuse of componen8 empisay that reuse is
hard because the following factors have to be interwovemaastered:

e \ision

Architecture

Organization and the management of it

Financing

Software engineering process

19

According to the analysis of data in this case study, theeenseto be a lack of
long-term quality investments possibly due to the KPI nuralaad NPV calculations
favoring short-term investments. Only one interviewee sawsable components as
important for sustainability and this could be due to thdialifty of integrating the
re-usability factors, listed by Jacobson, in the softwaestbpment organization. An-
other reason might be the lack of software engineering lmisigmong the system’s
management as discussed in Section 4. If the management dwolve themselves
into the software architecture tactics for how to addresstamability and modifiabil-
ity concerns, which typically result in long-term investm® the projects with this type
of agenda suggested by architects and developers havehiassecof being approved
and prioritized.

The non-balance of short-term needs and long-term needs sdténg business
goals has been described by Dyllick and Hockerts in theiclardn Corporate Sustain-
ability [18] as:

In recent years, driven by the stock market, firms have tetwederem-
phasise short-term gains by concentrating more on quartesults than
the foundation for long-term success. Such an obsessitnsividrt-term
profits is contrary to the spirit of sustainability, whichogeires a balance
between long-term and short-term needs, so as to ensurdility af the

firm to meet the needs of its stakeholders in the future asasatiday.

3.4.1 Case Study Propositions versus analyzed Data
The status of the propositions in relation to the analyzdiéced data is:
1. We believe sustainable systems can control the develojpuost

(a) This proposition was not verified nor rejected. The witawved persons
were not the ones who controlled the development cost. The stady
should have included line managers and project leaderstohie propo-
sition.

2. We believe the customers expect the system to be lond-live

(a) This proposition is verified. Sustainable system custardo not want un-
necessary updates to the system for long time periods,aiypi2-3 years.
A replacement of the system is accepted with a time-periotymtally
10-30 years.

3. We believe offering a sustainable system is a market ddgan

(a) This proposition is verified. Developing a sustainablduistrial software
system is extremely expensive. Due to the cost, it's verfycdif to get a
fast Return-Of-Investmentwhen introducing a new systeot.rhany com-
petitors are willing to take the risk. Additionally the dslished sustainable
system has a market differentiator of being reliable fogltimes and as
such minimizes the risk for new customers speculating intwsistem to
buy.

4. We believe sustainable systems must cope with changeyanizations, tech-
nology, business goals, and stakeholders’ concerns, utitbsing control over
its cost, quality and schedule output

20

(a) This proposition is not verified nor rejected. The intewwed persons were
not the ones who controlled the development cost, quality sohedule.
The case study should have included line managers and plegeters to
test this proposition.

5. We believe sustainable systems will have an organizatittna high communi-
cation interaction

(a) This proposition is verified. The implicit knowledge dfet well-known
sustainable key-competences is communicated frequéntiygh informal
information channels, e.g. ad-hoc face to face discussions

6. We believe organizations managing sustainable systdlnsave an organiza-
tion with clear defined roles and clear hand-over of infoiorat

(a) This proposition is rejected. The roles of the intengevpersons were not
clearly defined and no clear hand-over of information toalcpl The rea-
son why the development still worked was to find in the impkciowledge
owned by a set of sustainable key-competences in each cgmifjanlong
work experience gave them an implicit role as a source ofrin&tion to
whom others turned for help when needed.

7. We believe organizations managing sustainable systélirdan for changes by
forward feeding them upon detection into the planning oftmeajor steps of the
system

(a) This proposition is verified. When detecting major tembgy changes,
e.g. Visual Basic support with-drawn from Microsoft, theyanizations
plan for the exchange. The planned steps were pre-studisietural
planning and release planning. However, when out-sourbévglopment
work to low-cost countries, the organization did not do arg-gtudies, or
set up any remote conferencing facilities, or gave any @suis how to
work distributed. The non existent planning of the new distied work
organization was reported as the most major threat to thairability of
the system by all three companies in the case study.

8. We believe organizations managing sustainable systdthbave stated long-
term business goals communicated to the entire organizatio

(a) This proposition is rejected. No one of the interviewamdd list the most
important long-term business goals. They also did not feat this was a
hinder for the system’s sustainability.

9. We believe major organizational changes are the mostuliffthanges for a
sustainable system

(a) This propositionis verified. All interviewees reportadthe distributed de-
velopment organization as the largest threat to systeraisasility. Addi-
tionally, it was reported on the unclear decision authdtigydevelopment
organization experienced when controlled by more than tigamizations
located in different parts of the world. The unclear decisiathority often
led to some kind of consensus decision not optimizing theegydut taken
to be politically correct.

21

10. We believe sustainable systems can do major architdaianges without the
customers noticing any major changes to the product. Ftanee, migrating to
a product-line architecture without changing the esseat#s product

(a) This proposition is verified. All of the interviewees cefed on the impor-
tance of backward compatibility and the customers wantomgmnmecessary
production stops due to system maintenance. The develdprganiza-
tions planned for architectural changes with the requirgroa backward
compatibility in focus. At the same time this requiremenswarceived as
one of the most difficult to achieve causing high developneests. But
all interviewees reported that the backward compatibiliag a key-market
differentiator and as such very important.

11. We believe sustainable systems have high-frequentaiomter development
progress in between release dates

(a) This proposition was not verified nor rejected. The wiaved persons
were not the ones who controlled the development progresse case
study should have included line managers and project lsddedest this
proposition.

3.4.2 Sustainable Development Dimensions

The list of success-critical concerns from the intervievesteanslated into sustainabil-
ity capital according to the three dimensions; Economigaljironmental, and Social.
Two of the systems support customers’ business procesegseo reduce energy
consumption. Considering the environmental sustairtgfiitie systems therefore help
the customer to reduce the consumption of natural energyress. This support is
listed as environmental capital. Additionally, all threemgpanies have good reputa-
tion among customers for having a reliable, high-qualitydurct. The reputation is
therefore added as an intangible economical capital. Loaudet presence is one key
aspect to the sustainability of the industrial softwardesys. By having long market
presence and a reliable system, the customers trust theswstd therefore feel that
they take a smaller risk by investing in the system. The targgket of the industrial
software system is sustainable itself, which make the targeket customers willing
to investin a comparably expensive system. These custdeathat they will achieve
a return-of-investmentin a relative short time comparetiédifetime of their business
processes. The sustainable target market is added asleaagdnomical capital. Due
to the high initial development cost of the industrial saftes system, few competitors
are entering the target market since the system are soldynaie to long market pres-
ence and good reputation. Newcomers have no long targeetarisence and have
not yet built up the good reputation of being reliable fora#es. The few competitors
on the target markets is also added as economical capital.

Figure 5 shows the distribution of sustainable developneapital for the three
industrial software system development organizationeéncase study. Even if many
capital units are classified as economical capital and ong/ unit as environmental
capital, the number of capital units does not say anythirytitheir relative value to
the stakeholders. It might be that the single environmagagital unit is more worth
to the system’s stakeholders than ten of the economicalataiits.

