
Applying the Software Engineering Taxonomy

Pia Stoll, Anders Wall Christer Norström
Industrial Software Systems Computer Science and Electronics

ABB Corporate research Mälardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

September 24, 2009

Abstract

The Software Engineering Taxonomy is a derivative of the Zachman frame-
work. Being a derivative of the Zachman framework, the Software Engineering
Taxonomy follows the Zachman consistency rules and incorporates traditional en-
terprise architecture views together with software engineering views. In this re-
port, the Software Engineering Taxonomy is applied as a reasoning framework in
three studies: the Influencing Factors method field study, the Usability-Supporting
Architecture Patterns field study, and the Sustainable Industrial Software Systems
case study.

Software engineering artifacts from the three studies are extracted and classi-
fied in the Software Engineering Taxonomy. From the classification of data from
the studies, it’s shown that each one of the studies uses a subset of the thirty views
in the Software Engineering Taxonomy to describe a specific method or theory.
What views are used, depends on the scope of the researched object. In the clas-
sification of the USAP study artifacts, eight views were usedin contrast to the
Sustainable System study, that used nineteen views. This shows that, the scope
and interrelation complexity of sustainable development is much higher than the
scope and interrelation complexity of the usability-supporting architecture pattern.
It also shows that the software engineering discipline needs enterprise perspectives
to be able to include all aspects of sustainable industrial software system develop-
ment.

Classification of the USAP artifacts made use of the businessconcept per-
spective for four of the twelve artifacts. The inclusion of atraditional enterprise
perspective led to new conclusions regarding the use of general activities for pat-
tern creation. General domain application activities and their tasks make use of the
domain’s role and work product as placeholder to make the general activity and
tasks domain application specific. The reusable task has reusable responsibilities
and by specifying what quality attribute the task support, the responsibilities can
be constructed to support that specific quality of the task. This has been shown
for usability in the USAP study. The USAP information description-selection pro-
cess could be composed by following Zachman’s consistency rules in the Software
Engineering Taxonomy.

1

1 Introduction

For a software engineering researcher it can be useful to answer journalistic questions
regarding the information collected in field studies and case studies. Journalistic ab-
stractions are typically: “What does the information describe?”; “How is the informa-
tion used?”; “Where is the information used?”; “Who is usingthe information?”; “Why
is the information used?”. Depending on the usage perspective of the information, the
answers will differ. If the information is related to the perspective of the system’s de-
velopment organization, the answers will be different thanif the information is related
to the perspective of the system’s architecture.

How information from the development organization’s perspective and from the
system’s architecture perspective relate to each other could also be helpful to describe.
For example, sustainable development of an industrial software system organization is
impacted by organizational patterns, architecture patterns and the knowledge transfer
in the organization. Conducting a case study exploring sustainable development in the
domain of industrial software systems, will collect information from many perspec-
tives. It would then be helpful for software engineering researchers to use a enterprise
architecture taxonomy where the journalistic abstractions and the usage perspectives
act as classifier of the information.

In [1], a derivative of the Zachman framework called the Software Engineering Tax-
onomy is suggested for the classification of software engineering information. The fol-
lowing sections describe how the Software Engineering Taxonomy is applied to three
studies: the Usability Supporting Architecture Patterns study [2] [3], the Influencing
Factors method study [4], and the Sustainable Industrial Software Systems study [5].

2 Software Engineering Taxonomy

In a joint article [6] published 1992, Sowa and Zachman explain that the Zachman
framework links the concrete things in the world (entities,processes, locations, peo-
ple, times and purposes) to the abstract bits in the computer. The Zachman framework
is not a replacement of programming tools, techniques, or methodologies but instead,
it provides a way of viewing the system from many different perspectives and how
they are all related. The framework logic can be used for describing virtually anything
considering its history of development. The logic was initially perceived by observ-
ing the design and construction of buildings. Later it was validated by observing the
engineering and manufacture of airplanes. Subsequently itwas applied to enterprises
during which the initial material on the framework was published [7] [8] [9]. Sowa and
Zachman write:

Most programming tools and techniques focus on one aspect ora few re-
lated aspects of a system. The details of the aspect they select are shown
in utmost clarity, but other details may be obscured or forgotten. By con-
centrating on one aspect, each technique loses sight of the overall infor-
mation system and how it relates to the enterprise and its surrounding
environment. The purpose of the ISA framework [Today, the Zachman
framework A.R.]is to show how everything fits together. It isa taxonomy
with 30 boxes or cells organized into six columns and five rows. Instead of
replacing other techniques, it shows how they fit in the overall scheme.

2

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Perspective

SCOPE
CONTEXTS
(Strategists)

e.g. Inventory
Types

e.g. Process Types e.g. Network
Types

e.g. Organization
Types

e.g. Timing
Types

e.g. Motivation
Types

BUSINESS
CONCEPTS
(Executive
Leaders)

e.g. Business
Entities &
Relationships

e.g. Business
Transform & Input

e.g. Business
Locations &
Connections

e.g. Business
Role & Work

e.g. Business
Cycle &
Moment

e.g. Business
End & Means

SYSTEM
LOGIC
(Architects)

e.g. System
Entities &
Relationships

e.g. System
Transform & Input

e.g. System
Locations &
Connections

e.g. System
Role & Work

e.g. System
Cycle &
Moment

e.g. System
End & Means

TECHNOLOGY
PHYSICS
(Engineers)

e.g.
Technology
Entities &
Relationships

e.g. Technology
Transform & Input

e.g.
Technology
Locations &
Connections

e.g. Technology
Role & Work

e.g.
Technology
Cycle &
Moment

e.g. Technology
End & Means

COMPONENT
ASSEMBLIES
(Technicians)

e.g.
Component
Entities &
Relationships

e.g. Component
Transform & Input

e.g.
Component
Locations &
Connections

e.g. Component
Role & Work

e.g.
Component
Cycle &
Moment

e.g. Component
End & Means

Figure. 1: The Zachman Framework

According to Zachman, “Architecture” is the set of descriptive representations rele-
vant for describing a complex object (actually, any object)such that the instance of the
object can be created and such that the descriptive representations serve as the baseline
for changing an object instance.

The columns of the framework represent different abstractions from or different
ways to describe information of the complex object. The reason for isolating one vari-
able (abstraction) while suppressing all others is to contain the complexity of the design
problem. Abstractions classifying the description focus are:

Inventory Sets - Describes ‘what” information is used

Process Transformations- Describes “How” the information is used

Network Nodes - Describes “Where” the information is used

Organization Groups - Describes “Who” is using the information

Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” classifying the description us-
age. The perspectives are:

Scope Contexts- perspective descriptions corresponds to an executive summary for
a planner or investor who wants an estimate of the scope of thesystem, what it
would cost, and how it would perform.

Business Concepts- perspective is the perspective of the owner, who will have to live
with the constructed object (system) in the daily routines of business. This per-
spective descriptions correspond to the enterprise (business) model, which con-
stitutes the design of the business and shows the business entities and processes
and how they interact.

3

System Logic - perspective is the designer’s perspective. The System Logic perspec-
tive descriptions correspond to the system model designed by a systems analyst
who must determine the data elements and functions that represent business en-
tities and processes.

Technology Physics- perspective descriptions correspond to the technology model,
which must adapt the system model to the details of the programming languages,
I/O devices, or other technology. This is the perspective where the four views of
the “4+1” model by Kruchten [10] can be used to describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed speci-
fications that are given to programmers who code individual modules without
being concerned with the overall context or structure of thesystem.

The relevant descriptive representations would necessarily have to include all the
intersections between the Abstractions and the Perspectives (Figure. 1). “Architecture”
would be the total set of descriptive representations (models) relevant for describing
the complex object and required to serve as a baseline for changing the complex object
once it is described. Zachman’s complex object is the enterprise, but principally he
states that the complex object can be any object.

The Zachman framework is a structure, not a methodology for creating the imple-
mentation of the object. The Zachman Framework does not imply anything about how
architecture is done (top-down, bottom-up, etc). The levelof detail is a function of a
cell not a function of a column. The level of detail needed to describe the Technology
Physics perspective may be naturally high but it does not imply that the level of detail
of the Scope Contexts descriptions should be lower or the opposite.

The framework is normalized, that is adding another row or column to the frame-
work would introduce redundancies or discontinuities. Composite models and process
composites are needed for implementation. A composite model is one model that is
comprised of elements from more than one framework model. For architected imple-
mentations, composite models must be created from primitive models and diagonal
composites from horizontally and vertically integrated primitives. The structural rea-
son for excluding diagonal relationships is that the cellular relationships are transitive.
Changing a model may impact the model above and below in the same column and any
model in the same row.

The rules of the framework are [8]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s generic model

Rule 3 Corollary: Level of detail is a function of a cell, not acolumn

Rule 4: No meta concept can be classified into more than one cell

Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

4

The model, the view, in the Zachman framework can be aligned with the ISO/IEC
42010:2007 viewpoints according to the ISO/IEC 42010:2007version [11]:

An organization desiring to produce an architecture framework for a par-
ticular domain can do so by specifying a set of viewpoints andmaking the
selection of those viewpoints normative for any Architectural Description
claiming conformance to the domain-specific architecturalframework. It
is hoped that existing architectural frameworks, such as the ISO Refer-
ence Model for Open Distributed Processing (RM-ODP) [12], the Enter-
prise Architecture Framework of Zachman [7]), and the approach of Bass,
Clements, and Kazman [13] can be aligned with the standard inthis man-
ner.

Zachman’s framework does not describe what language to use for the model de-
scriptions or how to do the actual modeling for each cell. Therefore each view of the
Zachman’s framework is free to use the viewpoint selected bythe responsible of the
description. It should therefore be possible to use the viewpoints from the ISO/IEC
42010:2007 to describe a model,a view, within the framework.

For manufacturing a process composite would be necessary. The process compos-
ite describes the working process of creating the model descriptions of the composite
model, typically ending with the descriptions of the components in the Component
Assemblies perspective, e.g. a service or framework. A third dimension of the frame-
work, called science, has been proposed by O’Rourke et al. [14]. This extension is
known as the Zachman DNA (Depth iNtegrating Architecture).In addition to the per-
spectives and aspects the z-axis is used for classifying thepractices and activities used
for producing all the cell representations.

In order to be able to use the Zachman framework for software engineering artifacts,
two basic assumptions were done:

1. The software engineering classification framework, derived from the Zachman
framework, describes the software system’s development organization and the
customer’s scope and business related to the need of system support.

2. The software engineering classification framework, derived from the Zachman
framework, is three-dimensional where site is the third dimension. The site might
be the software development organization, external development organization or
the customer’s enterprise as long as the site has a part in thesystem usage or
system development.

The assumptions are illustrated in Figure 2. With these assumptions, the system
development’s Business Concepts perspective will describe the software development
artifacts, e.g. software development activities, software development team locations
and connections, software development roles and work products, software development
schedules, and software development strategies. The models in the customer’s Business
Concepts perspective will describe the customer’s production related to the need of
system support. The resulting software engineering classification framework is called
the Software Engineering Taxonomy.

The Software Engineering Taxonomy is described further in [1].

5

System Customer(s)’s
Business Concepts

[Customer(s)’s: system related
production activities, system related

production team locations and
connections, system related production

roles and work products, system
related production schedules, system

related production strategy …]

Software Development
Organization(s)’s
Business Concepts

[Software Development
Organization(s)’s: software

development activities,
software development team locations

and connections, software
development roles and work products,

software development schedules,
software development strategy …]

System Logic
[e.g. Requirements, System activity diagram, System domain

model, System State chart…]

Technology Physics
[e.g. Class entities, Timing entities, Design rules]

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Customer(s)’s
perspectives

Software Development Organization(s)’s
perspectives

Figure. 2: The Customer’s and the Software Development Organization’s perspectives

3 Software Engineering Taxonomy and System Sustain-
ability

The sustainable industrial software systems theory presented in paper [5] introduces
some insights into the importance of time dynamics for the sustainability of industrial
software systems. The time dynamics is discussed not only for technology factors but
also for organizational and business related factors, which are enterprise architecture
factors. Change of business goals and their co-existence with changes in organiza-
tion and market environments are also discussed leading to adeeper exploration of a
broader spectrum of the enterprise architecture and its relation to system- and software
architecture. The case study’s units of analysis were companies with the following
software development characteristics:

• The company’s software development involved at least 20 developers

• The company had software systems with a life-time of 10 yearsor more

• The company developed industrial automation applications.

