
A mode mapping mechanism for component-based
multi-mode systems

Yin Hang, Hans Hansson
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, SWEDEN

Email: {young.hang.yin, hans.hansson}@mdh.se

Abstract—Component-Based Development (CBD) reduces de-
velopment time and effort by allowing systems to be built from
pre-developed reusable components. A classical approach to
reduce embedded systems design and run-time complexity is
to partition the behavior into a set of major system modes.
In supporting system modes in CBD, a key issue is seamless
composition of multi-mode components into systems. In ad-
dressing this issue, we previously developed a Mode Switch
Logic (MSL) for component-based multi-mode systems. Our
MSL implements seamless coordination and synchronization of
mode switch in systems composed of independently developed
components. However, our original MSL is based on the, in
a setting of reusable components, unrealistic assumption, that
all the components of a system support the same modes. This
considerably limits the feasibility of our MSL. In this paper we
lift this assumption and propose a mode mapping mechanism
that enables assembly of components supporting different sets
of modes. We demonstrate our mode mapping mechanism by a
simple example application.

Index Terms—component-based, multi-mode, mode switch,
mode mapping

I. INTRODUCTION

Traditionally, partitioning system behaviors into different
operational modes has been used to reduce complexity and
improve resource efficiency. Each mode corresponds to a
specific system behavior. The system can start by running in a
default mode and switches to another appropriate mode when
some condition changes. In this way, the complexity of both
system design and verification can be reduced while system
execution efficiency is improved. A typical multi-mode system
is the control software of an airplane, which e.g. could run in
taxi mode (the initial mode), taking off mode, flight mode and
landing mode.

There are a variety of alternatives for design and develop-
ment of multi-mode systems. We set our focus on Component-
Based Development (CBD), a promising solution for the devel-
opment of embedded systems. CBD boasts quite a number of
appealing features such as complexity management, increased
productivity, higher quality, faster developing time, lower
maintenance costs and reusability [1]. What we appreciate
most is the component reuse, which allows us to build a system
from reusable components, i.e. a system does not have to be
developed from scratch, instead, some of its components or
subsystems may be directly obtained from a repository of pre-
developed components.

Our target is component-based multi-mode systems (CB-
MMSs), i.e. multi-mode systems built by a set of hierarchically
organized components. Different system behaviors in different
modes are characterized by different:

• Component availability. Some components can be acti-
vated in one mode and deactivated in another mode.

• Component connection. Component connections can be
changed in different modes.

• The mode specific behavior of a component. Some com-
ponents themselves have different behaviors in different
modes.

Figure 1 illustrates a simple CBMMS (used throughout the
paper). From the top level, the system consists of Component
a (which is further decomposed into Component c, d and e)
and b (which is further decomposed into Component f and
g). Besides, the system and its components all support two
modes: m1 and m2. In mode m1, Component g is deactivated
(invisible) and Component f has one mode-specific behavior
(indicated by black color). In mode m2, Component g be-
comes activated while Component d is deactivated. Besides,
Component f has another mode-specific behavior (indicated
by grey color). Due to the availability change of Component
d and g, component connections are different in these two
modes, although component connection is not our concern in
this paper.

Fig. 1. A component-based multi-mode system

Apparently, the system behavior is highly dependent on
its components. This dependency also holds during a mode
switch. The central issue is that the mode switches of different
components must be coordinated and synchronized to achieve
a successful and efficient global mode switch. Notwithstanding
that there is plenty of research work dealing with mode switch,
little attention has been paid to this composable mode switch
problem. We have developed a Mode Switch Logic (MSL)
for CBMMSs [2], and based on our MSL, we have also pro-
vided timing analysis for a composable mode switch [3]. The
correctness of our MSL has been verified by model-checking

using UPPAAL [4]. Up till now, our MSL has been constrained
by an unrealistic assumption that all the components support
the same modes. However, when a composite component
is built by a composition of reusable components, chances
are that the desired modes of this composite component are
different from the supported modes of its subcomponents, and
the subcomponents would probably support different modes.
This mode incompatibility is a challenge for component com-
position and our MSL. In this paper, we introduce a mode
mapping mechanism to overcome this problem.