There is no balance in the dimensions, the tangible ecoramsistainability is
over-represented. It shows that, for individuals, workinghe industrial software

22

Economic
Sustainability
A

+ Isolated business logic in system - Documented role descriptions

+ Sustainable business logic that supports - Sustainable 3d party software

sustainable customer business processes - Sustainable standards

+ Stable system inter-operation interfaces - Highly usable system

+ Standardized communication protocols - Highly maintainable system

+ Compliance with standardization - Short-term and long-term aspects in

organizations and federal agencies balance in cost-benefit analysis

+ Long System life cycle - Feature and quality driven Return Of

+ Release cycle in balance with customer- Investment calculation

desired update-rate - Objective time-prediction of software

+ Reputation development tasks

+ Sustainable target market - Excellent technology scouting

+ Highly reliable system - Few customer-tailored architectural

+ Strategy for keeping sustainable key- changes

competences - Quality improvement projects balanced with

+ Long target market presence feature development projects

+ Few competitors on the target markets - Well documented system knowledge
- Formal technology evaluation process
- Formal architectural evaluation process
- Analysis of target market needs of new
technology

Environmental Social
Sustainability Sustainability

+ Well-known sustainable key-competences

+ Well-known success-critical stakeholders

+ Open and communicative organization culture

+ High-frequent communication between 3d party
products' suppliers and development organization
+ High-frequent communication between target market
customers and product management
-High-frequent communication between distributed
development teams

- High-frequent communication between product
management and architects

- Sustainable development organization groups

- Cultural boundaries communication strategy

+ System contributes to reduced
consumption of natural energy
resources

Figure. 5: Three dimensions of important sustainable dgweént capital in the do-
main of Industrial Software System according to the findifidee “plus” sign indicates
that the companies felt they had the capital. The “minush siglicates they felt they
needed an improvement.

23

system domain, it will take substantial time before the eptof sustainable develop-
ment will be natural in all of its dimensions. Creating econcal value is important
for industrial systems, but the sales for two of the systemslevnot be as high if the
systems did not contribute to a reduction in the naturaluesoconsumption. The en-
vironmental sustainability is interacting with the econicahsustainability. The social
sustainability capital was decreased when distribute@ldement was introduced in
the companies. Distributed development is seen as the najst threat to the sustain-
able development. There are ways to make distributed dewedat work and many of
them represent an increase in social capital by socializatOshri et al. argues that,
in order to achieve successful collaboration, firms shoatwser investing in the de-
velopment of socialization despite the constraints imgdseglobal distribution [49].
The socialization efforts could be e.g. increased comnatioin through virtual Face
to Face (F2F) meetings, kick-of meeting, progress meetitgs

3.5 Summary

Using the Software Engineering Taxonomy to classify theceonms collected from the
interviews, clarified the enterprise architecture perspes of the concerns, i.e. if the
concern was a system architecture concern or an businessputsrconcern. Most of
the concerns were classified in the perspectives where xeteaders and strategist
are responsible for the model descriptions. Managemenigihbss processes, strate
gies, risk analysis, external partnerships, communinastaff, target markets etc is
seen as the key to achieve sustainable development.

The results of the sustainable industrial software systeasse study are: a set of
success-critical concerns for sustainability; 5 verifiedpwositions, 2 rejected, and 4
still to be verified or rejected. The list of success-critimancerns does not include as
many architectural success-factors as expected. In tluetréfs speculated if this is
related to the lack of consensus around the concept of s@ftarahitecture. The lack
of a clear software architecture definition and tools anchogs based on such defini-
tion might make the industry reluctant to embrace the conafegnftware architecture.
As long as the software architecture concepts are not éthplaefined, employing
software architecture concepts might constitute a riskeédrtdustrial software system
development organization. Curtis study[20] [21], Kandisdy[34], and the System
Sustainability case study point toward a possible conatustiat a working software
development organization, with model descriptions from Business Concepts per-
spective in place, is a prerequisite for software engimgeidols and methods to have
a significant impact on productivity and sustainable dgwaient.

When applying the concept of sustainable development teltssified concerns
from the interviews, which were ranked as being of high inigace to the intervie-
wees, there was an unbalance between the economical sinsliin environmental
sustainability, and the social sustainability. Most ofteacerns addressed economical
sustainability or ways of increasing economical sustdlitpbSome addressed social
sustainability but non addressed environmental sustgityaln the analysis, one en-
vironmental sustainability issue is added based on knayded the systems collected
through documentation and experience. When the value akaslithg the individual
sustainability concern is not known, it’s difficult to verifbased on the interrelation-
ships between sustainability dimensions, if the systeneld@ment is sustainable or
not.

24

4 Software Engineering Taxonomy and the IF method

The Influencing Factors (IF) method collects concerns,aexsr Influencing Factors
from the concerns, and analyzes those for their influenceusinéss goals and soft-
ware quality attributes. The result is a business goal tegeprioritization of software
quality attributes. The way the Influencing Factor is usefdjnthe Influencing Factor
is a factor that states a motivation for possible systemirements from the stakehold-
ers’ perspective.

By presenting the collected effect of several concerns, .ghe matrix used in
[4], the IF method makes both the business goal priorittraéind the software qual-
ity attribute prioritization clear and therefore guideg tarchitectural decisions and
strengthens the stakeholders consensus around pridritimeerns. The analyzed con-
cerns could also contribute to a more complete requirenperiication, helping the
system developers understand the origins of the requiremen

In [4], it is described how the different impacts of the Infigéng Factors are used
to prioritize among the Influencing Factors for two authectises. The first case was
performed on the upgrade of a large legacy industrial soéwsgstem and the second
case on the re-factoring of an existing industrial softwsygtem. The two field study
systems had a diverse set of stakeholders, such as softxgareet, system architect,
developers, testers, product management, line manageengirieers, and users. Both
systems suffered from an unclear understanding of whaisrosavere the mostimpor-
tant. The resulting impact analysis helped the stakehsldegoritize among software
quality attribute scenarios in the case with the re-fact@estem. The prioritization
included usability and led to the Usability-Supporting Aitecture Pattern study de-
scribed in [2][3]. The other case, with the legacy systersylted in the stakeholders’
understanding of their perhaps too high focus on short-tearket expansion instead
of a balanced focus including long-term quality enhancemeéloday this company is
doing a major investment in enhancing the maintainabilitthe system.

Influencing Factors from the Influencing Factors case stpdisented in [4], are
here used for additional investigation using the SoftwargiBeering Taxonomy [1] as
a reasoning framework. The Influencing Factors are cladsifiehe Software Engi-
neering Taxonomy to explore the possibility of a relatiotwseen the classified Influ-
encing Factors and their perspective and abstraction itamnomy.

4.1 Classification of Influencing Factors

The Influencing Factors are all classified as having the M&twn Reasons abstraction
since they describe stakeholder motivations for the usaggppctives: Scope Contexts,
Business Concepts and System Logic. Figure 6 shows thefiddsafluencing factors
with business goals ownerships and quality attribute imp&he business goal own-
erships states if it's the customer or development orgéinizéhat owns the business
goal, i.e. has a benefit of achieving the goal. Indirect, theetbpment organization
has a benefit of fulfilling the customer’s business goals.tBeitustomer business goal
would not be addressed of the development organizatior iftistomer had not voiced
the goal or concern related to the goal.