From May 2008 through December, 2008, three automation system companies with
these characteristics were visited. Three roles were interviewed at each company: se-
nior software developer, senior software architect, and senior product manager. The
same questions based on the theory in [5] were asked to all of the nine intervie-
wees. Structured individual interviews were conducted, which were approximately
three hours long, on site. Participants were guaranteed anonymity, and the information

6

reported was sanitized so that no individual person or company could be identified.
The questions were open-ended and allowed participants to formulate answers in their
own terms. The preliminary case study findings were presented to the participating
companies and additional companies in an architecture day workshop where software
architects and management were invited to discuss the findings.

3.1 Sustainable Industrial Software System Development

Pollan [15] has defined an unsustainable system simply as “a practice or process that
can’t go on indefinitely because it is destroying the very conditions on which it de-
pends”. Unruh [16] has argued that numerous barriers to sustainability arise because
today’s technological systems were designed and built for permanence and reliability,
not change.

“A global agenda for change” - was what Gro Harem Brundtland,as the chairman
of the World Commission on Environment and Development, wasasked to formulate
in 1987 [17]. As a result, the Brundtland commission defined sustainable development
as:

Sustainable development is development that meets the needs of the present
without compromising the ability of future generations to meet their own
needs. It contains within it two key concepts: the concept of“needs”, in
particular the essential needs of the world’s poor, to whichoverriding pri-
ority should be given; and the idea of limitations imposed bythe state of
technology and social organization on the environment’s ability to meet
present and future needs.

Dyllick and Hockerts [18] transpose the definition to the business level:

Corporate sustainability is meeting the needs of a firm’s direct and indirect
stakeholders (such as shareholders, employees, clients, pressure groups,
communities etc), without compromising its ability to meetthe needs of
future stakeholders as well.

Following the reasoning of the Brundtland commission [17] and Dyllick and Hock-
erts [18], sustainable industrial software development would be defined as:

Sustainable industrial software development meets the needs of the soft-
ware development organization’s direct and indirect stakeholders (such
as shareholders, employees, customers, engineers etc), without compro-
mising the organization’s ability to meet its future stakeholders’ needs as
well.

In this report, the term “Corporate Sustainability” is usedwhen the work referred
to uses the term. Otherwise the term “Sustainable development” is used.

Three dimensions of corporate sustainability is outlined by Dyllick and Hockerts:
Environmental sustainability, Economic sustainability,and Social sustainability, the
“triple-bottom-line” in Figure 3. Dyllick and Hockerts conclude that a single-minded
focus on economic sustainability can succeed in the short-run; however, in the long-run
sustainability requires all three dimensions to be satisfied simultaneously.

Sustainable development of industrial software systems despite changes in con-
cerns originating from: new technology, new stakeholder needs, new organizations,

7

Economic
Sustainability

Environmental
Sustainability

Social
Sustainability

Figure. 3: Three dimensions of corporate sustainability

and new business goals during decades is a true challenge. It’s challenging since it
has not been researched for industrial software systems andthe domain need an un-
derstanding of the success-critical concerns related to the achievement of sustainable
development of systems as the complexity of organizations,processes, and architec-
tures increase.

Organizational complexity involves many success-critical stakeholders, often lo-
cated all over the world, who have to reach a consensus aroundthe most important
business goals for the system now and in the next future. Sustainable systems has the
built-in legacy heritage and have to consider the present software architecture and de-
sign when introducing new business goals. Stakeholders, including the architects, need
an understanding of how the organization’s business goals affect architectural qualities
and vice versa. For example, industrial software systems are often affected by company
mergers and acquisitions, where two or more systems have to be consolidated into one
system or the systems have to share a core part. The effect of such decision on soft-
ware quality is hard to overlook. Sustainability is therefore related not only to software
structures and their interactions but also to the system’s environment in terms of the
enterprise aspects as organization, business, tactics andscope. Enterprise aspects have
not been put in relation to software architecture and implementation for industrial soft-
ware systems in an explicit way earlier. As organizational complexity grows when the
systems are distributed developed, the impact of the enterprise aspects on the software
system is significant.

3.2 Case Study Questions and Propositions

The theory presented in paper [5] was the base for the the planning of a case study
intended to investigate the definition of a sustainable industrial software system and
the sustainability success-factors of three companies developing sustainable industrial
software systems. The case study design followed the proposed design by Yin [19].
The quality of the case study was tested by the four tests suggested by Yin:

Construct Validity:The case study’s units of analysis were companies that: involved
at least 20 developers; had software systems with a life-time of 10 years or more;
and developed industrial automation applications. From May 2008 through De-
cember, 2008, three automation system companies with thesecharacteristics
were visited. Three roles were interviewed at each company:senior software
developer, senior software architect, and senior product manager. The same
questions based on the theory in [5] were asked to all of the nine interviewees.

8

Internal Validity: Not applicable since the case study is not a explanatory or causal
case study.

External Validity:The domain to which the case study findings can be generalizesis
the domain of long-lived industrial software systems. The case study’s three units
of analysis were companies that: involved at least 20 developers; had software
systems with a life-time of 10 years or more; and developed industrial automa-
tion applications. Comparison of the findings has been made with the theory
proposed by Curtis et al. [20] [21]. Curtis et al. conducted an extensive field
study involving 19 projects in the domain of large complex software systems
ranging from aerospace contractors to computer manufacturers with real-time,
distributed, or embedded applications. To further strengthen the external validity
the case study interview should be conducted with e.g. automotive companies
which also develops large complex long-lived software systems.

Reliability: Structured individual interviews were conducted which were approxi-
mately three hours long on site. Participants were guaranteed anonymity, and
the information reported has been sanitized so that no individual person or com-
pany can be identified. The questions were open-ended and allowed participants
to formulate answers in their own terms. One person had the lead as questioner
in each interview and one person had the responsibility for taking notes. After
the interview the person who had the lead responsibility fortaking notes wrote
the interview protocol and send it to the other person for review. Then the lead
responsible for taking notes revised the protocol and as a last validation sent the
protocol to the interviewee for review. The preliminary case study findings were
presented to the participating companies and additional companies in an archi-
tecture day workshop where software architects and management were invited
to discuss the findings.

The case study propositions were:

1. We believe sustainable systems can control the development cost

2. We believe the customers expect the system to be long-lived

3. We believe that offering a sustainable system is a market advantage

4. We believe that sustainable systems must cope with changein organizations,
technology, business goals, and stakeholders’ concerns, without losing control
over its cost, quality and schedule output

5. We believe sustainable system will have an organization with a high communi-
cation interaction

6. We believe that organizations that manage sustainable systems will have an or-
ganization with clear defined roles and clear hand-over of information

7. We believe that organizations that manage sustainable systems will plan for
changes by forward feeding them upon detection into the planning of next major
steps of the system

8. We believe that organization that manage sustainable systems will have stated
long-term business goals communicated to the entire organization.

9

9. We believe that major organizational changes are the mostdifficult changes for
a sustainable system

10. We believe sustainable systems can do major architectural changes without the
customers noticing any major changes to the product. For instance, migrating to
a product-line architecture without changing the essencesof the product

11. We believe sustainable systems have high-frequent control over development
progress in between release dates

The case study questions were formulated in a way that the answers could provide
data to verify or reject the propositions. The case study’s answers to the question “What
is system sustainability to you?” was asked to all of the interviewees to let them define
the concept of a sustainable industrial software system. Bydoing so, the interviewees
could relate to their own definition when answering the rest of the questions regarding
system sustainability.

3.3 Classification of Case Study Data

Concerns related to sustainability were extracted from theanswers. When doing so,
sustainability concerns were extracted which the interviewees thought they had met in a
good way. Additionally sustainability concerns were extracted which the interviewees
wanted to meet in a better way because they believed meeting these concerns would
improve the sustainability of the system. The resulting concerns were mapped in the
Software Engineering Taxonomy with the Scope and Business perspectives being the
perspectives of the system development organization. The result of the mapping of the
collected data in the Software Engineering taxonomy is shown in Figure 4.

3.4 Analysis of Classified Case Study Data

The product managers had exhaustive answers around concerns with Scope Contexts-
and Business Concepts perspectives. Surprisingly, the senior developers and the archi-
tects did not have the corresponding exhaustive answers around concerns with System
Logic- and Technology Physics perspective. This could verywell relate to the reported
unclear developer role- and architect role descriptions. Further the answers described
how the developers and architects did not have documented software architecture, de-
fined software architecture or an architecture design process. The developers and archi-
tects, according to the interview answers, simply lack manyof the model descriptions
from the System Logic perspective and the Technology Physics perspective.

It’s evident that even if the term software engineering was coined in the 1968 NATO
Software Engineering Conference1 and Dijkstra described software structures the same
year [22], the usage of software engineering and software architecture concepts and
tools in the domain of industrial software systems is low.

Basili and Musa write in an article 1991, that “. . . we must isolate and categorize
the components of the software engineering discipline, define notations for represent-
ing them and specify the interrelationships among them as they are manipulated in
[23]. Jackson claims that: “. . . there will never be softwareengineering. As these spe-
cializations flourish (e.g. compiler engineering, operating systems [author’s remark])
they leave software engineering behind . . . A professor of software engineering must,

1http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html

10

Abstraction Inventory
Sets

(WHAT)

Process
Transformations

(HOW)

Network
Nodes

(WHERE)

Organization
Groups
(WHO)

Timing
Periods

(WHEN)

Motivation
Reasons
(WHY)Development

Perspective

Scope
Contexts

Well-known
sustainable key
competences

Well-known key
stakeholders; Well
documented system
knowledge;
Sustainable HMI
technology;
Documented role
descriptions

Flexible Project
Management
Process;
Flexible in-house
software
development
process;
Formal technology
evaluation process;
Formal
architecture
evaluation process

Comply with
standardization
organizations
and federal
agencies

Minimal target
market
competition;

Sustainable 3d-
party software;
Sustainable HMI
technology vendors;
Sustainable
development
organization groups

Keep track of
competitors’
releases

Sustainable
revenue
strategy;
Sustainable
target markets;

Open and
communicative
organization
culture

Business
Concepts

Short-term based
decisions balanced
with long-term
considerations;
Feature-driven and
quality-driven ROI;
Maintenance cost
separated from
development cost;
Globally applicable
development KPIs;
Objective time-
prediction algorithm
for development
projects

Excellent
technology
scouting;
Few customer-
tailored projects;
Quality
improvement
projects balanced
with development
projects;
Keep close contact
with target market
customers;
Analyze target
market needs for
new technology

High-frequent
communication
between 3d
party product
supplier and
development
organization

High-frequent
communication
between Product
Management
and architects;
High-frequent
communication
between

Long system
life cycle

Release cycle,
in balance with
customer-
desired system
update-rate;
High-frequent
project follow-
up cycles

Strategy for
keeping
sustainable key-
competences;

Cultural
boundaries
communication
strategy;
Well-
communicated
system-related
customer goals
and development
goals

new technology between
distributed
development
teams;

System
Logic

Don’t mimic
organizational
groups’ interfaces
when designing
system
components’
interfaces;
Minimum of
complexity in
architecture

Reliability;

Usability;

Maintainability;
Portability;
Modifiability;
Scalability,
Understandable
requirements

Technology
Physics

Isolated Business Logic

Sustainable HMI
technology
components

Sustainable
Business Logic
supporting
sustainable
customer business
processes

Stable system
interoperation
interfaces,

Low-frequent
changing HMI

Component
Assemblies

Re-usable components Standardized
communication
protocols

Figure. 4: The Enterprise-wide concerns related to corporate sustainability: The check
signs indicate that the concerns are met by the companies; The warning signs indicate
that the companies want to meet the concerns in a better way

11

by definition, be a professor of unsolved problems” [24]. There is an unclear definition
of what software engineering is and what the important components of the software en-
gineering discipline are. Industrial software system organizations lack clear guidance
on what kind of descriptions would give the best return of investment in their domain.
One questions asked in the case study was “What is a major architectural change?” to
let the interviewees describe their perception of architecture and changes to it. The
answers varied from the question being an philosophical question to an architectural
rule change. But no two persons’ answers were the same.