A. Related work

Mode switch problems (sometimes also called ”Mode
change”) can be found in a multitude of related ongoing
research on miscellaneous topics, a majority of which delve
into multi-mode real-time systems, in particular the study of
mode switch protocols and scheduling issues during mode
switch. One of the earliest publications related to mode switch
is by Sha et al. [5], who developed a simple mode switch
protocol in a prioritized preemptive scheduling environment
guaranteeing short and bounded mode switch latency. Later
Real and Crespo [6] conducted a survey of different mode
switch protocols and proposed several new protocols along
with associated schedulability analysis. Protocols for sym-
metrical multiprocessor platforms are presented in [7], and
extended to uniform multiprocessor platforms in [8]. There
are also a number of papers, e.g. [9] and [10], targeting mode
switch schedulability analysis, including EDF scheduling for
multi-mode real-time systems [11] [12] [13].

In addition, Phan et al. study multi-mode real-time systems
from a different perspective. They extend the traditional Real-
Time Calculus (RTC) into multi-mode RTC to determine
typical system properties [14]. They also present a multimode
automaton model for modeling multi-mode applications and an
interface-based technique for their compositional analysis [15].
Their most recent work presents a semantic framework for
mode switch protocols [16].

Several frameworks have been developed for the support of
multi-mode systems, such as COMDES-II [17] and MyCCM-
HI [18]. Moreover, mode switch can be supported by a
few programming languages/models, such as AADL [19],
Giotto [20] and TDL [21] (implemented in the Ptolemy II
framework [22]).

No related work has been found with respect to mode
mapping, although Pedro briefly mentions mode mapping in
his PhD dissertation [23], yet without any detailed discussion.

B. Contribution

The contribution of this paper is that we propose a mode
mapping mechanism as a supplement to our MSL for CB-
MMSs. This mechanism enables us to make mode mapping
rules for each composite component. The Mode Switch Re-
quest (MSR) propagation mechanism of our MSL can be
assisted by these rules so that the right MSR primitive can
always be propagated to the right component even when
different components support different modes.

The rest of this paper is organized as follows: In Section II,
we give a general introduction of our MSL, especially com-
ponent configuration and the MSR propagation mechanism.
Section III offers a thorough explanation of our mode mapping
mechanism and Section IV describes how to implement our
mode mapping mechanism in a typical CBMMS, a path
finding car. Finally, we make our conclusion in Section V.

II. MODE SWITCH LOGIC (MSL) FOR COMPONENT-BASED
MULTI-MODE SYSTEMS

Figure 1 illustrates what a typical CBMMS looks like.
Such a system bears two distinctive features. First, it is built
in a component-based manner. Therefore, it usually has a
hierarchical structure and is composed of both primitive and
composite components at different hierarchical levels. In the
realm of CBD, a composite component (e.g. Component a
in Figure 1) consists of other components (denoted subcom-
ponents) whilst a primitive component (e.g. Component c in
Figure 1) cannot be further decomposed. Second, the system
supports multiple operational modes and can switch from
one mode to another mode under certain circumstances. In
each mode, each component has its own configuration and
each mode switch of the system corresponds to the mode
switches of certain components. Since the mode switches of
these components are not independent, they must be guided
and coordinated by some rules to achieve a successful global
mode switch of the system. These rules can be found in our
MSL, which currently includes three facets: (1) component
reconfiguration, (2) MSR propagation mechanism, and (3)
mode switch dependency rules. Since our mode mapping
mechanism has a major influence on the MSR propagation,
we shall give a brief introduction to (1) and (2), but refer to
[2] for information about (3).

A. Component reconfiguration

Using our MSL, mode switch support is added to both
primitive and composite components. Based on traditional
primitive and composite components, which do not support
multiple modes, we introduce specific ports dedicated to
mode switch, define component configuration for each mode
and integrate the MSL into each component. The mode
switch related communication between different components
is realized by communication over those dedicated ports.
Some components may reconfigure themselves during mode
switch and this is controlled by the MSL of each compo-
nent. Component configuration varies between primitive and
composite components. For primitive components, component
configuration is defined by the component running status
(activated/deactivated) and the mode-specific behavior. For
composite components, component configuration is defined by
the component running status, the activated subcomponents
and the active inner component connections. In each mode,
only activated components are running, while deactivated
components are temporarily unavailable. Likewise, in each
mode, only active component connections are considered. A
connection becomes inactive when it is disconnected due to a

mode switch. When a component starts its mode switch, it will
reconfigure itself by changing the aforementioned elements for
each configuration.