4.2 Analysis of Classified Influencing Factors

Influencing factors with a System Logic perspective do neeldevelopment organi-
zation’s quality concerns, e.g. testability and mainthilig. These concerns never

25

Abstraction = MOTIVATION REASONS

(WHY)

Software

Development

Organization

Perspective \1,

SCOPE Business Goal | Quality

CONTEXTS Ownership |Concern
IF3.1: Maintain backward compatibility Customers Modularity
IF4.1: Replace in house developed electronics and/o Developments | Availability
software with standard HW/SW without affecting

availability
IF4.7: Decrease development time by introducing the
product line system

Developments | Maintainability

BUSINESS IF1.2: Implement same performance as today Customers Performance
CONCEPTS 1IF2.1: Make commissioning easier Customers |Maintainability
IF2.2: Implement remote access Customers Security

IF2.3: Make it possible to upgrade parts of or wha system |Customers Maintainability
easy and fast.

IF3.2: Implement same robustness/availability as ay Customers Availability

IF3.3: Implement same accuracy as today Customers Performance
SYSTEM IF1.3: Implement fast extensive communication Customers Performance
LOGIC infrastructure.

IF5.2: Handle analogue signals from external syste Customers Interoperability

Figure. 6: Influencing Factors classified in the SoftwareiB®gring taxonomy. The
influencing factors related Business Goal ownership andifQugttribute impact are
shown next to the classification in order not to clatter therg Quality attribute
concerns are classified in the System Logic/Motivation Bessell.

26

surfaced as part of the success-critical stakeholderslerois. Testability and main-
tainability are non-runtime observable qualities [13]sutcessfully implemented, the
qualities could contribute to long-term cost-reductiomsthe development organiza-
tion. However, these two qualities are left to the architecteal with and take informal

decisions on in the investigated cases.

The understanding and interest to deal with software @mdticimplement non-
runtime observable qualities as testability and maintzlitg seem to be non-present
among the success-critical stakeholders. This was vefifiethe second case in the
case study. Runtime observable qualities affecting théoousrs’ perception of the
system engage the success-critical stakeholders more.

Non-runtime observable qualities as testability and dgwalent maintainability
will likely never be voiced by customers and customer resfiga persons. It should be
noted that the system’s operation environment’s mainkdiitiaconcerns, e.g. installa-
tion and on-the-fly upgrades, differ from the developmestremment maintainability
concerns.

In the “System Sustainability” study described in Sectioth® architects and se-
nior developers testified to how difficult it was to build thesiness case motivat-
ing development-environment maintainability improvensgrojects with a short-term
cost-increase and long-term cost savings. One of the fisdirgg that all the compa-
nies in the study wanted a cost-benefit calculation methat lihlanced short-term
gains and long-term gains as they felt the current calaratmuch favored the short-
term gains.

4.3 Summary

The classification of the Influencing Factors into the SofenEangineering Taxonomy
contributed to some additional observations regardinges$ialder role and stakeholder
perspective. For the stakeholders with the Business Cosgepspective, maintain-
ability and testability are handled with software devel@mnimprovement strategies,
e.g. introduction of product lines. The architectural stowes for realizing these strate-
gies are seldom discussed among the success-criticahsidkes. Decisions regarding
architectural structures are taken informally by the decits. According to the report’s
case study analysis of sustainable software developntengrthitects find it hard to
build the business case motivating development-envirammaintainability improve-
ments projects with a short-term cost-increase and lomg-t®st savings. The clas-
sification of influencing factors in the software enginegriaxonomy confirmed that
this is a problem that has to be addressed e.g. in term of amireg short-term versus
long-term gain Return Of Investment calculation.

27

5 Software Engineering Taxonomy and the USAP study

Usability and its interplay with software architecture veiscussed in the Influencing
Factors paper [4], as one of five quality attributes. In [R]fBe Usability-Supporting
Architecture Pattern field study is described and discus$bd field study was done
in the domain of industrial software systems.

The field study contributes with a description of an enhatt®AP, three described
USAPs according to the enhancements, and a USAP softwdrthtdorisualizes the
USAP information.

Visualizing the responsibilities in a tool helps the softevarchitects (on a detailed
design level) to implement usability support in the softevarchitecture for specific
usability scenarios early in the software design phase. uBability design is part of
the enterprise architecture, system architecture, artdad architecture but has not
been put in relation to these in an explicit fashion beforkisTield study’s research
has therefore contributed to fill a gap not covered by exgdliberature in a sufficient
way.

The contribution is significant since very few studies cgroreon software archi-
tects being able to use a tool early in the software designvimythat helps them
implement usability support in the software architectdiige two architects in the field
study used the tool for six hours and reported on a developoust saving of more
than five weeks gained by their interaction with the tool.

In this section Software Engineering Taxonomy (SET) will dmed in order to
create two process composites (methods). The work flow cftioig these process
composites guided by the SET will be:

1. Identify artifacts of the Usability Supporting Architece Pattern concept
2. Classify artifacts in the Software Engineering Taxonomy

3. Create a process composite in the Software Engineertogdany, by relating
the classified artifacts in a sequence adhering to the Zathanas

The first process composite will describe a sequence foringeWSAP artifacts
in order to evaluate a software architecture against the R§SAThe second process
composite will describe a sequence of creating USAP atsifac

5.1 USAP Artifact Identification
5.1.1 USAP Responsibility

Even though the word “responsibility” has been used in thelipations of USAP

[2][3], it has never got it's own definition in the context oflUSAP. The responsibil-
ity is originally a section of a Class Responsibility Coltator (CRC) card. CRC
cards are used as a brainstorming tool in the design of ebjemtted software. The
CRC cards were proposed by Ward Cunningham and Kent Beck [BB¢y describe
responsibilities as:

Responsibilities identify problems to be solved. The swiatwill exist
in many versions and refinements. A responsibility serves handle
for discussing potential solutions. The responsibilitiésan object are
expressed by a handful of short verb phrases, each contpaninactive
verb. The more that can be expressed by these phrases, tegpowerful

28

and concise the design. Again, searching for just the rigbtds is a
valuable use of time while designing.

(p- 2[50])

The responsibility as described by Beck and Cunningham atas Wised by Frank
Buschmann et al. in the book “Pattern-Oriented Softwarehiecture A system of
Patterns” [36] to describe the responsibilities of classeschitectural patterns. They
describe the responsibility as:

Responsibility: The functionality of an object or a compuirie a specific
context. A responsibility is typically specified by a setpdrations.

(p. 438[36])

Wirfs-Brock uses responsibilities in the book “Object @gsiRoles, Responsibil-
ities, and Collaborations object-oriented design” [51}hie same sense as Beck and
Cunningham. She defines the responsibility as:

A responsibility = an obligation to perform a task or knowanhation

(p- 3[51])

Often there is confusion about the difference between rements and responsi-
bilities. Since both are elements of the system in the prolsieace, they might appear
to describe the same system motivation. The requiremesefiset] by the IEEE Soft-
ware Engineering Book Of Knowledge (SWEBOK) [44] as:

A software requirement is a property which must be exhititedoftware
developed or adapted to solve a particular problem. The lprmbmay
be to automate part of a task of someone who will use the se&ftvwa
support the business processes of the organization thatdrasissioned
the software, to correct shortcomings of existing softwamecontrol a
device, and many more. The functioning of users, businesegses, and
devices is typically complex. By extension, thereforergh@irements on
particular software are typically a complex combinationrefjuirements
from different people at different levels of an organizatand from the
environment in which the software will operate.