According to Garlan and Shaw [25], the definition of softwarearchitecture is:

software architecture involves the description of elements from which sys-
tems are built, interactions among those elements, patterns that guide their
composition, and constraints on these patterns

Bass, Clements, and Kazman [13] define software architecture as:

The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among
them.

According to Gacek, Abd-Allah, Clark, and Boehm [26], a software system archi-
tecture comprises:

• A collection of software and system components, connections, and constraints.

• A collection of system stakeholders’ need statements.

• A rationale which demonstrates that the components, connections, and con-
straints define a system that, if implemented, would satisfythe collection of
system stakeholders’ need statements.

Johnson has in his PhD thesis [27] investigated the definitions of software architec-
ture to find a general consensus among the definitions but resorts to conclude that “It
is not generally agreed upon what a component or entity is, itis not generally agreed
upon what a structure is, or even if it is to be called structure, and it is not generally
agreed upon what else comprises software architecture”.

Considering Johnson’s conclusion, the question is how the differences in agreement
upon what comprises software architecture affect a not risk-willing industry’s adapta-
tion of software architecture’s concepts. When each industry or application area has
to define its own understanding of the meaning of software architecture, it might lead
to that traditional software-intensive domains take a leadin the adaptation of software
architecture concepts and the non-traditional software-intensive domains have a long
way to go to reach the same software quality maturity. If software quality maturity
affects the sustainability of the software system, this is aserious issue without an ob-
vious solution. Each software application domain can hardly define its own software
engineering research discipline as Jackson discusses in [24].

The case study questions were analyzed to find out if something had been missed
that would have scattered some light on the absent software architecture concerns.
However, the interview contained several questions related to the relation between
architecture and technology for system sustainability. Itseems like the case study’s
findings confirm Curtis’ reasoning. In [21], Curtis writes that the software production

12

efficiency is not a function of only software engineering methods and quality thinking
but to a larger extent a function of organizational issues such as behavior and commu-
nication.

Additionally one could speculate in if the lack of model descriptions from these
perspectives in itself is a sustainability concern. According to the interview answers
this is the case. The lack of system documentation is mentioned by all roles at all com-
panies as a hinder for corporate sustainability. One conclusion could be that in order to
get the software engineering process artifacts, e.g. architecture descriptions, in place
the companies must get the organizational artifacts, e.g. role descriptions and com-
munication, in place first. Curtis study and the System Sustainability case study point
toward a possible conclusion that a working software development organization, with
model descriptions from the Business Concepts perspectivein place, is a prerequisite
for software engineering tools and methods to have a significant impact on productivity
and sustainability.

Malveau and Mowray [28] suggests a Software Design-Level Model (SDLM):

The Software Design-Level Model (SDLM) builds upon the fractal model.
This model has two major categories of scales Micro-Design and Macro-
Design. The Micro-Design levels include the more finely grained design
issues from application (subsystem) level down to the design of objects
and classes. The Macro-Design levels include system-levelarchitecture,
enterprise architecture, and global systems (denoting multiple enterprises
and the Internet). The Micro-Design levels are those most familiar to de-
velopers. At Micro-Design levels, the key concerns are the provision of
functionality and the optimization of performance. At the Macro-Design
levels, the chief concerns lean more toward management of complexity and
change. These design forces are present at finer grains, but are not nearly
of the same importance as they are at the Macro-Design levels.

Using the concepts of the Software Design-Level Model, the collected interview
data suggest that the interviewees have a vast majority of sustainability concerns at the
Macro-Design level, described in the Software EngineeringTaxonomy’s Scope Con-
texts perspective and in the Business Concepts perspective. Management of complexity
and change are tightly coupled to sustainability concerns as is suggested in the theory
in [5].

In the Pasteur research project at Bell Labs [29], Coplien etal. investigated organi-
zational structures. Coplien’s organizational studies found two organizational patterns:

• Architecture Follows Organization, a restatement of Conway’s Law [30].

• Organization Follows Location, no matter what the organizational chart says.

A discussion related to Coplien’s first organizational pattern with one architect in
the Sustainable Industrial Software System case study was about what was the best al-
ternative; to let the organization decide the architectureor to let the architecture decide
the organization.

Cain, Coplien and Harrison have described additional organization patterns in [31].
Their conclusion is that: “If there is one consistent measure of successful organization,
it is how well its members maintain relationships through communication.”

Dikel, Kane, Ornburn, Loftus, and Wilson developed organizational principles in an
effort to predict the success or failure of software architectures for large telecommuni-
cations systems [32]. In the case study, reported on in [32],they realized that technical

13

factors, do not by themselves explain the success of a product-line architecture and that
only in conjunction with appropriate organizational behaviors can software architecture
effectively control project complexity. The view of the software architecture as a con-
trol instance working correctly only if the organizationalparameters are set correctly
led Dikel et al. to reflect on the law developed by W.R. Ashby [33], thelaw of requisite
variety2, which suggests that a system should be as complex as its environment:

. . . in active regulation only variety can destroy variety. It leads to the
somewhat counterintuitive observation that the regulatormust have a suf-
ficiently large variety of actions in order to ensure a sufficiently small va-
riety of outcomes in the essential variables E. This principle has important
implications for practical situations: since the variety of perturbations a
system can potentially be confronted with is unlimited, we should always
try maximize its internal variety (or diversity), so as to beoptimally pre-
pared for any foreseeable or unforeseeable contingency.

Dikel et al. reason around that if a software architecture becomes more complex
than its environment, it may become too expensive for the organization to support. In
the book [34], Kane, Dikel and Wilson describe 30 organizational patterns and and
anti-patterns using the principles; Vision, Rhythm, Anticipation, Partnering and Sim-
plification (VRAPS).

If the environment would include the organizational environment as well as the
business environment then both the micro design-level [28]patterns (discussed by Beck
[35], Buschman [36] , Shaw [25], Gamma [37] and Fowler [38]) as well as the macro
design-level [28] patterns (discussed by Fowler [38], Coplien [39] and Kane [34]) must
harmonize in their complexity with the complexity of the software architecture for a
sustainable software system. For industrial software systems, a domain model of the
business domain along with a measure of its complexity wouldbe required in order to
understand on what level the software architecture complexity should be.

Many attempts of measuring software architecture complexity have been made:
Boehm et al. [40] describes MBASE that considers architectural complexity.; Halstead
[41] proposes measures to predict understanding effort based on grammatical complex-
ity of code modules. McCabe [42] proposes a graph-theoreticcyclomatic complexity
measure etc. The question is if, and in that case what kind of organizational and archi-
tectural complexity measure should be used in the law of requisite variety if it were to
be applied to software engineering for the sustainability of industrial software systems.

In the following lists of the sustainability concerns, the concerns’ importance for
sustainability are marked with: *** for very high importance, ** for high importance,
and * for importance. The ranking is done according to how many of the interviewees
mentioned the concern as important for sustainability or desirable for sustainability. If
four or more interviewees mentioned the concern, then it gotranked as ***; if two or
three interviewees mentioned the concern, then it got ranked as **; and if only one
interviewee mentioned the concern, then it got ranked as *.

Concerns with Scope Contexts perspective:

1. Inventory Sets Abstraction

(a) Well-known sustainable key competences***

2http://pespmc1.vub.ac.be/REQVAR.html

14

(b) Well-known key stakeholders*

(c) Well documented system knowledge***

(d) Sustainable Human Machine Interface (HMI) technology*

(e) Documented role descriptions***

2. Process Transformations abstraction

(a) Formal in-house software development process*

(b) Formal technology evaluation process***

(c) Formal architecture evaluation Process***

3. Network Nodes Abstraction

(a) Comply with standardization organizations and federalagencies***

4. Organization Groups abstraction

(a) Sustainable standards***

(b) Sustainable 3d-party software***

(c) Sustainable HMI technology vendors*

(d) Sustainable development organization groups***

5. Motivation Reasons abstraction

(a) Sustainable revenue strategy*

(b) Sustainable target markets in need of sustainable systems***

(c) Open and communicative organization culture***

It’s striking that so many concerns with a Scope Contexts perspective are seen as
having high importance for corporate sustainability. Not all of these concerns are tar-
gets for traditional software engineering but many of them actually are, such as: stake-
holders, documented system knowledge, software development process, and architec-
ture evaluation process. Other concerns are dealt with within the field of organizational
theory: key competences, role descriptions, project management process, development
organization groups, and organization culture. Some are related to the field of eco-
nomics: revenue strategy, target markets. Some concerns are related to technology:
HMI technology, technology evaluation process, 3d-party software, HMI technology
vendors and standardization organizations. Compliance with federal agencies’ regula-
tions processes may be a cross-cutting concern.

Concerns with Business Concepts perspective:

1. Inventory Sets abstraction

(a) Short-term and long-term gain in balance in cost-benefitanalysis***

(b) Feature-driven and quality-driven Return Of Investment calculation***

(c) Maintenance-phase cost separated from design-phase cost**

(d) Globally applicable development Key Performance Indicators (KPIs)**

(e) Objective time-prediction of software development tasks***

15

2. Process Transformations abstraction

(a) Excellent technology scouting***

(b) Few customer-tailored architectural changes***

(c) Quality improvement projects balanced with feature development projects***

(d) High-frequent communication between target market customers and prod-
uct managers***

(e) Analysis of target market need of new technology***

3. Network Nodes abstraction

(a) High-frequent communication between 3d party product supplier and de-
velopment organization***

(b) High-frequent communication between product management and architects***

(c) High-frequent communication between distributed development teams***

4. Organization Groups abstraction

5. Timing Periods

(a) Long system life cycle***

(b) Release cycle in balance with customer-desired system update-rate***

(c) High-frequent project follow-up cycles*

6. Motivation Reasons abstraction

(a) Strategy for keeping sustainable key-competences***

(b) Cultural boundaries communication strategy***

(c) Well-communicated system-related customer goals and development goals*

Sustainability concerns with a Business Concepts perspective are seen as having
high importance by all roles. The Business Concepts perspective in the Software En-
gineering Taxonomy, mapping the case study data, is the business perspective of the
development organization and deals with everyday work issues for all people working
in the development organization. The interviewees, with the exception for one archi-
tect, had all worked for 10 years or more within their currentorganization and in this
time they had collected Business Concepts concerns they seeas highly important for
the sustainability of the system they develop.

The Inventory Set perspective’s mapped concerns have influences from software
engineering-, economics-, and management theory. The interviewed product man-
agers asked for better ways of calculating the Return Of Investment for quality-focused
projects and for long-term projects. The current calculations benefit feature-driven
projects as well as short-term projects resulting in developers hiding quality-improvement
they see as necessary in the feature-driven projects. This could be one reason for over-
optimistic time-prediction calculations done by the developers, since they only get ap-
proval for feature implementations. However, calculatinga correct development effort
for a proposed change request is difficult.

In [20] Curtis describe the time required for learning application-specific informa-
tion as being buried under the traditional life cycle phase structure of most projects
and unaccounted for. Thus, Curtis continues, the time required to create a design is

16

often seriously underestimated. By including the educational aspect into the devel-
opment effort estimations, the estimation might be more correct than today. Some of
the interviewees reported on expert developers making better estimations than non-
expert developers. The expert developer had long-time experience of the system and
probably of the application domain of the customers as well.These expert developers
hence would need less education effort than the others, contributing to making their
time-estimates more correct.