B. MSR propagation mechanism
Before we explain our MSR propagation mechanism, it is

necessary to introduce Mode Switch Request (MSR) and Mode
Switch Triggering Source (MSTS).

Definition 1. A Mode Switch Request (MSR) is a signal telling
each component to switch mode. The MSR itself contains
information on the current MSR sender and the target mode
which the receiver should switch to. It is originally triggered
by a particular component and then propagated to all related
components.

In our previous work [2], we made an assumption that
all components support the same modes. In that case, the
target mode of each MSR will be exactly the same for
all components. This assumption simplifies the mode switch
analysis, but is unrealistic in a component-based setting. In
the next section, we will lift this assumption.

Definition 2. The Mode Switch Triggering Source (MSTS) is
the component who initiates a MSR. The MSTS could be either
a primitive or composite component.

A system can have multiple MSTSs leading to different
mode switch activities, i.e., it is possible that the system
receives a second MSR during a mode switch. In this paper,
we assume that the interval between two different MSRs is
long enough so that the next MSR will not be issued until the
mode switch of the system triggered by the previous MSR is
completed.

Our MSR propagation mechanism works differently for
primitive and composite components. For a primitive com-
ponent:
• If it is a MSTS, it will send a MSR to its parent and itself.
• If it is not a MSTS, it does not propagate the MSR, but

will start its own mode switch upon arrival of a MSR.
For a composite component, the only difference is that it

needs to send a MSR to itself if it is a MSTS, and that it is
sensitive to where the current MSR comes from:
• If it comes from one of its children, it propagates the

MSR to its other children and to its own parent if it is
not at the top level.

• If it comes from its parent, then it propagates the MSR
to all its children.

As an illustration, suppose that c in Figure 1 is the MSTS.
Then the MSR propagation process is as follows:

1) Component c sends a MSR to its parent a and to itself.
2) Component a propagates the MSR to d and e. It also

sends the MSR to the top level component.
3) The top level component sends the MSR to b.
4) Component b broadcasts the MSR to f and g.
Our MSR propagation mechanism both guarantees that all

the components are notified by the same MSR, and avoids any
potential redundant MSR transmission.

III. THE MODE MAPPING MECHANISM

Our MSR propagation mechanism is able to distribute
each MSR to all the components efficiently. However, it is
assumed that all components support the same modes. For
instance, in Figure 1, when the system is in mode m1, all the
components must be in mode m1 as well. Mode becomes a
global knowledge for all components. As a result, the target
mode of any MSR originating from a specific MSR generated
by the same MSTS is always the same. In a setting with
reusable components, this assumption is unrealistic, since the
requirement for all components to support the same modes
substantially limits reuse of components across applications.
Fortunately, this assumption can be lifted by our mode map-
ping mechanism.

A. The motivation of mode mapping

When we build Component a by the primitive components
c, d and e, the supported modes of c, d and e are already
provided by component developers. The supported modes of
a can be either obtained from system requirements at higher
levels or figured out according to the expected functionality of
a. Table I presents a list of supported modes within Component
a. The list indicates that both the supported modes and number
of supported modes are different for different components.
We call this the mode incompatibility problem. Due to this
problem, our current MSR propagation mechanism will not
be sufficient because the target mode conveyed by the MSR
associated with any MSTS cannot be recognized by other
components. The main purpose of our mode mapping mecha-
nism is to give a clear mapping between the supported modes
of different components and extend our MSR propagation
mechanism to handle mode incompatibility.

Component Supported modes
a m1a, m2a
c m1c, m2c, m3c
d m1d
e m1e, m2e, m3e, m4e

TABLE I
SUPPORTED MODES WITHIN COMPONENT a

Within a composite component, mode incompatibility can
exist between the parent and its children, or between dif-
ferent subcomponents. We are particularly interested in the
former case. For a composite component x and one of its
subcomponents y, we distinguish two basic types of mode
incompatibility:

1) Multiple modes of x is mapped to only one mode of
y. Then y stays in the same mode when x is switching
between those modes.