The requirements are therefore a result of conflicting corecom the software
system’s stakeholders and the software system’s envirotritée requirement is de-
fined as a property. The USAP responsibility on the oppositet the result of con-
flicting concerns. The USAP responsibility is constructelgly to fulfill the usability
quality concern for a specific task and it has distinctiverabteristics that differs it
from a requirement. In short, these are:

e Context - The USAP responsibility is always defined for a #jizetask for the
fulfillment of the usability quality of that task.

e Localization - The USAP responsibility is always localized particular portion
or portions of the system.

e Functionality - The USAP responsibility always describgsagicular behavior
of the particular portion(s) of the system to which it is |bzad.

29

Additionally, the processes in which the artifacts aregnaged differ. The require-
ment artifact is integrated in the process of collectinfgalt@lders’ concerns and elic-
iting these. The USAP responsibility is part of an architeatdesign process coupled
to the processing of a general Usability Supporting Araitee Pattern. The USAP re-
sponsibility is therefore not specific for a commissionestssn and its characteristics
are expressed in a general fashion to be adapted by any system

5.1.2 USAP Activity and Task

During the work of identifying “Alarm & Event” USAP forces, task analysis was
done to identify the tasks of the “Alarm & Event” sub-systerasers. From the task
analysis the forces should be identified leading to the coatbn of usability support-
ing responsibilities.

In the article “Task Knowledge Structures: Psychologiealib and integration into
system design.” [52], Johnson and Johnson describes trartamge of task analysis to
assist software designers to construct computer systench ywhople find useful and
usable:

One way to approach this goal is to assume that knowing sontesbout
how users approach and carry out tasks will aid software glesis when
making design decisions which will ultimately affect cotepaystem use-
fulness and usability. As a result task analysis has emeageah impor-
tant aid to early design in HCI.

Task analysis according to Johnson and Johnson is an eaipiréthod which can
produce a complete and explicit model of tasks in the domemnd, of how people
carry out those tasks. Even if the USAP study did not do a cetapghsk analysis
according to how task analysis is described in [52], it usedimber of the proposed
data collection techniques for task analysis. The tectesased to identify the tasks
for the “Alarm & Event” scenario were:

e Direct observations of commissioners demonstrating tHarfA & Event” parts
of the systems

e Interviews with: commissioners of the systems, “Alarm & Bt/esystem archi-
tects, support responsible for the systems

e Studies of: documents describing the usage of the “Alarm &riEvsystems,
“Alarm & Event” guidelines e.g. the “Engineering Equipmé&taterials Users’
Association” (EEMUA) publication no. 1§1 “Alarm Systems - A Guide to De-
sign, Management and Procurement”

The analysis of the collected data was done as:

1. Identify the roles and created work products (goals) efflarm & Event” parts
of the current systems (which would be consolidated intcoapet line system)

2. Perform a task analysis of the activities involved in tirepthe work products
of “Alarm & Event”

3. ldentify the objects used in performing the actions, €¢Raised Alarm” and
“Alarm & Event condition”

Shttp://www.eemua.co.uklnstrumentation.htm

30

4. Reason around which ones of the tasks require archigdstypport, e.g. “Author
an Alarm & Event condition”, “Handle a raised Alarm”

The result is a hierarchy of activities with sub-activitezdled tasks. The activity
is the highest level in the hierarchy and the task is the sbaghest level.

The most important aspects of the tasks with requirementdnitactural support
are formulated as responsibilities. The “cancellationAPY53] is a modified version
of the Model-View-Controller (MVC) pattern first defined b8k et al. in 1987 [35].
The MVC pattern was extended with new components, conreatad responsibilities
to accommodate the “Cancel” requirements on usability ettpp

Using the experience from the MVC pattern for “Cancel”, th&Gipattern was
used to test if it also could be modified to host the respolitiéisi for tasks involv-
ing the work products: “Alarm & Event Condition”, “User Prl&fi, and “Environment
Configuration”. The MVC-pattern did not decide the respbitiies. The task analy-
sis was the basis for constructing usability-supportirgip@éecture responsibilities. If
the constructed responsibilities would not have been plestd assign to a modified
MVC-pattern, either another pattern-solution would haserbchosen as basis or a new
architecutral sample solution constructed from scratch.

The responsibilities are formulated as ways in which théesgsarchitecture must
support the usability quality of the task in order to maketdsk useful and easy to per-
form. At the time, this resulted in 79 responsibilities. Tausture the responsibilities,
they were classified according to the common activities gugport. This resulted in
a hierarchy of activities and tasks, and the tasks’s redbititiss. After a review of
the CMU/SEI team and an “Alarm & Event” expert at ABB, somelu tesponsibili-
ties could be consolidated or removed which resulted intafid3 “Alarm & Event”
responsibilities.

Further analysis discovered that the responsibilitiemftite processing of the three
work products had been categorized in a very similar fashémording to the activities
they participated in. The activities were versions of: awuiig, execution, logging,
and authorization. Placeholders for the activities wesnitfied that were furnished
with the work product or role. The discovery was a breakAtlglosince the activities
are general and applicable to the processing of more wordyats by furnishing the
placeholder with the work product or role. Each activity ekt of tasks attached to it.
“Authoring” had e.g. the tasks “Create an [Alarm & Event Citioth]” and “Modify an
[Alarm & Event Condition]”. The tasks also made use of thecplaolder and furnished
it e.g. with the work product [Alarm & Event Condition].

During the continued analysis, it was discovered that tlspoasibilities were
nearly identical for each activity task no matter if the m@sgibilities had been cre-
ated for the “Alarm & Event” scenario, the “Environment Capifiation” scenario or
the “User profile” scenario. The difference could be desatiby using the activity
place holder and furnishing it with the work product or role.

The discovery reduced the total amount of responsibilftieghe scenarios from
over hundred to 31, since the scenarios could share comntigitias, each consisting
of tasks and the tasks’ usability-supporting architedtteaponsibilities. The com-
mon activities, tasks and responsibilities each had a ptader furnished by the sce-
nario’s work product or the scenario’s role making the aigtivask, and responsibility
scenario-specific.

If the processing of the work products is supported by commesponsibilities,
then the solution space also can be common. The architéstitdgion supporting
the “Authoring” activity can be shared by the processing lbttaee work products.

31

R15C ,)R3
Solution Space
#2
D
R11 R7

Figure. 7: Examples of solution spaces spanned by two diitesets of chosen points

The shared solution just has to make room for different pritations of the general
activities’ placeholder. That is, the common solution ltabé able to offer the user a
way of e.g. authoring both a “Alarm & Event Condition” as wa#l an “Environment
Configuration”, but the mechanisms behind how authoringjgpserted by components
and their behavior could be the same.