None of the interviewees had a clear picture of how they measured schedule align-
ment and development efficiency. The Key Performance Indicators (KPIs) mentioned
was the number of System Problem Reports related to quality-in-use. The SPRs are
reported by customers and testers. The product managers said they would like to see a
globally applicable KPI that measures development performance in distributed devel-
opment teams. Separating maintenance cost from design costwould be a prerequisite
for the use of a globally applicable KPI since maintenance and design have different
characteristics. According to the IEEE 610.12-90 definition [43], adopted by the IEEE
Software Engineering Book Of Knowledge (SWEBOK) [44], design is both “the pro-
cess of defining the architecture, components, interfaces,and other characteristics of a
system or component” and “the result of [that] process”. SWEBOK describes software
maintenance as “Once in operation, anomalies are uncovered, operating environments
change, and new user requirements surface. The maintenancephase of the life cycle
commences upon delivery”.

Globally applicable KPI could be based on the categories of identified informa-
tion needs in the development organization suggested by Antolic [45]: Schedule and
Progress; Resources and Cost; Product Size and Stability; Product Quality; Process
Performance; Technology Effectiveness; Customer Satisfaction. The KPIs could also
be based on the complexity measures discussed: Boehm et al. [40], Halstead [41] or
McCabe [42].

The customer-specific architectural change projects was a sustainability concern
voiced by all developers and architects. This confirms the top-two finding in the Curtis
study [21] related to fluctuating requirements as a hinder for software development
productivity. One architect in the Curtis study said:

Software architect: The whole software architecture, to begin with, was
designed around one customer that was going to buy a couple ofthousand
of these. And it was not really designed around the . . . , marketplace at all
. . . Another . . . , customer had another need, so we’re, tryingto rearrange
the software to take care of these two customers. And when thethird one
comes along, we do the same thing. And when the fourth one comes along,
we do the same thing.

A similar statement was voiced by some of the interviewed developers and archi-
tects. This does not necessarily have to be a bad thing if the software system is designed
to have configuration possibilities for tailoring the system for a specific customer. But
for the system to be designed this way, the target marketplace most important business
processes have to be known and the system designed around these. Coplien has sug-
gested the domain analysis [46] as one way of finding commonalities for a system’s
target market. This relates to the sustainability concern findings: “Keep close contact
with target market customers” and “Analyze target market needs for new technology”.

Concerns with System Logic perspective:

17

1. Process Transformations abstraction

(a) Don’t mimic organizational groups’ interfaces when designing system com-
ponents’ interfaces*

(b) Minimum of complexity in architecture**

2. Motivation Reasons abstraction

(a) Reliability***

(b) Usability***

(c) Maintainability***

(d) Portability**

(e) Modifiability**

(f) Scalability**

(g) Understandable requirements**

Maintainability of the system is crucial for customers and developers. Since the
system is an expensive long-term investment for both developer and customer, the
maintenance phase is very long ranging from ten to thirty years.

Portability, modifiability, scalability and maintainability are seen as important qual-
ities to achieve. At the same time these qualities are concerns that the companies in the
study have difficulties to implement in their systems. Portability, modifiability, scal-
ability and development maintainability are not observable in runtime and are quality
concerns that the development organization have. The customers’ concerns are related
to run-time observable qualities as reliability, usability and maintainability in form of
e.g. on-the-fly upgrades and easy integration of inter operating systems. The reliability
quality is seen as achieved by the case study’s participating companies’ interviewees.
The development organization’s quality concerns not observable in runtime are seen as
not fully achieved.

Concerns with Technology Physics perspective:

1. Inventory Sets abstraction

(a) Isolated Business Logic***

(b) Sustainable Human Machine Interface (HMI) technology components*

2. Process Transformations abstraction

(a) Sustainable Business Logic supporting sustainable customer business pro-
cesses***

3. Network Nodes abstraction

(a) Stable system inter-operation interfaces***

4. Organization Groups

(a) Low-frequent changing HMI*

18

In the interviews, the importance of isolating the core business logic from frequent
change impact was mentioned by several times. The core business logic is a market
differentiator and sustainable since it supports the customer process needs that are sus-
tainable. Since these sustainable needs of the customers donot change over decades,
the business logic handling these needs is especially important to identify, master and
isolate.

The “Stable system inter-operation interfaces” concern was identified as growing in
importance due to the growing requirement on interoperability internally at the custome
rlocation through intranets and the Internet.

All of the interviews testified that the Human Machine Interface was the part of the
system with the most frequent changes. Only one intervieweeexpressed a desire for
sustainable HMI components which could support easy updates to the HMI. This was
a bit surprising. If the HMI is the subsystem with the most frequent changes then the
concern would logically be to find HMI technology that is sustainable in order for the
frequent changes to be less challenging. Relating to the Usability-Supporting Architec-
ture Patterns study [2][3] of the interplay between usability and software architecture,
isolating the user interface logic is not enough to achieve ausable system. Architectural
changes are necessary in order to support aspects of usability. Frequent changes to the
user interface would hence correlate to some changes in the architecture in order to get
the desired behavior of the user’s interaction with the system. Architectural changes
are expensive since an architectural change in a complex legacy system has a series
of consequences for the system. The awareness of the interplay between usability and
software architecture is however low in the software engineering community. The IEEE
Software Engineering Body Of Knowledge (SWEBOK) published2004 [44], mentions
the word usability six times but refer to the software ergonomics discipline for how to
work with usability. Rozanski and Woods only suggest the isolation of user interface
logic as a usability tactic, in contrast to their thorough descriptions of ten security tac-
tics in their book “Software Systems Architecture: Workingwith Stakeholders using
Viewpoints and Perspectives” published 2005 [47].

Concerns with Components Assemblies perspective:

1. Inventory Sets abstraction

(a) Re-usable components*

2. Network Nodes abstraction

(a) Standardized communication protocols***

The issue with re-usable components was a concern for only one of the intervie-
wees. Jacobson et al. discusses the reuse of components in [48] and say that reuse is
hard because the following factors have to be interwoven andmastered:

• Vision

• Architecture

• Organization and the management of it

• Financing

• Software engineering process

19

According to the analysis of data in this case study, there seems to be a lack of
long-term quality investments possibly due to the KPI numbers and NPV calculations
favoring short-term investments. Only one interviewee sawre-usable components as
important for sustainability and this could be due to the difficulty of integrating the
re-usability factors, listed by Jacobson, in the software development organization. An-
other reason might be the lack of software engineering insights among the system’s
management as discussed in Section 4. If the management do not involve themselves
into the software architecture tactics for how to address maintainability and modifiabil-
ity concerns, which typically result in long-term investments, the projects with this type
of agenda suggested by architects and developers have less chance of being approved
and prioritized.

The non-balance of short-term needs and long-term needs when setting business
goals has been described by Dyllick and Hockerts in their article on Corporate Sustain-
ability [18] as:

In recent years, driven by the stock market, firms have tendedto overem-
phasise short-term gains by concentrating more on quarterly results than
the foundation for long-term success. Such an obsession with short-term
profits is contrary to the spirit of sustainability, which requires a balance
between long-term and short-term needs, so as to ensure the ability of the
firm to meet the needs of its stakeholders in the future as wellas today.

3.4.1 Case Study Propositions versus analyzed Data

The status of the propositions in relation to the analyzed collected data is:

1. We believe sustainable systems can control the development cost

(a) This proposition was not verified nor rejected. The interviewed persons
were not the ones who controlled the development cost. The case study
should have included line managers and project leaders to test this propo-
sition.

2. We believe the customers expect the system to be long-lived

(a) This proposition is verified. Sustainable system customers do not want un-
necessary updates to the system for long time periods, typically 2-3 years.
A replacement of the system is accepted with a time-period oftypically
10-30 years.

3. We believe offering a sustainable system is a market advantage

(a) This proposition is verified. Developing a sustainable industrial software
system is extremely expensive. Due to the cost, it’s very difficult to get a
fast Return-Of-Investment when introducing a new system. Not many com-
petitors are willing to take the risk. Additionally the established sustainable
system has a market differentiator of being reliable for long times and as
such minimizes the risk for new customers speculating in what system to
buy.

4. We believe sustainable systems must cope with change in organizations, tech-
nology, business goals, and stakeholders’ concerns, without losing control over
its cost, quality and schedule output

20

(a) This proposition is not verified nor rejected. The interviewed persons were
not the ones who controlled the development cost, quality and schedule.
The case study should have included line managers and project leaders to
test this proposition.

5. We believe sustainable systems will have an organizationwith a high communi-
cation interaction

(a) This proposition is verified. The implicit knowledge of the well-known
sustainable key-competences is communicated frequently through informal
information channels, e.g. ad-hoc face to face discussions.

6. We believe organizations managing sustainable systems will have an organiza-
tion with clear defined roles and clear hand-over of information

(a) This proposition is rejected. The roles of the interviewed persons were not
clearly defined and no clear hand-over of information took place. The rea-
son why the development still worked was to find in the implicit knowledge
owned by a set of sustainable key-competences in each company. The long
work experience gave them an implicit role as a source of information to
whom others turned for help when needed.

7. We believe organizations managing sustainable systems will plan for changes by
forward feeding them upon detection into the planning of next major steps of the
system

(a) This proposition is verified. When detecting major technology changes,
e.g. Visual Basic support with-drawn from Microsoft, the organizations
plan for the exchange. The planned steps were pre-studies, architectural
planning and release planning. However, when out-sourcingdevelopment
work to low-cost countries, the organization did not do any pre-studies, or
set up any remote conferencing facilities, or gave any courses in how to
work distributed. The non existent planning of the new distributed work
organization was reported as the most major threat to the sustainability of
the system by all three companies in the case study.

8. We believe organizations managing sustainable systems will have stated long-
term business goals communicated to the entire organization.

(a) This proposition is rejected. No one of the intervieweescould list the most
important long-term business goals. They also did not feel that this was a
hinder for the system’s sustainability.

9. We believe major organizational changes are the most difficult changes for a
sustainable system

(a) This proposition is verified. All interviewees reportedon the distributed de-
velopment organization as the largest threat to system sustainability. Addi-
tionally, it was reported on the unclear decision authoritythe development
organization experienced when controlled by more than two organizations
located in different parts of the world. The unclear decision authority often
led to some kind of consensus decision not optimizing the system but taken
to be politically correct.

21

10. We believe sustainable systems can do major architectural changes without the
customers noticing any major changes to the product. For instance, migrating to
a product-line architecture without changing the essencesof the product

(a) This proposition is verified. All of the interviewees reported on the impor-
tance of backward compatibility and the customers wanting no unnecessary
production stops due to system maintenance. The development organiza-
tions planned for architectural changes with the requirement on backward
compatibility in focus. At the same time this requirement was perceived as
one of the most difficult to achieve causing high developmentcosts. But
all interviewees reported that the backward compatibilitywas a key-market
differentiator and as such very important.

11. We believe sustainable systems have high-frequent control over development
progress in between release dates

(a) This proposition was not verified nor rejected. The interviewed persons
were not the ones who controlled the development progress. The case
study should have included line managers and project leaders to test this
proposition.

3.4.2 Sustainable Development Dimensions

The list of success-critical concerns from the interviews are translated into sustainabil-
ity capital according to the three dimensions; Economical,Environmental, and Social.
Two of the systems support customers’ business processes’ efforts to reduce energy
consumption. Considering the environmental sustainability, the systems therefore help
the customer to reduce the consumption of natural energy resources. This support is
listed as environmental capital. Additionally, all three companies have good reputa-
tion among customers for having a reliable, high-quality product. The reputation is
therefore added as an intangible economical capital. Long market presence is one key
aspect to the sustainability of the industrial software systems. By having long market
presence and a reliable system, the customers trust the system and therefore feel that
they take a smaller risk by investing in the system. The target market of the industrial
software system is sustainable itself, which make the target market customers willing
to invest in a comparably expensive system. These customersfeel that they will achieve
a return-of-investment in a relative short time compared tothe lifetime of their business
processes. The sustainable target market is added as tangible economical capital. Due
to the high initial development cost of the industrial software system, few competitors
are entering the target market since the system are sold mainly due to long market pres-
ence and good reputation. Newcomers have no long target market presence and have
not yet built up the good reputation of being reliable for decades. The few competitors
on the target markets is also added as economical capital.

Figure 5 shows the distribution of sustainable developmentcapital for the three
industrial software system development organizations in the case study. Even if many
capital units are classified as economical capital and only one unit as environmental
capital, the number of capital units does not say anything about their relative value to
the stakeholders. It might be that the single environmentalcapital unit is more worth
to the system’s stakeholders than ten of the economical capital units.