2) One mode of x is mapped to multiple modes of y.
Then x stays in the same mode when y is switching
between those modes. We call this phenomenon Local
mode switch.

These two types of mode incompatibility can co-exist within
the same composite component.

A mode mapping can be intuitively presented by a Mode
Mapping Table. Table II displays the mode mapping within
Component a. Each row consists of the supported modes
of one component and each column corresponds to a mode
mapping between different components. For instance, when
a is in mode m1a, c, d and e are in m1c, m1d and m1e,
respectively. Both types of mode incompatibility can be found
in Table II. The first type comes from a and d. When a is in
m1a or m2a, d is always in m1d. The second type comes
from a and c or e. For example, when a is in m2a, c is in
m2c or m3c.

Component Supported modes
a m1a m2a
c m1c m2c m3c
d m1d
e m1e m2e m3e m4e

TABLE II
MODE MAPPING TABLE FOR COMPONENT a

A system should always start by running in a safe and
predictable mode. This must be consistent with the mode
mapping. For instance, according to the mode mapping in
Table II, if m1a is defined as the initial mode of Component
a, then m1c, m1d and m1e should be the initial modes of c,
d and e, respectively.

B. Local mode switch

When a MSTS triggers a MSR, the MSR will be propagated
to all the other components. In this sense, any MSR has a
global impact on the entire system. Some components may not
switch mode upon receiving a MSR, but it is notified anyway.
In the worst case, a component at the bottom level initiates a
frequent MSR which only triggers its own mode switch and is
ignored by all the other components, consequently lowering
the MSR propagation efficiency. Since only some components
are responsive to the MSR, MSR propagation becomes a local
activity:

Definition 3. A local mode switch is a mode switch that
only takes place within a certain component excluding the top
component. A local MSR is initiated within this component
and this component should not propagate this MSR to its own
parent. Components who do not receive this local MSR are
unaware of this local mode switch.

Now let’s go back to the two types of mode incompatibility
mentioned in Section III-A. The second type actually implies
the existence of local mode switch. We can still use the mode
mapping in Table II to explain local mode switch. The mode
switch between m2e and m3e of Component e is a local mode
switch, where e is the MSTS that sends a MSR to a and then a
terminates the MSR propagation. Hence no other components
are affected. Another local mode switch involves both c and
e. m2c is mapped to m2e and m3e while m3c is mapped to

m4e. When c switches between m2c and m3c, e will also
switch mode. At least one of them propagates a MSR which
will be first sent to a, which will only propagate it to either c
or e. This is considered to be a local mode switch of a.

The consideration of local mode switch can avoid unnec-
essary MSR transmission and ameliorate MSR propagation
efficiency. Once the second type of mode incompatibility is
detected, any composite component is able to distinguish any
local mode switch activity based on its own local mapping.
Then the composite component should not propagate the MSR
to its parent. Similarly, the composite component can also
decide not to propagate the MSR to some of its subcomponents
or simply terminate MSR propagation.

C. Dominant Default Modes

The Mode Mapping Table is a representative expression of
the mode mapping within a composite component. Nonethe-
less, it fails to address the unpredictable mode switch problem.
When a switches to m2a, c has two potential target modes
and it can either switch to m2c or m3c. This unpredictable
behavior is undesirable as it causes mode switch uncertainty.
Therefore, we introduce Dominant Default Mode (DDM):

Definition 4. The Dominant Default Mode (DDM) of a
component during a mode switch is its default target mode
out of multiple possible target modes upon receiving a MSR.

DDM plays an essential role in eliminating unpredictable
mode switch behaviors. The DDM of each component actually
corresponds to one mode switch scenario. A mode switch
scenario is specified by the mode switch of a MSTS x from
a given mode m1x to another given mode m2x. Different
combinations of x, m1x and m2x give rise to different mode
switch scenarios. Therefore, a component can have different
DDMs associated with different mode switch scenarios and
DDM declaration is an essential part of the mode mapping
rules.