What was discovered was a way of offering the architectseile solutions, sup-
porting common activities for the processing of more thae epstem-environment
work product for more than one role. Responsibilities ateallg presented as parame-
ters tagged to components in an UML-diagram. In [3] it is eiped why UML sample
solutions did not work for the industrial software systenma@in. The idea surfaced of
adding a responsibility implementation description toreeesponsibility description.
For each responsibility, the portions of the system and tiehavior, implementing the
responsibility, are described.

The architects are offered one responsibility at a time ttogrewith a textual de-
scription of how this responsibility can be implemented bytipns of the system and
the portions’ behavior. It is not stated what the portionsusth or could be or what
pattern the solution should be based on. In this way the t@akican read the re-
sponsibility implementation description and visualizevhihhe wording “portions of
the system” might be translated into their own architedtdesign. If the architects
feel that parts of the architectural design are in place ppstt the responsibility in the
way the responsibility implementation describe, then tdeynot have to change the
architecture in order to implement that specific respotisibi

This way of presenting responsibilities is like putting agnidying glass over a
very small part of a sample solution which lets the architécinslate what they see
from this very small part into their own design. Dependingwrat responsibilities the
architects choose, the solution space will be differents Thillustrated with a set of
points in a two-dimensional space, see Figure 7. Dependinghat points are chosen
the resulting space spanned by the points will take on diffeshapes. For a software
architecture, it's not the shape that will look differentt liie set of components and
their interactions implementing the chosen responsislit

In the “System-Environment Interaction Hierarchy” in Figu8, the USAP work
product processing considered in the USAP field study arstésy-operational envi-
ronment interaction” work products. As previously disad the Section 3, software
guality concerns not observable in runtime as e.g. maialkality would be concerns
of processing of “system-development environment intéat work products. The

32

Level 1:
Business System — Environment Role & Work Products
Concepts I
v v
System — Operational System — Development

Environment (S-OE) Work Products Environment (S-DE) Work Products
1

A 4 v A 4
Alarm and Event Condition LSJ_SSLP\;\%I:E Environment Configuration
S-OE Work Product —_ S-OE_Work Product
_ Product _
]]]
v v v L Z
Authoring Execution Logging Authorization
Activity Activity Activity Activity
| 1
A 4 A 4
Create a(n) [S-OE Work Product] Access a(n) [S-OE Work Product]
Task Task
Level 2 -|__¢'
System
Logic The system must provide a way for an
authorized author to create a [User Profile, | Usability Quality
Configuration description, Conditions for [~ Concern
Alarms, Events and Alerts] : Responsibility
Level 3: There must be a portion of the system with a mechanism to create new [User
Technology Profile, Configuration description, Conditions for Alarms, Events and Alerts] :
Physics Implementation Details

Figure. 8: System-Environment Interaction Hierarchy wittee levels

“System-Environment Interaction Hierarchy” has threelsyBusiness Concepts per-
spective; System Logic perspective, and Technology Physécspective. The task
analysis done in the USAP field study studied the interastimtween the system and
its operational environment. For the interactions betwlersystem and its develop-
ment environment, the task analysis has to study how antbjtdevelopers, project
managers etc work with the development of the system. A taskysis of the de-
velopment environment would result in the processing okteg-development envi-
ronment interaction” related work products with usabilitgncerns from the devel-
opment environment. The system-environment interfacéhat case, would be the
test/build/implement system-development environmesetfaces.

At the time of the execution of the field study, the family ofiaities, tasks, re-
sponsibility descriptions and responsibility implemeimta descriptions were called a
“Foundational Pattern” to align the USAP with the spirit amdrk of Alexander [54]
[55]. The idea of a “Foundational Pattern” is described inrembetail by John et al. in
[56].

5.2 Classification of USAP artifacts

The extracted artifacts from the USAP concept are:

33

System Environment Business Roles and Work Products describes the system en-
vironment'’s roles and work products.

System Environment Interface - describes system’s environment interface, e.g. cus-
tomer Ul or development environment (build/test/impleth&h.

Quality attribute - describes a feature or characteristic that affects andtgumality
according to IEEE 610 [43].

System-Environment Interaction Scenario - describes an interaction between the
system and its roles, e.g. a use case or a quality attribateso.

Activity - describes an activity involved in the System EnvironmemsiBess Roles’
creation of Work Products.

Placeholder - describes the role or work product. Is used by the actititg, activ-
ity’s tasks and their responsibilities, in order to makenttepecific to the work
product or the role.

Task - describes a task of the activity.

Responsibility Description - describes how the system must interact with its environ-
ment to ensure that a specific quality attribute concernefakk is met.

Responsibility Implementation - describes the implementation of the responsibility
as particular portion or portions of the system and theialvadr.

Pattern Responsibility Description - describes a responsibility of an established pat-
tern from e.qg. [57] [36].

Pattern Responsibility Implementation - describes the implementation of the respon-
sibility as components and connectors [57] [36].

Rules & Guidelines - describes existing quality-specific, domain specificesu&
guidelines for how the system should interact with its emwment in order to
have a certain quality.

Note that if the system environment interface is a buildt, tes implementation
interface between the system and its developers than the aold work products are
the development’s roles and work products. The systemintéeaction scenario will
then describe how the tester or builder interact with théesgs In this case the site-
dimension of the Software Engineering Taxonomy is the sarftwdevelopment orga-
nization’s site. If the system environment interface isititerface between the system
and its customers/users, then the roles and work produetharcustomer’s roles and
work products. For the last case, the site dimension of tlisv&ce Engineering Tax-
onomy is the customer’s. Figure 9 shows the classificatidh@USAP artifacts into
the Software Engineering Taxonomy.

5.3 USAP Information Description-Selection Process

This section describes the flow of describing or selectirgUiSAP information. The
flow uses the classified artifacts in the Software Engingefaxonomy, Figure 9, and
describes a sequence that follows Zachman'’s consisteteyand uses the experience

34

Abstraction - Process Organization Motivation
Transformations Groups Reasons
System (HOW) (WHO) (WHY)
Environment
Perspective
Business Activity Business Roles
Concepts Task & Work
Placeholder Products
System Responsibility System- Quality
Logic Description Environment Attribute
Pattern Interaction Rules &
Responsibility Scenario Guidelines
Description
Technology Responsibility System-
Physics Implementation Environment
Description Interface
Pattern
Responsibility
Implementation
Description

Figure. 9: USAP artifacts classified in the Software EngimggTaxonomy. The en-
vironment can either be the system'’s operational enviranimiethe system’s develop-
ment environment

from how the “Alarm & Event” USAP was created. The result is BiISAP Information
Selection/ Description Process, which is visualized iruFeglL0.

Notice that no step changes both the usage perspective ardftiimation ab-
straction to align with Zachman'’s fifth rule of excluding danal steps in the frame-
work when constructing process composites. There are favbadternatives: Existing
system-environment interface, or the system-environmemtain’s Business Roles &
Work products. The first option presumes that a system emviemt interface is at
hand, e.g sketch or legacy Ul. For the product line systerherfield study, the start
was the legacy user interfaces of the systems to be part pftitict line. The legacy
user interfaces are then described/ selected. Then folodesscription/selection of
reusable system-environmentinteraction scenarios,regthirements on usability sup-
port in the architecture not solved by separating the sysiBwironmentinterface logic
from the rest of the system’s logic. Reusable system-enmient interaction scenarios
can be chosen from the scenario listing of Bass and Johnf38pdJsability Patterns
from Juristo [59] [60] [61]. The USAP field study used the US#d@narios: “System
Feedback” and “User Profile” [58][62]. The latter was diuidato “User Profile” and
“Environment Configuration”.