There is no balance in the dimensions, the tangible economical sustainability is
over-represented. It shows that, for individuals, workingin the industrial software

22

Economic
Sustainability

+ Isolated business logic in system
+ Sustainable business logic that supports
sustainable customer business processes
+ Stable system inter-operation interfaces
+ Standardized communication protocols
+ Compliance with standardization
organizations and federal agencies
+ Long System life cycle
+ Release cycle in balance with customer-
desired update-rate
+ Reputation
+ Sustainable target market
+ Highly reliable system
+ Strategy for keeping sustainable key-
competences
+ Long target market presence
+ Few competitors on the target markets

- Documented role descriptions
- Sustainable 3d party software
- Sustainable standards
- Highly usable system
- Highly maintainable system
- Short-term and long-term aspects in
balance in cost-benefit analysis
- Feature and quality driven Return Of
Investment calculation
- Objective time-prediction of software
development tasks
- Excellent technology scouting
- Few customer-tailored architectural
changes
- Quality improvement projects balanced with
feature development projects
- Well documented system knowledge
- Formal technology evaluation process
- Formal architectural evaluation process
- Analysis of target market needs of new
technology

Environmental
Sustainability

Social
Sustainability

+ System contributes to reduced
consumption of natural energy
resources

+ Well-known sustainable key-competences
+ Well-known success-critical stakeholders
+ Open and communicative organization culture
+ High-frequent communication between 3d party
products' suppliers and development organization
+ High-frequent communication between target market
customers and product management
-High-frequent communication between distributed
development teams
- High-frequent communication between product
management and architects
- Sustainable development organization groups
- Cultural boundaries communication strategy

Figure. 5: Three dimensions of important sustainable development capital in the do-
main of Industrial Software System according to the findings. The “plus” sign indicates
that the companies felt they had the capital. The “minus” sign indicates they felt they
needed an improvement.

23

system domain, it will take substantial time before the concept of sustainable develop-
ment will be natural in all of its dimensions. Creating economical value is important
for industrial systems, but the sales for two of the systems would not be as high if the
systems did not contribute to a reduction in the natural resource consumption. The en-
vironmental sustainability is interacting with the economical sustainability. The social
sustainability capital was decreased when distributed development was introduced in
the companies. Distributed development is seen as the most major threat to the sustain-
able development. There are ways to make distributed development work and many of
them represent an increase in social capital by socialization. Oshri et al. argues that,
in order to achieve successful collaboration, firms should consider investing in the de-
velopment of socialization despite the constraints imposed by global distribution [49].
The socialization efforts could be e.g. increased communication through virtual Face
to Face (F2F) meetings, kick-of meeting, progress meetingsetc.

3.5 Summary

Using the Software Engineering Taxonomy to classify the concerns collected from the
interviews, clarified the enterprise architecture perspectives of the concerns, i.e. if the
concern was a system architecture concern or an business concepts concern. Most of
the concerns were classified in the perspectives where executive leaders and strategist
are responsible for the model descriptions. Management of business processes, strate-
gies, risk analysis, external partnerships, communication, staff, target markets etc is
seen as the key to achieve sustainable development.

The results of the sustainable industrial software systemscase study are: a set of
success-critical concerns for sustainability; 5 verified propositions, 2 rejected, and 4
still to be verified or rejected. The list of success-critical concerns does not include as
many architectural success-factors as expected. In the report, it’s speculated if this is
related to the lack of consensus around the concept of software architecture. The lack
of a clear software architecture definition and tools and methods based on such defini-
tion might make the industry reluctant to embrace the concept of software architecture.
As long as the software architecture concepts are not explicitly defined, employing
software architecture concepts might constitute a risk to the industrial software system
development organization. Curtis study[20] [21], Kane’s study[34], and the System
Sustainability case study point toward a possible conclusion that a working software
development organization, with model descriptions from the Business Concepts per-
spective in place, is a prerequisite for software engineering tools and methods to have
a significant impact on productivity and sustainable development.

When applying the concept of sustainable development to theclassified concerns
from the interviews, which were ranked as being of high importance to the intervie-
wees, there was an unbalance between the economical sustainability, environmental
sustainability, and the social sustainability. Most of theconcerns addressed economical
sustainability or ways of increasing economical sustainability. Some addressed social
sustainability but non addressed environmental sustainability. In the analysis, one en-
vironmental sustainability issue is added based on knowledge of the systems collected
through documentation and experience. When the value of addressing the individual
sustainability concern is not known, it’s difficult to verify, based on the interrelation-
ships between sustainability dimensions, if the system development is sustainable or
not.

24

4 Software Engineering Taxonomy and the IF method

The Influencing Factors (IF) method collects concerns, extracts Influencing Factors
from the concerns, and analyzes those for their influence on business goals and soft-
ware quality attributes. The result is a business goal oriented prioritization of software
quality attributes. The way the Influencing Factor is used in[4], the Influencing Factor
is a factor that states a motivation for possible system requirements from the stakehold-
ers’ perspective.

By presenting the collected effect of several concerns, e.g. in the matrix used in
[4], the IF method makes both the business goal prioritization and the software qual-
ity attribute prioritization clear and therefore guides the architectural decisions and
strengthens the stakeholders consensus around prioritized concerns. The analyzed con-
cerns could also contribute to a more complete requirement specification, helping the
system developers understand the origins of the requirements.

In [4], it is described how the different impacts of the Influencing Factors are used
to prioritize among the Influencing Factors for two authentic cases. The first case was
performed on the upgrade of a large legacy industrial software system and the second
case on the re-factoring of an existing industrial softwaresystem. The two field study
systems had a diverse set of stakeholders, such as software architect, system architect,
developers, testers, product management, line management, engineers, and users. Both
systems suffered from an unclear understanding of what concerns were the most impor-
tant. The resulting impact analysis helped the stakeholders prioritize among software
quality attribute scenarios in the case with the re-factored system. The prioritization
included usability and led to the Usability-Supporting Architecture Pattern study de-
scribed in [2][3]. The other case, with the legacy system, resulted in the stakeholders’
understanding of their perhaps too high focus on short-termmarket expansion instead
of a balanced focus including long-term quality enhancements. Today this company is
doing a major investment in enhancing the maintainability of the system.

Influencing Factors from the Influencing Factors case study,presented in [4], are
here used for additional investigation using the Software Engineering Taxonomy [1] as
a reasoning framework. The Influencing Factors are classified in the Software Engi-
neering Taxonomy to explore the possibility of a relation between the classified Influ-
encing Factors and their perspective and abstraction in thetaxonomy.

4.1 Classification of Influencing Factors

The Influencing Factors are all classified as having the Motivation Reasons abstraction
since they describe stakeholder motivations for the usage perspectives: Scope Contexts,
Business Concepts and System Logic. Figure 6 shows the classified influencing factors
with business goals ownerships and quality attribute impact. The business goal own-
erships states if it’s the customer or development organization that owns the business
goal, i.e. has a benefit of achieving the goal. Indirect, the development organization
has a benefit of fulfilling the customer’s business goals. Butthe customer business goal
would not be addressed of the development organization if the customer had not voiced
the goal or concern related to the goal.

4.2 Analysis of Classified Influencing Factors

Influencing factors with a System Logic perspective do not have development organi-
zation’s quality concerns, e.g. testability and maintainability. These concerns never

25

Abstraction MOTIVATION REASONS
(WHY)

Software
Development
Organization
Perspective

SCOPE
CONTEXTS

IF3.1: Maintain backward compatibility
IF4.1: Replace in house developed electronics and/or
software with standard HW/SW without affecting
availability
IF4.7: Decrease development time by introducing the
product line system

BUSINESS
CONCEPTS

IF1.2: Implement same performance as today
IF2.1: Make commissioning easier
IF2.2: Implement remote access
IF2.3: Make it possible to upgrade parts of or whole system
easy and fast.
. . .
IF3.2: Implement same robustness/availability as today
IF3.3: Implement same accuracy as today

SYSTEM
LOGIC

IF1.3: Implement fast extensive communication
infrastructure.
IF5.2: Handle analogue signals from external system

Business Goal
Ownership
Customers
Developments

Developments

Quality
Concern
Modularity
Availability

Maintainability

Customers
Customers
Customers
Customers

. . .
Customers
Customers

Performance
Maintainability
Security
Maintainability

. . .
Availability
Performance

Customers

Customers

Performance

InteroperabilityIF5.2: Handle analogue signals from external system
. . .

Customers
. . .

Interoperability
. . .

Figure. 6: Influencing Factors classified in the Software Engineering taxonomy. The
influencing factors related Business Goal ownership and Quality Attribute impact are
shown next to the classification in order not to clatter the figure. Quality attribute
concerns are classified in the System Logic/Motivation Reasons cell.

26

surfaced as part of the success-critical stakeholders’ concerns. Testability and main-
tainability are non-runtime observable qualities [13]. Ifsuccessfully implemented, the
qualities could contribute to long-term cost-reductions for the development organiza-
tion. However, these two qualities are left to the architectto deal with and take informal
decisions on in the investigated cases.

The understanding and interest to deal with software tactics to implement non-
runtime observable qualities as testability and maintainability seem to be non-present
among the success-critical stakeholders. This was verifiedfor the second case in the
case study. Runtime observable qualities affecting the customers’ perception of the
system engage the success-critical stakeholders more.

Non-runtime observable qualities as testability and development maintainability
will likely never be voiced by customers and customer responsible persons. It should be
noted that the system’s operation environment’s maintainability concerns, e.g. installa-
tion and on-the-fly upgrades, differ from the development environment maintainability
concerns.

In the “System Sustainability” study described in Section 3the architects and se-
nior developers testified to how difficult it was to build the business case motivat-
ing development-environmentmaintainability improvements projects with a short-term
cost-increase and long-term cost savings. One of the findings was that all the compa-
nies in the study wanted a cost-benefit calculation method that balanced short-term
gains and long-term gains as they felt the current calculations much favored the short-
term gains.

4.3 Summary

The classification of the Influencing Factors into the Software Engineering Taxonomy
contributed to some additional observations regarding stakeholder role and stakeholder
perspective. For the stakeholders with the Business Concepts perspective, maintain-
ability and testability are handled with software development improvement strategies,
e.g. introduction of product lines. The architectural structures for realizing these strate-
gies are seldom discussed among the success-critical stakeholders. Decisions regarding
architectural structures are taken informally by the architects. According to the report’s
case study analysis of sustainable software development, the architects find it hard to
build the business case motivating development-environment maintainability improve-
ments projects with a short-term cost-increase and long-term cost savings. The clas-
sification of influencing factors in the software engineering taxonomy confirmed that
this is a problem that has to be addressed e.g. in term of an improved short-term versus
long-term gain Return Of Investment calculation.

27

5 Software Engineering Taxonomy and the USAP study

Usability and its interplay with software architecture wasdiscussed in the Influencing
Factors paper [4], as one of five quality attributes. In [2][3], the Usability-Supporting
Architecture Pattern field study is described and discussed. The field study was done
in the domain of industrial software systems.

The field study contributes with a description of an enhancedUSAP, three described
USAPs according to the enhancements, and a USAP software tool that visualizes the
USAP information.

Visualizing the responsibilities in a tool helps the software architects (on a detailed
design level) to implement usability support in the software architecture for specific
usability scenarios early in the software design phase. Theusability design is part of
the enterprise architecture, system architecture, and software architecture but has not
been put in relation to these in an explicit fashion before. This field study’s research
has therefore contributed to fill a gap not covered by existing literature in a sufficient
way.

The contribution is significant since very few studies can report on software archi-
tects being able to use a tool early in the software design in away that helps them
implement usability support in the software architecture.The two architects in the field
study used the tool for six hours and reported on a development cost saving of more
than five weeks gained by their interaction with the tool.