D. The mode mapping solution

A global mode mapping known by all components would
be against the principles of CBD. Instead, our solution is to
distribute the mode mapping mechanism to each composite
component, which will manage its own local mode mapping. A
composite component only knows the mode mapping between
its subcomponents and itself. Figure 2 illustrates how the mode
mapping mechanism functions within Component a. The local
mode mapping is managed by a. During any MSR transmission
between a and its subcomponents, the target mode in the
MSR is converted to a new target mode according to the
mode mapping rules and then sent to the target component.
Therefore, the mode mapping mechanism guarantees that both
a and its subcomponents can recognize their respective target
modes upon receiving a MSR.

In [2], we define primitive and composite components as
two different tuples based on the assumption that they support
the same modes. Here we extend them by considering mode
incompatibility, although we will here only include mode

Fig. 2. The mode mapping mechanism of Component a

related items of the tuples. Let PC and CC denote the set
of primitive and composite components, respectively. Then,

Definition 5. Each Primitive Component c ∈ PC is a tuple:

< M,m0,m >

where M is the set of supported modes of c; m0 is the initial
mode of c and m is the current mode of c.

Let’s take Component c in Table I as an example. When in
mode m3c and if m1c is the initial mode, then c is defined by
the tuple:

< {m1c,m2c,m3c},m1c,m3c >

Since mode mapping is managed by a composite compo-
nent, the composite component must know the modes of itself
and its children (i.e. its subcomponents at one level down in
the hierarchy), as well as the mappings between these modes.

Definition 6. Each Composite Component k ∈ CC is a tuple:

< M,m0,m,SC,MSC ,m
0
SC ,mSC ,MM >

where M is the set of supported modes of k; m0 is the
initial mode of k; m is the current mode of k; SC is the
set of subcomponents of k; MSC : SC → 2M is a func-
tion mapping each subcomponent of k to the corresponding
supported modes (M is the set of all modes); the mapping
between each subcomponent and its initial mode is defined by
a function m0

SC : SC → MSC , where for a subcomponent
x, we require m0

SC(x) to be one of the supported modes
of x, i.e. m0

SC(x) ∈ MSC(x); likewise, mSC(y) returns the
current mode of subcomponent y; MM is the mode mapping
information within k, given by a set of synchronized Mode
Mapping Automata (MMAs) each defined by a tuple

< S, s0, IL,OL, T >

where S is a set of states, s0 is an initial state, IL and OL are
sets of input and output labels, and T is a set of transitions
(T ⊆ S × IL × 2OL × S). For a composite component k,
there is one MMA handling the mapping at the interface with
other parts of k and one MMA for each of the children
of k. The states of these automata will correspond to the
modes of the corresponding components, with the the initial
mode corresponding to the initial state. The transitions of the

automata will specify and implement the mode mapping by
accepting and emitting MSR primitives and by synchronizing
with the other automata (a transition can only be taken if
it is taken jointly with a transition with the same label in
one of the other automata). The formal semantics of this
is straightforward to define, but omitted here due to space
limitations.

As an illustration, consider Component a in Table I defined
by the tuple:

< Ma,m
0
a,ma, SCa,MSCa ,m

0
SCa

,mSCa ,MMa >

where
Ma = {m1a,m2a}
m0

a = m1a
ma = m2a
SCa = {c, d, e}
MSCa

= {c→ {m1c,m2c,m3c},
d→ {m1d},
e→ {m1e,m2e,m3e,m4e}}

m0
SCa

= {c→ m1c, d→ m1d, e→ m1e}
mSCa = {c→ m3c, d→ m1d, e→ m4e}

and MMa is defined by the MMA in Figure 3 - 6.