If the start would have been the system-environment dom&nsiness Roles &
Work products, then the reusable system-environmentdatien scenarios are de-
scribed/ selected in parallel with the description/ sébecof system-environment do-
main’s Business Roles & Work products. For example, a laeg@Eroles and work
products are at hand. By using the reusable system-env@otinteraction scenarios,
the roles and work products related to the scenario can Ingifide. These roles and
work products need usability support in the architecturetlie system’s implemen-
tation of their activities and tasks. The system-environng®main’s Business Roles
& Work products must be the step before describing/ selgetnisable activities and
tasks. Otherwise the furnishing parameter of the actidggholder can not be identi-

35

Organization Groups

Process Transformations

Motivation Reasons

Start2:
System-Environment
Business Roles &
Work Products

Placeholder

v

Reusable Activities

2

Reusable Tasks

Reusable general
System-Environment
Interaction Scenario

Reusable
Responsibility
Descriptions

A

Business Concepts

Quality Attributes

Optional: Rules
Optional: Pattern and Guidelines
N Responsibility
Descriptions System Logic
Startl: Reusable
System-Environment Responsibility
Interface(s) (sketch or Implementation
legacy) Descriptions
A
Optional: Pattern
Responsibility
Implementation
Descriptions Technology Physics
Legend B is described/selected after A.

B’s description depends on the
description of A

Figure. 10: USAP information description/selection pss;aising the classified arti-
facts from the Software Engineering Taxonomy. The figuredess in what order the
USAP artifacts should be described or selected, guideddWBAP artifacts’ classifi-

cation view’s location in the taxonomy.

fied.

The roles and work products are described/selected in tkiestep. In the USAP
study the roles were: system commissioner and system opefidie work products
were: “Alarm & Event Condition”, “User Profile” and “Enviranent Configuration”.
By describing/selecting multiple work products, the gahectivities involved in the
processing of the role’s work product can be identified.

When the tasks are described/ selected, the task’s platstislfurnished by the
description/ selection of role or work product. In the USAddistudy the place holder
was furnished with the “Alarm & Event condition”, “Envirorent Configuration”, and
“User Profile” for the majority of the tasks. For the authatinn tasks, the placeholder
was furnished with the role, “Author” and “User”. The rolework product, furnishing
the placeholder is used by the activity, responsibilityotigsion, and the responsibility
implementation.

Responsibilities are described/ selected, using: quatitibute information, rules
& guidelines information, pattern responsibilities, saga information and task infor-

36

mation. The USAP responsibility used the usability quadityribute and hence sup-
ports usability in the architecture.

The final step, the description/selection of the respolisibmplementation, is
the view with the Technology Physics perspective and theda® Transformation ab-
straction, since in this view architects describe comptsand connectors. By view-
ing the responsibilities’ implementation from this viewetarchitects can compare
the responsibility implementation description with thé@sign view, without chang-
ing their mind-set to another information abstraction asdge perspective. The de-
scription/selection of the responsibility implementatigses information from: the re-
sponsibility description and possibly, existing patteesponsibility implementation
descriptions.

If architects immediately would view architecture patgerwhich have the Tech-
nology Physics perspective and the Process Transformettigtnaction, after consider-
ing requirements or user’s roles and work products, theatiabstep in the Software
Engineering Taxonomy would introduce inconsistenciehendescriptions and a dif-
ficult shift in mind-set between both information abstrant and usage perspectives.
Using the Software Engineering Taxonomy for classifyingneénts of the USAP and
for incorporating the elements in the the USAP informatiesatiption/selection pro-
cess, contributes to a harmonized sequence of processvatbps end-product that
matches the expectations of the USAP information user.

The USAP field study included the design and implementatioth® USAP in-
formation selection tool, presented in [3]. The tool guidee architects through the
USAP information description/selection process but @ffieonly selection features.

5.4 Summary

The USAP artifacts were identified and classified in the SafenEngineering taxon-
omy. The classification of the USAP artifacts showed how thiaats can be arranged
in a process composite to describe the USAP informationrgess/ selection pro-
cess. Some new discoveries were made during the analyéis ofassified artifacts:

e The inclusion of a traditional enterprise perspective libsiness concepts per-
spective, led to discoveries of new interrelationshipsien the USAP artifacts:
system-environment interaction scenario, system enwisott business roles &
work products, system-environment activities and taskated to the roles &
work products, responsibility descriptions, quality itites, and responsibility
implementation descriptions.

e System environment business roles and work products arg arligact in link-
ing the USAP scenario [62] to common activities and taskpsttpng more than
one role or more than one work product.

e System environment may be operational or development@mvient. The envi-
ronment decides what system-environment interface anddsssroles and work
products should be used in the USAP information descripielection process

e The placeholder of the common activity is furnished by thekyoroduct or the
role.

37

e The responsibility is related to the quality chosen to bepsuged for the sce-
nario. For USAP, the usability quality is supported by theAPScenarios. Pos-
sibly, the USAP information description/ selection pracean be used for other
guality scenarios, if their tasks’ quality concern can bpregsed as responsibil-
ities.

6 Conclusions and Future Work

The Software Engineering taxonomy can serve as a reasarngeivork into which
artifacts of software engineering case and field studie®earassified for the creation
of process composites or for further analysis. For the Inftireg Factors method and
the Sustainable Systems Case study, the data was classifiednalyzed. For the
USAP field study, the data was classified and used for procaspasite creation.
Applying the Software Engineering Taxonomy led to the dddal contributions:

e Sustainable systems case study

— The sustainable key-competences in the industrial softwgstem devel-
opment organization carry the application domain knowéedgd the sys-
tem knowledge, thereby increasing the social sustairabilthe company.
The sustainable key-competence pass the knowledge on sys$tem de-
velopers during informal design discussions.

— The development organizations sustain economical cdpitplanning for
changes when the changes are technology changes. Wheratigestare
organizational, e.g. distributed development, the mamege: have lost so-
cial capital by failing to plan for how the development orgation has to
adapt to the new work-form. It has been too little known in tioenpa-
nies, what requirements a distributed development enrigort has on the
development organization’s structures and communication

— The incorporation of a remotely located development tearthéndevel-
opment organization will be especially difficult in a cuktuhat has social
capital invested in sustainable key-competences andittfiermal spread-
ing of knowledge. If the organization has ignored investigain explicit
software documentation, increasing the tangible econaingigpital, the
new remotely located team can make use of neither the sagétiat nor
the economical capital related to system know-how.

— The sustainable target market increases the intangibleoetical capital.

— Intangible economical capital in the form of goodwill anghugation is in-
creased by delivering reliable systems for a long-time éatéinget markets.