In this section Software Engineering Taxonomy (SET) will beused in order to
create two process composites (methods). The work flow of creating these process
composites guided by the SET will be:

1. Identify artifacts of the Usability Supporting Architecture Pattern concept

2. Classify artifacts in the Software Engineering Taxonomy

3. Create a process composite in the Software Engineering taxonomy, by relating
the classified artifacts in a sequence adhering to the Zachman laws

The first process composite will describe a sequence for viewing USAP artifacts
in order to evaluate a software architecture against the USAPs. The second process
composite will describe a sequence of creating USAP artifacts.

5.1 USAP Artifact Identification

5.1.1 USAP Responsibility

Even though the word “responsibility” has been used in the publications of USAP
[2][3], it has never got it’s own definition in the context of aUSAP. The responsibil-
ity is originally a section of a Class Responsibility Collaborator (CRC) card. CRC
cards are used as a brainstorming tool in the design of object-oriented software. The
CRC cards were proposed by Ward Cunningham and Kent Beck [50]. They describe
responsibilities as:

Responsibilities identify problems to be solved. The solutions will exist
in many versions and refinements. A responsibility serves asa handle
for discussing potential solutions. The responsibilitiesof an object are
expressed by a handful of short verb phrases, each containing an active
verb. The more that can be expressed by these phrases, the more powerful

28

and concise the design. Again, searching for just the right words is a
valuable use of time while designing.

(p. 2 [50])

The responsibility as described by Beck and Cunningham was later used by Frank
Buschmann et al. in the book “Pattern-Oriented Software Architecture A system of
Patterns” [36] to describe the responsibilities of classesin architectural patterns. They
describe the responsibility as:

Responsibility: The functionality of an object or a component in a specific
context. A responsibility is typically specified by a set of operations.

(p. 438 [36])

Wirfs-Brock uses responsibilities in the book “Object Design: Roles, Responsibil-
ities, and Collaborations object-oriented design” [51] inthe same sense as Beck and
Cunningham. She defines the responsibility as:

A responsibility = an obligation to perform a task or know information

(p. 3 [51])

Often there is confusion about the difference between requirements and responsi-
bilities. Since both are elements of the system in the problem space, they might appear
to describe the same system motivation. The requirement is defined by the IEEE Soft-
ware Engineering Book Of Knowledge (SWEBOK) [44] as:

A software requirement is a property which must be exhibitedby software
developed or adapted to solve a particular problem. The problem may
be to automate part of a task of someone who will use the software, to
support the business processes of the organization that hascommissioned
the software, to correct shortcomings of existing software, to control a
device, and many more. The functioning of users, business processes, and
devices is typically complex. By extension, therefore, therequirements on
particular software are typically a complex combination ofrequirements
from different people at different levels of an organization and from the
environment in which the software will operate.

The requirements are therefore a result of conflicting concerns from the software
system’s stakeholders and the software system’s environment. The requirement is de-
fined as a property. The USAP responsibility on the opposite is not the result of con-
flicting concerns. The USAP responsibility is constructed solely to fulfill the usability
quality concern for a specific task and it has distinctive characteristics that differs it
from a requirement. In short, these are:

• Context - The USAP responsibility is always defined for a specific task for the
fulfillment of the usability quality of that task.

• Localization - The USAP responsibility is always localizedto a particular portion
or portions of the system.

• Functionality - The USAP responsibility always describes aparticular behavior
of the particular portion(s) of the system to which it is localized.

29

Additionally, the processes in which the artifacts are integrated differ. The require-
ment artifact is integrated in the process of collecting stakeholders’ concerns and elic-
iting these. The USAP responsibility is part of an architectural design process coupled
to the processing of a general Usability Supporting Architecture Pattern. The USAP re-
sponsibility is therefore not specific for a commissioned system and its characteristics
are expressed in a general fashion to be adapted by any system.

5.1.2 USAP Activity and Task

During the work of identifying “Alarm & Event” USAP forces, atask analysis was
done to identify the tasks of the “Alarm & Event” sub-system’s users. From the task
analysis the forces should be identified leading to the construction of usability support-
ing responsibilities.

In the article “Task Knowledge Structures: Psychological basis and integration into
system design.” [52], Johnson and Johnson describes the importance of task analysis to
assist software designers to construct computer systems which people find useful and
usable:

One way to approach this goal is to assume that knowing something about
how users approach and carry out tasks will aid software designers when
making design decisions which will ultimately affect computer system use-
fulness and usability. As a result task analysis has emergedas an impor-
tant aid to early design in HCI.

Task analysis according to Johnson and Johnson is an empirical method which can
produce a complete and explicit model of tasks in the domain,and of how people
carry out those tasks. Even if the USAP study did not do a complete task analysis
according to how task analysis is described in [52], it used anumber of the proposed
data collection techniques for task analysis. The techniques used to identify the tasks
for the “Alarm & Event” scenario were:

• Direct observations of commissioners demonstrating the “Alarm & Event” parts
of the systems

• Interviews with: commissioners of the systems, “Alarm & Event” system archi-
tects, support responsible for the systems

• Studies of: documents describing the usage of the “Alarm & Event” systems,
“Alarm & Event” guidelines e.g. the “Engineering Equipment& Materials Users’
Association” (EEMUA) publication no. 1913: “Alarm Systems - A Guide to De-
sign, Management and Procurement”

The analysis of the collected data was done as:

1. Identify the roles and created work products (goals) of the “Alarm & Event” parts
of the current systems (which would be consolidated into a product line system)

2. Perform a task analysis of the activities involved in creating the work products
of “Alarm & Event”

3. Identify the objects used in performing the actions, e.g.“Raised Alarm” and
“Alarm & Event condition”

3http://www.eemua.co.uk/pinstrumentation.htm

30

4. Reason around which ones of the tasks require architectural support, e.g. “Author
an Alarm & Event condition”, “Handle a raised Alarm”

The result is a hierarchy of activities with sub-activitiescalled tasks. The activity
is the highest level in the hierarchy and the task is the second highest level.

The most important aspects of the tasks with requirement on architectural support
are formulated as responsibilities. The “cancellation” USAP [53] is a modified version
of the Model-View-Controller (MVC) pattern first defined by Beck et al. in 1987 [35].
The MVC pattern was extended with new components, connectors and responsibilities
to accommodate the “Cancel” requirements on usability support.

Using the experience from the MVC pattern for “Cancel”, the MVC-pattern was
used to test if it also could be modified to host the responsibilities for tasks involv-
ing the work products: “Alarm & Event Condition”, “User Profile”, and “Environment
Configuration”. The MVC-pattern did not decide the responsibilities. The task analy-
sis was the basis for constructing usability-supporting architecture responsibilities. If
the constructed responsibilities would not have been possible to assign to a modified
MVC-pattern, either another pattern-solution would have been chosen as basis or a new
architecutral sample solution constructed from scratch.

The responsibilities are formulated as ways in which the system architecture must
support the usability quality of the task in order to make thetask useful and easy to per-
form. At the time, this resulted in 79 responsibilities. To structure the responsibilities,
they were classified according to the common activities theysupport. This resulted in
a hierarchy of activities and tasks, and the tasks’s responsibilities. After a review of
the CMU/SEI team and an “Alarm & Event” expert at ABB, some of the responsibili-
ties could be consolidated or removed which resulted in a list of 43 “Alarm & Event”
responsibilities.

Further analysis discovered that the responsibilities from the processing of the three
work products had been categorized in a very similar fashionaccording to the activities
they participated in. The activities were versions of: authoring, execution, logging,
and authorization. Placeholders for the activities were identified that were furnished
with the work product or role. The discovery was a break-through since the activities
are general and applicable to the processing of more work products by furnishing the
placeholder with the work product or role. Each activity hada set of tasks attached to it.
“Authoring” had e.g. the tasks “Create an [Alarm & Event Condition]” and “Modify an
[Alarm & Event Condition]”. The tasks also made use of the placeholder and furnished
it e.g. with the work product [Alarm & Event Condition].

During the continued analysis, it was discovered that the responsibilities were
nearly identical for each activity task no matter if the responsibilities had been cre-
ated for the “Alarm & Event” scenario, the “Environment Configuration” scenario or
the “User profile” scenario. The difference could be described by using the activity
place holder and furnishing it with the work product or role.

The discovery reduced the total amount of responsibilitiesfor the scenarios from
over hundred to 31, since the scenarios could share common activities, each consisting
of tasks and the tasks’ usability-supporting architectural responsibilities. The com-
mon activities, tasks and responsibilities each had a placeholder furnished by the sce-
nario’s work product or the scenario’s role making the activity, task, and responsibility
scenario-specific.

If the processing of the work products is supported by commonresponsibilities,
then the solution space also can be common. The architectural solution supporting
the “Authoring” activity can be shared by the processing of all three work products.

31

R1 R2
R3

�

R7
��

R11

�

R15
R16

R3

R7R11

R15

Solution Space
#1

Solution Space
#2

Figure. 7: Examples of solution spaces spanned by two different sets of chosen points

The shared solution just has to make room for different interpretations of the general
activities’ placeholder. That is, the common solution has to be able to offer the user a
way of e.g. authoring both a “Alarm & Event Condition” as wellas an “Environment
Configuration”, but the mechanisms behind how authoring is supported by components
and their behavior could be the same.

What was discovered was a way of offering the architects re-usable solutions, sup-
porting common activities for the processing of more than one system-environment
work product for more than one role. Responsibilities are usually presented as parame-
ters tagged to components in an UML-diagram. In [3] it is explained why UML sample
solutions did not work for the industrial software system domain. The idea surfaced of
adding a responsibility implementation description to each responsibility description.
For each responsibility, the portions of the system and their behavior, implementing the
responsibility, are described.

The architects are offered one responsibility at a time together with a textual de-
scription of how this responsibility can be implemented by portions of the system and
the portions’ behavior. It is not stated what the portions should or could be or what
pattern the solution should be based on. In this way the architects can read the re-
sponsibility implementation description and visualize how the wording “portions of
the system” might be translated into their own architectural design. If the architects
feel that parts of the architectural design are in place to support the responsibility in the
way the responsibility implementation describe, then theydo not have to change the
architecture in order to implement that specific responsibility.

This way of presenting responsibilities is like putting a magnifying glass over a
very small part of a sample solution which lets the architects translate what they see
from this very small part into their own design. Depending onwhat responsibilities the
architects choose, the solution space will be different. This is illustrated with a set of
points in a two-dimensional space, see Figure 7. Depending on what points are chosen
the resulting space spanned by the points will take on different shapes. For a software
architecture, it’s not the shape that will look different but the set of components and
their interactions implementing the chosen responsibilities.

In the “System-Environment Interaction Hierarchy” in Figure 8, the USAP work
product processing considered in the USAP field study are “system-operational envi-
ronment interaction” work products. As previously discussed in the Section 3, software
quality concerns not observable in runtime as e.g. maintainability would be concerns
of processing of “system-development environment interaction” work products. The

32

Level 1:
Business
Concepts

System – Operational
Environment (S-OE) Work Products

Alarm and Event Condition
S-OE Work Product

User Profile
S-OE Work

Product

Environment Configuration
S-OE Work Product

Create a(n) [S-OE Work Product]
Task

Authoring
Activity

Execution
Activity

Logging
Activity

Authorization
Activity

The system must provide a way for an
authorized author to create a [User Profile,

Level 2:
System
Logic

System – Environment Role & Work Products

System – Development
Environment (S-DE) Work Products

Usability Quality

Access a(n) [S-OE Work Product]
Task

authorized author to create a [User Profile,
Configuration description, Conditions for

Alarms, Events and Alerts] : Responsibility

There must be a portion of the system with a mechanism to create new [User
Profile, Configuration description, Conditions for Alarms, Events and Alerts] :

Implementation Details

Usability Quality
Concern

Level 3:
Technology
Physics

Figure. 8: System-Environment Interaction Hierarchy withthree levels

“System-Environment Interaction Hierarchy” has three levels: Business Concepts per-
spective; System Logic perspective, and Technology Physics perspective. The task
analysis done in the USAP field study studied the interactions between the system and
its operational environment. For the interactions betweenthe system and its develop-
ment environment, the task analysis has to study how architects, developers, project
managers etc work with the development of the system. A task analysis of the de-
velopment environment would result in the processing of “system-development envi-
ronment interaction” related work products with usabilityconcerns from the devel-
opment environment. The system-environment interface, inthat case, would be the
test/build/implement system-development environment interfaces.