Fig. 3. The set of mode mapping automata of Component a

Fig. 4. The mode mapping automaton of Component a

Figure 3 shows the set of MMAs of Component a. The
MMA structure is hierarchically organized in the same way
as the corresponding components, although it does not include
any potential substructuring of the subcomponents, and is fully
contained in the composite component (a in this case). Figure
4, 5 and 6 illustrate the MMA of a, c and e respectively.
MMAd is not described because Component d only supports

Fig. 5. The mode mapping automaton of Component c

Fig. 6. The mode mapping automaton of Component e

a single mode and does not switch mode. For each MMAx,
each location (state) corresponds to one mode supported by x,
with the initial mode marked by double circles. Each transition
represents a mode switch and is associated with a condition
in the form of Input/Output. The Input is the signal received
by MMAx and the Output is the set of signals sent by MMAx

in response to the Input. For both the Input and the Output,
we distinguish two types of signals: the external signal, i.e.
a MSR, and the internal signal used for the synchronization
between different MMAs. For example, according to Figure
3, when a is in m1a and receives a.MSR(m2a), this is an
“external” signal recieved by the mode mapping mechanism
from a indicating that the new mode of a is m2a. Based on the
mode mapping rules, MMAa then generates e.m2c and e.m2e
as its Output, which will be received by MMAc and MMAe

accordingly. Then MMAc will send MSR(m2c) to Component
c (see Figure 5). Similarly, MMAe will send MSR(m2e) to
Component e. m2c and m2e are actually the DDMs of
Component c and e respectively in this scenario. A special case
is the local mode switch between m2e and m3e of Component
e which must be the MSTS for it. This phenomenon can also
be observed from the transitions between m2e and m3e in
Figure 6.

E. The algorithm for mode mapping and MSR propagation

We have already introduced a set of mode mapping rules
together with their formal expression. These rules can be used
by any composite component during MSR propagation. In

our previous work [2], we explained the MSR propagation
mechanism and implemented it by an algorithm, yet without
considering mode incompatibility. Here we extend the MSR
propagation algorithm with these mode mapping rules as its
input. Since mode mapping is always handled by a composite
component, there is no need to implement an algorithm for
primitive components. Algorithm 1 can be implemented in
composite component x. Some notations and functions are
explained as follows:
• Wait and Signal are primitives for receiving and sending a

MSR. The MSR contains the target mode and the identity
of the current sender.

• convertMode is a function which derives the new mode of
a subcomponent y according to the given mode mapping
information. It requires four parameters: the current and
new modes of one component (either the parent of y or
another subcomponent other than y), the current mode of
y and the identity of y.

• top is a boolean variable only set to true for the top level
composite component.

Algorithm 1 AlgCC.MSR propagation(x ∈ CC, top)

Wait(MSR(mnew
x , origin));

if origin = parent then
mnew = mnew

x ;
for i from 1 to |SCx| do
mnew = convertMode(mx,m

new
x ,mSCx(i), SCx(i));

if mnew 6= mSCx(i) then
Signal(SCx(i),MSR(mnew, x));

end if
end for

else
mnew

origin = mnew
x ;

mnew
x = convertMode(morigin,m

new
x ,mx, x);

mnew = mnew
x ;

for i from 1 to |SCx| do
if SCx(i) 6= origin then

if mnew
x 6= mx then

mnew = convertMode(mx,m
new
x ,mSCx(i), SCx(i));

else
mnew = convertMode(morigin,m

new
origin,mSCx

(i), SCx(i));
end if
if mnew 6= mSCx(i) then

Signal(SCx(i),MSR(mnew, x));
end if

end if
end for
if mnew

x 6= mx AND ¬top then
Signal(parent,MSR(mnew

x , x));
end if

end if

Algorithm 1 enables a composite component to decide
which components it should propagate the MSR to and what
are their target modes. The composite component x first

identifies where the MSR comes from. If it is from its parent,
it will derive the target modes of SCx according to the local
mode mapping. A MSR is sent to a subcomponent in SCx

only if its target mode is not equal to its current mode.
If the MSR is from a subcomponent y of x, x must first

convert the target mode conveyed by the MSR to a target mode
that it can recognize. Then x tries to convert the new mode of
its other subcomponents. For each subcomponent z other than
y, if its new mode is different from its current mode, it will
receive a MSR from x. In addition, if the target mode of x is
different from its current mode and it is not at the top level,
it will also propagate the MSR to its own parent.

IV. CASE STUDY–A PATH FINDING CAR

In this section, our mode mapping mechanism will be imple-
mented in a path finding car. This example is for demonstration
purposes, and is substantially simpler than the real applications
we have in mind.