— The propositions regarding the importance of intangibtaeenical capital
of explicit defined roles and hand-over of information alavith explicit
business goals communicated to the entire organizatioa regrcted in the
case study.

— The social capital in the form of implicit roles, well-knowmthe develop-
ers, is replacing the economic capital in the form of formedatiptions of
roles and formal communication.

38

— The case study’s propositions regarding the importanceonfral of the
the cost, quality, and schedule for sustainable developneemain to in-
vestigate. The investigation have to include interviewth\project leaders
and line management. The case study assumed that the prodoagers,
software architects, and senior developers would cori&itmuthe control
of cost, quality and schedule. This turned out to be a falseraption. The
product managers, software architects, and senior dexeddad little or
no insights into how Key Performance Indicators were measor how
schedule control was exercised.

— The list of success-critical concerns for sustainable ldgveent does not
include as many architectural success-critical concesrexpected. This
could be related to the lack of consensus around the contepftavare
architecture. The lack of a consistent software architeatiefinition and
tools and methods based on such definition might make thestndreluc-
tant to embrace the concept of software architecture. Riskaot welcome
in industrial software system that have to live for decadBse business
case arguing added value of software architecture for isadtie devel-
opment is simply not good enough for the three investigatexts in the
domain of industrial software systems.

— In order to increase tangible economical capital in the fofnsoftware
engineering process artifacts, e.g. architecture dagang the companies
must first increase the tangible economical capital in fofnorganiza-
tional artifacts, e.g. role descriptions and social capitéorm of informa-
tion communication channels. Curtis study [20] [21], th&distudy [32]
and the Sustainable Industrial Software Systems case ptiditoward a
conclusion that sustainable development concerns refatdte software
development organization, must be addressed first befdt@ase engi-
neering tools and methods could have a significant impactistamable
development.

¢ Influencing Factors field study

— Additional observations regarding stakeholder role amsdediolder per-
spective. For the stakeholders with the Business Conceptpective,
maintainability and testability are discussed among $takiers as soft-
ware development improvement strategies, e.g. distibdevelopment
or introduction of product lines. The architectural strres for realizing
these strategies are seldom discussed among the sucities¢ stakehold-
ers. Decisions regarding architectural structures arentékformally by
the architects. This is a noticeable difference betweerstifisvare engi-
neering discipline and the building engineering discigliwhere building
structures are discussed by architects, customers, atctors.

e USAP field study

— The inclusion of a traditional enterprise perspective lthginess concepts
perspective, led to discoveries of new interrelationshigtsveen the USAP
artifacts: system-environmentinteraction scenariaegsyenvironment busi-
ness roles & work products, system-environment activaiestasks related
to the roles & work products, responsibility descriptioggality attributes,
and responsibility implementation descriptions.

39

— System environment business roles and work products ang artieact in
linking the USAP scenario [62] to common activities and sasiépporting
more than one role or more than one work product.

— System environment may be operational or development@mvient. The
environment decides what system-environment interfadédasiness roles
and work products should be used in the USAP information rifetgmn/
selection process .

— The placeholder of the common activity is furnished by thelnaroduct
or the role.

— The responsibility is related to the quality chosen to bepsuied for the
scenario. For USAP, the usability quality is supported BUISAP respon-
sibility. Possibly, the USAP information description/egtion process can
be used for other quality scenarios, if their tasks’ quatitywcern can be
expressed as responsibilities.

When classifying artifacts, not all of the 30 cell descops in the taxonomy need
to be used. The Influencing Factors analysis used three tel$JSAP analysis used
six cells. The Sustainable Industrial Software System sasgy used nearly all cells
showing that sustainability is a concept with a large setesdiptions and interactions
between the descriptions.

It remains to implement the description features in the USA& mation descrip-
tion/selection tool. This is done in an ongoing researchegto If the placeholder
always can be furnished with either role or work product remito validate by describ-
ing additional USAPs. Possibly, the USAP information digstimn/ selection process
can be used for other quality scenarios, if their tasks’it(puabncern can be expressed
as responsibilities.

For the Sustainable System study, it remains to use thdfaassn of sustainable
development concerns for set-up of goals and metrics inrdaodeddress some of the
concerns the companies felt they could meet in a better wag ifiterrelationships
between the classified concerns could then be used to crgateess, in the same
manner as the USAP information description/ selection ggsavas created.

References

[1] P. Stoll, A. Wall, and C. Norstrom. Software enginegrfieaturing the zachman
taxonomy. Technical report, Mlardalen University, Schaiblnnovation, Design
and Engineering, 2009.

[2] P. Stoll, L. Bass, B. E. John, and E. Golden. PreparingdilisaSupporting Ar-
chitectural Patterns for Industrial Use. Proceedings trhrational Workshop on
the Interplay between Usability Evaluation and Softwargddepment (I-ISED),
Pisa, Italy, 2008.

[3] P. Stoll, L. Bass, B.E. John, and E. Golden. Supportinghilgy in Product
Line Architectures. Proceedings of the 13th Internati@wftware Product Line
Conference (SPLC), San Francisco, USA, August 2009.

[4] P. Stoll, A. Wall, and C. Norstrom. Guiding ArchitecalrDecisions with the
Influencing Factors Method. Proceedings of the Working IEEIP Conference
on Software Architecture (WICSA) 2008, 2008.

40

[5] P. Stoll and A. Wall. Business Sustainability for Soft@&ystems. Proceedings
of Business Sustainability, Ofir, Portugal, 2008.

[6] J. F. Sowa and J. A. Zachman. Extending and formaliziregftamework for
information systems architecturl8M System JournaB1:590—616, 1992.

[7] J. A. Zachman. A Framework for Information Systems Atehture IBM Systems
Journal 26(3):276-292,1987.

[8] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A Prime
for Enterprise Engineering and Manufacturingachman International, 2003.

[9] J. A. Zachman. The Zachman Framework and Observationdathodologies.
Business Rules Journa(11), 2004.

[10] P. B. Kruchten. The “4+1” View Model of architecture Software, IEEE
12(6):42-50, Nov 1995.

[11] R. Hilliard. Systems and software engineering - Rec@nded practice for ar-
chitectural description of software-intensive systed®0O/IEC 42010 IEEE Std
1471-2000 First edition 2007-07-1pages c1-24, 15 2007.

[12] ISO/IEC 10746 - 3: 1996, Information technology - Opéstibuted processing
- Reference model: Architecture, 1996.

[13] L. Bass, P. Clements, and R. KazmanSoftware Architecture in Practice
Addison-Wesley, Boston, second edition, 2003.

[14] C. O'Rourke, N. Fishman, and W. Selkow. Enterprise Aatture, Using the
Zachman Frameworklhomson Course Technolq@003.

[15] P. Pollan. Our decrepit food factoriddew York Times2007.

[16] G.C Unruh. Escaping carbon lock-inergy Policy vol. 30(no.4):pp. 317-325,
2002.

[17] G.H.Brundtland. Our common future. Report of the WdClmmission on Envi-
ronment and Development. Published as Annex to Generah#isgedocument
Al42/427, 1987.

[18] T. Dyllick and K. Hockerts. Beyond the business casecfimporate sustainabili-
tyt. Business Strategy and the Environmdrit130-141, 2002.