At the time of the execution of the field study, the family of activities, tasks, re-
sponsibility descriptions and responsibility implementation descriptions were called a
“Foundational Pattern” to align the USAP with the spirit andwork of Alexander [54]
[55]. The idea of a “Foundational Pattern” is described in more detail by John et al. in
[56].

5.2 Classification of USAP artifacts

The extracted artifacts from the USAP concept are:

33

System Environment Business Roles and Work Products- describes the system en-
vironment’s roles and work products.

System Environment Interface - describes system’s environment interface, e.g. cus-
tomer UI or development environment (build/test/implement) UI.

Quality attribute - describes a feature or characteristic that affects an item’s quality
according to IEEE 610 [43].

System-Environment Interaction Scenario - describes an interaction between the
system and its roles, e.g. a use case or a quality attribute scenario.

Activity - describes an activity involved in the System Environment Business Roles’
creation of Work Products.

Placeholder - describes the role or work product. Is used by the activity,the activ-
ity’s tasks and their responsibilities, in order to make them specific to the work
product or the role.

Task - describes a task of the activity.

Responsibility Description - describes how the system must interact with its environ-
ment to ensure that a specific quality attribute concern of the task is met.

Responsibility Implementation - describes the implementation of the responsibility
as particular portion or portions of the system and their behavior.

Pattern Responsibility Description - describes a responsibility of an established pat-
tern from e.g. [57] [36].

Pattern Responsibility Implementation - describes the implementation of the respon-
sibility as components and connectors [57] [36].

Rules & Guidelines - describes existing quality-specific, domain specific, rules &
guidelines for how the system should interact with its environment in order to
have a certain quality.

Note that if the system environment interface is a build, test, or implementation
interface between the system and its developers than the roles and work products are
the development’s roles and work products. The system-roleinteraction scenario will
then describe how the tester or builder interact with the system. In this case the site-
dimension of the Software Engineering Taxonomy is the software development orga-
nization’s site. If the system environment interface is theinterface between the system
and its customers/users, then the roles and work products are the customer’s roles and
work products. For the last case, the site dimension of the Software Engineering Tax-
onomy is the customer’s. Figure 9 shows the classification ofthe USAP artifacts into
the Software Engineering Taxonomy.

5.3 USAP Information Description-Selection Process

This section describes the flow of describing or selecting the USAP information. The
flow uses the classified artifacts in the Software Engineering Taxonomy, Figure 9, and
describes a sequence that follows Zachman’s consistency rules and uses the experience

34

Abstraction Process
Transformations

(HOW)

Organization
Groups
(WHO)

Motivation
Reasons
(WHY)System

Environment
Perspective

Business
Concepts

• Activity
• Task
• Placeholder

• Business Roles
& Work
Products

System
Logic

• Responsibility
Description

• Pattern
Responsibility
Description

• System-
Environment
Interaction
Scenario

• Quality
Attribute

• Rules &
Guidelines

Technology
Physics

• Responsibility
Implementation
Description

• Pattern
Responsibility
Implementation
Description

• System-
Environment
Interface

Figure. 9: USAP artifacts classified in the Software Engineering Taxonomy. The en-
vironment can either be the system’s operational environment or the system’s develop-
ment environment

from how the “Alarm & Event” USAP was created. The result is the USAP Information
Selection/ Description Process, which is visualized in Figure 10.

Notice that no step changes both the usage perspective and the information ab-
straction to align with Zachman’s fifth rule of excluding diagonal steps in the frame-
work when constructing process composites. There are two start alternatives: Existing
system-environment interface, or the system-environmentdomain’s Business Roles &
Work products. The first option presumes that a system environment interface is at
hand, e.g sketch or legacy UI. For the product line system in the field study, the start
was the legacy user interfaces of the systems to be part of theproduct line. The legacy
user interfaces are then described/ selected. Then followsa description/selection of
reusable system-environment interaction scenarios, withrequirements on usability sup-
port in the architecture not solved by separating the system-environment interface logic
from the rest of the system’s logic. Reusable system-environment interaction scenarios
can be chosen from the scenario listing of Bass and John[58] or the Usability Patterns
from Juristo [59] [60] [61]. The USAP field study used the USAPscenarios: “System
Feedback” and “User Profile” [58][62]. The latter was divided into “User Profile” and
“Environment Configuration”.

If the start would have been the system-environment domain’s Business Roles &
Work products, then the reusable system-environment interaction scenarios are de-
scribed/ selected in parallel with the description/ selection of system-environment do-
main’s Business Roles & Work products. For example, a large set of roles and work
products are at hand. By using the reusable system-environment interaction scenarios,
the roles and work products related to the scenario can be identified. These roles and
work products need usability support in the architecture for the system’s implemen-
tation of their activities and tasks. The system-environment domain’s Business Roles
& Work products must be the step before describing/ selecting reusable activities and
tasks. Otherwise the furnishing parameter of the activity placeholder can not be identi-

35

Quality Attributes

Optional: Rules
and Guidelines

Start2:
System-Environment

Business Roles &
Work Products

Reusable general
System-Environment
Interaction Scenario

Start1:
System-Environment
Interface(s) (sketch or

legacy)

Reusable Activities

Reusable Tasks

Reusable
Responsibility
Descriptions

Reusable
Responsibility

Implementation
Descriptions

Optional: Pattern
Responsibility
Descriptions

Placeholder

Business Concepts

System Logic

Process Transformations
(How)

Organization Groups
(Who)

Motivation Reasons
(Why)

Optional: Pattern
Responsibility

Implementation
Descriptions

B is described/selected after A.
B’s description depends on the
description of A

A B

Legend:

Technology Physics

Figure. 10: USAP information description/selection process, using the classified arti-
facts from the Software Engineering Taxonomy. The figure describes in what order the
USAP artifacts should be described or selected, guided by the USAP artifacts’ classifi-
cation view’s location in the taxonomy.

fied.
The roles and work products are described/selected in the next step. In the USAP

study the roles were: system commissioner and system operator. The work products
were: “Alarm & Event Condition”, “User Profile” and “Environment Configuration”.
By describing/selecting multiple work products, the general activities involved in the
processing of the role’s work product can be identified.

When the tasks are described/ selected, the task’s placeholder is furnished by the
description/ selection of role or work product. In the USAP field study the place holder
was furnished with the “Alarm & Event condition”, “Environment Configuration”, and
“User Profile” for the majority of the tasks. For the authorization tasks, the placeholder
was furnished with the role, “Author” and “User”. The role orwork product, furnishing
the placeholder is used by the activity, responsibility description, and the responsibility
implementation.

Responsibilities are described/ selected, using: qualityattribute information, rules
& guidelines information, pattern responsibilities, scenario information and task infor-

36

mation. The USAP responsibility used the usability qualityattribute and hence sup-
ports usability in the architecture.

The final step, the description/selection of the responsibility implementation, is
the view with the Technology Physics perspective and the Process Transformation ab-
straction, since in this view architects describe components and connectors. By view-
ing the responsibilities’ implementation from this view, the architects can compare
the responsibility implementation description with theirdesign view, without chang-
ing their mind-set to another information abstraction and usage perspective. The de-
scription/selection of the responsibility implementation uses information from: the re-
sponsibility description and possibly, existing pattern responsibility implementation
descriptions.

If architects immediately would view architecture patterns, which have the Tech-
nology Physics perspective and the Process Transformationabstraction, after consider-
ing requirements or user’s roles and work products, the diagonal step in the Software
Engineering Taxonomy would introduce inconsistencies in the descriptions and a dif-
ficult shift in mind-set between both information abstractions and usage perspectives.
Using the Software Engineering Taxonomy for classifying elements of the USAP and
for incorporating the elements in the the USAP information description/selection pro-
cess, contributes to a harmonized sequence of process stepswith a end-product that
matches the expectations of the USAP information user.

The USAP field study included the design and implementation of the USAP in-
formation selection tool, presented in [3]. The tool guidedthe architects through the
USAP information description/selection process but offered only selection features.

5.4 Summary

The USAP artifacts were identified and classified in the Software Engineering taxon-
omy. The classification of the USAP artifacts showed how the artifacts can be arranged
in a process composite to describe the USAP information description/ selection pro-
cess. Some new discoveries were made during the analysis of the classified artifacts:

• The inclusion of a traditional enterprise perspective, thebusiness concepts per-
spective, led to discoveries of new interrelationships between the USAP artifacts:
system-environment interaction scenario, system environment business roles &
work products, system-environment activities and tasks related to the roles &
work products, responsibility descriptions, quality attributes, and responsibility
implementation descriptions.

• System environment business roles and work products are a key artifact in link-
ing the USAP scenario [62] to common activities and tasks supporting more than
one role or more than one work product.

• System environment may be operational or development environment. The envi-
ronment decides what system-environment interface and business roles and work
products should be used in the USAP information description/ selection process
.

• The placeholder of the common activity is furnished by the work product or the
role.

37

• The responsibility is related to the quality chosen to be supported for the sce-
nario. For USAP, the usability quality is supported by the USAP scenarios. Pos-
sibly, the USAP information description/ selection process can be used for other
quality scenarios, if their tasks’ quality concern can be expressed as responsibil-
ities.

6 Conclusions and Future Work

The Software Engineering taxonomy can serve as a reasoning framework into which
artifacts of software engineering case and field studies canbe classified for the creation
of process composites or for further analysis. For the Influencing Factors method and
the Sustainable Systems Case study, the data was classified and analyzed. For the
USAP field study, the data was classified and used for process composite creation.
Applying the Software Engineering Taxonomy led to the additional contributions:

• Sustainable systems case study

– The sustainable key-competences in the industrial software system devel-
opment organization carry the application domain knowledge and the sys-
tem knowledge, thereby increasing the social sustainability of the company.
The sustainable key-competence pass the knowledge on to thesystem de-
velopers during informal design discussions.

– The development organizations sustain economical capitalby planning for
changes when the changes are technology changes. When the changes are
organizational, e.g. distributed development, the management have lost so-
cial capital by failing to plan for how the development organization has to
adapt to the new work-form. It has been too little known in thecompa-
nies, what requirements a distributed development environment has on the
development organization’s structures and communication.

– The incorporation of a remotely located development team inthe devel-
opment organization will be especially difficult in a culture that has social
capital invested in sustainable key-competences and theirinformal spread-
ing of knowledge. If the organization has ignored investigating in explicit
software documentation, increasing the tangible economical capital, the
new remotely located team can make use of neither the social capital nor
the economical capital related to system know-how.

– The sustainable target market increases the intangible economical capital.

– Intangible economical capital in the form of goodwill and reputation is in-
creased by delivering reliable systems for a long-time to the target markets.

– The propositions regarding the importance of intangible economical capital
of explicit defined roles and hand-over of information alongwith explicit
business goals communicated to the entire organization were rejected in the
case study.

– The social capital in the form of implicit roles, well-knownto the develop-
ers, is replacing the economic capital in the form of formal descriptions of
roles and formal communication.

38

– The case study’s propositions regarding the importance of control of the
the cost, quality, and schedule for sustainable development remain to in-
vestigate. The investigation have to include interviews with project leaders
and line management. The case study assumed that the productmanagers,
software architects, and senior developers would contribute to the control
of cost, quality and schedule. This turned out to be a false assumption. The
product managers, software architects, and senior developers had little or
no insights into how Key Performance Indicators were measured or how
schedule control was exercised.

– The list of success-critical concerns for sustainable development does not
include as many architectural success-critical concerns as expected. This
could be related to the lack of consensus around the concept of software
architecture. The lack of a consistent software architecture definition and
tools and methods based on such definition might make the industry reluc-
tant to embrace the concept of software architecture. Risksare not welcome
in industrial software system that have to live for decades.The business
case arguing added value of software architecture for sustainable devel-
opment is simply not good enough for the three investigated cases in the
domain of industrial software systems.