The car is equipped with a simple CPU, one light sensor,
and two motors. These hardware elements can also be regarded
as components (the two motors are treated as one component),
which run in different modes:
• As an essential component for the path finding function,

the light sensor (called LightS for short) is able to
distinguish black and white colors. It supports two modes:
Black and White, depending on the color it detects.

• The component Motors controls the moving direction of
the car. It supports four modes: Forward, Backward, Left
and Right, which will be simplified as mode F, B, L and
R. Since the path finding function can be achieved even
without moving backwards, we skip the B mode.

• The supported modes of the CPU is in line with the
system itself, i.e. Init, Follow, and Find. Here we can
consider it as the parent of LightS and Motors.

These components can be defined as the tuples introduced
in Section III-D. Due to the limited space, we skip this tuple
definition. Here we define Init, White, and F as the initial
modes of CPU, LightS, and Motors. Based on the supported
modes of different components, Table III provides the mode
mapping, with the following explanations:
• The system (or CPU) is in mode Init. It takes three steps

for the car to get aligned with the track for the first
time (See Figure 7). We assume that the car is initially
facing the track and that it is supposed to follow the track
clockwise. The first step is to run straight towards the
track. When the light sensor detects the black track for
the first time, the car will cross the track and then turn
left. After that it goes forward and will reach the track
again. Since that moment, the system switches to mode
Follow. During these three steps, the light sensor can be
either in Black or White. The motors can be either in F
or L. Actually the mode mapping between LightS and
Motors is quite implicit, as the mode of Motors is not
only based on the mode of LightS, but also on some
other system parameters.

• The system is in mode Follow. As long as the light
sensor keeps detecting the black color, the car will keep
following the track by moving forward.

• The system is in mode Find. This means the car runs
out of the track. The light sensor is in White. In order to
go back onto the track, the car must either turn left or
right. Therefore, the motors run either in L or R. Here
we assume L is the DDM.

Fig. 7. Aligned with the track for the first time

Component Mode mapping
CPU Init Follow Find

LightS Black White Black White
Motors F ‖ L F L R

TABLE III
THE MODE MAPPING OF THE PATH FINDING CAR

Both global and local mode switch activities can be found
in this path finding car. A global mode switch is triggered by
the CPU when the light sensor detects a sudden color change
and some functional requirements are satisfied. A typical local
mode switch is the mode switch between L and R of the
Motors component when the system is in Find. The MMA
of the CPU, the light sensor and the motors can be found in
Figure 8 and 9. Regarding this set of MMAs, some points
deserve additional explanation:
• The supported modes of the light sensor is based on its

sampling value, thus its mode switch is always triggered
by itself.

• Sometimes a MMA may do nothing upon receiving an
Input. This is marked as ”- -” for the Output.

• MMACPU may generate multiple Output which are con-
nected by ”+”.

• Some Input of MMACPU contains Conditionx(x∈[1,4]).
This comes from the system functionality, e.g. a counter
recording how many times the car detects the black color.
The CPU requires this information in order to derive
the new modes of the motors. Therefore, sometimes it
is quite challenging to entirely separate mode mapping
from system functionalities.

V. CONCLUSION AND FUTURE WORK

We have proposed a mode mapping mechanism as en
extension of our Mode Switch Logic (MSL) for CBMMSs.
This mechanism can be easily adopted by each composite

Fig. 8. The mode mapping automaton of CPU

Fig. 9. The mode mapping automata of LightS and Motors

component during MSR propagation to handle different types
of mode incompatibility, including local mode switch as a
special case. The mode mapping is realized by a set of rules
that can be formally expressed. We also extend our previous
MSR propagation mechanism by considering mode mapping
and provide an algorithm that takes the mode mapping rules
as inputs. Our mode mapping mechanism is first demonstrated
by a small example and finally it is implemented in a simple
case study.

In our future work, we intend to further extend and general-
ize our mode switch mechanism, including considering Inde-
pendent mode switch, i.e., mode switch of some components
that are independent of the mode switch of other components,
and adaptive mode switch in which different mode mappings
can be selected based on on predefined conditions. In addition,
the correctness of our mode mapping mechanism should
be formally verified. A further issue is atomic component
executions, i.e., lifting the current assumption that the ex-
ecution of any component can be immediately interrupted
by a MSR during the mode switch. Furthermore, when our
MSL is mature enough, it is our ambition to implement it
in the ProCom framework [24] that embodies the feature of
component reuse very well.