[19] R. K.Yin. Case study research: Design and Methaadume 5 ofApplied Social
Research Methods SerieSAGE Publications, third edition, 2003.

[20] W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On buildsaftware process
models under the lamppost. I6SE '87: Proceedings of the 9th international
conference on Software Engineerjmpges 96—103, Los Alamitos, CA, USA,
1987. IEEE Computer Society Press.

[21] B. Curtis, H. Krasner, and N. Iscoe. A field study of thétwsare design process
for large systems. Communications of the ACM, Vol. 31 No. fifi, 1268-87.,
1988.

41

[22] E. Dijkstra. The structure of the “THE"-multiprograning system. Commun.
ACM 11, 5:341-346, 1968.

[23] V. R. Basili and J. D. Musa. The future engineering oftaafre: A management
perspectiveComputer 24(9):90-96, 1991.

[24] M. Jackson. Will there ever be software engineeringf2EE Software pages
36-39, 1998.

[25] M. Shaw and D. GarlanSoftware Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[26] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the diion of software
system architecture. lCSE 17 Software Architecture Workshd995.

[27] P. JohnssonEnterprise Software System Integration: An Architectiaispec-
tive. PhD thesis, Industrial Information and Control Systemsya® Institute of
Technology (KTH), Stockholm, Sweden, 2002.

[28] R. Malveau and T. J. MowbraySoftware Architect BootcampPrentice Hall
Professional Technical Reference, 2003.

[29] J. O. Coplien. Borland software craftsmanship: A neakl@t process, quality
and productivity. Irb th Annual Borland International Conferenck994.

[30] M. E. Conway. How do committees invenEPatamation magazine 968.

[31] B. G. Cain, J. O. Coplien, and N. B. Harrison. Social gatt in productive
software development organizatiodsnals of Software Engineering996.

[32] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson.p@lying software
product-line architectureComputey 30(8):49-55, Aug 1997.

[33] W. R. Ashby. An Introduction to Cyberneticgirst Edition, Chapman and Hall:
London, UK, 1956.

[34] D. Kane, D. Dikel, and J. WilsorSoftware Architecture: Organizational Princi-
ples and PatternsPrentice Hall, 2001.

[35] K. Beck and W. Cunningham. Using pattern languages bjeai-oriented pro-
grams. Technical Report Technical Report No. CR-87-43 |&@mmputer, Inc.
and Tektronix, Inc., 1987. Submitted to the OOPSLA-87 whd{son the Spec-
ification and Design for Object-Oriented Programming.

[36] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, Mn&tal. Pattern-
oriented Software Architecture A System of Pattematume 1. Wiley, first edi-
tion, 1996.

[37] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides.igDegatterns: Ab-
straction and reuse of object-oriented design.E@OOP '93: Proceedings of
the 7th European Conference on Object-Oriented Progrargnpiages 406—431,
London, UK, 1993. Springer-Verlag.

[38] M. Fowler. Pattern Of Enterprise Application ArchitectureAddison-Wesley,
2003.

42

[39] J. O. Coplien. Organization and architecture. 1999 C1$8 Forum on Object-
oriented Software Architecture, 1999.

[40] B. Boehm, Abts C., A. Winsor Brown, S. Chulani, B. K. QtaiE. Horowitz,
R. Madachy, D. J. Reifer, and B. Steec€ost Estimation with COCOMO .II
Prentice Hall, 2000.

[41] M. Halstead.Elements of Software Sciendglsevier, 1977.

[42] McCabe. A complexity measuréEEE Transactions on Software Engineering
2:308-320, 1976.

[43] IEEE. leee standard glossary of software engineenginology. IEEE Std
610.12-1990pages —, Dec 1990.

[44] P. Bourque and R. Dupuis, editor&uide to the Software Engineering Body of
Knowledge IEEE Computer Society, 2004.

[45] Z. Antolic. An Example of Using Key Performance Indioeg for Software De-
velopment Process Efficiency Evaluation. Technical Rei&D Center, Erics-
son Nikola Tesla d.d., 2008.

[46] J. O. CoplienMulti-Paradigm Dedign for C++ Addison-Wesley, Reading, MA,
1998.

[47] N. Rozanski and E. Wood$oftware Systems Architecture: Working with Stake-
holders using Viewpoints and PerspectivAgdison-Wesley, 2005.

[48] I.Jacobson, M. Griss, and P. Jonsson. Making the reusiadss workComputey
30(10):36—42, Oct 1997.

[49] llan Oshri, Julia Kotlarsky, and Leslie P. Willcocks. ldBal software develop-
ment: Exploring socialization and face-to-face meetimgdistributed strategic
projects.The Journal of Strategic Information Systerh6(1):25 — 49, 2007.

[50] K. Beck and W. Cunningham. A laboratory for teachingambjoriented thinking.
ACM SIGPLAN Notice4(10):1-6, 1989.

[51] R. Wirfs-Brock and A. McKean.Object Design: Roles, Responsibilities, and
Collaborations Addison-Wesley, 2003.

[52] H. Johnson and P. Johnson. Task Knowledge StructusyghBlogical basis and
integration into system desigActa Psychologicar8:3-26, 1991.

[53] E. Golden, B. E. John, and L. Bass. The value of a usgslitpporting archi-
tectural pattern in software architecture design: A cdlgdoexperiment. IrPro-
ceedings of the 27th International Conference on Softwargirteering, ICSE
St. Louis, Missouri, May 2005.

[54] C. Alexander.The Timeless Way of Buildin@xford University Press, 1979.

[55] C. Alexander. A Pattern Language: Towns, Buildings, Constructio®xford
University Press, USA, 1977.

43

[56] B. E. John, L. Bass, E. Golden, and P. Stoll. A respoligidbased pattern lan-
guage for usability-supporting architectural patternsocBedings of the ACM
SIGCHI Symposium on Engineering Interactive Computingt&ys (EICS),
Pittsburgh, PA, US, 2009.

[57] E. Gamma, R Helm, R. Johnson, and J. Wissid&ssign Patterns - Elements of
Reusable Object-Oriented Sojlwarkddison-Wesley, 1995.

[58] L.Bass and B. E. John. Linking usability to softwaretatecture patterns through
general scenariog.he Journal of Systems and Softwa®:187-197, 2003.

[59] N. Juristo, H. Windl, and L. Constantine. Introducirgability. Software, IEEE
18(1):20-21, Jan/Feb 2001.

[60] N.Jduristo, M. Lopez, A. Moreno, and M.-1. Sanchez-Segumproving software
usability through architectural patterns. Paper preskatéhe ICSE 2003 Work-
shop on Bridging the Gaps Between Software Engineering amddth-Computer
Interaction, Portland, Oregon, USA., 2003.

[61] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. d&lines for eliciting us-
ability functionalities.Software Engineering, IEEE Transactions 88(11):744—
758, Nov. 2007.

[62] L. Bass, B. E. John, and J. Kates. Achieving usabilityotigh software ar-
chitecture. Technical Report No. SEI-TR-2001-005, Caimédellon Univer-
sity/Software Engineering Institute, Pittsburgh, PA, 200

44