– In order to increase tangible economical capital in the formof software
engineering process artifacts, e.g. architecture descriptions, the companies
must first increase the tangible economical capital in form of organiza-
tional artifacts, e.g. role descriptions and social capital in form of informa-
tion communication channels. Curtis study [20] [21], the Dikel study [32]
and the Sustainable Industrial Software Systems case studypoint toward a
conclusion that sustainable development concerns relatedto the software
development organization, must be addressed first before software engi-
neering tools and methods could have a significant impact on sustainable
development.

• Influencing Factors field study

– Additional observations regarding stakeholder role and stakeholder per-
spective. For the stakeholders with the Business Concepts perspective,
maintainability and testability are discussed among stakeholders as soft-
ware development improvement strategies, e.g. distributed development
or introduction of product lines. The architectural structures for realizing
these strategies are seldom discussed among the success-critical stakehold-
ers. Decisions regarding architectural structures are taken informally by
the architects. This is a noticeable difference between thesoftware engi-
neering discipline and the building engineering discipline, where building
structures are discussed by architects, customers, and contractors.

• USAP field study

– The inclusion of a traditional enterprise perspective, thebusiness concepts
perspective, led to discoveries of new interrelationshipsbetween the USAP
artifacts: system-environment interaction scenario, system environment busi-
ness roles & work products, system-environment activitiesand tasks related
to the roles & work products, responsibility descriptions,quality attributes,
and responsibility implementation descriptions.

39

– System environment business roles and work products are a key artifact in
linking the USAP scenario [62] to common activities and tasks supporting
more than one role or more than one work product.

– System environment may be operational or development environment. The
environment decides what system-environment interface and business roles
and work products should be used in the USAP information description/
selection process .

– The placeholder of the common activity is furnished by the work product
or the role.

– The responsibility is related to the quality chosen to be supported for the
scenario. For USAP, the usability quality is supported by the USAP respon-
sibility. Possibly, the USAP information description/ selection process can
be used for other quality scenarios, if their tasks’ qualityconcern can be
expressed as responsibilities.

When classifying artifacts, not all of the 30 cell descriptions in the taxonomy need
to be used. The Influencing Factors analysis used three cells, the USAP analysis used
six cells. The Sustainable Industrial Software System casestudy used nearly all cells
showing that sustainability is a concept with a large set of descriptions and interactions
between the descriptions.

It remains to implement the description features in the USAPinformation descrip-
tion/selection tool. This is done in an ongoing research project. If the placeholder
always can be furnished with either role or work product remains to validate by describ-
ing additional USAPs. Possibly, the USAP information description/ selection process
can be used for other quality scenarios, if their tasks’ quality concern can be expressed
as responsibilities.

For the Sustainable System study, it remains to use the classification of sustainable
development concerns for set-up of goals and metrics in order to address some of the
concerns the companies felt they could meet in a better way. The interrelationships
between the classified concerns could then be used to create aprocess, in the same
manner as the USAP information description/ selection process was created.

References

[1] P. Stoll, A. Wall, and C. Norström. Software engineering featuring the zachman
taxonomy. Technical report, Mlardalen University, Schoolof Innovation, Design
and Engineering, 2009.

[2] P. Stoll, L. Bass, B. E. John, and E. Golden. Preparing Usability Supporting Ar-
chitectural Patterns for Industrial Use. Proceedings of International Workshop on
the Interplay between Usability Evaluation and Software Development (I-ISED),
Pisa, Italy, 2008.

[3] P. Stoll, L. Bass, B.E. John, and E. Golden. Supporting Usability in Product
Line Architectures. Proceedings of the 13th InternationalSoftware Product Line
Conference (SPLC), San Francisco, USA, August 2009.

[4] P. Stoll, A. Wall, and C. Norström. Guiding Architectural Decisions with the
Influencing Factors Method. Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA) 2008, 2008.

40

[5] P. Stoll and A. Wall. Business Sustainability for Software Systems. Proceedings
of Business Sustainability, Ofir, Portugal, 2008.

[6] J. F. Sowa and J. A. Zachman. Extending and formalizing the framework for
information systems architecture.IBM System Journal, 31:590–616, 1992.

[7] J. A. Zachman. A Framework for Information Systems Architecture.IBM Systems
Journal, 26(3):276–292, 1987.

[8] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A Primer
for Enterprise Engineering and Manufacturing. Zachman International, 2003.

[9] J. A. Zachman. The Zachman Framework and Observations onMethodologies.
Business Rules Journal, 5(11), 2004.

[10] P. B. Kruchten. The “4+1” View Model of architecture.Software, IEEE,
12(6):42–50, Nov 1995.

[11] R. Hilliard. Systems and software engineering - Recommended practice for ar-
chitectural description of software-intensive systems.ISO/IEC 42010 IEEE Std
1471-2000 First edition 2007-07-15, pages c1–24, 15 2007.

[12] ISO/IEC 10746 - 3: 1996, Information technology - Open distributed processing
- Reference model: Architecture, 1996.

[13] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley, Boston, second edition, 2003.

[14] C. O’Rourke, N. Fishman, and W. Selkow. Enterprise Architecture, Using the
Zachman Framework.Thomson Course Technology, 2003.

[15] P. Pollan. Our decrepit food factories.New York Times, 2007.

[16] G.C Unruh. Escaping carbon lock-in.Energy Policy, vol. 30(no.4):pp. 317–325,
2002.

[17] G.H. Brundtland. Our common future. Report of the WorldCommission on Envi-
ronment and Development. Published as Annex to General Assembly document
A/42/427, 1987.

[18] T. Dyllick and K. Hockerts. Beyond the business case forcorporate sustainabili-
tyt. Business Strategy and the Environment, 11:130–141, 2002.

[19] R. K. Yin. Case study research: Design and Methods, volume 5 ofApplied Social
Research Methods Series. SAGE Publications, third edition, 2003.

[20] W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On buildingsoftware process
models under the lamppost. InICSE ’87: Proceedings of the 9th international
conference on Software Engineering, pages 96–103, Los Alamitos, CA, USA,
1987. IEEE Computer Society Press.

[21] B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design process
for large systems. Communications of the ACM, Vol. 31 No. 11,pp. 1268-87.,
1988.

41

[22] E. Dijkstra. The structure of the “THE”-multiprogramming system. Commun.
ACM 11, 5:341–346, 1968.

[23] V. R. Basili and J. D. Musa. The future engineering of software: A management
perspective.Computer, 24(9):90–96, 1991.

[24] M. Jackson. Will there ever be software engineering?IEEE Software, pages
36–39, 1998.

[25] M. Shaw and D. Garlan.Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[26] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the definition of software
system architecture. InICSE 17 Software Architecture Workshop, 1995.

[27] P. Johnsson.Enterprise Software System Integration: An ArchitecturalPerspec-
tive. PhD thesis, Industrial Information and Control Systems, Royal Institute of
Technology (KTH), Stockholm, Sweden, 2002.

[28] R. Malveau and T. J. Mowbray.Software Architect Bootcamp. Prentice Hall
Professional Technical Reference, 2003.

[29] J. O. Coplien. Borland software craftsmanship: A new look at process, quality
and productivity. In5 th Annual Borland International Conference, 1994.

[30] M. E. Conway. How do committees invent?Datamation magazine, 1968.

[31] B. G. Cain, J. O. Coplien, and N. B. Harrison. Social patterns in productive
software development organizations.Annals of Software Engineering, 1996.

[32] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson. Applying software
product-line architecture.Computer, 30(8):49–55, Aug 1997.

[33] W. R. Ashby.An Introduction to Cybernetics. First Edition, Chapman and Hall:
London, UK, 1956.

[34] D. Kane, D. Dikel, and J. Wilson.Software Architecture: Organizational Princi-
ples and Patterns. Prentice Hall, 2001.

[35] K. Beck and W. Cunningham. Using pattern languages for object-oriented pro-
grams. Technical Report Technical Report No. CR-87-43, Apple Computer, Inc.
and Tektronix, Inc., 1987. Submitted to the OOPSLA-87 workshop on the Spec-
ification and Design for Object-Oriented Programming.

[36] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, andM. Stal. Pattern-
oriented Software Architecture A System of Patterns, volume 1. Wiley, first edi-
tion, 1996.

[37] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. InECOOP ’93: Proceedings of
the 7th European Conference on Object-Oriented Programming, pages 406–431,
London, UK, 1993. Springer-Verlag.

[38] M. Fowler. Pattern Of Enterprise Application Architecture. Addison-Wesley,
2003.

42

[39] J. O. Coplien. Organization and architecture. 1999 CHOOSE Forum on Object-
oriented Software Architecture, 1999.

[40] B. Boehm, Abts C., A. Winsor Brown, S. Chulani, B. K. Clark, E. Horowitz,
R. Madachy, D. J. Reifer, and B. Steece.Cost Estimation with COCOMO II.
Prentice Hall, 2000.

[41] M. Halstead.Elements of Software Science. Elsevier, 1977.

[42] McCabe. A complexity measure.IEEE Transactions on Software Engineering,
2:308–320, 1976.

[43] IEEE. Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages –, Dec 1990.

[44] P. Bourque and R. Dupuis, editors.Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society, 2004.

[45] Z. Antolic. An Example of Using Key Performance Indicators for Software De-
velopment Process Efficiency Evaluation. Technical Report, R&D Center, Erics-
son Nikola Tesla d.d., 2008.

[46] J. O. Coplien.Multi-Paradigm Dedign for C++. Addison-Wesley, Reading, MA,
1998.

[47] N. Rozanski and E. Woods.Software Systems Architecture: Working with Stake-
holders using Viewpoints and Perspectives. Addison-Wesley, 2005.

[48] I. Jacobson, M. Griss, and P. Jonsson. Making the reuse business work.Computer,
30(10):36–42, Oct 1997.

[49] Ilan Oshri, Julia Kotlarsky, and Leslie P. Willcocks. Global software develop-
ment: Exploring socialization and face-to-face meetings in distributed strategic
projects.The Journal of Strategic Information Systems, 16(1):25 – 49, 2007.

[50] K. Beck and W. Cunningham. A laboratory for teaching object oriented thinking.
ACM SIGPLAN Notices, 24(10):1–6, 1989.

[51] R. Wirfs-Brock and A. McKean.Object Design: Roles, Responsibilities, and
Collaborations. Addison-Wesley, 2003.

[52] H. Johnson and P. Johnson. Task Knowledge Structures: Psychological basis and
integration into system design.Acta Psychologica, 78:3–26, 1991.

[53] E. Golden, B. E. John, and L. Bass. The value of a usability-supporting archi-
tectural pattern in software architecture design: A controlled experiment. InPro-
ceedings of the 27th International Conference on Software Engineering, ICSE,
St. Louis, Missouri, May 2005.

[54] C. Alexander.The Timeless Way of Building. Oxford University Press, 1979.

[55] C. Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, USA, 1977.

43

[56] B. E. John, L. Bass, E. Golden, and P. Stoll. A responsibility-based pattern lan-
guage for usability-supporting architectural patterns. Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems (EICS),
Pittsburgh, PA, US, 2009.

[57] E. Gamma, R Helm, R. Johnson, and J. Wissides.Design Patterns - Elements of
Reusable Object-Oriented Sojlware. Addison-Wesley, 1995.

[58] L. Bass and B. E. John. Linking usability to software architecture patterns through
general scenarios.The Journal of Systems and Software, 66:187–197, 2003.

[59] N. Juristo, H. Windl, and L. Constantine. Introducing usability. Software, IEEE,
18(1):20–21, Jan/Feb 2001.

[60] N. Juristo, M. Lopez, A. Moreno, and M.-I. Sanchez-Segura. Improving software
usability through architectural patterns. Paper presented at the ICSE 2003 Work-
shop on Bridging the Gaps Between Software Engineering and Human-Computer
Interaction, Portland, Oregon, USA., 2003.

[61] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. Guidelines for eliciting us-
ability functionalities.Software Engineering, IEEE Transactions on, 33(11):744–
758, Nov. 2007.

[62] L. Bass, B. E. John, and J. Kates. Achieving usability through software ar-
chitecture. Technical Report No. SEI-TR-2001-005, Carnegie Mellon Univer-
sity/Software Engineering Institute, Pittsburgh, PA, 2001.

44