ACKNOWLEDGMENT

This work is supported by the Swedish Research Council.

REFERENCES

[1] I. Crnkovic and M. Larsson, Building reliable component-based software
systems. Artech House, 2002.

[2] Y. Hang, E. Borde, and H. Hansson, “Composable mode switch for
component-based systems,” in APRES ’11: Third International Work-
shop on Adaptive and Reconfigurable Embedded Systems, 2011, pp.
19–22.

[3] Y. Hang and H. Hansson, “Timing analysis for a composable mode
switch,” in The Work-in-Progress session of the 23rd Euromicro Con-
ference on Real-Time Systems, 2011, pp. 15–18.

[4] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” STTT-
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134–152, 1997.

[5] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode change
protocols for priority-driven preemptive scheduling,” Real-Time Systems,
vol. 1, pp. 243–264, 1989.

[6] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161–197, 2004.

[7] V. Nélis, J. Goossens, and B. Andersson, “Two protocols for scheduling
multi-mode real-time systems upon identical multiprocessor platforms,”
in 21st Euromicro Conference on Real-Time Systems, 2009, pp. 151–160.

[8] P. M. Yomsi, V. Nelis, and J. Goossens, “Scheduling multi-mode real-
time systems upon uniform multiprocessor platforms,” in 15th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation, 2010.

[9] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode changes in priority
pre-emptively scheduled systems,” in Real Time Systems Symposium,
1992, pp. 100–109.

[10] P. Pedro and A. Burns, “Schedulability analysis for mode changes in
flexible real-time systems,” in 10th Euromicro Conference on Real-Time
Systems, 1998, pp. 172–179.

[11] B. Andersson, “Uniprocessor edf scheduling with mode change,” in 12th
International Conference on Principles of Distributed Systems, 2008, pp.
572–577.

[12] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable mode changes in
real-time systems with fixed priority or edf scheduling,” in Conference
on Design, Automation and Test in Europe, 2009, pp. 99–104.

[13] V. Nélis, B. Andersson, J. Marinho, and S. M. Petters, “Global-edf
scheduling of multimode real-time systems considering mode indepen-
dent tasks,” in 23rd Euromicro Conference on Real-Time Systems, 2011,
pp. 205–214.

[14] L. T. X. Phan, S. Chakraborty, and P. S. Thiagarajan, “A multi-mode
real-time calculus,” in Real-Time Systems Symposium, 2008, pp. 59–69.

[15] L. T. X. Phan, I. Lee, and O. Sokolsky, “Compositional analysis of multi-
mode systems,” in 22nd Euromicro Conference on Real-Time Systems,
2010, pp. 197–206.

[16] ——, “A semantic framework for mode change protocols,” in 17th IEEE
Real-Time and Embedded Technology and Applications Symposium,
2011, pp. 91–100.

[17] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A component-
based framework for generative development of distributed real-time
control systems,” in 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 2007.

[18] E. Borde, G. Haı̈k, and L. Pautet, “Mode-based reconfiguration of
critical software component architectures,” in Conference on Design,
Automation and Test in Europe, 2009, pp. 1160–1165.

[19] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Software engineering
institute, MA, Tech. Rep. CMU/SEI-2006-TN-011, Feb. 2006.

[20] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in PROCEEDINGS OF
THE IEEE, 2001, pp. 166–184.

[21] J. Templ, “TDL specification and report,” Department of Computer
Science, University of Salzburg, Tech. Rep., Nov. 2003.

[22] P. D. S. Resmerita and W. Pree, “Timing definition language (TDL)
modeling in ptolemy II,” Department of Computer Science, University
of Salzburg, Tech. Rep., Jun. 2008.

[23] P. Pedro, “Schedulability of mode changes in flexible real-time dis-
tributed systems,” Ph.D. dissertation, University of York, Sep. 1999.

[24] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Petters-
son, “Formal semantics of the ProCom real-time component model,”
in 35th Euromicro Conference on Software Engineering and Advanced
Applications, 2009, pp. 478–485.

